123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456 |
- /*
- * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #undef SECONDS
- #define SECONDS 3
- #define RSA_SECONDS 10
- #define DSA_SECONDS 10
- #define ECDSA_SECONDS 10
- #define ECDH_SECONDS 10
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <math.h>
- #include "apps.h"
- #include "progs.h"
- #include <openssl/crypto.h>
- #include <openssl/rand.h>
- #include <openssl/err.h>
- #include <openssl/evp.h>
- #include <openssl/objects.h>
- #include <openssl/async.h>
- #if !defined(OPENSSL_SYS_MSDOS)
- # include OPENSSL_UNISTD
- #endif
- #if defined(_WIN32)
- # include <windows.h>
- #endif
- #include <openssl/bn.h>
- #ifndef OPENSSL_NO_DES
- # include <openssl/des.h>
- #endif
- #include <openssl/aes.h>
- #ifndef OPENSSL_NO_CAMELLIA
- # include <openssl/camellia.h>
- #endif
- #ifndef OPENSSL_NO_MD2
- # include <openssl/md2.h>
- #endif
- #ifndef OPENSSL_NO_MDC2
- # include <openssl/mdc2.h>
- #endif
- #ifndef OPENSSL_NO_MD4
- # include <openssl/md4.h>
- #endif
- #ifndef OPENSSL_NO_MD5
- # include <openssl/md5.h>
- #endif
- #include <openssl/hmac.h>
- #include <openssl/sha.h>
- #ifndef OPENSSL_NO_RMD160
- # include <openssl/ripemd.h>
- #endif
- #ifndef OPENSSL_NO_WHIRLPOOL
- # include <openssl/whrlpool.h>
- #endif
- #ifndef OPENSSL_NO_RC4
- # include <openssl/rc4.h>
- #endif
- #ifndef OPENSSL_NO_RC5
- # include <openssl/rc5.h>
- #endif
- #ifndef OPENSSL_NO_RC2
- # include <openssl/rc2.h>
- #endif
- #ifndef OPENSSL_NO_IDEA
- # include <openssl/idea.h>
- #endif
- #ifndef OPENSSL_NO_SEED
- # include <openssl/seed.h>
- #endif
- #ifndef OPENSSL_NO_BF
- # include <openssl/blowfish.h>
- #endif
- #ifndef OPENSSL_NO_CAST
- # include <openssl/cast.h>
- #endif
- #ifndef OPENSSL_NO_RSA
- # include <openssl/rsa.h>
- # include "./testrsa.h"
- #endif
- #include <openssl/x509.h>
- #ifndef OPENSSL_NO_DSA
- # include <openssl/dsa.h>
- # include "./testdsa.h"
- #endif
- #ifndef OPENSSL_NO_EC
- # include <openssl/ec.h>
- #endif
- #include <openssl/modes.h>
- #ifndef HAVE_FORK
- # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS)
- # define HAVE_FORK 0
- # else
- # define HAVE_FORK 1
- # endif
- #endif
- #if HAVE_FORK
- # undef NO_FORK
- #else
- # define NO_FORK
- #endif
- #define MAX_MISALIGNMENT 63
- #define MAX_ECDH_SIZE 256
- #define MISALIGN 64
- typedef struct openssl_speed_sec_st {
- int sym;
- int rsa;
- int dsa;
- int ecdsa;
- int ecdh;
- } openssl_speed_sec_t;
- static volatile int run = 0;
- static int mr = 0;
- static int usertime = 1;
- #ifndef OPENSSL_NO_MD2
- static int EVP_Digest_MD2_loop(void *args);
- #endif
- #ifndef OPENSSL_NO_MDC2
- static int EVP_Digest_MDC2_loop(void *args);
- #endif
- #ifndef OPENSSL_NO_MD4
- static int EVP_Digest_MD4_loop(void *args);
- #endif
- #ifndef OPENSSL_NO_MD5
- static int MD5_loop(void *args);
- static int HMAC_loop(void *args);
- #endif
- static int SHA1_loop(void *args);
- static int SHA256_loop(void *args);
- static int SHA512_loop(void *args);
- #ifndef OPENSSL_NO_WHIRLPOOL
- static int WHIRLPOOL_loop(void *args);
- #endif
- #ifndef OPENSSL_NO_RMD160
- static int EVP_Digest_RMD160_loop(void *args);
- #endif
- #ifndef OPENSSL_NO_RC4
- static int RC4_loop(void *args);
- #endif
- #ifndef OPENSSL_NO_DES
- static int DES_ncbc_encrypt_loop(void *args);
- static int DES_ede3_cbc_encrypt_loop(void *args);
- #endif
- static int AES_cbc_128_encrypt_loop(void *args);
- static int AES_cbc_192_encrypt_loop(void *args);
- static int AES_ige_128_encrypt_loop(void *args);
- static int AES_cbc_256_encrypt_loop(void *args);
- static int AES_ige_192_encrypt_loop(void *args);
- static int AES_ige_256_encrypt_loop(void *args);
- static int CRYPTO_gcm128_aad_loop(void *args);
- static int RAND_bytes_loop(void *args);
- static int EVP_Update_loop(void *args);
- static int EVP_Update_loop_ccm(void *args);
- static int EVP_Update_loop_aead(void *args);
- static int EVP_Digest_loop(void *args);
- #ifndef OPENSSL_NO_RSA
- static int RSA_sign_loop(void *args);
- static int RSA_verify_loop(void *args);
- #endif
- #ifndef OPENSSL_NO_DSA
- static int DSA_sign_loop(void *args);
- static int DSA_verify_loop(void *args);
- #endif
- #ifndef OPENSSL_NO_EC
- static int ECDSA_sign_loop(void *args);
- static int ECDSA_verify_loop(void *args);
- #endif
- static double Time_F(int s);
- static void print_message(const char *s, long num, int length, int tm);
- static void pkey_print_message(const char *str, const char *str2,
- long num, unsigned int bits, int sec);
- static void print_result(int alg, int run_no, int count, double time_used);
- #ifndef NO_FORK
- static int do_multi(int multi, int size_num);
- #endif
- static const int lengths_list[] = {
- 16, 64, 256, 1024, 8 * 1024, 16 * 1024
- };
- static const int *lengths = lengths_list;
- static const int aead_lengths_list[] = {
- 2, 31, 136, 1024, 8 * 1024, 16 * 1024
- };
- #define START 0
- #define STOP 1
- #ifdef SIGALRM
- static void alarmed(int sig)
- {
- signal(SIGALRM, alarmed);
- run = 0;
- }
- static double Time_F(int s)
- {
- double ret = app_tminterval(s, usertime);
- if (s == STOP)
- alarm(0);
- return ret;
- }
- #elif defined(_WIN32)
- # define SIGALRM -1
- static unsigned int lapse;
- static volatile unsigned int schlock;
- static void alarm_win32(unsigned int secs)
- {
- lapse = secs * 1000;
- }
- # define alarm alarm_win32
- static DWORD WINAPI sleepy(VOID * arg)
- {
- schlock = 1;
- Sleep(lapse);
- run = 0;
- return 0;
- }
- static double Time_F(int s)
- {
- double ret;
- static HANDLE thr;
- if (s == START) {
- schlock = 0;
- thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
- if (thr == NULL) {
- DWORD err = GetLastError();
- BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
- ExitProcess(err);
- }
- while (!schlock)
- Sleep(0); /* scheduler spinlock */
