sha512.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621
  1. /* crypto/sha/sha512.c */
  2. /* ====================================================================
  3. * Copyright (c) 2004 The OpenSSL Project. All rights reserved
  4. * according to the OpenSSL license [found in ../../LICENSE].
  5. * ====================================================================
  6. */
  7. #include <openssl/opensslconf.h>
  8. #ifdef OPENSSL_FIPS
  9. # include <openssl/fips.h>
  10. #endif
  11. #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA512)
  12. /*-
  13. * IMPLEMENTATION NOTES.
  14. *
  15. * As you might have noticed 32-bit hash algorithms:
  16. *
  17. * - permit SHA_LONG to be wider than 32-bit (case on CRAY);
  18. * - optimized versions implement two transform functions: one operating
  19. * on [aligned] data in host byte order and one - on data in input
  20. * stream byte order;
  21. * - share common byte-order neutral collector and padding function
  22. * implementations, ../md32_common.h;
  23. *
  24. * Neither of the above applies to this SHA-512 implementations. Reasons
  25. * [in reverse order] are:
  26. *
  27. * - it's the only 64-bit hash algorithm for the moment of this writing,
  28. * there is no need for common collector/padding implementation [yet];
  29. * - by supporting only one transform function [which operates on
  30. * *aligned* data in input stream byte order, big-endian in this case]
  31. * we minimize burden of maintenance in two ways: a) collector/padding
  32. * function is simpler; b) only one transform function to stare at;
  33. * - SHA_LONG64 is required to be exactly 64-bit in order to be able to
  34. * apply a number of optimizations to mitigate potential performance
  35. * penalties caused by previous design decision;
  36. *
  37. * Caveat lector.
  38. *
  39. * Implementation relies on the fact that "long long" is 64-bit on
  40. * both 32- and 64-bit platforms. If some compiler vendor comes up
  41. * with 128-bit long long, adjustment to sha.h would be required.
  42. * As this implementation relies on 64-bit integer type, it's totally
  43. * inappropriate for platforms which don't support it, most notably
  44. * 16-bit platforms.
  45. * <appro@fy.chalmers.se>
  46. */
  47. # include <stdlib.h>
  48. # include <string.h>
  49. # include <openssl/crypto.h>
  50. # include <openssl/sha.h>
  51. # include <openssl/opensslv.h>
  52. # include "cryptlib.h"
  53. const char SHA512_version[] = "SHA-512" OPENSSL_VERSION_PTEXT;
  54. # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
  55. defined(__x86_64) || defined(_M_AMD64) || defined(_M_X64) || \
  56. defined(__s390__) || defined(__s390x__) || \
  57. defined(SHA512_ASM)
  58. # define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  59. # endif
  60. int SHA384_Init(SHA512_CTX *c)
  61. {
  62. # ifdef OPENSSL_FIPS
  63. FIPS_selftest_check();
  64. # endif
  65. c->h[0] = U64(0xcbbb9d5dc1059ed8);
  66. c->h[1] = U64(0x629a292a367cd507);
  67. c->h[2] = U64(0x9159015a3070dd17);
  68. c->h[3] = U64(0x152fecd8f70e5939);
  69. c->h[4] = U64(0x67332667ffc00b31);
  70. c->h[5] = U64(0x8eb44a8768581511);
  71. c->h[6] = U64(0xdb0c2e0d64f98fa7);
  72. c->h[7] = U64(0x47b5481dbefa4fa4);
  73. c->Nl = 0;
  74. c->Nh = 0;
  75. c->num = 0;
  76. c->md_len = SHA384_DIGEST_LENGTH;
  77. return 1;
  78. }
  79. int SHA512_Init(SHA512_CTX *c)
  80. {
  81. # ifdef OPENSSL_FIPS
  82. FIPS_selftest_check();
  83. # endif
  84. c->h[0] = U64(0x6a09e667f3bcc908);
  85. c->h[1] = U64(0xbb67ae8584caa73b);
