ssl3_cbc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486
  1. /*
  2. * Copyright 2012-2023 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * This file has no dependencies on the rest of libssl because it is shared
  11. * with the providers. It contains functions for low level MAC calculations.
  12. * Responsibility for this lies with the HMAC implementation in the
  13. * providers. However there are legacy code paths in libssl which also need to
  14. * do this. In time those legacy code paths can be removed and this file can be
  15. * moved out of libssl.
  16. */
  17. /*
  18. * MD5 and SHA-1 low level APIs are deprecated for public use, but still ok for
  19. * internal use.
  20. */
  21. #include "internal/deprecated.h"
  22. #include <openssl/evp.h>
  23. #ifndef FIPS_MODULE
  24. # include <openssl/md5.h>
  25. #endif
  26. #include <openssl/sha.h>
  27. #include "internal/ssl3_cbc.h"
  28. #include "internal/constant_time.h"
  29. #include "internal/cryptlib.h"
  30. /*
  31. * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
  32. * length field. (SHA-384/512 have 128-bit length.)
  33. */
  34. #define MAX_HASH_BIT_COUNT_BYTES 16
  35. /*
  36. * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
  37. * Currently SHA-384/512 has a 128-byte block size and that's the largest
  38. * supported by TLS.)
  39. */
  40. #define MAX_HASH_BLOCK_SIZE 128
  41. #ifndef FIPS_MODULE
  42. /*
  43. * u32toLE serializes an unsigned, 32-bit number (n) as four bytes at (p) in
  44. * little-endian order. The value of p is advanced by four.
  45. */
  46. # define u32toLE(n, p) \
  47. (*((p)++) = (unsigned char)(n ), \
  48. *((p)++) = (unsigned char)(n >> 8), \
  49. *((p)++) = (unsigned char)(n >> 16), \
  50. *((p)++) = (unsigned char)(n >> 24))
  51. /*
  52. * These functions serialize the state of a hash and thus perform the
  53. * standard "final" operation without adding the padding and length that such
  54. * a function typically does.
  55. */
  56. static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
  57. {
  58. MD5_CTX *md5 = ctx;
  59. u32toLE(md5->A, md_out);
  60. u32toLE(md5->B, md_out);
  61. u32toLE(md5->C, md_out);
  62. u32toLE(md5->D, md_out);
  63. }
  64. #endif /* FIPS_MODULE */
  65. static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
  66. {
  67. SHA_CTX *sha1 = ctx;
  68. l2n(sha1->h0, md_out);
  69. l2n(sha1->h1, md_out);
  70. l2n(sha1->h2, md_out);
  71. l2n(sha1->h3, md_out);
  72. l2n(sha1->h4, md_out);
  73. }
  74. static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
  75. {
  76. SHA256_CTX *sha256 = ctx;
  77. unsigned i;
  78. for (i = 0; i < 8; i++)
  79. l2n(sha256->h[i], md_out);
  80. }
  81. static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
  82. {
  83. SHA512_CTX *sha512 = ctx;
  84. unsigned i;
  85. for (i = 0; i < 8; i++)
  86. l2n8(sha512->h[i], md_out);
  87. }
  88. #undef LARGEST_DIGEST_CTX
  89. #define LARGEST_DIGEST_CTX SHA512_CTX
  90. /*-
  91. * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
  92. * record.
  93. *
  94. * ctx: the EVP_MD_CTX from which we take the hash function.
  95. * ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
  96. * md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
  97. * md_out_size: if non-NULL, the number of output bytes is written here.
  98. * header: the 13-byte, TLS record header.
  99. * data: the record data itself, less any preceding explicit IV.
  100. * data_size: the secret, reported length of the data once the MAC and padding
  101. * has been removed.
  102. * data_plus_mac_plus_padding_size: the public length of the whole
  103. * record, including MAC and padding.