- ret = app_tminterval(s, usertime);
- } else {
- ret = app_tminterval(s, usertime);
- if (run)
- TerminateThread(thr, 0);
- CloseHandle(thr);
- }
- return ret;
- }
- #else
- static double Time_F(int s)
- {
- return app_tminterval(s, usertime);
- }
- #endif
- static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
- const openssl_speed_sec_t *seconds);
- #define found(value, pairs, result)\
- opt_found(value, result, pairs, OSSL_NELEM(pairs))
- static int opt_found(const char *name, unsigned int *result,
- const OPT_PAIR pairs[], unsigned int nbelem)
- {
- unsigned int idx;
- for (idx = 0; idx < nbelem; ++idx, pairs++)
- if (strcmp(name, pairs->name) == 0) {
- *result = pairs->retval;
- return 1;
- }
- return 0;
- }
- typedef enum OPTION_choice {
- OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
- OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
- OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM,
- OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD
- } OPTION_CHOICE;
- const OPTIONS speed_options[] = {
- {OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
- {OPT_HELP_STR, 1, '-', "Valid options are:\n"},
- {"help", OPT_HELP, '-', "Display this summary"},
- {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"},
- {"decrypt", OPT_DECRYPT, '-',
- "Time decryption instead of encryption (only EVP)"},
- {"aead", OPT_AEAD, '-',
- "Benchmark EVP-named AEAD cipher in TLS-like sequence"},
- {"mb", OPT_MB, '-',
- "Enable (tls1>=1) multi-block mode on EVP-named cipher"},
- {"mr", OPT_MR, '-', "Produce machine readable output"},
- #ifndef NO_FORK
- {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
- #endif
- #ifndef OPENSSL_NO_ASYNC
- {"async_jobs", OPT_ASYNCJOBS, 'p',
- "Enable async mode and start specified number of jobs"},
- #endif
- OPT_R_OPTIONS,
- #ifndef OPENSSL_NO_ENGINE
- {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
- #endif
- {"elapsed", OPT_ELAPSED, '-',
- "Use wall-clock time instead of CPU user time as divisor"},
- {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"},
- {"seconds", OPT_SECONDS, 'p',
- "Run benchmarks for specified amount of seconds"},
- {"bytes", OPT_BYTES, 'p',
- "Run [non-PKI] benchmarks on custom-sized buffer"},
- {"misalign", OPT_MISALIGN, 'p',
- "Use specified offset to mis-align buffers"},
- {NULL}
- };
- #define D_MD2 0
- #define D_MDC2 1
- #define D_MD4 2
- #define D_MD5 3
- #define D_HMAC 4
- #define D_SHA1 5
- #define D_RMD160 6
- #define D_RC4 7
- #define D_CBC_DES 8
- #define D_EDE3_DES 9
- #define D_CBC_IDEA 10
- #define D_CBC_SEED 11
- #define D_CBC_RC2 12
- #define D_CBC_RC5 13
- #define D_CBC_BF 14
- #define D_CBC_CAST 15
- #define D_CBC_128_AES 16
- #define D_CBC_192_AES 17
- #define D_CBC_256_AES 18
- #define D_CBC_128_CML 19
- #define D_CBC_192_CML 20
- #define D_CBC_256_CML 21
- #define D_EVP 22
- #define D_SHA256 23
- #define D_SHA512 24
- #define D_WHIRLPOOL 25
- #define D_IGE_128_AES 26
- #define D_IGE_192_AES 27
- #define D_IGE_256_AES 28
- #define D_GHASH 29
- #define D_RAND 30
- /* name of algorithms to test */
- static const char *names[] = {
- "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
- "des cbc", "des ede3", "idea cbc", "seed cbc",
- "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
- "aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
- "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
- "evp", "sha256", "sha512", "whirlpool",
- "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash",
- "rand"
- };
- #define ALGOR_NUM OSSL_NELEM(names)
- /* list of configured algorithm (remaining) */
- static const OPT_PAIR doit_choices[] = {
- #ifndef OPENSSL_NO_MD2
- {"md2", D_MD2},
- #endif
- #ifndef OPENSSL_NO_MDC2
- {"mdc2", D_MDC2},
- #endif
- #ifndef OPENSSL_NO_MD4
- {"md4", D_MD4},
- #endif
- #ifndef OPENSSL_NO_MD5
- {"md5", D_MD5},
- {"hmac", D_HMAC},
- #endif
- {"sha1", D_SHA1},
- {"sha256", D_SHA256},
- {"sha512", D_SHA512},
- #ifndef OPENSSL_NO_WHIRLPOOL
- {"whirlpool", D_WHIRLPOOL},
- #endif
- #ifndef OPENSSL_NO_RMD160
- {"ripemd", D_RMD160},
- {"rmd160", D_RMD160},
- {"ripemd160", D_RMD160},
- #endif
- #ifndef OPENSSL_NO_RC4
- {"rc4", D_RC4},
- #endif
- #ifndef OPENSSL_NO_DES
- {"des-cbc", D_CBC_DES},
- {"des-ede3", D_EDE3_DES},
- #endif
- {"aes-128-cbc", D_CBC_128_AES},
- {"aes-192-cbc", D_CBC_192_AES},
- {"aes-256-cbc", D_CBC_256_AES},
- {"aes-128-ige", D_IGE_128_AES},
- {"aes-192-ige", D_IGE_192_AES},
- {"aes-256-ige", D_IGE_256_AES},
- #ifndef OPENSSL_NO_RC2
- {"rc2-cbc", D_CBC_RC2},
- {"rc2", D_CBC_RC2},
- #endif
- #ifndef OPENSSL_NO_RC5
- {"rc5-cbc", D_CBC_RC5},
- {"rc5", D_CBC_RC5},
- #endif
- #ifndef OPENSSL_NO_IDEA
- {"idea-cbc", D_CBC_IDEA},
- {"idea", D_CBC_IDEA},
- #endif
- #ifndef OPENSSL_NO_SEED
- {"seed-cbc", D_CBC_SEED},
- {"seed", D_CBC_SEED},
- #endif
- #ifndef OPENSSL_NO_BF
- {"bf-cbc", D_CBC_BF},
- {"blowfish", D_CBC_BF},
- {"bf", D_CBC_BF},
- #endif
- #ifndef OPENSSL_NO_CAST
- {"cast-cbc", D_CBC_CAST},
- {"cast", D_CBC_CAST},
- {"cast5", D_CBC_CAST},
- #endif
- {"ghash", D_GHASH},
- {"rand", D_RAND}
- };
- static double results[ALGOR_NUM][OSSL_NELEM(lengths_list)];
- #ifndef OPENSSL_NO_DSA
- # define R_DSA_512 0
- # define R_DSA_1024 1
- # define R_DSA_2048 2
- static const OPT_PAIR dsa_choices[] = {
- {"dsa512", R_DSA_512},
- {"dsa1024", R_DSA_1024},
- {"dsa2048", R_DSA_2048}
- };
- # define DSA_NUM OSSL_NELEM(dsa_choices)
- static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */
- #endif /* OPENSSL_NO_DSA */
- #define R_RSA_512 0
- #define R_RSA_1024 1
- #define R_RSA_2048 2
- #define R_RSA_3072 3
- #define R_RSA_4096 4
- #define R_RSA_7680 5
- #define R_RSA_15360 6
- #ifndef OPENSSL_NO_RSA
- static const OPT_PAIR rsa_choices[] = {
- {"rsa512", R_RSA_512},
- {"rsa1024", R_RSA_1024},
- {"rsa2048", R_RSA_2048},
- {"rsa3072", R_RSA_3072},