  86. c->h[2] = U64(0x3c6ef372fe94f82b);
  87. c->h[3] = U64(0xa54ff53a5f1d36f1);
  88. c->h[4] = U64(0x510e527fade682d1);
  89. c->h[5] = U64(0x9b05688c2b3e6c1f);
  90. c->h[6] = U64(0x1f83d9abfb41bd6b);
  91. c->h[7] = U64(0x5be0cd19137e2179);
  92. c->Nl = 0;
  93. c->Nh = 0;
  94. c->num = 0;
  95. c->md_len = SHA512_DIGEST_LENGTH;
  96. return 1;
  97. }
  98. # ifndef SHA512_ASM
  99. static
  100. # endif
  101. void sha512_block_data_order(SHA512_CTX *ctx, const void *in, size_t num);
  102. int SHA512_Final(unsigned char *md, SHA512_CTX *c)
  103. {
  104. unsigned char *p = (unsigned char *)c->u.p;
  105. size_t n = c->num;
  106. p[n] = 0x80; /* There always is a room for one */
  107. n++;
  108. if (n > (sizeof(c->u) - 16))
  109. memset(p + n, 0, sizeof(c->u) - n), n = 0,
  110. sha512_block_data_order(c, p, 1);
  111. memset(p + n, 0, sizeof(c->u) - 16 - n);
  112. # ifdef B_ENDIAN
  113. c->u.d[SHA_LBLOCK - 2] = c->Nh;
  114. c->u.d[SHA_LBLOCK - 1] = c->Nl;
  115. # else
  116. p[sizeof(c->u) - 1] = (unsigned char)(c->Nl);
  117. p[sizeof(c->u) - 2] = (unsigned char)(c->Nl >> 8);
  118. p[sizeof(c->u) - 3] = (unsigned char)(c->Nl >> 16);
  119. p[sizeof(c->u) - 4] = (unsigned char)(c->Nl >> 24);
  120. p[sizeof(c->u) - 5] = (unsigned char)(c->Nl >> 32);
  121. p[sizeof(c->u) - 6] = (unsigned char)(c->Nl >> 40);
  122. p[sizeof(c->u) - 7] = (unsigned char)(c->Nl >> 48);
  123. p[sizeof(c->u) - 8] = (unsigned char)(c->Nl >> 56);
  124. p[sizeof(c->u) - 9] = (unsigned char)(c->Nh);
  125. p[sizeof(c->u) - 10] = (unsigned char)(c->Nh >> 8);
  126. p[sizeof(c->u) - 11] = (unsigned char)(c->Nh >> 16);
  127. p[sizeof(c->u) - 12] = (unsigned char)(c->Nh >> 24);
  128. p[sizeof(c->u) - 13] = (unsigned char)(c->Nh >> 32);
  129. p[sizeof(c->u) - 14] = (unsigned char)(c->Nh >> 40);
  130. p[sizeof(c->u) - 15] = (unsigned char)(c->Nh >> 48);
  131. p[sizeof(c->u) - 16] = (unsigned char)(c->Nh >> 56);
  132. # endif
  133. sha512_block_data_order(c, p, 1);
  134. if (md == 0)
  135. return 0;
  136. switch (c->md_len) {
  137. /* Let compiler decide if it's appropriate to unroll... */
  138. case SHA384_DIGEST_LENGTH:
  139. for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
  140. SHA_LONG64 t = c->h[n];
  141. *(md++) = (unsigned char)(t >> 56);
  142. *(md++) = (unsigned char)(t >> 48);
  143. *(md++) = (unsigned char)(t >> 40);
  144. *(md++) = (unsigned char)(t >> 32);
  145. *(md++) = (unsigned char)(t >> 24);
  146. *(md++) = (unsigned char)(t >> 16);
  147. *(md++) = (unsigned char)(t >> 8);
  148. *(md++) = (unsigned char)(t);
  149. }
  150. break;
  151. case SHA512_DIGEST_LENGTH:
  152. for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
  153. SHA_LONG64 t = c->h[n];
  154. *(md++) = (unsigned char)(t >> 56);
  155. *(md++) = (unsigned char)(t >> 48);
  156. *(md++) = (unsigned char)(t >> 40);
  157. *(md++) = (unsigned char)(t >> 32);
  158. *(md++) = (unsigned char)(t >> 24);
  159. *(md++) = (unsigned char)(t >> 16);
  160. *(md++) = (unsigned char)(t >> 8);
  161. *(md++) = (unsigned char)(t);
  162. }
  163. break;
  164. /* ... as well as make sure md_len is not abused. */
  165. default:
  166. return 0;
  167. }
  168. return 1;
  169. }
  170. int SHA384_Final(unsigned char *md, SHA512_CTX *c)
  171. {
  172. return SHA512_Final(md, c);
  173. }
  174. int SHA512_Update(SHA512_CTX *c, const void *_data, size_t len)
  175. {
  176. SHA_LONG64 l;
  177. unsigned char *p = c->u.p;
  178. const unsigned char *data = (const unsigned char *)_data;
  179. if (len == 0)
