gcm128.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754
  1. /* ====================================================================
  2. * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions
  6. * are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in
  13. * the documentation and/or other materials provided with the
  14. * distribution.
  15. *
  16. * 3. All advertising materials mentioning features or use of this
  17. * software must display the following acknowledgment:
  18. * "This product includes software developed by the OpenSSL Project
  19. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  20. *
  21. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  22. * endorse or promote products derived from this software without
  23. * prior written permission. For written permission, please contact
  24. * openssl-core@openssl.org.
  25. *
  26. * 5. Products derived from this software may not be called "OpenSSL"
  27. * nor may "OpenSSL" appear in their names without prior written
  28. * permission of the OpenSSL Project.
  29. *
  30. * 6. Redistributions of any form whatsoever must retain the following
  31. * acknowledgment:
  32. * "This product includes software developed by the OpenSSL Project
  33. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  34. *
  35. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  36. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  37. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  38. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  39. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  40. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  41. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  42. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  43. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  44. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  45. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  46. * OF THE POSSIBILITY OF SUCH DAMAGE.
  47. * ====================================================================
  48. */
  49. #define OPENSSL_FIPSAPI
  50. #include <openssl/crypto.h>
  51. #include "modes_lcl.h"
  52. #include <string.h>
  53. #ifndef MODES_DEBUG
  54. # ifndef NDEBUG
  55. # define NDEBUG
  56. # endif
  57. #endif
  58. #include <assert.h>
  59. #if defined(BSWAP4) && defined(STRICT_ALIGNMENT)
  60. /* redefine, because alignment is ensured */
  61. #undef GETU32
  62. #define GETU32(p) BSWAP4(*(const u32 *)(p))
  63. #undef PUTU32
  64. #define PUTU32(p,v) *(u32 *)(p) = BSWAP4(v)
  65. #endif
  66. #define PACK(s) ((size_t)(s)<<(sizeof(size_t)*8-16))
  67. #define REDUCE1BIT(V) do { \
  68. if (sizeof(size_t)==8) { \
  69. u64 T = U64(0xe100000000000000) & (0-(V.lo&1)); \
  70. V.lo = (V.hi<<63)|(V.lo>>1); \
  71. V.hi = (V.hi>>1 )^T; \
  72. } \
  73. else { \
  74. u32 T = 0xe1000000U & (0-(u32)(V.lo&1)); \
  75. V.lo = (V.hi<<63)|(V.lo>>1); \
  76. V.hi = (V.hi>>1 )^((u64)T<<32); \
  77. } \
  78. } while(0)
  79. /*
  80. * Even though permitted values for TABLE_BITS are 8, 4 and 1, it should
  81. * never be set to 8. 8 is effectively reserved for testing purposes.
  82. * TABLE_BITS>1 are lookup-table-driven implementations referred to as
  83. * "Shoup's" in GCM specification. In other words OpenSSL does not cover
  84. * whole spectrum of possible table driven implementations. Why? In
  85. * non-"Shoup's" case memory access pattern is segmented in such manner,
  86. * that it's trivial to see that cache timing information can reveal
  87. * fair portion of intermediate hash value. Given that ciphertext is
  88. * always available to attacker, it's possible for him to attempt to
  89. * deduce secret parameter H and if successful, tamper with messages
  90. * [which is nothing but trivial in CTR mode]. In "Shoup's" case it's
  91. * not as trivial, but there is no reason to believe that it's resistant
  92. * to cache-timing attack. And the thing about "8-bit" implementation is
  93. * that it consumes 16 (sixteen) times more memory, 4KB per individual
  94. * key + 1KB shared. Well, on pros side it should be twice as fast as
  95. * "4-bit" version. And for gcc-generated x86[_64] code, "8-bit" version
  96. * was observed to run ~75% faster, closer to 100% for commercial
  97. * compilers... Yet "4-bit" procedure is preferred, because it's
  98. * believed to provide better security-performance balance and adequate
  99. * all-round performance. "All-round" refers to things like:
  100. *
  101. * - shorter setup time effectively improves overall timing for
  102. * handling short messages;
  103. * - larger table allocation can become unbearable because of VM
  104. * subsystem penalties (for example on Windows large enough free
  105. * results in VM working set trimming, meaning that consequent
  106. * malloc would immediately incur working set expansion);
  107. * - larger table has larger cache footprint, which can affect
  108. * performance of other code paths (not necessarily even from same
  109. * thread in Hyper-Threading world);
  110. *
  111. * Value of 1 is not appropriate for performance reasons.
  112. */
  113. #if TABLE_BITS==8
  114. static void gcm_init_8bit(u128 Htable[256], u64 H[2])
  115. {
  116. int i, j;
  117. u128 V;
  118. Htable[0].hi = 0;
  119. Htable[0].lo = 0;
  120. V.hi = H[0];
  121. V.lo = H[1];
  122. for (Htable[128]=V, i=64; i>0; i>>=1) {
  123. REDUCE1BIT(V);
  124. Htable[i] = V;
  125. }
  126. for (i=2; i<256; i<<=1) {
  127. u128 *Hi = Htable+i, H0 = *Hi;
  128. for (j=1; j<i; ++j) {
  129. Hi[j].hi = H0.hi^Htable[j].hi;
  130. Hi[j].lo = H0.lo^Htable[j].lo;
  131. }
  132. }
  133. }
  134. static void gcm_gmult_8bit(u64 Xi[2], const u128 Htable[256])
  135. {
  136. u128 Z = { 0, 0};
  137. const u8 *xi = (const u8 *)Xi+15;
  138. size_t rem, n = *xi;
  139. const union { long one; char little; } is_endian = {1};
  140. static const size_t rem_8bit[256] = {
  141. PACK(0x0000), PACK(0x01C2), PACK(0x0384), PACK(0x0246),
  142. PACK(0x0708), PACK(0x06CA), PACK(0x048C), PACK(0x054E),
  143. PACK(0x0E10), PACK(0x0FD2), PACK(0x0D94), PACK(0x0C56),
  144. PACK(0x0918), PACK(0x08DA), PACK(0x0A9C), PACK(0x0B5E),
  145. PACK(0x1C20), PACK(0x1DE2), PACK(0x1FA4), PACK(0x1E66),
  146. PACK(0x1B28), PACK(0x1AEA), PACK(0x18AC), PACK(0x196E),
  147. PACK(0x1230), PACK(0x13F2), PACK(0x11B4), PACK(0x1076),
  148. PACK(0x1538), PACK(0x14FA), PACK(0x16BC), PACK(0x177E),
  149. PACK(0x3840), PACK(0x3982), PACK(0x3BC4), PACK(0x3A06),
  150. PACK(0x3F48), PACK(0x3E8A), PACK(0x3CCC), PACK(0x3D0E),
  151. PACK(0x3650), PACK(0x3792), PACK(0x35D4), PACK(0x3416),
  152. PACK(0x3158), PACK(0x309A), PACK(0x32DC), PACK(0x331E),
  153. PACK(0x2460), PACK(0x25A2), PACK(0x27E4), PACK(0x2626),
  154. PACK(0x2368), PACK(0x22AA), PACK(0x20EC), PACK(0x212E),
  155. PACK(0x2A70), PACK(0x2BB2), PACK(0x29F4), PACK(0x2836),
  156. PACK(0x2D78), PACK(0x2CBA), PACK(0x2EFC), PACK(0x2F3E),
  157. PACK(0x7080), PACK(0x7142), PACK(0x7304), PACK(0x72C6),
  158. PACK(0x7788), PACK(0x764A), PACK(0x740C), PACK(0x75CE),
  159. PACK(0x7E90), PACK(0x7F52), PACK(0x7D14), PACK(0x7CD6),
  160. PACK(0x7998), PACK(0x785A), PACK(0x7A1C), PACK(0x7BDE),
  161. PACK(0x6CA0), PACK(0x6D62), PACK(0x6F24), PACK(0x6EE6),
  162. PACK(0x6BA8), PACK(0x6A6A), PACK(0x682C), PACK(0x69EE),
  163. PACK(0x62B0), PACK(0x6372), PACK(0x6134), PACK(0x60F6),
  164. PACK(0x65B8), PACK(0x647A), PACK(0x663C), PACK(0x67FE),
  165. PACK(0x48C0), PACK(0x4902), PACK(0x4B44), PACK(0x4A86),
  166. PACK(0x4FC8), PACK(0x4E0A), PACK(0x4C4C), PACK(0x4D8E),