  104. * is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
  105. *
  106. * On entry: we know that data is data_plus_mac_plus_padding_size in length
  107. * Returns 1 on success or 0 on error
  108. */
  109. int ssl3_cbc_digest_record(const EVP_MD *md,
  110. unsigned char *md_out,
  111. size_t *md_out_size,
  112. const unsigned char *header,
  113. const unsigned char *data,
  114. size_t data_size,
  115. size_t data_plus_mac_plus_padding_size,
  116. const unsigned char *mac_secret,
  117. size_t mac_secret_length, char is_sslv3)
  118. {
  119. union {
  120. OSSL_UNION_ALIGN;
  121. unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
  122. } md_state;
  123. void (*md_final_raw) (void *ctx, unsigned char *md_out);
  124. void (*md_transform) (void *ctx, const unsigned char *block);
  125. size_t md_size, md_block_size = 64;
  126. size_t sslv3_pad_length = 40, header_length, variance_blocks,
  127. len, max_mac_bytes, num_blocks,
  128. num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
  129. size_t bits; /* at most 18 bits */
  130. unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
  131. /* hmac_pad is the masked HMAC key. */
  132. unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
  133. unsigned char first_block[MAX_HASH_BLOCK_SIZE];
  134. unsigned char mac_out[EVP_MAX_MD_SIZE];
  135. size_t i, j;
  136. unsigned md_out_size_u;
  137. EVP_MD_CTX *md_ctx = NULL;
  138. /*
  139. * mdLengthSize is the number of bytes in the length field that
  140. * terminates * the hash.
  141. */
  142. size_t md_length_size = 8;
  143. char length_is_big_endian = 1;
  144. int ret = 0;
  145. /*
  146. * This is a, hopefully redundant, check that allows us to forget about
  147. * many possible overflows later in this function.
  148. */
  149. if (!ossl_assert(data_plus_mac_plus_padding_size < 1024 * 1024))
  150. return 0;
  151. if (EVP_MD_is_a(md, "MD5")) {
  152. #ifdef FIPS_MODULE
  153. return 0;
  154. #else
  155. if (MD5_Init((MD5_CTX *)md_state.c) <= 0)
  156. return 0;
  157. md_final_raw = tls1_md5_final_raw;
  158. md_transform =
  159. (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
  160. md_size = 16;
  161. sslv3_pad_length = 48;
  162. length_is_big_endian = 0;
  163. #endif
  164. } else if (EVP_MD_is_a(md, "SHA1")) {
  165. if (SHA1_Init((SHA_CTX *)md_state.c) <= 0)
  166. return 0;
  167. md_final_raw = tls1_sha1_final_raw;
  168. md_transform =
  169. (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
  170. md_size = 20;
  171. } else if (EVP_MD_is_a(md, "SHA2-224")) {
  172. if (SHA224_Init((SHA256_CTX *)md_state.c) <= 0)
  173. return 0;
  174. md_final_raw = tls1_sha256_final_raw;
  175. md_transform =
  176. (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
  177. md_size = 224 / 8;
  178. } else if (EVP_MD_is_a(md, "SHA2-256")) {
  179. if (SHA256_Init((SHA256_CTX *)md_state.c) <= 0)
  180. return 0;
  181. md_final_raw = tls1_sha256_final_raw;
  182. md_transform =
  183. (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
  184. md_size = 32;
  185. } else if (EVP_MD_is_a(md, "SHA2-384")) {
  186. if (SHA384_Init((SHA512_CTX *)md_state.c) <= 0)
  187. return 0;
  188. md_final_raw = tls1_sha512_final_raw;
  189. md_transform =
  190. (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
  191. md_size = 384 / 8;
  192. md_block_size = 128;
  193. md_length_size = 16;
  194. } else if (EVP_MD_is_a(md, "SHA2-512")) {
  195. if (SHA512_Init((SHA512_CTX *)md_state.c) <= 0)
  196. return 0;
  197. md_final_raw = tls1_sha512_final_raw;
  198. md_transform =
  199. (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
  200. md_size = 64;
  201. md_block_size = 128;
  202. md_length_size = 16;
  203. } else {
  204. /*
  205. * ssl3_cbc_record_digest_supported should have been called first to
  206. * check that the hash function is supported.
  207. */
  208. if (md_out_size != NULL)
  209. *md_out_size = 0;
  210. return ossl_assert(0);
  211. }
  212. if (!ossl_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES)
  213. || !ossl_assert(md_block_size <= MAX_HASH_BLOCK_SIZE)
  214. || !ossl_assert(md_size <= EVP_MAX_MD_SIZE))
  215. return 0;
  216. header_length = 13;
  217. if (is_sslv3) {
  218. header_length = mac_secret_length
  219. + sslv3_pad_length
  220. + 8 /* sequence number */
  221. + 1 /* record type */
  222. + 2; /* record length */
  223. }
  224. /*
  225. * variance_blocks is the number of blocks of the hash that we have to
  226. * calculate in constant time because they could be altered by the
  227. * padding value. In SSLv3, the padding must be minimal so the end of
  228. * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
  229. * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
  230. * of hash termination (0x80 + 64-bit length) don't fit in the final
  231. * block, we say that the final two blocks can vary based on the padding.