  180. return 1;
  181. l = (c->Nl + (((SHA_LONG64) len) << 3)) & U64(0xffffffffffffffff);
  182. if (l < c->Nl)
  183. c->Nh++;
  184. if (sizeof(len) >= 8)
  185. c->Nh += (((SHA_LONG64) len) >> 61);
  186. c->Nl = l;
  187. if (c->num != 0) {
  188. size_t n = sizeof(c->u) - c->num;
  189. if (len < n) {
  190. memcpy(p + c->num, data, len), c->num += len;
  191. return 1;
  192. } else {
  193. memcpy(p + c->num, data, n), c->num = 0;
  194. len -= n, data += n;
  195. sha512_block_data_order(c, p, 1);
  196. }
  197. }
  198. if (len >= sizeof(c->u)) {
  199. # ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
  200. if ((size_t)data % sizeof(c->u.d[0]) != 0)
  201. while (len >= sizeof(c->u))
  202. memcpy(p, data, sizeof(c->u)),
  203. sha512_block_data_order(c, p, 1),
  204. len -= sizeof(c->u), data += sizeof(c->u);
  205. else
  206. # endif
  207. sha512_block_data_order(c, data, len / sizeof(c->u)),
  208. data += len, len %= sizeof(c->u), data -= len;
  209. }
  210. if (len != 0)
  211. memcpy(p, data, len), c->num = (int)len;
  212. return 1;
  213. }
  214. int SHA384_Update(SHA512_CTX *c, const void *data, size_t len)
  215. {
  216. return SHA512_Update(c, data, len);
  217. }
  218. void SHA512_Transform(SHA512_CTX *c, const unsigned char *data)
  219. {
  220. sha512_block_data_order(c, data, 1);
  221. }
  222. unsigned char *SHA384(const unsigned char *d, size_t n, unsigned char *md)
  223. {
  224. SHA512_CTX c;
  225. static unsigned char m[SHA384_DIGEST_LENGTH];
  226. if (md == NULL)
  227. md = m;
  228. SHA384_Init(&c);
  229. SHA512_Update(&c, d, n);
  230. SHA512_Final(md, &c);
  231. OPENSSL_cleanse(&c, sizeof(c));
  232. return (md);
  233. }
  234. unsigned char *SHA512(const unsigned char *d, size_t n, unsigned char *md)
  235. {
  236. SHA512_CTX c;
  237. static unsigned char m[SHA512_DIGEST_LENGTH];
  238. if (md == NULL)
  239. md = m;
  240. SHA512_Init(&c);
  241. SHA512_Update(&c, d, n);
  242. SHA512_Final(md, &c);
  243. OPENSSL_cleanse(&c, sizeof(c));
  244. return (md);
  245. }
  246. # ifndef SHA512_ASM
  247. static const SHA_LONG64 K512[80] = {
  248. U64(0x428a2f98d728ae22), U64(0x7137449123ef65cd),
  249. U64(0xb5c0fbcfec4d3b2f), U64(0xe9b5dba58189dbbc),
  250. U64(0x3956c25bf348b538), U64(0x59f111f1b605d019),
  251. U64(0x923f82a4af194f9b), U64(0xab1c5ed5da6d8118),
  252. U64(0xd807aa98a3030242), U64(0x12835b0145706fbe),
  253. U64(0x243185be4ee4b28c), U64(0x550c7dc3d5ffb4e2),
  254. U64(0x72be5d74f27b896f), U64(0x80deb1fe3b1696b1),
  255. U64(0x9bdc06a725c71235), U64(0xc19bf174cf692694),
  256. U64(0xe49b69c19ef14ad2), U64(0xefbe4786384f25e3),
  257. U64(0x0fc19dc68b8cd5b5), U64(0x240ca1cc77ac9c65),
  258. U64(0x2de92c6f592b0275), U64(0x4a7484aa6ea6e483),
  259. U64(0x5cb0a9dcbd41fbd4), U64(0x76f988da831153b5),
  260. U64(0x983e5152ee66dfab), U64(0xa831c66d2db43210),
  261. U64(0xb00327c898fb213f), U64(0xbf597fc7beef0ee4),
  262. U64(0xc6e00bf33da88fc2), U64(0xd5a79147930aa725),
  263. U64(0x06ca6351e003826f), U64(0x142929670a0e6e70),
  264. U64(0x27b70a8546d22ffc), U64(0x2e1b21385c26c926),
  265. U64(0x4d2c6dfc5ac42aed), U64(0x53380d139d95b3df),
  266. U64(0x650a73548baf63de), U64(0x766a0abb3c77b2a8),
  267. U64(0x81c2c92e47edaee6), U64(0x92722c851482353b),
  268. U64(0xa2bfe8a14cf10364), U64(0xa81a664bbc423001),
  269. U64(0xc24b8b70d0f89791), U64(0xc76c51a30654be30),
  270. U64(0xd192e819d6ef5218), U64(0xd69906245565a910),
  271. U64(0xf40e35855771202a), U64(0x106aa07032bbd1b8),
  272. U64(0x19a4c116b8d2d0c8), U64(0x1e376c085141ab53),