  167. PACK(0x46D0), PACK(0x4712), PACK(0x4554), PACK(0x4496),
  168. PACK(0x41D8), PACK(0x401A), PACK(0x425C), PACK(0x439E),
  169. PACK(0x54E0), PACK(0x5522), PACK(0x5764), PACK(0x56A6),
  170. PACK(0x53E8), PACK(0x522A), PACK(0x506C), PACK(0x51AE),
  171. PACK(0x5AF0), PACK(0x5B32), PACK(0x5974), PACK(0x58B6),
  172. PACK(0x5DF8), PACK(0x5C3A), PACK(0x5E7C), PACK(0x5FBE),
  173. PACK(0xE100), PACK(0xE0C2), PACK(0xE284), PACK(0xE346),
  174. PACK(0xE608), PACK(0xE7CA), PACK(0xE58C), PACK(0xE44E),
  175. PACK(0xEF10), PACK(0xEED2), PACK(0xEC94), PACK(0xED56),
  176. PACK(0xE818), PACK(0xE9DA), PACK(0xEB9C), PACK(0xEA5E),
  177. PACK(0xFD20), PACK(0xFCE2), PACK(0xFEA4), PACK(0xFF66),
  178. PACK(0xFA28), PACK(0xFBEA), PACK(0xF9AC), PACK(0xF86E),
  179. PACK(0xF330), PACK(0xF2F2), PACK(0xF0B4), PACK(0xF176),
  180. PACK(0xF438), PACK(0xF5FA), PACK(0xF7BC), PACK(0xF67E),
  181. PACK(0xD940), PACK(0xD882), PACK(0xDAC4), PACK(0xDB06),
  182. PACK(0xDE48), PACK(0xDF8A), PACK(0xDDCC), PACK(0xDC0E),
  183. PACK(0xD750), PACK(0xD692), PACK(0xD4D4), PACK(0xD516),
  184. PACK(0xD058), PACK(0xD19A), PACK(0xD3DC), PACK(0xD21E),
  185. PACK(0xC560), PACK(0xC4A2), PACK(0xC6E4), PACK(0xC726),
  186. PACK(0xC268), PACK(0xC3AA), PACK(0xC1EC), PACK(0xC02E),
  187. PACK(0xCB70), PACK(0xCAB2), PACK(0xC8F4), PACK(0xC936),
  188. PACK(0xCC78), PACK(0xCDBA), PACK(0xCFFC), PACK(0xCE3E),
  189. PACK(0x9180), PACK(0x9042), PACK(0x9204), PACK(0x93C6),
  190. PACK(0x9688), PACK(0x974A), PACK(0x950C), PACK(0x94CE),
  191. PACK(0x9F90), PACK(0x9E52), PACK(0x9C14), PACK(0x9DD6),
  192. PACK(0x9898), PACK(0x995A), PACK(0x9B1C), PACK(0x9ADE),
  193. PACK(0x8DA0), PACK(0x8C62), PACK(0x8E24), PACK(0x8FE6),
  194. PACK(0x8AA8), PACK(0x8B6A), PACK(0x892C), PACK(0x88EE),
  195. PACK(0x83B0), PACK(0x8272), PACK(0x8034), PACK(0x81F6),
  196. PACK(0x84B8), PACK(0x857A), PACK(0x873C), PACK(0x86FE),
  197. PACK(0xA9C0), PACK(0xA802), PACK(0xAA44), PACK(0xAB86),
  198. PACK(0xAEC8), PACK(0xAF0A), PACK(0xAD4C), PACK(0xAC8E),
  199. PACK(0xA7D0), PACK(0xA612), PACK(0xA454), PACK(0xA596),
  200. PACK(0xA0D8), PACK(0xA11A), PACK(0xA35C), PACK(0xA29E),
  201. PACK(0xB5E0), PACK(0xB422), PACK(0xB664), PACK(0xB7A6),
  202. PACK(0xB2E8), PACK(0xB32A), PACK(0xB16C), PACK(0xB0AE),
  203. PACK(0xBBF0), PACK(0xBA32), PACK(0xB874), PACK(0xB9B6),
  204. PACK(0xBCF8), PACK(0xBD3A), PACK(0xBF7C), PACK(0xBEBE) };
  205. while (1) {
  206. Z.hi ^= Htable[n].hi;
  207. Z.lo ^= Htable[n].lo;
  208. if ((u8 *)Xi==xi) break;
  209. n = *(--xi);
  210. rem = (size_t)Z.lo&0xff;
  211. Z.lo = (Z.hi<<56)|(Z.lo>>8);
  212. Z.hi = (Z.hi>>8);
  213. if (sizeof(size_t)==8)
  214. Z.hi ^= rem_8bit[rem];
  215. else
  216. Z.hi ^= (u64)rem_8bit[rem]<<32;
  217. }
  218. if (is_endian.little) {
  219. #ifdef BSWAP8
  220. Xi[0] = BSWAP8(Z.hi);
  221. Xi[1] = BSWAP8(Z.lo);
  222. #else
  223. u8 *p = (u8 *)Xi;
  224. u32 v;
  225. v = (u32)(Z.hi>>32); PUTU32(p,v);
  226. v = (u32)(Z.hi); PUTU32(p+4,v);
  227. v = (u32)(Z.lo>>32); PUTU32(p+8,v);
  228. v = (u32)(Z.lo); PUTU32(p+12,v);
  229. #endif
  230. }
  231. else {
  232. Xi[0] = Z.hi;
  233. Xi[1] = Z.lo;
  234. }
  235. }
  236. #define GCM_MUL(ctx,Xi) gcm_gmult_8bit(ctx->Xi.u,ctx->Htable)
  237. #elif TABLE_BITS==4
  238. static void gcm_init_4bit(u128 Htable[16], u64 H[2])
  239. {
  240. u128 V;
  241. #if defined(OPENSSL_SMALL_FOOTPRINT)
  242. int i;
  243. #endif
  244. Htable[0].hi = 0;
  245. Htable[0].lo = 0;
  246. V.hi = H[0];
  247. V.lo = H[1];
  248. #if defined(OPENSSL_SMALL_FOOTPRINT)
  249. for (Htable[8]=V, i=4; i>0; i>>=1) {
  250. REDUCE1BIT(V);
  251. Htable[i] = V;
  252. }
  253. for (i=2; i<16; i<<=1) {
  254. u128 *Hi = Htable+i;
  255. int j;
  256. for (V=*Hi, j=1; j<i; ++j) {
  257. Hi[j].hi = V.hi^Htable[j].hi;
  258. Hi[j].lo = V.lo^Htable[j].lo;
  259. }
  260. }
  261. #else
  262. Htable[8] = V;
  263. REDUCE1BIT(V);
  264. Htable[4] = V;
  265. REDUCE1BIT(V);
  266. Htable[2] = V;
  267. REDUCE1BIT(V);
  268. Htable[1] = V;
  269. Htable[3].hi = V.hi^Htable[2].hi, Htable[3].lo = V.lo^Htable[2].lo;
  270. V=Htable[4];
  271. Htable[5].hi = V.hi^Htable[1].hi, Htable[5].lo = V.lo^Htable[1].lo;
  272. Htable[6].hi = V.hi^Htable[2].hi, Htable[6].lo = V.lo^Htable[2].lo;
  273. Htable[7].hi = V.hi^Htable[3].hi, Htable[7].lo = V.lo^Htable[3].lo;
  274. V=Htable[8];
  275. Htable[9].hi = V.hi^Htable[1].hi, Htable[9].lo = V.lo^Htable[1].lo;
  276. Htable[10].hi = V.hi^Htable[2].hi, Htable[10].lo = V.lo^Htable[2].lo;
  277. Htable[11].hi = V.hi^Htable[3].hi, Htable[11].lo = V.lo^Htable[3].lo;
  278. Htable[12].hi = V.hi^Htable[4].hi, Htable[12].lo = V.lo^Htable[4].lo;
  279. Htable[13].hi = V.hi^Htable[5].hi, Htable[13].lo = V.lo^Htable[5].lo;
  280. Htable[14].hi = V.hi^Htable[6].hi, Htable[14].lo = V.lo^Htable[6].lo;
  281. Htable[15].hi = V.hi^Htable[7].hi, Htable[15].lo = V.lo^Htable[7].lo;
  282. #endif
  283. #if defined(GHASH_ASM) && (defined(__arm__) || defined(__arm))
  284. /*
  285. * ARM assembler expects specific dword order in Htable.
  286. */
  287. {
  288. int j;
  289. const union { long one; char little; } is_endian = {1};
  290. if (is_endian.little)
  291. for (j=0;j<16;++j) {
  292. V = Htable[j];
  293. Htable[j].hi = V.lo;
  294. Htable[j].lo = V.hi;
  295. }
  296. else
  297. for (j=0;j<16;++j) {
  298. V = Htable[j];
  299. Htable[j].hi = V.lo<<32|V.lo>>32;
  300. Htable[j].lo = V.hi<<32|V.hi>>32;
  301. }
  302. }
  303. #endif
  304. }
  305. #ifndef GHASH_ASM
  306. static const size_t rem_4bit[16] = {
  307. PACK(0x0000), PACK(0x1C20), PACK(0x3840), PACK(0x2460),
  308. PACK(0x7080), PACK(0x6CA0), PACK(0x48C0), PACK(0x54E0),
  309. PACK(0xE100), PACK(0xFD20), PACK(0xD940), PACK(0xC560),
  310. PACK(0x9180), PACK(0x8DA0), PACK(0xA9C0), PACK(0xB5E0) };
  311. static void gcm_gmult_4bit(u64 Xi[2], const u128 Htable[16])
  312. {
  313. u128 Z;
  314. int cnt = 15;
  315. size_t rem, nlo, nhi;
  316. const union { long one; char little; } is_endian = {1};
  317. nlo = ((const u8 *)Xi)[15];
  318. nhi = nlo>>4;
  319. nlo &= 0xf;
  320. Z.hi = Htable[nlo].hi;
  321. Z.lo = Htable[nlo].lo;
  322. while (1) {
  323. rem = (size_t)Z.lo&0xf;
  324. Z.lo = (Z.hi<<60)|(Z.lo>>4);
  325. Z.hi = (Z.hi>>4);
  326. if (sizeof(size_t)==8)
  327. Z.hi ^= rem_4bit[rem];
  328. else
  329. Z.hi ^= (u64)rem_4bit[rem]<<32;
  330. Z.hi ^= Htable[nhi].hi;
  331. Z.lo ^= Htable[nhi].lo;
  332. if (--cnt<0) break;
  333. nlo = ((const u8 *)Xi)[cnt];
  334. nhi = nlo>>4;
  335. nlo &= 0xf;
  336. rem = (size_t)Z.lo&0xf;
  337. Z.lo = (Z.hi<<60)|(Z.lo>>4);
  338. Z.hi = (Z.hi>>4);
  339. if (sizeof(size_t)==8)
  340. Z.hi ^= rem_4bit[rem];
  341. else
  342. Z.hi ^= (u64)rem_4bit[rem]<<32;
  343. Z.hi ^= Htable[nlo].hi;
  344. Z.lo ^= Htable[nlo].lo;
  345. }
  346. if (is_endian.little) {
  347. #ifdef BSWAP8
  348. Xi[0] = BSWAP8(Z.hi);
  349. Xi[1] = BSWAP8(Z.lo);
  350. #else
  351. u8 *p = (u8 *)Xi;
  352. u32 v;
  353. v = (u32)(Z.hi>>32); PUTU32(p,v);
  354. v = (u32)(Z.hi); PUTU32(p+4,v);
  355. v = (u32)(Z.lo>>32); PUTU32(p+8,v);
  356. v = (u32)(Z.lo); PUTU32(p+12,v);
  357. #endif
  358. }
  359. else {
  360. Xi[0] = Z.hi;
  361. Xi[1] = Z.lo;
  362. }
  363. }
  364. #if !defined(OPENSSL_SMALL_FOOTPRINT)
  365. /*
  366. * Streamed gcm_mult_4bit, see CRYPTO_gcm128_[en|de]crypt for
  367. * details... Compiler-generated code doesn't seem to give any
  368. * performance improvement, at least not on x86[_64]. It's here
  369. * mostly as reference and a placeholder for possible future
  370. * non-trivial optimization[s]...