  232. * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
  233. * required to be minimal. Therefore we say that the final |variance_blocks|
  234. * blocks can
  235. * vary based on the padding. Later in the function, if the message is
  236. * short and there obviously cannot be this many blocks then
  237. * variance_blocks can be reduced.
  238. */
  239. variance_blocks = is_sslv3 ? 2
  240. : (((255 + 1 + md_size + md_block_size - 1)
  241. / md_block_size) + 1);
  242. /*
  243. * From now on we're dealing with the MAC, which conceptually has 13
  244. * bytes of `header' before the start of the data (TLS) or 71/75 bytes
  245. * (SSLv3)
  246. */
  247. len = data_plus_mac_plus_padding_size + header_length;
  248. /*
  249. * max_mac_bytes contains the maximum bytes of bytes in the MAC,
  250. * including * |header|, assuming that there's no padding.
  251. */
  252. max_mac_bytes = len - md_size - 1;
  253. /* num_blocks is the maximum number of hash blocks. */
  254. num_blocks =
  255. (max_mac_bytes + 1 + md_length_size + md_block_size -
  256. 1) / md_block_size;
  257. /*
  258. * In order to calculate the MAC in constant time we have to handle the
  259. * final blocks specially because the padding value could cause the end
  260. * to appear somewhere in the final |variance_blocks| blocks and we can't
  261. * leak where. However, |num_starting_blocks| worth of data can be hashed
  262. * right away because no padding value can affect whether they are
  263. * plaintext.
  264. */
  265. num_starting_blocks = 0;
  266. /*
  267. * k is the starting byte offset into the conceptual header||data where
  268. * we start processing.
  269. */
  270. k = 0;
  271. /*
  272. * mac_end_offset is the index just past the end of the data to be MACed.
  273. */
  274. mac_end_offset = data_size + header_length;
  275. /*
  276. * c is the index of the 0x80 byte in the final hash block that contains
  277. * application data.
  278. */
  279. c = mac_end_offset % md_block_size;
  280. /*
  281. * index_a is the hash block number that contains the 0x80 terminating
  282. * value.
  283. */
  284. index_a = mac_end_offset / md_block_size;
  285. /*
  286. * index_b is the hash block number that contains the 64-bit hash length,
  287. * in bits.
  288. */
  289. index_b = (mac_end_offset + md_length_size) / md_block_size;
  290. /*
  291. * bits is the hash-length in bits. It includes the additional hash block
  292. * for the masked HMAC key, or whole of |header| in the case of SSLv3.
  293. */
  294. /*
  295. * For SSLv3, if we're going to have any starting blocks then we need at
  296. * least two because the header is larger than a single block.
  297. */
  298. if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
  299. num_starting_blocks = num_blocks - variance_blocks;
  300. k = md_block_size * num_starting_blocks;
  301. }
  302. bits = 8 * mac_end_offset;
  303. if (!is_sslv3) {
  304. /*
  305. * Compute the initial HMAC block. For SSLv3, the padding and secret
  306. * bytes are included in |header| because they take more than a
  307. * single block.
  308. */
  309. bits += 8 * md_block_size;
  310. memset(hmac_pad, 0, md_block_size);
  311. if (!ossl_assert(mac_secret_length <= sizeof(hmac_pad)))
  312. return 0;
  313. memcpy(hmac_pad, mac_secret, mac_secret_length);
  314. for (i = 0; i < md_block_size; i++)
  315. hmac_pad[i] ^= 0x36;
  316. md_transform(md_state.c, hmac_pad);
  317. }
  318. if (length_is_big_endian) {
  319. memset(length_bytes, 0, md_length_size - 4);
  320. length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
  321. length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
  322. length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
  323. length_bytes[md_length_size - 1] = (unsigned char)bits;
  324. } else {
  325. memset(length_bytes, 0, md_length_size);
  326. length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
  327. length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
  328. length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
  329. length_bytes[md_length_size - 8] = (unsigned char)bits;
  330. }
  331. if (k > 0) {
  332. if (is_sslv3) {
  333. size_t overhang;
  334. /*
  335. * The SSLv3 header is larger than a single block. overhang is
  336. * the number of bytes beyond a single block that the header
  337. * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
  338. * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
  339. * therefore we can be confident that the header_length will be
  340. * greater than |md_block_size|. However we add a sanity check just
  341. * in case
  342. */
  343. if (header_length <= md_block_size) {
  344. /* Should never happen */
  345. return 0;
  346. }
  347. overhang = header_length - md_block_size;
  348. md_transform(md_state.c, header);
  349. memcpy(first_block, header + md_block_size, overhang);
  350. memcpy(first_block + overhang, data, md_block_size - overhang);
  351. md_transform(md_state.c, first_block);
  352. for (i = 1; i < k / md_block_size - 1; i++)
  353. md_transform(md_state.c, data + md_block_size * i - overhang);
  354. } else {
  355. /* k is a multiple of md_block_size. */
  356. memcpy(first_block, header, 13);
  357. memcpy(first_block + 13, data, md_block_size - 13);
  358. md_transform(md_state.c, first_block);
  359. for (i = 1; i < k / md_block_size; i++)
  360. md_transform(md_state.c, data + md_block_size * i - 13);
  361. }
  362. }
  363. memset(mac_out, 0, sizeof(mac_out));
  364. /*
  365. * We now process the final hash blocks. For each block, we construct it
  366. * in constant time. If the |i==index_a| then we'll include the 0x80
  367. * bytes and zero pad etc. For each block we selectively copy it, in
  368. * constant time, to |mac_out|.