  273. U64(0x2748774cdf8eeb99), U64(0x34b0bcb5e19b48a8),
  274. U64(0x391c0cb3c5c95a63), U64(0x4ed8aa4ae3418acb),
  275. U64(0x5b9cca4f7763e373), U64(0x682e6ff3d6b2b8a3),
  276. U64(0x748f82ee5defb2fc), U64(0x78a5636f43172f60),
  277. U64(0x84c87814a1f0ab72), U64(0x8cc702081a6439ec),
  278. U64(0x90befffa23631e28), U64(0xa4506cebde82bde9),
  279. U64(0xbef9a3f7b2c67915), U64(0xc67178f2e372532b),
  280. U64(0xca273eceea26619c), U64(0xd186b8c721c0c207),
  281. U64(0xeada7dd6cde0eb1e), U64(0xf57d4f7fee6ed178),
  282. U64(0x06f067aa72176fba), U64(0x0a637dc5a2c898a6),
  283. U64(0x113f9804bef90dae), U64(0x1b710b35131c471b),
  284. U64(0x28db77f523047d84), U64(0x32caab7b40c72493),
  285. U64(0x3c9ebe0a15c9bebc), U64(0x431d67c49c100d4c),
  286. U64(0x4cc5d4becb3e42b6), U64(0x597f299cfc657e2a),
  287. U64(0x5fcb6fab3ad6faec), U64(0x6c44198c4a475817)
  288. };
  289. # ifndef PEDANTIC
  290. # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  291. # if defined(__x86_64) || defined(__x86_64__)
  292. # define ROTR(a,n) ({ unsigned long ret; \
  293. asm ("rorq %1,%0" \
  294. : "=r"(ret) \
  295. : "J"(n),"0"(a) \
  296. : "cc"); ret; })
  297. # if !defined(B_ENDIAN)
  298. # define PULL64(x) ({ SHA_LONG64 ret=*((const SHA_LONG64 *)(&(x))); \
  299. asm ("bswapq %0" \
  300. : "=r"(ret) \
  301. : "0"(ret)); ret; })
  302. # endif
  303. # elif (defined(__i386) || defined(__i386__)) && !defined(B_ENDIAN)
  304. # if defined(I386_ONLY)
  305. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  306. unsigned int hi=p[0],lo=p[1]; \
  307. asm("xchgb %%ah,%%al;xchgb %%dh,%%dl;"\
  308. "roll $16,%%eax; roll $16,%%edx; "\
  309. "xchgb %%ah,%%al;xchgb %%dh,%%dl;" \
  310. : "=a"(lo),"=d"(hi) \
  311. : "0"(lo),"1"(hi) : "cc"); \
  312. ((SHA_LONG64)hi)<<32|lo; })
  313. # else
  314. # define PULL64(x) ({ const unsigned int *p=(const unsigned int *)(&(x));\
  315. unsigned int hi=p[0],lo=p[1]; \
  316. asm ("bswapl %0; bswapl %1;" \
  317. : "=r"(lo),"=r"(hi) \
  318. : "0"(lo),"1"(hi)); \
  319. ((SHA_LONG64)hi)<<32|lo; })
  320. # endif
  321. # elif (defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
  322. # define ROTR(a,n) ({ unsigned long ret; \
  323. asm ("rotrdi %0,%1,%2" \
  324. : "=r"(ret) \
  325. : "r"(a),"K"(n)); ret; })
  326. # endif
  327. # elif defined(_MSC_VER)
  328. # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  329. # define ROTR(a,n) _rotr64((a),n)
  330. # endif
  331. # if defined(_M_IX86) && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  332. # if defined(I386_ONLY)
  333. static SHA_LONG64 __fastcall __pull64be(const void *x)
  334. {
  335. _asm mov edx,[ecx + 0]
  336. _asm mov eax,[ecx + 4]
  337. _asm xchg dh, dl
  338. _asm xchg ah, al
  339. _asm rol edx, 16 _asm rol eax, 16 _asm xchg dh, dl _asm xchg ah, al}
  340. # else
  341. static SHA_LONG64 __fastcall __pull64be(const void *x)
  342. {
  343. _asm mov edx,[ecx + 0]
  344. _asm mov eax,[ecx + 4]
  345. _asm bswap edx _asm bswap eax}
  346. # endif
  347. # define PULL64(x) __pull64be(&(x))
  348. # if _MSC_VER<=1200
  349. # pragma inline_depth(0)
  350. # endif
  351. # endif
  352. # endif
  353. # endif
  354. # ifndef PULL64
  355. # define B(x,j) (((SHA_LONG64)(*(((const unsigned char *)(&x))+j)))<<((7-j)*8))
  356. # define PULL64(x) (B(x,0)|B(x,1)|B(x,2)|B(x,3)|B(x,4)|B(x,5)|B(x,6)|B(x,7))
  357. # endif
  358. # ifndef ROTR
  359. # define ROTR(x,s) (((x)>>s) | (x)<<(64-s))
  360. # endif
  361. # define Sigma0(x) (ROTR((x),28) ^ ROTR((x),34) ^ ROTR((x),39))
  362. # define Sigma1(x) (ROTR((x),14) ^ ROTR((x),18) ^ ROTR((x),41))