  371. */
  372. static void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],
  373. const u8 *inp,size_t len)
  374. {
  375. u128 Z;
  376. int cnt;
  377. size_t rem, nlo, nhi;
  378. const union { long one; char little; } is_endian = {1};
  379. #if 1
  380. do {
  381. cnt = 15;
  382. nlo = ((const u8 *)Xi)[15];
  383. nlo ^= inp[15];
  384. nhi = nlo>>4;
  385. nlo &= 0xf;
  386. Z.hi = Htable[nlo].hi;
  387. Z.lo = Htable[nlo].lo;
  388. while (1) {
  389. rem = (size_t)Z.lo&0xf;
  390. Z.lo = (Z.hi<<60)|(Z.lo>>4);
  391. Z.hi = (Z.hi>>4);
  392. if (sizeof(size_t)==8)
  393. Z.hi ^= rem_4bit[rem];
  394. else
  395. Z.hi ^= (u64)rem_4bit[rem]<<32;
  396. Z.hi ^= Htable[nhi].hi;
  397. Z.lo ^= Htable[nhi].lo;
  398. if (--cnt<0) break;
  399. nlo = ((const u8 *)Xi)[cnt];
  400. nlo ^= inp[cnt];
  401. nhi = nlo>>4;
  402. nlo &= 0xf;
  403. rem = (size_t)Z.lo&0xf;
  404. Z.lo = (Z.hi<<60)|(Z.lo>>4);
  405. Z.hi = (Z.hi>>4);
  406. if (sizeof(size_t)==8)
  407. Z.hi ^= rem_4bit[rem];
  408. else
  409. Z.hi ^= (u64)rem_4bit[rem]<<32;
  410. Z.hi ^= Htable[nlo].hi;
  411. Z.lo ^= Htable[nlo].lo;
  412. }
  413. #else
  414. /*
  415. * Extra 256+16 bytes per-key plus 512 bytes shared tables
  416. * [should] give ~50% improvement... One could have PACK()-ed
  417. * the rem_8bit even here, but the priority is to minimize
  418. * cache footprint...
  419. */
  420. u128 Hshr4[16]; /* Htable shifted right by 4 bits */
  421. u8 Hshl4[16]; /* Htable shifted left by 4 bits */
  422. static const unsigned short rem_8bit[256] = {
  423. 0x0000, 0x01C2, 0x0384, 0x0246, 0x0708, 0x06CA, 0x048C, 0x054E,
  424. 0x0E10, 0x0FD2, 0x0D94, 0x0C56, 0x0918, 0x08DA, 0x0A9C, 0x0B5E,
  425. 0x1C20, 0x1DE2, 0x1FA4, 0x1E66, 0x1B28, 0x1AEA, 0x18AC, 0x196E,
  426. 0x1230, 0x13F2, 0x11B4, 0x1076, 0x1538, 0x14FA, 0x16BC, 0x177E,
  427. 0x3840, 0x3982, 0x3BC4, 0x3A06, 0x3F48, 0x3E8A, 0x3CCC, 0x3D0E,
  428. 0x3650, 0x3792, 0x35D4, 0x3416, 0x3158, 0x309A, 0x32DC, 0x331E,
  429. 0x2460, 0x25A2, 0x27E4, 0x2626, 0x2368, 0x22AA, 0x20EC, 0x212E,
  430. 0x2A70, 0x2BB2, 0x29F4, 0x2836, 0x2D78, 0x2CBA, 0x2EFC, 0x2F3E,
  431. 0x7080, 0x7142, 0x7304, 0x72C6, 0x7788, 0x764A, 0x740C, 0x75CE,
  432. 0x7E90, 0x7F52, 0x7D14, 0x7CD6, 0x7998, 0x785A, 0x7A1C, 0x7BDE,
  433. 0x6CA0, 0x6D62, 0x6F24, 0x6EE6, 0x6BA8, 0x6A6A, 0x682C, 0x69EE,
  434. 0x62B0, 0x6372, 0x6134, 0x60F6, 0x65B8, 0x647A, 0x663C, 0x67FE,
  435. 0x48C0, 0x4902, 0x4B44, 0x4A86, 0x4FC8, 0x4E0A, 0x4C4C, 0x4D8E,
  436. 0x46D0, 0x4712, 0x4554, 0x4496, 0x41D8, 0x401A, 0x425C, 0x439E,
  437. 0x54E0, 0x5522, 0x5764, 0x56A6, 0x53E8, 0x522A, 0x506C, 0x51AE,
  438. 0x5AF0, 0x5B32, 0x5974, 0x58B6, 0x5DF8, 0x5C3A, 0x5E7C, 0x5FBE,
  439. 0xE100, 0xE0C2, 0xE284, 0xE346, 0xE608, 0xE7CA, 0xE58C, 0xE44E,
  440. 0xEF10, 0xEED2, 0xEC94, 0xED56, 0xE818, 0xE9DA, 0xEB9C, 0xEA5E,
  441. 0xFD20, 0xFCE2, 0xFEA4, 0xFF66, 0xFA28, 0xFBEA, 0xF9AC, 0xF86E,
  442. 0xF330, 0xF2F2, 0xF0B4, 0xF176, 0xF438, 0xF5FA, 0xF7BC, 0xF67E,
  443. 0xD940, 0xD882, 0xDAC4, 0xDB06, 0xDE48, 0xDF8A, 0xDDCC, 0xDC0E,
  444. 0xD750, 0xD692, 0xD4D4, 0xD516, 0xD058, 0xD19A, 0xD3DC, 0xD21E,
  445. 0xC560, 0xC4A2, 0xC6E4, 0xC726, 0xC268, 0xC3AA, 0xC1EC, 0xC02E,
  446. 0xCB70, 0xCAB2, 0xC8F4, 0xC936, 0xCC78, 0xCDBA, 0xCFFC, 0xCE3E,
  447. 0x9180, 0x9042, 0x9204, 0x93C6, 0x9688, 0x974A, 0x950C, 0x94CE,
  448. 0x9F90, 0x9E52, 0x9C14, 0x9DD6, 0x9898, 0x995A, 0x9B1C, 0x9ADE,
  449. 0x8DA0, 0x8C62, 0x8E24, 0x8FE6, 0x8AA8, 0x8B6A, 0x892C, 0x88EE,
  450. 0x83B0, 0x8272, 0x8034, 0x81F6, 0x84B8, 0x857A, 0x873C, 0x86FE,
  451. 0xA9C0, 0xA802, 0xAA44, 0xAB86, 0xAEC8, 0xAF0A, 0xAD4C, 0xAC8E,
  452. 0xA7D0, 0xA612, 0xA454, 0xA596, 0xA0D8, 0xA11A, 0xA35C, 0xA29E,
  453. 0xB5E0, 0xB422, 0xB664, 0xB7A6, 0xB2E8, 0xB32A, 0xB16C, 0xB0AE,
  454. 0xBBF0, 0xBA32, 0xB874, 0xB9B6, 0xBCF8, 0xBD3A, 0xBF7C, 0xBEBE };
  455. /*
  456. * This pre-processing phase slows down procedure by approximately
  457. * same time as it makes each loop spin faster. In other words
  458. * single block performance is approximately same as straightforward
  459. * "4-bit" implementation, and then it goes only faster...
  460. */
  461. for (cnt=0; cnt<16; ++cnt) {
  462. Z.hi = Htable[cnt].hi;
  463. Z.lo = Htable[cnt].lo;
  464. Hshr4[cnt].lo = (Z.hi<<60)|(Z.lo>>4);
  465. Hshr4[cnt].hi = (Z.hi>>4);
  466. Hshl4[cnt] = (u8)(Z.lo<<4);
  467. }
  468. do {
  469. for (Z.lo=0, Z.hi=0, cnt=15; cnt; --cnt) {
  470. nlo = ((const u8 *)Xi)[cnt];
  471. nlo ^= inp[cnt];
  472. nhi = nlo>>4;
  473. nlo &= 0xf;
  474. Z.hi ^= Htable[nlo].hi;
  475. Z.lo ^= Htable[nlo].lo;
  476. rem = (size_t)Z.lo&0xff;
  477. Z.lo = (Z.hi<<56)|(Z.lo>>8);
  478. Z.hi = (Z.hi>>8);
  479. Z.hi ^= Hshr4[nhi].hi;
  480. Z.lo ^= Hshr4[nhi].lo;
  481. Z.hi ^= (u64)rem_8bit[rem^Hshl4[nhi]]<<48;
  482. }
  483. nlo = ((const u8 *)Xi)[0];
  484. nlo ^= inp[0];
  485. nhi = nlo>>4;
  486. nlo &= 0xf;
  487. Z.hi ^= Htable[nlo].hi;
  488. Z.lo ^= Htable[nlo].lo;
  489. rem = (size_t)Z.lo&0xf;
  490. Z.lo = (Z.hi<<60)|(Z.lo>>4);
  491. Z.hi = (Z.hi>>4);
  492. Z.hi ^= Htable[nhi].hi;
  493. Z.lo ^= Htable[nhi].lo;
  494. Z.hi ^= ((u64)rem_8bit[rem<<4])<<48;
  495. #endif
  496. if (is_endian.little) {
  497. #ifdef BSWAP8
  498. Xi[0] = BSWAP8(Z.hi);
  499. Xi[1] = BSWAP8(Z.lo);
  500. #else
  501. u8 *p = (u8 *)Xi;
  502. u32 v;
  503. v = (u32)(Z.hi>>32); PUTU32(p,v);
  504. v = (u32)(Z.hi); PUTU32(p+4,v);
  505. v = (u32)(Z.lo>>32); PUTU32(p+8,v);
  506. v = (u32)(Z.lo); PUTU32(p+12,v);
  507. #endif
  508. }
  509. else {
  510. Xi[0] = Z.hi;
  511. Xi[1] = Z.lo;
  512. }
  513. } while (inp+=16, len-=16);
  514. }
  515. #endif
  516. #else
  517. void gcm_gmult_4bit(u64 Xi[2],const u128 Htable[16]);
  518. void gcm_ghash_4bit(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
  519. #endif
  520. #define GCM_MUL(ctx,Xi) gcm_gmult_4bit(ctx->Xi.u,ctx->Htable)
  521. #if defined(GHASH_ASM) || !defined(OPENSSL_SMALL_FOOTPRINT)
  522. #define GHASH(ctx,in,len) gcm_ghash_4bit((ctx)->Xi.u,(ctx)->Htable,in,len)
  523. /* GHASH_CHUNK is "stride parameter" missioned to mitigate cache
  524. * trashing effect. In other words idea is to hash data while it's
  525. * still in L1 cache after encryption pass... */
  526. #define GHASH_CHUNK (3*1024)
  527. #endif
  528. #else /* TABLE_BITS */
  529. static void gcm_gmult_1bit(u64 Xi[2],const u64 H[2])
  530. {
  531. u128 V,Z = { 0,0 };
  532. long X;
  533. int i,j;
  534. const long *xi = (const long *)Xi;
  535. const union { long one; char little; } is_endian = {1};
  536. V.hi = H[0]; /* H is in host byte order, no byte swapping */
  537. V.lo = H[1];
  538. for (j=0; j<16/sizeof(long); ++j) {
  539. if (is_endian.little) {
  540. if (sizeof(long)==8) {
  541. #ifdef BSWAP8
  542. X = (long)(BSWAP8(xi[j]));
  543. #else
  544. const u8 *p = (const u8 *)(xi+j);
  545. X = (long)((u64)GETU32(p)<<32|GETU32(p+4));
  546. #endif
  547. }
  548. else {
  549. const u8 *p = (const u8 *)(xi+j);
  550. X = (long)GETU32(p);
  551. }
  552. }
  553. else
  554. X = xi[j];
  555. for (i=0; i<8*sizeof(long); ++i, X<<=1) {
  556. u64 M = (u64)(X>>(8*sizeof(long)-1));
  557. Z.hi ^= V.hi&M;
  558. Z.lo ^= V.lo&M;
  559. REDUCE1BIT(V);
  560. }
  561. }
  562. if (is_endian.little) {
  563. #ifdef BSWAP8
  564. Xi[0] = BSWAP8(Z.hi);