  369. */
  370. for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
  371. i++) {
  372. unsigned char block[MAX_HASH_BLOCK_SIZE];
  373. unsigned char is_block_a = constant_time_eq_8_s(i, index_a);
  374. unsigned char is_block_b = constant_time_eq_8_s(i, index_b);
  375. for (j = 0; j < md_block_size; j++) {
  376. unsigned char b = 0, is_past_c, is_past_cp1;
  377. if (k < header_length)
  378. b = header[k];
  379. else if (k < data_plus_mac_plus_padding_size + header_length)
  380. b = data[k - header_length];
  381. k++;
  382. is_past_c = is_block_a & constant_time_ge_8_s(j, c);
  383. is_past_cp1 = is_block_a & constant_time_ge_8_s(j, c + 1);
  384. /*
  385. * If this is the block containing the end of the application
  386. * data, and we are at the offset for the 0x80 value, then
  387. * overwrite b with 0x80.
  388. */
  389. b = constant_time_select_8(is_past_c, 0x80, b);
  390. /*
  391. * If this block contains the end of the application data
  392. * and we're past the 0x80 value then just write zero.
  393. */
  394. b = b & ~is_past_cp1;
  395. /*
  396. * If this is index_b (the final block), but not index_a (the end
  397. * of the data), then the 64-bit length didn't fit into index_a
  398. * and we're having to add an extra block of zeros.
  399. */
  400. b &= ~is_block_b | is_block_a;
  401. /*
  402. * The final bytes of one of the blocks contains the length.
  403. */
  404. if (j >= md_block_size - md_length_size) {
  405. /* If this is index_b, write a length byte. */
  406. b = constant_time_select_8(is_block_b,
  407. length_bytes[j -
  408. (md_block_size -
  409. md_length_size)], b);
  410. }
  411. block[j] = b;
  412. }
  413. md_transform(md_state.c, block);
  414. md_final_raw(md_state.c, block);
  415. /* If this is index_b, copy the hash value to |mac_out|. */
  416. for (j = 0; j < md_size; j++)
  417. mac_out[j] |= block[j] & is_block_b;
  418. }
  419. md_ctx = EVP_MD_CTX_new();
  420. if (md_ctx == NULL)
  421. goto err;
  422. if (EVP_DigestInit_ex(md_ctx, md, NULL /* engine */) <= 0)
  423. goto err;
  424. if (is_sslv3) {
  425. /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
  426. memset(hmac_pad, 0x5c, sslv3_pad_length);
  427. if (EVP_DigestUpdate(md_ctx, mac_secret, mac_secret_length) <= 0
  428. || EVP_DigestUpdate(md_ctx, hmac_pad, sslv3_pad_length) <= 0
  429. || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
  430. goto err;
  431. } else {
  432. /* Complete the HMAC in the standard manner. */
  433. for (i = 0; i < md_block_size; i++)
  434. hmac_pad[i] ^= 0x6a;
  435. if (EVP_DigestUpdate(md_ctx, hmac_pad, md_block_size) <= 0
  436. || EVP_DigestUpdate(md_ctx, mac_out, md_size) <= 0)
  437. goto err;
  438. }
  439. ret = EVP_DigestFinal(md_ctx, md_out, &md_out_size_u);
  440. if (ret && md_out_size)
  441. *md_out_size = md_out_size_u;
  442. ret = 1;
  443. err:
  444. EVP_MD_CTX_free(md_ctx);
  445. return ret;
  446. }