  363. # define sigma0(x) (ROTR((x),1) ^ ROTR((x),8) ^ ((x)>>7))
  364. # define sigma1(x) (ROTR((x),19) ^ ROTR((x),61) ^ ((x)>>6))
  365. # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  366. # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  367. # if defined(OPENSSL_IA32_SSE2) && !defined(OPENSSL_NO_ASM) && !defined(I386_ONLY)
  368. # define GO_FOR_SSE2(ctx,in,num) do { \
  369. void sha512_block_sse2(void *,const void *,size_t); \
  370. if (!(OPENSSL_ia32cap_P & (1<<26))) break; \
  371. sha512_block_sse2(ctx->h,in,num); return; \
  372. } while (0)
  373. # endif
  374. # ifdef OPENSSL_SMALL_FOOTPRINT
  375. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  376. size_t num)
  377. {
  378. const SHA_LONG64 *W = in;
  379. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1, T2;
  380. SHA_LONG64 X[16];
  381. int i;
  382. # ifdef GO_FOR_SSE2
  383. GO_FOR_SSE2(ctx, in, num);
  384. # endif
  385. while (num--) {
  386. a = ctx->h[0];
  387. b = ctx->h[1];
  388. c = ctx->h[2];
  389. d = ctx->h[3];
  390. e = ctx->h[4];
  391. f = ctx->h[5];
  392. g = ctx->h[6];
  393. h = ctx->h[7];
  394. for (i = 0; i < 16; i++) {
  395. # ifdef B_ENDIAN
  396. T1 = X[i] = W[i];
  397. # else
  398. T1 = X[i] = PULL64(W[i]);
  399. # endif
  400. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  401. T2 = Sigma0(a) + Maj(a, b, c);
  402. h = g;
  403. g = f;
  404. f = e;
  405. e = d + T1;
  406. d = c;
  407. c = b;
  408. b = a;
  409. a = T1 + T2;
  410. }
  411. for (; i < 80; i++) {
  412. s0 = X[(i + 1) & 0x0f];
  413. s0 = sigma0(s0);
  414. s1 = X[(i + 14) & 0x0f];
  415. s1 = sigma1(s1);
  416. T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
  417. T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i];
  418. T2 = Sigma0(a) + Maj(a, b, c);
  419. h = g;
  420. g = f;
  421. f = e;
  422. e = d + T1;
  423. d = c;
  424. c = b;
  425. b = a;
  426. a = T1 + T2;
  427. }
  428. ctx->h[0] += a;
  429. ctx->h[1] += b;
  430. ctx->h[2] += c;
  431. ctx->h[3] += d;
  432. ctx->h[4] += e;
  433. ctx->h[5] += f;
  434. ctx->h[6] += g;
  435. ctx->h[7] += h;
  436. W += SHA_LBLOCK;
  437. }
  438. }
  439. # else
  440. # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  441. T1 += h + Sigma1(e) + Ch(e,f,g) + K512[i]; \
  442. h = Sigma0(a) + Maj(a,b,c); \
  443. d += T1; h += T1; } while (0)
  444. # define ROUND_16_80(i,a,b,c,d,e,f,g,h,X) do { \
  445. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
  446. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
  447. T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
  448. ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
  449. static void sha512_block_data_order(SHA512_CTX *ctx, const void *in,
  450. size_t num)
  451. {
  452. const SHA_LONG64 *W = in;
  453. SHA_LONG64 a, b, c, d, e, f, g, h, s0, s1, T1;
  454. SHA_LONG64 X[16];
  455. int i;
  456. # ifdef GO_FOR_SSE2
  457. GO_FOR_SSE2(ctx, in, num);
  458. # endif
  459. while (num--) {
  460. a = ctx->h[0];
  461. b = ctx->h[1];
  462. c = ctx->h[2];
  463. d = ctx->h[3];
  464. e = ctx->h[4];
  465. f = ctx->h[5];
  466. g = ctx->h[6];
  467. h = ctx->h[7];
  468. # ifdef B_ENDIAN
  469. T1 = X[0] = W[0];
  470. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  471. T1 = X[1] = W[1];
  472. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  473. T1 = X[2] = W[2];
  474. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  475. T1 = X[3] = W[3];
  476. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  477. T1 = X[4] = W[4];