  565. Xi[1] = BSWAP8(Z.lo);
  566. #else
  567. u8 *p = (u8 *)Xi;
  568. u32 v;
  569. v = (u32)(Z.hi>>32); PUTU32(p,v);
  570. v = (u32)(Z.hi); PUTU32(p+4,v);
  571. v = (u32)(Z.lo>>32); PUTU32(p+8,v);
  572. v = (u32)(Z.lo); PUTU32(p+12,v);
  573. #endif
  574. }
  575. else {
  576. Xi[0] = Z.hi;
  577. Xi[1] = Z.lo;
  578. }
  579. }
  580. #define GCM_MUL(ctx,Xi) gcm_gmult_1bit(ctx->Xi.u,ctx->H.u)
  581. #endif
  582. #if TABLE_BITS==4 && defined(GHASH_ASM)
  583. # if !defined(I386_ONLY) && \
  584. (defined(__i386) || defined(__i386__) || \
  585. defined(__x86_64) || defined(__x86_64__) || \
  586. defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64))
  587. # define GHASH_ASM_X86_OR_64
  588. # define GCM_FUNCREF_4BIT
  589. extern unsigned int OPENSSL_ia32cap_P[2];
  590. void gcm_init_clmul(u128 Htable[16],const u64 Xi[2]);
  591. void gcm_gmult_clmul(u64 Xi[2],const u128 Htable[16]);
  592. void gcm_ghash_clmul(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
  593. # if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  594. # define GHASH_ASM_X86
  595. void gcm_gmult_4bit_mmx(u64 Xi[2],const u128 Htable[16]);
  596. void gcm_ghash_4bit_mmx(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
  597. void gcm_gmult_4bit_x86(u64 Xi[2],const u128 Htable[16]);
  598. void gcm_ghash_4bit_x86(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
  599. # endif
  600. # elif defined(__arm__) || defined(__arm)
  601. # include "arm_arch.h"
  602. # if __ARM_ARCH__>=7
  603. # define GHASH_ASM_ARM
  604. # define GCM_FUNCREF_4BIT
  605. extern unsigned int OPENSSL_armcap;
  606. void gcm_gmult_neon(u64 Xi[2],const u128 Htable[16]);
  607. void gcm_ghash_neon(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
  608. # endif
  609. # endif
  610. #endif
  611. #ifdef GCM_FUNCREF_4BIT
  612. # undef GCM_MUL
  613. # define GCM_MUL(ctx,Xi) (*gcm_gmult_p)(ctx->Xi.u,ctx->Htable)
  614. # ifdef GHASH
  615. # undef GHASH
  616. # define GHASH(ctx,in,len) (*gcm_ghash_p)(ctx->Xi.u,ctx->Htable,in,len)
  617. # endif
  618. #endif
  619. void CRYPTO_gcm128_init(GCM128_CONTEXT *ctx,void *key,block128_f block)
  620. {
  621. const union { long one; char little; } is_endian = {1};
  622. memset(ctx,0,sizeof(*ctx));
  623. ctx->block = block;
  624. ctx->key = key;
  625. (*block)(ctx->H.c,ctx->H.c,key);
  626. if (is_endian.little) {
  627. /* H is stored in host byte order */
  628. #ifdef BSWAP8
  629. ctx->H.u[0] = BSWAP8(ctx->H.u[0]);
  630. ctx->H.u[1] = BSWAP8(ctx->H.u[1]);
  631. #else
  632. u8 *p = ctx->H.c;
  633. u64 hi,lo;
  634. hi = (u64)GETU32(p) <<32|GETU32(p+4);
  635. lo = (u64)GETU32(p+8)<<32|GETU32(p+12);
  636. ctx->H.u[0] = hi;
  637. ctx->H.u[1] = lo;
  638. #endif
  639. }
  640. #if TABLE_BITS==8
  641. gcm_init_8bit(ctx->Htable,ctx->H.u);
  642. #elif TABLE_BITS==4
  643. # if defined(GHASH_ASM_X86_OR_64)
  644. # if !defined(GHASH_ASM_X86) || defined(OPENSSL_IA32_SSE2)
  645. if (OPENSSL_ia32cap_P[1]&(1<<1)) { /* check PCLMULQDQ bit */
  646. gcm_init_clmul(ctx->Htable,ctx->H.u);
  647. ctx->gmult = gcm_gmult_clmul;
  648. ctx->ghash = gcm_ghash_clmul;
  649. return;
  650. }
  651. # endif
  652. gcm_init_4bit(ctx->Htable,ctx->H.u);
  653. # if defined(GHASH_ASM_X86) /* x86 only */
  654. if (OPENSSL_ia32cap_P[0]&(1<<23)) { /* check MMX bit */
  655. ctx->gmult = gcm_gmult_4bit_mmx;
  656. ctx->ghash = gcm_ghash_4bit_mmx;
  657. } else {
  658. ctx->gmult = gcm_gmult_4bit_x86;
  659. ctx->ghash = gcm_ghash_4bit_x86;
  660. }
  661. # else
  662. ctx->gmult = gcm_gmult_4bit;
  663. ctx->ghash = gcm_ghash_4bit;
  664. # endif
  665. # elif defined(GHASH_ASM_ARM)
  666. if (OPENSSL_armcap & 1) {
  667. ctx->gmult = gcm_gmult_neon;
  668. ctx->ghash = gcm_ghash_neon;
  669. } else {
  670. gcm_init_4bit(ctx->Htable,ctx->H.u);
  671. ctx->gmult = gcm_gmult_4bit;
  672. ctx->ghash = gcm_ghash_4bit;
  673. }
  674. # else
  675. gcm_init_4bit(ctx->Htable,ctx->H.u);
  676. # endif
  677. #endif
  678. }
  679. void CRYPTO_gcm128_setiv(GCM128_CONTEXT *ctx,const unsigned char *iv,size_t len)
  680. {
  681. const union { long one; char little; } is_endian = {1};
  682. unsigned int ctr;
  683. #ifdef GCM_FUNCREF_4BIT
  684. void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
  685. #endif
  686. ctx->Yi.u[0] = 0;
  687. ctx->Yi.u[1] = 0;
  688. ctx->Xi.u[0] = 0;
  689. ctx->Xi.u[1] = 0;
  690. ctx->len.u[0] = 0; /* AAD length */
  691. ctx->len.u[1] = 0; /* message length */
  692. ctx->ares = 0;
  693. ctx->mres = 0;
  694. if (len==12) {
  695. memcpy(ctx->Yi.c,iv,12);
  696. ctx->Yi.c[15]=1;
  697. ctr=1;
  698. }
  699. else {
  700. size_t i;
  701. u64 len0 = len;
  702. while (len>=16) {
  703. for (i=0; i<16; ++i) ctx->Yi.c[i] ^= iv[i];
  704. GCM_MUL(ctx,Yi);
  705. iv += 16;
  706. len -= 16;
  707. }
  708. if (len) {
  709. for (i=0; i<len; ++i) ctx->Yi.c[i] ^= iv[i];
  710. GCM_MUL(ctx,Yi);
  711. }
  712. len0 <<= 3;
  713. if (is_endian.little) {
  714. #ifdef BSWAP8
  715. ctx->Yi.u[1] ^= BSWAP8(len0);
  716. #else
  717. ctx->Yi.c[8] ^= (u8)(len0>>56);
  718. ctx->Yi.c[9] ^= (u8)(len0>>48);
  719. ctx->Yi.c[10] ^= (u8)(len0>>40);
  720. ctx->Yi.c[11] ^= (u8)(len0>>32);
  721. ctx->Yi.c[12] ^= (u8)(len0>>24);
  722. ctx->Yi.c[13] ^= (u8)(len0>>16);
  723. ctx->Yi.c[14] ^= (u8)(len0>>8);
  724. ctx->Yi.c[15] ^= (u8)(len0);
  725. #endif
  726. }
  727. else
  728. ctx->Yi.u[1] ^= len0;
  729. GCM_MUL(ctx,Yi);
  730. if (is_endian.little)
  731. ctr = GETU32(ctx->Yi.c+12);
  732. else
  733. ctr = ctx->Yi.d[3];
  734. }
  735. (*ctx->block)(ctx->Yi.c,ctx->EK0.c,ctx->key);
  736. ++ctr;
  737. if (is_endian.little)
  738. PUTU32(ctx->Yi.c+12,ctr);
  739. else
  740. ctx->Yi.d[3] = ctr;
  741. }
  742. int CRYPTO_gcm128_aad(GCM128_CONTEXT *ctx,const unsigned char *aad,size_t len)
  743. {
  744. size_t i;
  745. unsigned int n;
  746. u64 alen = ctx->len.u[0];
  747. #ifdef GCM_FUNCREF_4BIT
  748. void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
  749. # ifdef GHASH
  750. void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
  751. const u8 *inp,size_t len) = ctx->ghash;
  752. # endif
  753. #endif
  754. if (ctx->len.u[1]) return -2;
  755. alen += len;
  756. if (alen>(U64(1)<<61) || (sizeof(len)==8 && alen<len))
  757. return -1;
  758. ctx->len.u[0] = alen;
  759. n = ctx->ares;
  760. if (n) {
  761. while (n && len) {
  762. ctx->Xi.c[n] ^= *(aad++);
  763. --len;
  764. n = (n+1)%16;
  765. }
  766. if (n==0) GCM_MUL(ctx,Xi);
  767. else {
  768. ctx->ares = n;
  769. return 0;
  770. }
  771. }
  772. #ifdef GHASH
  773. if ((i = (len&(size_t)-16))) {
  774. GHASH(ctx,aad,i);
  775. aad += i;
  776. len -= i;
  777. }
  778. #else
  779. while (len>=16) {
  780. for (i=0; i<16; ++i) ctx->Xi.c[i] ^= aad[i];
  781. GCM_MUL(ctx,Xi);
  782. aad += 16;
  783. len -= 16;
  784. }
  785. #endif
  786. if (len) {
  787. n = (unsigned int)len;
  788. for (i=0; i<len; ++i) ctx->Xi.c[i] ^= aad[i];
  789. }
  790. ctx->ares = n;
  791. return 0;
  792. }
  793. int CRYPTO_gcm128_encrypt(GCM128_CONTEXT *ctx,
  794. const unsigned char *in, unsigned char *out,
  795. size_t len)
  796. {
  797. const union { long one; char little; } is_endian = {1};
  798. unsigned int n, ctr;
