BN_add.pod 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127
  1. =pod
  2. =head1 NAME
  3. BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
  4. BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd -
  5. arithmetic operations on BIGNUMs
  6. =head1 SYNOPSIS
  7. #include <openssl/bn.h>
  8. int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  9. int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  10. int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
  11. int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
  12. int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
  13. BN_CTX *ctx);
  14. int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  15. int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  16. int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  17. BN_CTX *ctx);
  18. int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  19. BN_CTX *ctx);
  20. int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  21. BN_CTX *ctx);
  22. int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  23. int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
  24. int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
  25. const BIGNUM *m, BN_CTX *ctx);
  26. int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
  27. =head1 DESCRIPTION
  28. BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
  29. I<r> may be the same B<BIGNUM> as I<a> or I<b>.
  30. BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
  31. I<r> may be the same B<BIGNUM> as I<a> or I<b>.
  32. BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
  33. I<r> may be the same B<BIGNUM> as I<a> or I<b>.
  34. For multiplication by powers of 2, use L<BN_lshift(3)>.
  35. BN_sqr() takes the square of I<a> and places the result in I<r>
  36. (C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
  37. This function is faster than BN_mul(r,a,a).
  38. BN_div() divides I<a> by I<d> and places the result in I<dv> and the
  39. remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
  40. be B<NULL>, in which case the respective value is not returned.
  41. The result is rounded towards zero; thus if I<a> is negative, the
  42. remainder will be zero or negative.
  43. For division by powers of 2, use BN_rshift(3).
  44. BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
  45. BN_nnmod() reduces I<a> modulo I<m> and places the non-negative
  46. remainder in I<r>.
  47. BN_mod_add() adds I<a> to I<b> modulo I<m> and places the non-negative
  48. result in I<r>.
  49. BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
  50. non-negative result in I<r>.
  51. BN_mod_mul() multiplies I<a> by I<b> and finds the non-negative
  52. remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
  53. the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
  54. repeated computations using the same modulus, see
  55. L<BN_mod_mul_montgomery(3)> and
  56. L<BN_mod_mul_reciprocal(3)>.
  57. BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
  58. result in I<r>.
  59. BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
  60. (C<r=a^p>). This function is faster than repeated applications of
  61. BN_mul().
  62. BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
  63. m>). This function uses less time and space than BN_exp().
  64. BN_gcd() computes the greatest common divisor of I<a> and I<b> and
  65. places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
  66. I<b>.
  67. For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
  68. temporary variables; see L<BN_CTX_new(3)>.
  69. Unless noted otherwise, the result B<BIGNUM> must be different from
  70. the arguments.
  71. =head1 RETURN VALUES
  72. For all functions, 1 is returned for success, 0 on error. The return
  73. value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
  74. The error codes can be obtained by L<ERR_get_error(3)>.
  75. =head1 SEE ALSO
  76. L<ERR_get_error(3)>, L<BN_CTX_new(3)>,
  77. L<BN_add_word(3)>, L<BN_set_bit(3)>
  78. =head1 COPYRIGHT
  79. Copyright 2000-2017 The OpenSSL Project Authors. All Rights Reserved.
  80. Licensed under the OpenSSL license (the "License"). You may not use
  81. this file except in compliance with the License. You can obtain a copy
  82. in the file LICENSE in the source distribution or at
  83. L<https://www.openssl.org/source/license.html>.
  84. =cut