- {"rsa4096", R_RSA_4096},
- {"rsa7680", R_RSA_7680},
- {"rsa15360", R_RSA_15360}
- };
- # define RSA_NUM OSSL_NELEM(rsa_choices)
- static double rsa_results[RSA_NUM][2]; /* 2 ops: sign then verify */
- #endif /* OPENSSL_NO_RSA */
- #define R_EC_P160 0
- #define R_EC_P192 1
- #define R_EC_P224 2
- #define R_EC_P256 3
- #define R_EC_P384 4
- #define R_EC_P521 5
- #define R_EC_K163 6
- #define R_EC_K233 7
- #define R_EC_K283 8
- #define R_EC_K409 9
- #define R_EC_K571 10
- #define R_EC_B163 11
- #define R_EC_B233 12
- #define R_EC_B283 13
- #define R_EC_B409 14
- #define R_EC_B571 15
- #define R_EC_BRP256R1 16
- #define R_EC_BRP256T1 17
- #define R_EC_BRP384R1 18
- #define R_EC_BRP384T1 19
- #define R_EC_BRP512R1 20
- #define R_EC_BRP512T1 21
- #define R_EC_X25519 22
- #define R_EC_X448 23
- #ifndef OPENSSL_NO_EC
- static OPT_PAIR ecdsa_choices[] = {
- {"ecdsap160", R_EC_P160},
- {"ecdsap192", R_EC_P192},
- {"ecdsap224", R_EC_P224},
- {"ecdsap256", R_EC_P256},
- {"ecdsap384", R_EC_P384},
- {"ecdsap521", R_EC_P521},
- {"ecdsak163", R_EC_K163},
- {"ecdsak233", R_EC_K233},
- {"ecdsak283", R_EC_K283},
- {"ecdsak409", R_EC_K409},
- {"ecdsak571", R_EC_K571},
- {"ecdsab163", R_EC_B163},
- {"ecdsab233", R_EC_B233},
- {"ecdsab283", R_EC_B283},
- {"ecdsab409", R_EC_B409},
- {"ecdsab571", R_EC_B571},
- {"ecdsabrp256r1", R_EC_BRP256R1},
- {"ecdsabrp256t1", R_EC_BRP256T1},
- {"ecdsabrp384r1", R_EC_BRP384R1},
- {"ecdsabrp384t1", R_EC_BRP384T1},
- {"ecdsabrp512r1", R_EC_BRP512R1},
- {"ecdsabrp512t1", R_EC_BRP512T1}
- };
- # define ECDSA_NUM OSSL_NELEM(ecdsa_choices)
- static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */
- static const OPT_PAIR ecdh_choices[] = {
- {"ecdhp160", R_EC_P160},
- {"ecdhp192", R_EC_P192},
- {"ecdhp224", R_EC_P224},
- {"ecdhp256", R_EC_P256},
- {"ecdhp384", R_EC_P384},
- {"ecdhp521", R_EC_P521},
- {"ecdhk163", R_EC_K163},
- {"ecdhk233", R_EC_K233},
- {"ecdhk283", R_EC_K283},
- {"ecdhk409", R_EC_K409},
- {"ecdhk571", R_EC_K571},
- {"ecdhb163", R_EC_B163},
- {"ecdhb233", R_EC_B233},
- {"ecdhb283", R_EC_B283},
- {"ecdhb409", R_EC_B409},
- {"ecdhb571", R_EC_B571},
- {"ecdhbrp256r1", R_EC_BRP256R1},
- {"ecdhbrp256t1", R_EC_BRP256T1},
- {"ecdhbrp384r1", R_EC_BRP384R1},
- {"ecdhbrp384t1", R_EC_BRP384T1},
- {"ecdhbrp512r1", R_EC_BRP512R1},
- {"ecdhbrp512t1", R_EC_BRP512T1},
- {"ecdhx25519", R_EC_X25519},
- {"ecdhx448", R_EC_X448}
- };
- # define EC_NUM OSSL_NELEM(ecdh_choices)
- static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */
- #endif /* OPENSSL_NO_EC */
- #ifndef SIGALRM
- # define COND(d) (count < (d))
- # define COUNT(d) (d)
- #else
- # define COND(unused_cond) (run && count<0x7fffffff)
- # define COUNT(d) (count)
- #endif /* SIGALRM */
- typedef struct loopargs_st {
- ASYNC_JOB *inprogress_job;
- ASYNC_WAIT_CTX *wait_ctx;
- unsigned char *buf;
- unsigned char *buf2;
- unsigned char *buf_malloc;
- unsigned char *buf2_malloc;
- unsigned char *key;
- unsigned int siglen;
- #ifndef OPENSSL_NO_RSA
- RSA *rsa_key[RSA_NUM];
- #endif
- #ifndef OPENSSL_NO_DSA
- DSA *dsa_key[DSA_NUM];
- #endif
- #ifndef OPENSSL_NO_EC
- EC_KEY *ecdsa[ECDSA_NUM];
- EVP_PKEY_CTX *ecdh_ctx[EC_NUM];
- unsigned char *secret_a;
- unsigned char *secret_b;
- size_t outlen[EC_NUM];
- #endif
- EVP_CIPHER_CTX *ctx;
- HMAC_CTX *hctx;
- GCM128_CONTEXT *gcm_ctx;
- } loopargs_t;
- static int run_benchmark(int async_jobs, int (*loop_function) (void *),
- loopargs_t * loopargs);
- static unsigned int testnum;
- /* Nb of iterations to do per algorithm and key-size */
- static long c[ALGOR_NUM][OSSL_NELEM(lengths_list)];
- #ifndef OPENSSL_NO_MD2
- static int EVP_Digest_MD2_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char md2[MD2_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_MD2][testnum]); count++) {
- if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(),
- NULL))
- return -1;
- }
- return count;
- }
- #endif
- #ifndef OPENSSL_NO_MDC2
- static int EVP_Digest_MDC2_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char mdc2[MDC2_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_MDC2][testnum]); count++) {
- if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(),
- NULL))
- return -1;
- }
- return count;
- }
- #endif
- #ifndef OPENSSL_NO_MD4
- static int EVP_Digest_MD4_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char md4[MD4_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_MD4][testnum]); count++) {
- if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(),
- NULL))
- return -1;
- }
- return count;
- }
- #endif
- #ifndef OPENSSL_NO_MD5
- static int MD5_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char md5[MD5_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_MD5][testnum]); count++)
- MD5(buf, lengths[testnum], md5);
- return count;
- }
- static int HMAC_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- HMAC_CTX *hctx = tempargs->hctx;
- unsigned char hmac[MD5_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_HMAC][testnum]); count++) {
- HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
- HMAC_Update(hctx, buf, lengths[testnum]);
- HMAC_Final(hctx, hmac, NULL);
- }
- return count;
- }
- #endif
- static int SHA1_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char sha[SHA_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_SHA1][testnum]); count++)
- SHA1(buf, lengths[testnum], sha);
- return count;
- }
- static int SHA256_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char sha256[SHA256_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_SHA256][testnum]); count++)
- SHA256(buf, lengths[testnum], sha256);
- return count;
- }
- static int SHA512_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char sha512[SHA512_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_SHA512][testnum]); count++)