  799. size_t i;
  800. u64 mlen = ctx->len.u[1];
  801. block128_f block = ctx->block;
  802. void *key = ctx->key;
  803. #ifdef GCM_FUNCREF_4BIT
  804. void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
  805. # ifdef GHASH
  806. void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
  807. const u8 *inp,size_t len) = ctx->ghash;
  808. # endif
  809. #endif
  810. #if 0
  811. n = (unsigned int)mlen%16; /* alternative to ctx->mres */
  812. #endif
  813. mlen += len;
  814. if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
  815. return -1;
  816. ctx->len.u[1] = mlen;
  817. if (ctx->ares) {
  818. /* First call to encrypt finalizes GHASH(AAD) */
  819. GCM_MUL(ctx,Xi);
  820. ctx->ares = 0;
  821. }
  822. if (is_endian.little)
  823. ctr = GETU32(ctx->Yi.c+12);
  824. else
  825. ctr = ctx->Yi.d[3];
  826. n = ctx->mres;
  827. #if !defined(OPENSSL_SMALL_FOOTPRINT)
  828. if (16%sizeof(size_t) == 0) do { /* always true actually */
  829. if (n) {
  830. while (n && len) {
  831. ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n];
  832. --len;
  833. n = (n+1)%16;
  834. }
  835. if (n==0) GCM_MUL(ctx,Xi);
  836. else {
  837. ctx->mres = n;
  838. return 0;
  839. }
  840. }
  841. #if defined(STRICT_ALIGNMENT)
  842. if (((size_t)in|(size_t)out)%sizeof(size_t) != 0)
  843. break;
  844. #endif
  845. #if defined(GHASH) && defined(GHASH_CHUNK)
  846. while (len>=GHASH_CHUNK) {
  847. size_t j=GHASH_CHUNK;
  848. while (j) {
  849. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  850. ++ctr;
  851. if (is_endian.little)
  852. PUTU32(ctx->Yi.c+12,ctr);
  853. else
  854. ctx->Yi.d[3] = ctr;
  855. for (i=0; i<16; i+=sizeof(size_t))
  856. *(size_t *)(out+i) =
  857. *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i);
  858. out += 16;
  859. in += 16;
  860. j -= 16;
  861. }
  862. GHASH(ctx,out-GHASH_CHUNK,GHASH_CHUNK);
  863. len -= GHASH_CHUNK;
  864. }
  865. if ((i = (len&(size_t)-16))) {
  866. size_t j=i;
  867. while (len>=16) {
  868. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  869. ++ctr;
  870. if (is_endian.little)
  871. PUTU32(ctx->Yi.c+12,ctr);
  872. else
  873. ctx->Yi.d[3] = ctr;
  874. for (i=0; i<16; i+=sizeof(size_t))
  875. *(size_t *)(out+i) =
  876. *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i);
  877. out += 16;
  878. in += 16;
  879. len -= 16;
  880. }
  881. GHASH(ctx,out-j,j);
  882. }
  883. #else
  884. while (len>=16) {
  885. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  886. ++ctr;
  887. if (is_endian.little)
  888. PUTU32(ctx->Yi.c+12,ctr);
  889. else
  890. ctx->Yi.d[3] = ctr;
  891. for (i=0; i<16; i+=sizeof(size_t))
  892. *(size_t *)(ctx->Xi.c+i) ^=
  893. *(size_t *)(out+i) =
  894. *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i);
  895. GCM_MUL(ctx,Xi);
  896. out += 16;
  897. in += 16;
  898. len -= 16;
  899. }
  900. #endif
  901. if (len) {
  902. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  903. ++ctr;
  904. if (is_endian.little)
  905. PUTU32(ctx->Yi.c+12,ctr);
  906. else
  907. ctx->Yi.d[3] = ctr;
  908. while (len--) {
  909. ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n];
  910. ++n;
  911. }
  912. }
  913. ctx->mres = n;
  914. return 0;
  915. } while(0);
  916. #endif
  917. for (i=0;i<len;++i) {
  918. if (n==0) {
  919. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  920. ++ctr;
  921. if (is_endian.little)
  922. PUTU32(ctx->Yi.c+12,ctr);
  923. else
  924. ctx->Yi.d[3] = ctr;
  925. }
  926. ctx->Xi.c[n] ^= out[i] = in[i]^ctx->EKi.c[n];
  927. n = (n+1)%16;
  928. if (n==0)
  929. GCM_MUL(ctx,Xi);
  930. }
  931. ctx->mres = n;
  932. return 0;
  933. }
  934. int CRYPTO_gcm128_decrypt(GCM128_CONTEXT *ctx,
  935. const unsigned char *in, unsigned char *out,
  936. size_t len)
  937. {
  938. const union { long one; char little; } is_endian = {1};
  939. unsigned int n, ctr;
  940. size_t i;
  941. u64 mlen = ctx->len.u[1];
  942. block128_f block = ctx->block;
  943. void *key = ctx->key;
  944. #ifdef GCM_FUNCREF_4BIT
  945. void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
  946. # ifdef GHASH
  947. void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
  948. const u8 *inp,size_t len) = ctx->ghash;
  949. # endif
  950. #endif
  951. mlen += len;
  952. if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
  953. return -1;
  954. ctx->len.u[1] = mlen;
  955. if (ctx->ares) {
  956. /* First call to decrypt finalizes GHASH(AAD) */
  957. GCM_MUL(ctx,Xi);
  958. ctx->ares = 0;
  959. }
  960. if (is_endian.little)
  961. ctr = GETU32(ctx->Yi.c+12);
  962. else
  963. ctr = ctx->Yi.d[3];
  964. n = ctx->mres;
  965. #if !defined(OPENSSL_SMALL_FOOTPRINT)
  966. if (16%sizeof(size_t) == 0) do { /* always true actually */
  967. if (n) {
  968. while (n && len) {
  969. u8 c = *(in++);
  970. *(out++) = c^ctx->EKi.c[n];
  971. ctx->Xi.c[n] ^= c;
  972. --len;
  973. n = (n+1)%16;
  974. }
  975. if (n==0) GCM_MUL (ctx,Xi);
  976. else {
  977. ctx->mres = n;
  978. return 0;
  979. }
  980. }
  981. #if defined(STRICT_ALIGNMENT)
  982. if (((size_t)in|(size_t)out)%sizeof(size_t) != 0)
  983. break;
  984. #endif
  985. #if defined(GHASH) && defined(GHASH_CHUNK)
  986. while (len>=GHASH_CHUNK) {
  987. size_t j=GHASH_CHUNK;
  988. GHASH(ctx,in,GHASH_CHUNK);
  989. while (j) {
  990. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  991. ++ctr;
  992. if (is_endian.little)
  993. PUTU32(ctx->Yi.c+12,ctr);
  994. else
  995. ctx->Yi.d[3] = ctr;
  996. for (i=0; i<16; i+=sizeof(size_t))
  997. *(size_t *)(out+i) =
  998. *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i);
  999. out += 16;
  1000. in += 16;
  1001. j -= 16;
  1002. }
  1003. len -= GHASH_CHUNK;
  1004. }
  1005. if ((i = (len&(size_t)-16))) {
  1006. GHASH(ctx,in,i);
  1007. while (len>=16) {
  1008. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  1009. ++ctr;
  1010. if (is_endian.little)
  1011. PUTU32(ctx->Yi.c+12,ctr);
  1012. else
  1013. ctx->Yi.d[3] = ctr;
  1014. for (i=0; i<16; i+=sizeof(size_t))
  1015. *(size_t *)(out+i) =
  1016. *(size_t *)(in+i)^*(size_t *)(ctx->EKi.c+i);
  1017. out += 16;
  1018. in += 16;
  1019. len -= 16;
  1020. }
  1021. }
  1022. #else
  1023. while (len>=16) {
  1024. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  1025. ++ctr;
  1026. if (is_endian.little)
  1027. PUTU32(ctx->Yi.c+12,ctr);
  1028. else
  1029. ctx->Yi.d[3] = ctr;
  1030. for (i=0; i<16; i+=sizeof(size_t)) {
  1031. size_t c = *(size_t *)(in+i);
  1032. *(size_t *)(out+i) = c^*(size_t *)(ctx->EKi.c+i);
  1033. *(size_t *)(ctx->Xi.c+i) ^= c;
  1034. }
  1035. GCM_MUL(ctx,Xi);
  1036. out += 16;
  1037. in += 16;
  1038. len -= 16;
  1039. }
  1040. #endif
  1041. if (len) {
  1042. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  1043. ++ctr;
  1044. if (is_endian.little)
  1045. PUTU32(ctx->Yi.c+12,ctr);
  1046. else
  1047. ctx->Yi.d[3] = ctr;
  1048. while (len--) {
  1049. u8 c = in[n];
  1050. ctx->Xi.c[n] ^= c;
  1051. out[n] = c^ctx->EKi.c[n];
  1052. ++n;
  1053. }
  1054. }
  1055. ctx->mres = n;
  1056. return 0;
  1057. } while(0);
  1058. #endif
  1059. for (i=0;i<len;++i) {
  1060. u8 c;
  1061. if (n==0) {
  1062. (*block)(ctx->Yi.c,ctx->EKi.c,key);
  1063. ++ctr;