  478. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  479. T1 = X[5] = W[5];
  480. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  481. T1 = X[6] = W[6];
  482. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  483. T1 = X[7] = W[7];
  484. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  485. T1 = X[8] = W[8];
  486. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  487. T1 = X[9] = W[9];
  488. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  489. T1 = X[10] = W[10];
  490. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  491. T1 = X[11] = W[11];
  492. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  493. T1 = X[12] = W[12];
  494. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  495. T1 = X[13] = W[13];
  496. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  497. T1 = X[14] = W[14];
  498. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  499. T1 = X[15] = W[15];
  500. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  501. # else
  502. T1 = X[0] = PULL64(W[0]);
  503. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  504. T1 = X[1] = PULL64(W[1]);
  505. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  506. T1 = X[2] = PULL64(W[2]);
  507. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  508. T1 = X[3] = PULL64(W[3]);
  509. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  510. T1 = X[4] = PULL64(W[4]);
  511. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  512. T1 = X[5] = PULL64(W[5]);
  513. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  514. T1 = X[6] = PULL64(W[6]);
  515. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  516. T1 = X[7] = PULL64(W[7]);
  517. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  518. T1 = X[8] = PULL64(W[8]);
  519. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  520. T1 = X[9] = PULL64(W[9]);
  521. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  522. T1 = X[10] = PULL64(W[10]);
  523. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  524. T1 = X[11] = PULL64(W[11]);
  525. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  526. T1 = X[12] = PULL64(W[12]);
  527. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  528. T1 = X[13] = PULL64(W[13]);
  529. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  530. T1 = X[14] = PULL64(W[14]);
  531. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  532. T1 = X[15] = PULL64(W[15]);
  533. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  534. # endif
  535. for (i = 16; i < 80; i += 8) {
  536. ROUND_16_80(i + 0, a, b, c, d, e, f, g, h, X);
  537. ROUND_16_80(i + 1, h, a, b, c, d, e, f, g, X);
  538. ROUND_16_80(i + 2, g, h, a, b, c, d, e, f, X);
  539. ROUND_16_80(i + 3, f, g, h, a, b, c, d, e, X);
  540. ROUND_16_80(i + 4, e, f, g, h, a, b, c, d, X);
  541. ROUND_16_80(i + 5, d, e, f, g, h, a, b, c, X);
  542. ROUND_16_80(i + 6, c, d, e, f, g, h, a, b, X);
  543. ROUND_16_80(i + 7, b, c, d, e, f, g, h, a, X);
  544. }
  545. ctx->h[0] += a;
  546. ctx->h[1] += b;
  547. ctx->h[2] += c;
  548. ctx->h[3] += d;
  549. ctx->h[4] += e;
  550. ctx->h[5] += f;
  551. ctx->h[6] += g;
  552. ctx->h[7] += h;
  553. W += SHA_LBLOCK;
  554. }
  555. }
  556. # endif
  557. # endif /* SHA512_ASM */
  558. #else /* OPENSSL_NO_SHA512 */
  559. /*
  560. * Sensitive compilers ("Compaq C V6.4-005 on OpenVMS VAX V7.3", for example)
  561. * dislike a statement-free file, complaining: "%CC-W-EMPTYFILE, Source file
  562. * does not contain any declarations."
  563. */
  564. int sha512_dummy();
  565. #endif /* OPENSSL_NO_SHA512 */