- SHA512(buf, lengths[testnum], sha512);
- return count;
- }
- #ifndef OPENSSL_NO_WHIRLPOOL
- static int WHIRLPOOL_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
- WHIRLPOOL(buf, lengths[testnum], whirlpool);
- return count;
- }
- #endif
- #ifndef OPENSSL_NO_RMD160
- static int EVP_Digest_RMD160_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
- int count;
- for (count = 0; COND(c[D_RMD160][testnum]); count++) {
- if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]),
- NULL, EVP_ripemd160(), NULL))
- return -1;
- }
- return count;
- }
- #endif
- #ifndef OPENSSL_NO_RC4
- static RC4_KEY rc4_ks;
- static int RC4_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- int count;
- for (count = 0; COND(c[D_RC4][testnum]); count++)
- RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf);
- return count;
- }
- #endif
- #ifndef OPENSSL_NO_DES
- static unsigned char DES_iv[8];
- static DES_key_schedule sch;
- static DES_key_schedule sch2;
- static DES_key_schedule sch3;
- static int DES_ncbc_encrypt_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- int count;
- for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
- DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
- &DES_iv, DES_ENCRYPT);
- return count;
- }
- static int DES_ede3_cbc_encrypt_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- int count;
- for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
- DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
- &sch, &sch2, &sch3, &DES_iv, DES_ENCRYPT);
- return count;
- }
- #endif
- #define MAX_BLOCK_SIZE 128
- static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
- static AES_KEY aes_ks1, aes_ks2, aes_ks3;
- static int AES_cbc_128_encrypt_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- int count;
- for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
- AES_cbc_encrypt(buf, buf,
- (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
- return count;
- }
- static int AES_cbc_192_encrypt_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- int count;
- for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
- AES_cbc_encrypt(buf, buf,
- (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
- return count;
- }
- static int AES_cbc_256_encrypt_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- int count;
- for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
- AES_cbc_encrypt(buf, buf,
- (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
- return count;
- }
- static int AES_ige_128_encrypt_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char *buf2 = tempargs->buf2;
- int count;
- for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
- AES_ige_encrypt(buf, buf2,
- (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT);
- return count;
- }
- static int AES_ige_192_encrypt_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char *buf2 = tempargs->buf2;
- int count;
- for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
- AES_ige_encrypt(buf, buf2,
- (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT);
- return count;
- }
- static int AES_ige_256_encrypt_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char *buf2 = tempargs->buf2;
- int count;
- for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
- AES_ige_encrypt(buf, buf2,
- (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT);
- return count;
- }
- static int CRYPTO_gcm128_aad_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
- int count;
- for (count = 0; COND(c[D_GHASH][testnum]); count++)
- CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
- return count;
- }
- static int RAND_bytes_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- int count;
- for (count = 0; COND(c[D_RAND][testnum]); count++)
- RAND_bytes(buf, lengths[testnum]);
- return count;
- }
- static long save_count = 0;
- static int decrypt = 0;
- static int EVP_Update_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- EVP_CIPHER_CTX *ctx = tempargs->ctx;
- int outl, count, rc;
- #ifndef SIGALRM
- int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
- #endif
- if (decrypt) {
- for (count = 0; COND(nb_iter); count++) {
- rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
- if (rc != 1)
- EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
- }
- } else {
- for (count = 0; COND(nb_iter); count++) {
- rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
- if (rc != 1)
- EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1);
- }
- }
- if (decrypt)
- EVP_DecryptFinal_ex(ctx, buf, &outl);
- else
- EVP_EncryptFinal_ex(ctx, buf, &outl);
- return count;
- }
- /*
- * CCM does not support streaming. For the purpose of performance measurement,
- * each message is encrypted using the same (key,iv)-pair. Do not use this
- * code in your application.
- */
- static int EVP_Update_loop_ccm(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- EVP_CIPHER_CTX *ctx = tempargs->ctx;
- int outl, count;
- unsigned char tag[12];
- #ifndef SIGALRM
- int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
- #endif
- if (decrypt) {
- for (count = 0; COND(nb_iter); count++) {
- EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag);
- EVP_DecryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
- EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
- EVP_DecryptFinal_ex(ctx, buf, &outl);
- }
- } else {
- for (count = 0; COND(nb_iter); count++) {
- EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv);
- EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]);
- EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
- EVP_EncryptFinal_ex(ctx, buf, &outl);
- }
- }
- return count;
- }
- /*
- * To make AEAD benchmarking more relevant perform TLS-like operations,
- * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as
- * payload length is not actually limited by 16KB...