  1064. if (is_endian.little)
  1065. PUTU32(ctx->Yi.c+12,ctr);
  1066. else
  1067. ctx->Yi.d[3] = ctr;
  1068. }
  1069. c = in[i];
  1070. out[i] = c^ctx->EKi.c[n];
  1071. ctx->Xi.c[n] ^= c;
  1072. n = (n+1)%16;
  1073. if (n==0)
  1074. GCM_MUL(ctx,Xi);
  1075. }
  1076. ctx->mres = n;
  1077. return 0;
  1078. }
  1079. int CRYPTO_gcm128_encrypt_ctr32(GCM128_CONTEXT *ctx,
  1080. const unsigned char *in, unsigned char *out,
  1081. size_t len, ctr128_f stream)
  1082. {
  1083. const union { long one; char little; } is_endian = {1};
  1084. unsigned int n, ctr;
  1085. size_t i;
  1086. u64 mlen = ctx->len.u[1];
  1087. void *key = ctx->key;
  1088. #ifdef GCM_FUNCREF_4BIT
  1089. void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
  1090. # ifdef GHASH
  1091. void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
  1092. const u8 *inp,size_t len) = ctx->ghash;
  1093. # endif
  1094. #endif
  1095. mlen += len;
  1096. if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
  1097. return -1;
  1098. ctx->len.u[1] = mlen;
  1099. if (ctx->ares) {
  1100. /* First call to encrypt finalizes GHASH(AAD) */
  1101. GCM_MUL(ctx,Xi);
  1102. ctx->ares = 0;
  1103. }
  1104. if (is_endian.little)
  1105. ctr = GETU32(ctx->Yi.c+12);
  1106. else
  1107. ctr = ctx->Yi.d[3];
  1108. n = ctx->mres;
  1109. if (n) {
  1110. while (n && len) {
  1111. ctx->Xi.c[n] ^= *(out++) = *(in++)^ctx->EKi.c[n];
  1112. --len;
  1113. n = (n+1)%16;
  1114. }
  1115. if (n==0) GCM_MUL(ctx,Xi);
  1116. else {
  1117. ctx->mres = n;
  1118. return 0;
  1119. }
  1120. }
  1121. #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
  1122. while (len>=GHASH_CHUNK) {
  1123. (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c);
  1124. ctr += GHASH_CHUNK/16;
  1125. if (is_endian.little)
  1126. PUTU32(ctx->Yi.c+12,ctr);
  1127. else
  1128. ctx->Yi.d[3] = ctr;
  1129. GHASH(ctx,out,GHASH_CHUNK);
  1130. out += GHASH_CHUNK;
  1131. in += GHASH_CHUNK;
  1132. len -= GHASH_CHUNK;
  1133. }
  1134. #endif
  1135. if ((i = (len&(size_t)-16))) {
  1136. size_t j=i/16;
  1137. (*stream)(in,out,j,key,ctx->Yi.c);
  1138. ctr += (unsigned int)j;
  1139. if (is_endian.little)
  1140. PUTU32(ctx->Yi.c+12,ctr);
  1141. else
  1142. ctx->Yi.d[3] = ctr;
  1143. in += i;
  1144. len -= i;
  1145. #if defined(GHASH)
  1146. GHASH(ctx,out,i);
  1147. out += i;
  1148. #else
  1149. while (j--) {
  1150. for (i=0;i<16;++i) ctx->Xi.c[i] ^= out[i];
  1151. GCM_MUL(ctx,Xi);
  1152. out += 16;
  1153. }
  1154. #endif
  1155. }
  1156. if (len) {
  1157. (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key);
  1158. ++ctr;
  1159. if (is_endian.little)
  1160. PUTU32(ctx->Yi.c+12,ctr);
  1161. else
  1162. ctx->Yi.d[3] = ctr;
  1163. while (len--) {
  1164. ctx->Xi.c[n] ^= out[n] = in[n]^ctx->EKi.c[n];
  1165. ++n;
  1166. }
  1167. }
  1168. ctx->mres = n;
  1169. return 0;
  1170. }
  1171. int CRYPTO_gcm128_decrypt_ctr32(GCM128_CONTEXT *ctx,
  1172. const unsigned char *in, unsigned char *out,
  1173. size_t len,ctr128_f stream)
  1174. {
  1175. const union { long one; char little; } is_endian = {1};
  1176. unsigned int n, ctr;
  1177. size_t i;
  1178. u64 mlen = ctx->len.u[1];
  1179. void *key = ctx->key;
  1180. #ifdef GCM_FUNCREF_4BIT
  1181. void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
  1182. # ifdef GHASH
  1183. void (*gcm_ghash_p)(u64 Xi[2],const u128 Htable[16],
  1184. const u8 *inp,size_t len) = ctx->ghash;
  1185. # endif
  1186. #endif
  1187. mlen += len;
  1188. if (mlen>((U64(1)<<36)-32) || (sizeof(len)==8 && mlen<len))
  1189. return -1;
  1190. ctx->len.u[1] = mlen;
  1191. if (ctx->ares) {
  1192. /* First call to decrypt finalizes GHASH(AAD) */
  1193. GCM_MUL(ctx,Xi);
  1194. ctx->ares = 0;
  1195. }
  1196. if (is_endian.little)
  1197. ctr = GETU32(ctx->Yi.c+12);
  1198. else
  1199. ctr = ctx->Yi.d[3];
  1200. n = ctx->mres;
  1201. if (n) {
  1202. while (n && len) {
  1203. u8 c = *(in++);
  1204. *(out++) = c^ctx->EKi.c[n];
  1205. ctx->Xi.c[n] ^= c;
  1206. --len;
  1207. n = (n+1)%16;
  1208. }
  1209. if (n==0) GCM_MUL (ctx,Xi);
  1210. else {
  1211. ctx->mres = n;
  1212. return 0;
  1213. }
  1214. }
  1215. #if defined(GHASH) && !defined(OPENSSL_SMALL_FOOTPRINT)
  1216. while (len>=GHASH_CHUNK) {
  1217. GHASH(ctx,in,GHASH_CHUNK);
  1218. (*stream)(in,out,GHASH_CHUNK/16,key,ctx->Yi.c);
  1219. ctr += GHASH_CHUNK/16;
  1220. if (is_endian.little)
  1221. PUTU32(ctx->Yi.c+12,ctr);
  1222. else
  1223. ctx->Yi.d[3] = ctr;
  1224. out += GHASH_CHUNK;
  1225. in += GHASH_CHUNK;
  1226. len -= GHASH_CHUNK;
  1227. }
  1228. #endif
  1229. if ((i = (len&(size_t)-16))) {
  1230. size_t j=i/16;
  1231. #if defined(GHASH)
  1232. GHASH(ctx,in,i);
  1233. #else
  1234. while (j--) {
  1235. size_t k;
  1236. for (k=0;k<16;++k) ctx->Xi.c[k] ^= in[k];
  1237. GCM_MUL(ctx,Xi);
  1238. in += 16;
  1239. }
  1240. j = i/16;
  1241. in -= i;
  1242. #endif
  1243. (*stream)(in,out,j,key,ctx->Yi.c);
  1244. ctr += (unsigned int)j;
  1245. if (is_endian.little)
  1246. PUTU32(ctx->Yi.c+12,ctr);
  1247. else
  1248. ctx->Yi.d[3] = ctr;
  1249. out += i;
  1250. in += i;
  1251. len -= i;
  1252. }
  1253. if (len) {
  1254. (*ctx->block)(ctx->Yi.c,ctx->EKi.c,key);
  1255. ++ctr;
  1256. if (is_endian.little)
  1257. PUTU32(ctx->Yi.c+12,ctr);
  1258. else
  1259. ctx->Yi.d[3] = ctr;
  1260. while (len--) {
  1261. u8 c = in[n];
  1262. ctx->Xi.c[n] ^= c;
  1263. out[n] = c^ctx->EKi.c[n];
  1264. ++n;
  1265. }
  1266. }
  1267. ctx->mres = n;
  1268. return 0;
  1269. }
  1270. int CRYPTO_gcm128_finish(GCM128_CONTEXT *ctx,const unsigned char *tag,
  1271. size_t len)
  1272. {
  1273. const union { long one; char little; } is_endian = {1};
  1274. u64 alen = ctx->len.u[0]<<3;
  1275. u64 clen = ctx->len.u[1]<<3;
  1276. #ifdef GCM_FUNCREF_4BIT
  1277. void (*gcm_gmult_p)(u64 Xi[2],const u128 Htable[16]) = ctx->gmult;
  1278. #endif
  1279. if (ctx->mres)
  1280. GCM_MUL(ctx,Xi);
  1281. if (is_endian.little) {
  1282. #ifdef BSWAP8
  1283. alen = BSWAP8(alen);
  1284. clen = BSWAP8(clen);
  1285. #else
  1286. u8 *p = ctx->len.c;
  1287. ctx->len.u[0] = alen;
  1288. ctx->len.u[1] = clen;
  1289. alen = (u64)GETU32(p) <<32|GETU32(p+4);
  1290. clen = (u64)GETU32(p+8)<<32|GETU32(p+12);
  1291. #endif
  1292. }
  1293. ctx->Xi.u[0] ^= alen;
  1294. ctx->Xi.u[1] ^= clen;
  1295. GCM_MUL(ctx,Xi);
  1296. ctx->Xi.u[0] ^= ctx->EK0.u[0];
  1297. ctx->Xi.u[1] ^= ctx->EK0.u[1];
  1298. if (tag && len<=sizeof(ctx->Xi))
  1299. return memcmp(ctx->Xi.c,tag,len);
  1300. else
  1301. return -1;
  1302. }
  1303. void CRYPTO_gcm128_tag(GCM128_CONTEXT *ctx, unsigned char *tag, size_t len)
  1304. {
  1305. CRYPTO_gcm128_finish(ctx, NULL, 0);
  1306. memcpy(tag, ctx->Xi.c, len<=sizeof(ctx->Xi.c)?len:sizeof(ctx->Xi.c));
  1307. }
  1308. GCM128_CONTEXT *CRYPTO_gcm128_new(void *key, block128_f block)
  1309. {
  1310. GCM128_CONTEXT *ret;
  1311. if ((ret = (GCM128_CONTEXT *)OPENSSL_malloc(sizeof(GCM128_CONTEXT))))
  1312. CRYPTO_gcm128_init(ret,key,block);
  1313. return ret;
  1314. }
  1315. void CRYPTO_gcm128_release(GCM128_CONTEXT *ctx)
  1316. {
  1317. if (ctx) {
  1318. OPENSSL_cleanse(ctx,sizeof(*ctx));
  1319. OPENSSL_free(ctx);
  1320. }
  1321. }