- */
- static int EVP_Update_loop_aead(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- EVP_CIPHER_CTX *ctx = tempargs->ctx;
- int outl, count;
- unsigned char aad[13] = { 0xcc };
- unsigned char faketag[16] = { 0xcc };
- #ifndef SIGALRM
- int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
- #endif
- if (decrypt) {
- for (count = 0; COND(nb_iter); count++) {
- EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv);
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
- sizeof(faketag), faketag);
- EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
- EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
- EVP_DecryptFinal_ex(ctx, buf + outl, &outl);
- }
- } else {
- for (count = 0; COND(nb_iter); count++) {
- EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv);
- EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad));
- EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
- EVP_EncryptFinal_ex(ctx, buf + outl, &outl);
- }
- }
- return count;
- }
- static const EVP_MD *evp_md = NULL;
- static int EVP_Digest_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char md[EVP_MAX_MD_SIZE];
- int count;
- #ifndef SIGALRM
- int nb_iter = save_count * 4 * lengths[0] / lengths[testnum];
- #endif
- for (count = 0; COND(nb_iter); count++) {
- if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL))
- return -1;
- }
- return count;
- }
- #ifndef OPENSSL_NO_RSA
- static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */
- static int RSA_sign_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char *buf2 = tempargs->buf2;
- unsigned int *rsa_num = &tempargs->siglen;
- RSA **rsa_key = tempargs->rsa_key;
- int ret, count;
- for (count = 0; COND(rsa_c[testnum][0]); count++) {
- ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
- if (ret == 0) {
- BIO_printf(bio_err, "RSA sign failure\n");
- ERR_print_errors(bio_err);
- count = -1;
- break;
- }
- }
- return count;
- }
- static int RSA_verify_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char *buf2 = tempargs->buf2;
- unsigned int rsa_num = tempargs->siglen;
- RSA **rsa_key = tempargs->rsa_key;
- int ret, count;
- for (count = 0; COND(rsa_c[testnum][1]); count++) {
- ret =
- RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
- if (ret <= 0) {
- BIO_printf(bio_err, "RSA verify failure\n");
- ERR_print_errors(bio_err);
- count = -1;
- break;
- }
- }
- return count;
- }
- #endif
- #ifndef OPENSSL_NO_DSA
- static long dsa_c[DSA_NUM][2];
- static int DSA_sign_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char *buf2 = tempargs->buf2;
- DSA **dsa_key = tempargs->dsa_key;
- unsigned int *siglen = &tempargs->siglen;
- int ret, count;
- for (count = 0; COND(dsa_c[testnum][0]); count++) {
- ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
- if (ret == 0) {
- BIO_printf(bio_err, "DSA sign failure\n");
- ERR_print_errors(bio_err);
- count = -1;
- break;
- }
- }
- return count;
- }
- static int DSA_verify_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- unsigned char *buf2 = tempargs->buf2;
- DSA **dsa_key = tempargs->dsa_key;
- unsigned int siglen = tempargs->siglen;
- int ret, count;
- for (count = 0; COND(dsa_c[testnum][1]); count++) {
- ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
- if (ret <= 0) {
- BIO_printf(bio_err, "DSA verify failure\n");
- ERR_print_errors(bio_err);
- count = -1;
- break;
- }
- }
- return count;
- }
- #endif
- #ifndef OPENSSL_NO_EC
- static long ecdsa_c[ECDSA_NUM][2];
- static int ECDSA_sign_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- EC_KEY **ecdsa = tempargs->ecdsa;
- unsigned char *ecdsasig = tempargs->buf2;
- unsigned int *ecdsasiglen = &tempargs->siglen;
- int ret, count;
- for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
- ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
- if (ret == 0) {
- BIO_printf(bio_err, "ECDSA sign failure\n");
- ERR_print_errors(bio_err);
- count = -1;
- break;
- }
- }
- return count;
- }
- static int ECDSA_verify_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- unsigned char *buf = tempargs->buf;
- EC_KEY **ecdsa = tempargs->ecdsa;
- unsigned char *ecdsasig = tempargs->buf2;
- unsigned int ecdsasiglen = tempargs->siglen;
- int ret, count;
- for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
- ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]);
- if (ret != 1) {
- BIO_printf(bio_err, "ECDSA verify failure\n");
- ERR_print_errors(bio_err);
- count = -1;
- break;
- }
- }
- return count;
- }
- /* ******************************************************************** */
- static long ecdh_c[EC_NUM][1];
- static int ECDH_EVP_derive_key_loop(void *args)
- {
- loopargs_t *tempargs = *(loopargs_t **) args;
- EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum];
- unsigned char *derived_secret = tempargs->secret_a;
- int count;
- size_t *outlen = &(tempargs->outlen[testnum]);
- for (count = 0; COND(ecdh_c[testnum][0]); count++)
- EVP_PKEY_derive(ctx, derived_secret, outlen);
- return count;
- }
- #endif /* OPENSSL_NO_EC */
- static int run_benchmark(int async_jobs,
- int (*loop_function) (void *), loopargs_t * loopargs)
- {
- int job_op_count = 0;
- int total_op_count = 0;
- int num_inprogress = 0;
- int error = 0, i = 0, ret = 0;
- OSSL_ASYNC_FD job_fd = 0;
- size_t num_job_fds = 0;
- run = 1;
- if (async_jobs == 0) {
- return loop_function((void *)&loopargs);
- }
- for (i = 0; i < async_jobs && !error; i++) {
- loopargs_t *looparg_item = loopargs + i;
- /* Copy pointer content (looparg_t item address) into async context */
- ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx,
- &job_op_count, loop_function,
- (void *)&looparg_item, sizeof(looparg_item));
- switch (ret) {
- case ASYNC_PAUSE:
- ++num_inprogress;
- break;
- case ASYNC_FINISH:
- if (job_op_count == -1) {
- error = 1;
- } else {
- total_op_count += job_op_count;
- }
- break;
- case ASYNC_NO_JOBS:
- case ASYNC_ERR:
- BIO_printf(bio_err, "Failure in the job\n");
- ERR_print_errors(bio_err);
- error = 1;
- break;
- }
- }
- while (num_inprogress > 0) {
- #if defined(OPENSSL_SYS_WINDOWS)
- DWORD avail = 0;
- #elif defined(OPENSSL_SYS_UNIX)
- int select_result = 0;
- OSSL_ASYNC_FD max_fd = 0;
- fd_set waitfdset;
- FD_ZERO(&waitfdset);
- for (i = 0; i < async_jobs && num_inprogress > 0; i++) {
- if (loopargs[i].inprogress_job == NULL)
- continue;
- if (!ASYNC_WAIT_CTX_get_all_fds
- (loopargs[i].wait_ctx, NULL, &num_job_fds)
- || num_job_fds > 1) {
- BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
- ERR_print_errors(bio_err);
- error = 1;
- break;
- }
- ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
- &num_job_fds);
- FD_SET(job_fd, &waitfdset);
- if (job_fd > max_fd)
- max_fd = job_fd;
- }
- if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) {
- BIO_printf(bio_err,
- "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). "
- "Decrease the value of async_jobs\n",
- max_fd, FD_SETSIZE);
- ERR_print_errors(bio_err);
- error = 1;
- break;
- }
- select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL);
- if (select_result == -1 && errno == EINTR)
- continue;
- if (select_result == -1) {
- BIO_printf(bio_err, "Failure in the select\n");
- ERR_print_errors(bio_err);
- error = 1;
- break;
- }
- if (select_result == 0)
- continue;
- #endif
- for (i = 0; i < async_jobs; i++) {
- if (loopargs[i].inprogress_job == NULL)
- continue;
- if (!ASYNC_WAIT_CTX_get_all_fds
- (loopargs[i].wait_ctx, NULL, &num_job_fds)
- || num_job_fds > 1) {
- BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n");
- ERR_print_errors(bio_err);
- error = 1;
- break;
- }
- ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd,
- &num_job_fds);
- #if defined(OPENSSL_SYS_UNIX)
- if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset))
- continue;
- #elif defined(OPENSSL_SYS_WINDOWS)
- if (num_job_fds == 1
- && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL)
- && avail > 0)
- continue;
- #endif
- ret = ASYNC_start_job(&loopargs[i].inprogress_job,
- loopargs[i].wait_ctx, &job_op_count,
- loop_function, (void *)(loopargs + i),
- sizeof(loopargs_t));
- switch (ret) {
- case ASYNC_PAUSE:
- break;
- case ASYNC_FINISH:
- if (job_op_count == -1) {
- error = 1;
- } else {
- total_op_count += job_op_count;
- }
- --num_inprogress;
- loopargs[i].inprogress_job = NULL;
- break;
- case ASYNC_NO_JOBS:
- case ASYNC_ERR:
- --num_inprogress;
- loopargs[i].inprogress_job = NULL;
- BIO_printf(bio_err, "Failure in the job\n");
- ERR_print_errors(bio_err);
- error = 1;
- break;
- }
- }
- }
- return error ? -1 : total_op_count;
- }
- int speed_main(int argc, char **argv)
- {
- ENGINE *e = NULL;
- loopargs_t *loopargs = NULL;
- const char *prog;
- const char *engine_id = NULL;
- const EVP_CIPHER *evp_cipher = NULL;
- double d = 0.0;
- OPTION_CHOICE o;
- int async_init = 0, multiblock = 0, pr_header = 0;
- int doit[ALGOR_NUM] = { 0 };
- int ret = 1, misalign = 0, lengths_single = 0, aead = 0;
- long count = 0;
- unsigned int size_num = OSSL_NELEM(lengths_list);
- unsigned int i, k, loop, loopargs_len = 0, async_jobs = 0;
- int keylen;
- int buflen;
- #ifndef NO_FORK
- int multi = 0;
- #endif
- #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \
- || !defined(OPENSSL_NO_EC)
- long rsa_count = 1;
- #endif
- openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS,
- ECDSA_SECONDS, ECDH_SECONDS };
- /* What follows are the buffers and key material. */
- #ifndef OPENSSL_NO_RC5
- RC5_32_KEY rc5_ks;
- #endif
- #ifndef OPENSSL_NO_RC2
- RC2_KEY rc2_ks;
- #endif
- #ifndef OPENSSL_NO_IDEA
- IDEA_KEY_SCHEDULE idea_ks;
- #endif
- #ifndef OPENSSL_NO_SEED
- SEED_KEY_SCHEDULE seed_ks;
- #endif
- #ifndef OPENSSL_NO_BF
- BF_KEY bf_ks;
- #endif
- #ifndef OPENSSL_NO_CAST
- CAST_KEY cast_ks;
- #endif
- static const unsigned char key16[16] = {
- 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
- 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
- };
- static const unsigned char key24[24] = {
- 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
- 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
- 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
- };
- static const unsigned char key32[32] = {
- 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
- 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
- 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
- 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
- };
- #ifndef OPENSSL_NO_CAMELLIA
- static const unsigned char ckey24[24] = {
- 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
- 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
- 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
- };
- static const unsigned char ckey32[32] = {
- 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
- 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
- 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
- 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
- };
- CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
- #endif
- #ifndef OPENSSL_NO_DES
- static DES_cblock key = {
- 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
- };
- static DES_cblock key2 = {
- 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
- };
- static DES_cblock key3 = {
- 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
- };
- #endif
- #ifndef OPENSSL_NO_RSA
- static const unsigned int rsa_bits[RSA_NUM] = {
- 512, 1024, 2048, 3072, 4096, 7680, 15360
- };
- static const unsigned char *rsa_data[RSA_NUM] = {
- test512, test1024, test2048, test3072, test4096, test7680, test15360
- };
- static const int rsa_data_length[RSA_NUM] = {
- sizeof(test512), sizeof(test1024),
- sizeof(test2048), sizeof(test3072),
- sizeof(test4096), sizeof(test7680),
- sizeof(test15360)
- };
- int rsa_doit[RSA_NUM] = { 0 };
- int primes = RSA_DEFAULT_PRIME_NUM;
- #endif
- #ifndef OPENSSL_NO_DSA
- static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
- int dsa_doit[DSA_NUM] = { 0 };
- #endif
- #ifndef OPENSSL_NO_EC
- /*
- * We only test over the following curves as they are representative, To
- * add tests over more curves, simply add the curve NID and curve name to
- * the following arrays and increase the |ecdh_choices| list accordingly.
- */
- static const struct {
- const char *name;
- unsigned int nid;
- unsigned int bits;
- } test_curves[] = {
- /* Prime Curves */
- {"secp160r1", NID_secp160r1, 160},
- {"nistp192", NID_X9_62_prime192v1, 192},
- {"nistp224", NID_secp224r1, 224},
- {"nistp256", NID_X9_62_prime256v1, 256},
- {"nistp384", NID_secp384r1, 384},
- {"nistp521", NID_secp521r1, 521},
- /* Binary Curves */
- {"nistk163", NID_sect163k1, 163},
- {"nistk233", NID_sect233k1, 233},
- {"nistk283", NID_sect283k1, 283},
- {"nistk409", NID_sect409k1, 409},
- {"nistk571", NID_sect571k1, 571},
- {"nistb163", NID_sect163r2, 163},
- {"nistb233", NID_sect233r1, 233},
- {"nistb283", NID_sect283r1, 283},
- {"nistb409", NID_sect409r1, 409},
- {"nistb571", NID_sect571r1, 571},
- {"brainpoolP256r1", NID_brainpoolP256r1, 256},
- {"brainpoolP256t1", NID_brainpoolP256t1, 256},
- {"brainpoolP384r1", NID_brainpoolP384r1, 384},
- {"brainpoolP384t1", NID_brainpoolP384t1, 384},
- {"brainpoolP512r1", NID_brainpoolP512r1, 512},
- {"brainpoolP512t1", NID_brainpoolP512t1, 512},
- /* Other and ECDH only ones */
- {"X25519", NID_X25519, 253},
- {"X448", NID_X448, 448}
- };
- int ecdsa_doit[ECDSA_NUM] = { 0 };
- int ecdh_doit[EC_NUM] = { 0 };
- OPENSSL_assert(OSSL_NELEM(test_curves) >= EC_NUM);
- #endif /* ndef OPENSSL_NO_EC */
- prog = opt_init(argc, argv, speed_options);
- while ((o = opt_next()) != OPT_EOF) {
- switch (o) {
- case OPT_EOF:
- case OPT_ERR:
- opterr:
- BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
- goto end;
- case OPT_HELP:
- opt_help(speed_options);
- ret = 0;
- goto end;
- case OPT_ELAPSED:
- usertime = 0;
- break;
- case OPT_EVP:
- evp_md = NULL;
- evp_cipher = EVP_get_cipherbyname(opt_arg());
- if (evp_cipher == NULL)
- evp_md = EVP_get_digestbyname(opt_arg());
- if (evp_cipher == NULL && evp_md == NULL) {
- BIO_printf(bio_err,
- "%s: %s is an unknown cipher or digest\n",
- prog, opt_arg());
- goto end;
- }
- doit[D_EVP] = 1;
- break;
- case OPT_DECRYPT:
- decrypt = 1;
- break;
- case OPT_ENGINE:
- /*
- * In a forked execution, an engine might need to be
- * initialised by each child process, not by the parent.