  1322. #if defined(SELFTEST)
  1323. #include <stdio.h>
  1324. #include <openssl/aes.h>
  1325. /* Test Case 1 */
  1326. static const u8 K1[16],
  1327. *P1=NULL,
  1328. *A1=NULL,
  1329. IV1[12],
  1330. *C1=NULL,
  1331. T1[]= {0x58,0xe2,0xfc,0xce,0xfa,0x7e,0x30,0x61,0x36,0x7f,0x1d,0x57,0xa4,0xe7,0x45,0x5a};
  1332. /* Test Case 2 */
  1333. #define K2 K1
  1334. #define A2 A1
  1335. #define IV2 IV1
  1336. static const u8 P2[16],
  1337. C2[]= {0x03,0x88,0xda,0xce,0x60,0xb6,0xa3,0x92,0xf3,0x28,0xc2,0xb9,0x71,0xb2,0xfe,0x78},
  1338. T2[]= {0xab,0x6e,0x47,0xd4,0x2c,0xec,0x13,0xbd,0xf5,0x3a,0x67,0xb2,0x12,0x57,0xbd,0xdf};
  1339. /* Test Case 3 */
  1340. #define A3 A2
  1341. static const u8 K3[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08},
  1342. P3[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a,
  1343. 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72,
  1344. 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25,
  1345. 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55},
  1346. IV3[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88},
  1347. C3[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c,
  1348. 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e,
  1349. 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05,
  1350. 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91,0x47,0x3f,0x59,0x85},
  1351. T3[]= {0x4d,0x5c,0x2a,0xf3,0x27,0xcd,0x64,0xa6,0x2c,0xf3,0x5a,0xbd,0x2b,0xa6,0xfa,0xb4};
  1352. /* Test Case 4 */
  1353. #define K4 K3
  1354. #define IV4 IV3
  1355. static const u8 P4[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a,
  1356. 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72,
  1357. 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25,
  1358. 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39},
  1359. A4[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,
  1360. 0xab,0xad,0xda,0xd2},
  1361. C4[]= {0x42,0x83,0x1e,0xc2,0x21,0x77,0x74,0x24,0x4b,0x72,0x21,0xb7,0x84,0xd0,0xd4,0x9c,
  1362. 0xe3,0xaa,0x21,0x2f,0x2c,0x02,0xa4,0xe0,0x35,0xc1,0x7e,0x23,0x29,0xac,0xa1,0x2e,
  1363. 0x21,0xd5,0x14,0xb2,0x54,0x66,0x93,0x1c,0x7d,0x8f,0x6a,0x5a,0xac,0x84,0xaa,0x05,
  1364. 0x1b,0xa3,0x0b,0x39,0x6a,0x0a,0xac,0x97,0x3d,0x58,0xe0,0x91},
  1365. T4[]= {0x5b,0xc9,0x4f,0xbc,0x32,0x21,0xa5,0xdb,0x94,0xfa,0xe9,0x5a,0xe7,0x12,0x1a,0x47};
  1366. /* Test Case 5 */
  1367. #define K5 K4
  1368. #define P5 P4
  1369. #define A5 A4
  1370. static const u8 IV5[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
  1371. C5[]= {0x61,0x35,0x3b,0x4c,0x28,0x06,0x93,0x4a,0x77,0x7f,0xf5,0x1f,0xa2,0x2a,0x47,0x55,
  1372. 0x69,0x9b,0x2a,0x71,0x4f,0xcd,0xc6,0xf8,0x37,0x66,0xe5,0xf9,0x7b,0x6c,0x74,0x23,
  1373. 0x73,0x80,0x69,0x00,0xe4,0x9f,0x24,0xb2,0x2b,0x09,0x75,0x44,0xd4,0x89,0x6b,0x42,
  1374. 0x49,0x89,0xb5,0xe1,0xeb,0xac,0x0f,0x07,0xc2,0x3f,0x45,0x98},
  1375. T5[]= {0x36,0x12,0xd2,0xe7,0x9e,0x3b,0x07,0x85,0x56,0x1b,0xe1,0x4a,0xac,0xa2,0xfc,0xcb};
  1376. /* Test Case 6 */
  1377. #define K6 K5
  1378. #define P6 P5
  1379. #define A6 A5
  1380. static const u8 IV6[]= {0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa,
  1381. 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28,
  1382. 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54,
  1383. 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b},
  1384. C6[]= {0x8c,0xe2,0x49,0x98,0x62,0x56,0x15,0xb6,0x03,0xa0,0x33,0xac,0xa1,0x3f,0xb8,0x94,
  1385. 0xbe,0x91,0x12,0xa5,0xc3,0xa2,0x11,0xa8,0xba,0x26,0x2a,0x3c,0xca,0x7e,0x2c,0xa7,
  1386. 0x01,0xe4,0xa9,0xa4,0xfb,0xa4,0x3c,0x90,0xcc,0xdc,0xb2,0x81,0xd4,0x8c,0x7c,0x6f,
  1387. 0xd6,0x28,0x75,0xd2,0xac,0xa4,0x17,0x03,0x4c,0x34,0xae,0xe5},
  1388. T6[]= {0x61,0x9c,0xc5,0xae,0xff,0xfe,0x0b,0xfa,0x46,0x2a,0xf4,0x3c,0x16,0x99,0xd0,0x50};
  1389. /* Test Case 7 */
  1390. static const u8 K7[24],
  1391. *P7=NULL,
  1392. *A7=NULL,
  1393. IV7[12],
  1394. *C7=NULL,
  1395. T7[]= {0xcd,0x33,0xb2,0x8a,0xc7,0x73,0xf7,0x4b,0xa0,0x0e,0xd1,0xf3,0x12,0x57,0x24,0x35};
  1396. /* Test Case 8 */
  1397. #define K8 K7
  1398. #define IV8 IV7
  1399. #define A8 A7
  1400. static const u8 P8[16],
  1401. C8[]= {0x98,0xe7,0x24,0x7c,0x07,0xf0,0xfe,0x41,0x1c,0x26,0x7e,0x43,0x84,0xb0,0xf6,0x00},
  1402. T8[]= {0x2f,0xf5,0x8d,0x80,0x03,0x39,0x27,0xab,0x8e,0xf4,0xd4,0x58,0x75,0x14,0xf0,0xfb};
  1403. /* Test Case 9 */
  1404. #define A9 A8
  1405. static const u8 K9[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08,
  1406. 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c},
  1407. P9[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a,
  1408. 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72,
  1409. 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25,
  1410. 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55},
  1411. IV9[]= {0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88},
  1412. C9[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57,
  1413. 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c,
  1414. 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47,
  1415. 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10,0xac,0xad,0xe2,0x56},
  1416. T9[]= {0x99,0x24,0xa7,0xc8,0x58,0x73,0x36,0xbf,0xb1,0x18,0x02,0x4d,0xb8,0x67,0x4a,0x14};
  1417. /* Test Case 10 */
  1418. #define K10 K9
  1419. #define IV10 IV9
  1420. static const u8 P10[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a,
  1421. 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72,
  1422. 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25,
  1423. 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39},
  1424. A10[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,
  1425. 0xab,0xad,0xda,0xd2},
  1426. C10[]= {0x39,0x80,0xca,0x0b,0x3c,0x00,0xe8,0x41,0xeb,0x06,0xfa,0xc4,0x87,0x2a,0x27,0x57,
  1427. 0x85,0x9e,0x1c,0xea,0xa6,0xef,0xd9,0x84,0x62,0x85,0x93,0xb4,0x0c,0xa1,0xe1,0x9c,
  1428. 0x7d,0x77,0x3d,0x00,0xc1,0x44,0xc5,0x25,0xac,0x61,0x9d,0x18,0xc8,0x4a,0x3f,0x47,
  1429. 0x18,0xe2,0x44,0x8b,0x2f,0xe3,0x24,0xd9,0xcc,0xda,0x27,0x10},
  1430. T10[]= {0x25,0x19,0x49,0x8e,0x80,0xf1,0x47,0x8f,0x37,0xba,0x55,0xbd,0x6d,0x27,0x61,0x8c};
  1431. /* Test Case 11 */
  1432. #define K11 K10
  1433. #define P11 P10
  1434. #define A11 A10
  1435. static const u8 IV11[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
  1436. C11[]= {0x0f,0x10,0xf5,0x99,0xae,0x14,0xa1,0x54,0xed,0x24,0xb3,0x6e,0x25,0x32,0x4d,0xb8,
  1437. 0xc5,0x66,0x63,0x2e,0xf2,0xbb,0xb3,0x4f,0x83,0x47,0x28,0x0f,0xc4,0x50,0x70,0x57,
  1438. 0xfd,0xdc,0x29,0xdf,0x9a,0x47,0x1f,0x75,0xc6,0x65,0x41,0xd4,0xd4,0xda,0xd1,0xc9,
  1439. 0xe9,0x3a,0x19,0xa5,0x8e,0x8b,0x47,0x3f,0xa0,0xf0,0x62,0xf7},
  1440. T11[]= {0x65,0xdc,0xc5,0x7f,0xcf,0x62,0x3a,0x24,0x09,0x4f,0xcc,0xa4,0x0d,0x35,0x33,0xf8};
  1441. /* Test Case 12 */
  1442. #define K12 K11
  1443. #define P12 P11
  1444. #define A12 A11
  1445. static const u8 IV12[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa,
  1446. 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28,
  1447. 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54,
  1448. 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b},
  1449. C12[]= {0xd2,0x7e,0x88,0x68,0x1c,0xe3,0x24,0x3c,0x48,0x30,0x16,0x5a,0x8f,0xdc,0xf9,0xff,
  1450. 0x1d,0xe9,0xa1,0xd8,0xe6,0xb4,0x47,0xef,0x6e,0xf7,0xb7,0x98,0x28,0x66,0x6e,0x45,
  1451. 0x81,0xe7,0x90,0x12,0xaf,0x34,0xdd,0xd9,0xe2,0xf0,0x37,0x58,0x9b,0x29,0x2d,0xb3,
  1452. 0xe6,0x7c,0x03,0x67,0x45,0xfa,0x22,0xe7,0xe9,0xb7,0x37,0x3b},
  1453. T12[]= {0xdc,0xf5,0x66,0xff,0x29,0x1c,0x25,0xbb,0xb8,0x56,0x8f,0xc3,0xd3,0x76,0xa6,0xd9};
  1454. /* Test Case 13 */
  1455. static const u8 K13[32],
  1456. *P13=NULL,
  1457. *A13=NULL,
  1458. IV13[12],
  1459. *C13=NULL,
  1460. T13[]={0x53,0x0f,0x8a,0xfb,0xc7,0x45,0x36,0xb9,0xa9,0x63,0xb4,0xf1,0xc4,0xcb,0x73,0x8b};
  1461. /* Test Case 14 */
  1462. #define K14 K13
  1463. #define A14 A13
  1464. static const u8 P14[16],
  1465. IV14[12],
  1466. C14[]= {0xce,0xa7,0x40,0x3d,0x4d,0x60,0x6b,0x6e,0x07,0x4e,0xc5,0xd3,0xba,0xf3,0x9d,0x18},
  1467. T14[]= {0xd0,0xd1,0xc8,0xa7,0x99,0x99,0x6b,0xf0,0x26,0x5b,0x98,0xb5,0xd4,0x8a,0xb9,0x19};
  1468. /* Test Case 15 */
  1469. #define A15 A14
  1470. static const u8 K15[]= {0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08,
  1471. 0xfe,0xff,0xe9,0x92,0x86,0x65,0x73,0x1c,0x6d,0x6a,0x8f,0x94,0x67,0x30,0x83,0x08},
  1472. P15[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a,
  1473. 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72,
  1474. 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25,
  1475. 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39,0x1a,0xaf,0xd2,0x55},
  1476. IV15[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad,0xde,0xca,0xf8,0x88},
  1477. C15[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d,
  1478. 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa,
  1479. 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38,
  1480. 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62,0x89,0x80,0x15,0xad},
  1481. T15[]= {0xb0,0x94,0xda,0xc5,0xd9,0x34,0x71,0xbd,0xec,0x1a,0x50,0x22,0x70,0xe3,0xcc,0x6c};
  1482. /* Test Case 16 */
  1483. #define K16 K15
  1484. #define IV16 IV15
  1485. static const u8 P16[]= {0xd9,0x31,0x32,0x25,0xf8,0x84,0x06,0xe5,0xa5,0x59,0x09,0xc5,0xaf,0xf5,0x26,0x9a,
  1486. 0x86,0xa7,0xa9,0x53,0x15,0x34,0xf7,0xda,0x2e,0x4c,0x30,0x3d,0x8a,0x31,0x8a,0x72,
  1487. 0x1c,0x3c,0x0c,0x95,0x95,0x68,0x09,0x53,0x2f,0xcf,0x0e,0x24,0x49,0xa6,0xb5,0x25,
  1488. 0xb1,0x6a,0xed,0xf5,0xaa,0x0d,0xe6,0x57,0xba,0x63,0x7b,0x39},
  1489. A16[]= {0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,0xfe,0xed,0xfa,0xce,0xde,0xad,0xbe,0xef,
  1490. 0xab,0xad,0xda,0xd2},
  1491. C16[]= {0x52,0x2d,0xc1,0xf0,0x99,0x56,0x7d,0x07,0xf4,0x7f,0x37,0xa3,0x2a,0x84,0x42,0x7d,
  1492. 0x64,0x3a,0x8c,0xdc,0xbf,0xe5,0xc0,0xc9,0x75,0x98,0xa2,0xbd,0x25,0x55,0xd1,0xaa,
  1493. 0x8c,0xb0,0x8e,0x48,0x59,0x0d,0xbb,0x3d,0xa7,0xb0,0x8b,0x10,0x56,0x82,0x88,0x38,
  1494. 0xc5,0xf6,0x1e,0x63,0x93,0xba,0x7a,0x0a,0xbc,0xc9,0xf6,0x62},
  1495. T16[]= {0x76,0xfc,0x6e,0xce,0x0f,0x4e,0x17,0x68,0xcd,0xdf,0x88,0x53,0xbb,0x2d,0x55,0x1b};
  1496. /* Test Case 17 */
  1497. #define K17 K16
  1498. #define P17 P16
  1499. #define A17 A16
  1500. static const u8 IV17[]={0xca,0xfe,0xba,0xbe,0xfa,0xce,0xdb,0xad},
  1501. C17[]= {0xc3,0x76,0x2d,0xf1,0xca,0x78,0x7d,0x32,0xae,0x47,0xc1,0x3b,0xf1,0x98,0x44,0xcb,
  1502. 0xaf,0x1a,0xe1,0x4d,0x0b,0x97,0x6a,0xfa,0xc5,0x2f,0xf7,0xd7,0x9b,0xba,0x9d,0xe0,
  1503. 0xfe,0xb5,0x82,0xd3,0x39,0x34,0xa4,0xf0,0x95,0x4c,0xc2,0x36,0x3b,0xc7,0x3f,0x78,
  1504. 0x62,0xac,0x43,0x0e,0x64,0xab,0xe4,0x99,0xf4,0x7c,0x9b,0x1f},
  1505. T17[]= {0x3a,0x33,0x7d,0xbf,0x46,0xa7,0x92,0xc4,0x5e,0x45,0x49,0x13,0xfe,0x2e,0xa8,0xf2};
  1506. /* Test Case 18 */
  1507. #define K18 K17
  1508. #define P18 P17
  1509. #define A18 A17
  1510. static const u8 IV18[]={0x93,0x13,0x22,0x5d,0xf8,0x84,0x06,0xe5,0x55,0x90,0x9c,0x5a,0xff,0x52,0x69,0xaa,
  1511. 0x6a,0x7a,0x95,0x38,0x53,0x4f,0x7d,0xa1,0xe4,0xc3,0x03,0xd2,0xa3,0x18,0xa7,0x28,
  1512. 0xc3,0xc0,0xc9,0x51,0x56,0x80,0x95,0x39,0xfc,0xf0,0xe2,0x42,0x9a,0x6b,0x52,0x54,
  1513. 0x16,0xae,0xdb,0xf5,0xa0,0xde,0x6a,0x57,0xa6,0x37,0xb3,0x9b},
  1514. C18[]= {0x5a,0x8d,0xef,0x2f,0x0c,0x9e,0x53,0xf1,0xf7,0x5d,0x78,0x53,0x65,0x9e,0x2a,0x20,
  1515. 0xee,0xb2,0xb2,0x2a,0xaf,0xde,0x64,0x19,0xa0,0x58,0xab,0x4f,0x6f,0x74,0x6b,0xf4,
  1516. 0x0f,0xc0,0xc3,0xb7,0x80,0xf2,0x44,0x45,0x2d,0xa3,0xeb,0xf1,0xc5,0xd8,0x2c,0xde,
  1517. 0xa2,0x41,0x89,0x97,0x20,0x0e,0xf8,0x2e,0x44,0xae,0x7e,0x3f},
  1518. T18[]= {0xa4,0x4a,0x82,0x66,0xee,0x1c,0x8e,0xb0,0xc8,0xb5,0xd4,0xcf,0x5a,0xe9,0xf1,0x9a};
  1519. #define TEST_CASE(n) do { \
  1520. u8 out[sizeof(P##n)]; \
  1521. AES_set_encrypt_key(K##n,sizeof(K##n)*8,&key); \
  1522. CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt); \
  1523. CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \
  1524. memset(out,0,sizeof(out)); \
  1525. if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \
  1526. if (P##n) CRYPTO_gcm128_encrypt(&ctx,P##n,out,sizeof(out)); \
  1527. if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \
  1528. (C##n && memcmp(out,C##n,sizeof(out)))) \
  1529. ret++, printf ("encrypt test#%d failed.\n",n); \
  1530. CRYPTO_gcm128_setiv(&ctx,IV##n,sizeof(IV##n)); \
  1531. memset(out,0,sizeof(out)); \
  1532. if (A##n) CRYPTO_gcm128_aad(&ctx,A##n,sizeof(A##n)); \
  1533. if (C##n) CRYPTO_gcm128_decrypt(&ctx,C##n,out,sizeof(out)); \
  1534. if (CRYPTO_gcm128_finish(&ctx,T##n,16) || \
  1535. (P##n && memcmp(out,P##n,sizeof(out)))) \
  1536. ret++, printf ("decrypt test#%d failed.\n",n); \
  1537. } while(0)
  1538. int main()
  1539. {
  1540. GCM128_CONTEXT ctx;
  1541. AES_KEY key;
  1542. int ret=0;
  1543. TEST_CASE(1);
  1544. TEST_CASE(2);
  1545. TEST_CASE(3);
  1546. TEST_CASE(4);
  1547. TEST_CASE(5);
  1548. TEST_CASE(6);
  1549. TEST_CASE(7);
  1550. TEST_CASE(8);
  1551. TEST_CASE(9);
  1552. TEST_CASE(10);
  1553. TEST_CASE(11);
  1554. TEST_CASE(12);
  1555. TEST_CASE(13);
  1556. TEST_CASE(14);
  1557. TEST_CASE(15);
  1558. TEST_CASE(16);
  1559. TEST_CASE(17);
  1560. TEST_CASE(18);
  1561. #ifdef OPENSSL_CPUID_OBJ
  1562. {
  1563. size_t start,stop,gcm_t,ctr_t,OPENSSL_rdtsc();
  1564. union { u64 u; u8 c[1024]; } buf;
  1565. int i;
  1566. AES_set_encrypt_key(K1,sizeof(K1)*8,&key);
  1567. CRYPTO_gcm128_init(&ctx,&key,(block128_f)AES_encrypt);
  1568. CRYPTO_gcm128_setiv(&ctx,IV1,sizeof(IV1));
  1569. CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf));
  1570. start = OPENSSL_rdtsc();
  1571. CRYPTO_gcm128_encrypt(&ctx,buf.c,buf.c,sizeof(buf));
  1572. gcm_t = OPENSSL_rdtsc() - start;
  1573. CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf),
  1574. &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres,
  1575. (block128_f)AES_encrypt);
  1576. start = OPENSSL_rdtsc();
  1577. CRYPTO_ctr128_encrypt(buf.c,buf.c,sizeof(buf),
  1578. &key,ctx.Yi.c,ctx.EKi.c,&ctx.mres,
  1579. (block128_f)AES_encrypt);
  1580. ctr_t = OPENSSL_rdtsc() - start;
  1581. printf("%.2f-%.2f=%.2f\n",
  1582. gcm_t/(double)sizeof(buf),
  1583. ctr_t/(double)sizeof(buf),
  1584. (gcm_t-ctr_t)/(double)sizeof(buf));
  1585. #ifdef GHASH
  1586. GHASH(&ctx,buf.c,sizeof(buf));
  1587. start = OPENSSL_rdtsc();
  1588. for (i=0;i<100;++i) GHASH(&ctx,buf.c,sizeof(buf));
  1589. gcm_t = OPENSSL_rdtsc() - start;
  1590. printf("%.2f\n",gcm_t/(double)sizeof(buf)/(double)i);
  1591. #endif
  1592. }
  1593. #endif
  1594. return ret;
  1595. }
  1596. #endif