- * So store the name here and run setup_engine() later on.
- */
- engine_id = opt_arg();
- break;
- case OPT_MULTI:
- #ifndef NO_FORK
- multi = atoi(opt_arg());
- #endif
- break;
- case OPT_ASYNCJOBS:
- #ifndef OPENSSL_NO_ASYNC
- async_jobs = atoi(opt_arg());
- if (!ASYNC_is_capable()) {
- BIO_printf(bio_err,
- "%s: async_jobs specified but async not supported\n",
- prog);
- goto opterr;
- }
- if (async_jobs > 99999) {
- BIO_printf(bio_err, "%s: too many async_jobs\n", prog);
- goto opterr;
- }
- #endif
- break;
- case OPT_MISALIGN:
- if (!opt_int(opt_arg(), &misalign))
- goto end;
- if (misalign > MISALIGN) {
- BIO_printf(bio_err,
- "%s: Maximum offset is %d\n", prog, MISALIGN);
- goto opterr;
- }
- break;
- case OPT_MR:
- mr = 1;
- break;
- case OPT_MB:
- multiblock = 1;
- #ifdef OPENSSL_NO_MULTIBLOCK
- BIO_printf(bio_err,
- "%s: -mb specified but multi-block support is disabled\n",
- prog);
- goto end;
- #endif
- break;
- case OPT_R_CASES:
- if (!opt_rand(o))
- goto end;
- break;
- case OPT_PRIMES:
- if (!opt_int(opt_arg(), &primes))
- goto end;
- break;
- case OPT_SECONDS:
- seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa
- = seconds.ecdh = atoi(opt_arg());
- break;
- case OPT_BYTES:
- lengths_single = atoi(opt_arg());
- lengths = &lengths_single;
- size_num = 1;
- break;
- case OPT_AEAD:
- aead = 1;
- break;
- }
- }
- argc = opt_num_rest();
- argv = opt_rest();
- /* Remaining arguments are algorithms. */
- for (; *argv; argv++) {
- if (found(*argv, doit_choices, &i)) {
- doit[i] = 1;
- continue;
- }
- #ifndef OPENSSL_NO_DES
- if (strcmp(*argv, "des") == 0) {
- doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
- continue;
- }
- #endif
- if (strcmp(*argv, "sha") == 0) {
- doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
- continue;
- }
- #ifndef OPENSSL_NO_RSA
- if (strcmp(*argv, "openssl") == 0)
- continue;
- if (strcmp(*argv, "rsa") == 0) {
- for (loop = 0; loop < OSSL_NELEM(rsa_doit); loop++)
- rsa_doit[loop] = 1;
- continue;
- }
- if (found(*argv, rsa_choices, &i)) {
- rsa_doit[i] = 1;
- continue;
- }
- #endif
- #ifndef OPENSSL_NO_DSA
- if (strcmp(*argv, "dsa") == 0) {
- dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
- dsa_doit[R_DSA_2048] = 1;
- continue;
- }
- if (found(*argv, dsa_choices, &i)) {
- dsa_doit[i] = 2;
- continue;
- }
- #endif
- if (strcmp(*argv, "aes") == 0) {
- doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1;
- continue;
- }
- #ifndef OPENSSL_NO_CAMELLIA
- if (strcmp(*argv, "camellia") == 0) {
- doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1;
- continue;
- }
- #endif
- #ifndef OPENSSL_NO_EC
- if (strcmp(*argv, "ecdsa") == 0) {
- for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++)
- ecdsa_doit[loop] = 1;
- continue;
- }
- if (found(*argv, ecdsa_choices, &i)) {
- ecdsa_doit[i] = 2;
- continue;
- }
- if (strcmp(*argv, "ecdh") == 0) {
- for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++)
- ecdh_doit[loop] = 1;
- continue;
- }
- if (found(*argv, ecdh_choices, &i)) {
- ecdh_doit[i] = 2;
- continue;
- }
- #endif
- BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
- goto end;
- }
- /* Sanity checks */
- if (aead) {
- if (evp_cipher == NULL) {
- BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n");
- goto end;
- } else if (!(EVP_CIPHER_flags(evp_cipher) &
- EVP_CIPH_FLAG_AEAD_CIPHER)) {
- BIO_printf(bio_err, "%s is not an AEAD cipher\n",
- OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
- goto end;
- }
- }
- if (multiblock) {
- if (evp_cipher == NULL) {
- BIO_printf(bio_err,"-mb can be used only with a multi-block"
- " capable cipher\n");
- goto end;
- } else if (!(EVP_CIPHER_flags(evp_cipher) &
- EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
- BIO_printf(bio_err, "%s is not a multi-block capable\n",
- OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
- goto end;
- } else if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with -mb");
- goto end;
- }
- }
- /* Initialize the job pool if async mode is enabled */
- if (async_jobs > 0) {
- async_init = ASYNC_init_thread(async_jobs, async_jobs);
- if (!async_init) {
- BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
- goto end;
- }
- }
- loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
- loopargs =
- app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
- memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
- for (i = 0; i < loopargs_len; i++) {
- if (async_jobs > 0) {
- loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new();
- if (loopargs[i].wait_ctx == NULL) {
- BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n");
- goto end;
- }
- }
- buflen = lengths[size_num - 1];
- if (buflen < 36) /* size of random vector in RSA bencmark */
- buflen = 36;
- buflen += MAX_MISALIGNMENT + 1;
- loopargs[i].buf_malloc = app_malloc(buflen, "input buffer");
- loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer");
- memset(loopargs[i].buf_malloc, 0, buflen);
- memset(loopargs[i].buf2_malloc, 0, buflen);
- /* Align the start of buffers on a 64 byte boundary */
- loopargs[i].buf = loopargs[i].buf_malloc + misalign;
- loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
- #ifndef OPENSSL_NO_EC
- loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
- loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
- #endif
- }
- #ifndef NO_FORK
- if (multi && do_multi(multi, size_num))
- goto show_res;
- #endif
- /* Initialize the engine after the fork */
- e = setup_engine(engine_id, 0);
- /* No parameters; turn on everything. */
- if ((argc == 0) && !doit[D_EVP]) {
- for (i = 0; i < ALGOR_NUM; i++)
- if (i != D_EVP)
- doit[i] = 1;
- #ifndef OPENSSL_NO_RSA
- for (i = 0; i < RSA_NUM; i++)
- rsa_doit[i] = 1;
- #endif
- #ifndef OPENSSL_NO_DSA
- for (i = 0; i < DSA_NUM; i++)
- dsa_doit[i] = 1;
- #endif
- #ifndef OPENSSL_NO_EC
- for (loop = 0; loop < OSSL_NELEM(ecdsa_doit); loop++)
- ecdsa_doit[loop] = 1;
- for (loop = 0; loop < OSSL_NELEM(ecdh_doit); loop++)
- ecdh_doit[loop] = 1;
- #endif
- }
- for (i = 0; i < ALGOR_NUM; i++)
- if (doit[i])
- pr_header++;
- if (usertime == 0 && !mr)
- BIO_printf(bio_err,
- "You have chosen to measure elapsed time "
- "instead of user CPU time.\n");
- #ifndef OPENSSL_NO_RSA
- for (i = 0; i < loopargs_len; i++) {
- if (primes > RSA_DEFAULT_PRIME_NUM) {
- /* for multi-prime RSA, skip this */
- break;
- }
- for (k = 0; k < RSA_NUM; k++) {
- const unsigned char *p;
- p = rsa_data[k];
- loopargs[i].rsa_key[k] =
- d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
- if (loopargs[i].rsa_key[k] == NULL) {
- BIO_printf(bio_err,
- "internal error loading RSA key number %d\n", k);
- goto end;
- }
- }
- }
- #endif
- #ifndef OPENSSL_NO_DSA
- for (i = 0; i < loopargs_len; i++) {
- loopargs[i].dsa_key[0] = get_dsa(512);
- loopargs[i].dsa_key[1] = get_dsa(1024);
- loopargs[i].dsa_key[2] = get_dsa(2048);
- }
- #endif
- #ifndef OPENSSL_NO_DES
- DES_set_key_unchecked(&key, &sch);
- DES_set_key_unchecked(&key2, &sch2);
- DES_set_key_unchecked(&key3, &sch3);
- #endif
- AES_set_encrypt_key(key16, 128, &aes_ks1);
- AES_set_encrypt_key(key24, 192, &aes_ks2);
- AES_set_encrypt_key(key32, 256, &aes_ks3);
- #ifndef OPENSSL_NO_CAMELLIA
- Camellia_set_key(key16, 128, &camellia_ks1);
- Camellia_set_key(ckey24, 192, &camellia_ks2);
- Camellia_set_key(ckey32, 256, &camellia_ks3);
- #endif
- #ifndef OPENSSL_NO_IDEA
- IDEA_set_encrypt_key(key16, &idea_ks);
- #endif
- #ifndef OPENSSL_NO_SEED
- SEED_set_key(key16, &seed_ks);
- #endif
- #ifndef OPENSSL_NO_RC4
- RC4_set_key(&rc4_ks, 16, key16);
- #endif
- #ifndef OPENSSL_NO_RC2
- RC2_set_key(&rc2_ks, 16, key16, 128);
- #endif
- #ifndef OPENSSL_NO_RC5
- RC5_32_set_key(&rc5_ks, 16, key16, 12);
- #endif
- #ifndef OPENSSL_NO_BF
- BF_set_key(&bf_ks, 16, key16);
- #endif
- #ifndef OPENSSL_NO_CAST
- CAST_set_key(&cast_ks, 16, key16);
- #endif
- #ifndef SIGALRM
- # ifndef OPENSSL_NO_DES
- BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
- count = 10;
- do {
- long it;
- count *= 2;
- Time_F(START);
- for (it = count; it; it--)
- DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
- (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
- d = Time_F(STOP);
- } while (d < 3);
- save_count = count;
- c[D_MD2][0] = count / 10;
- c[D_MDC2][0] = count / 10;
- c[D_MD4][0] = count;
- c[D_MD5][0] = count;
- c[D_HMAC][0] = count;
- c[D_SHA1][0] = count;
- c[D_RMD160][0] = count;
- c[D_RC4][0] = count * 5;
- c[D_CBC_DES][0] = count;
- c[D_EDE3_DES][0] = count / 3;
- c[D_CBC_IDEA][0] = count;
- c[D_CBC_SEED][0] = count;
- c[D_CBC_RC2][0] = count;
- c[D_CBC_RC5][0] = count;
- c[D_CBC_BF][0] = count;
- c[D_CBC_CAST][0] = count;
- c[D_CBC_128_AES][0] = count;
- c[D_CBC_192_AES][0] = count;
- c[D_CBC_256_AES][0] = count;
- c[D_CBC_128_CML][0] = count;
- c[D_CBC_192_CML][0] = count;
- c[D_CBC_256_CML][0] = count;
- c[D_SHA256][0] = count;
- c[D_SHA512][0] = count;
- c[D_WHIRLPOOL][0] = count;
- c[D_IGE_128_AES][0] = count;
- c[D_IGE_192_AES][0] = count;
- c[D_IGE_256_AES][0] = count;
- c[D_GHASH][0] = count;
- c[D_RAND][0] = count;
- for (i = 1; i < size_num; i++) {
- long l0, l1;
- l0 = (long)lengths[0];
- l1 = (long)lengths[i];
- c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
- c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
- c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
- c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
- c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
- c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
- c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
- c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
- c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
- c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
- c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
- c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1;
- l0 = (long)lengths[i - 1];
- c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
- c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
- c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
- c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
- c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
- c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
- c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
- c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
- c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
- c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
- c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
- c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
- c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
- c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
- c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
- c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
- c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
- c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
- }
- # ifndef OPENSSL_NO_RSA
- rsa_c[R_RSA_512][0] = count / 2000;
- rsa_c[R_RSA_512][1] = count / 400;
- for (i = 1; i < RSA_NUM; i++) {
- rsa_c[i][0] = rsa_c[i - 1][0] / 8;
- rsa_c[i][1] = rsa_c[i - 1][1] / 4;
- if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0)
- rsa_doit[i] = 0;
- else {
- if (rsa_c[i][0] == 0) {
- rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
- rsa_c[i][1] = 20;
- }
- }
- }
- # endif
- # ifndef OPENSSL_NO_DSA
- dsa_c[R_DSA_512][0] = count / 1000;
- dsa_c[R_DSA_512][1] = count / 1000 / 2;
- for (i = 1; i < DSA_NUM; i++) {
- dsa_c[i][0] = dsa_c[i - 1][0] / 4;
- dsa_c[i][1] = dsa_c[i - 1][1] / 4;
- if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0)
- dsa_doit[i] = 0;
- else {
- if (dsa_c[i][0] == 0) {
- dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */
- dsa_c[i][1] = 1;
- }
- }
- }
- # endif
- # ifndef OPENSSL_NO_EC
- ecdsa_c[R_EC_P160][0] = count / 1000;
- ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
- for (i = R_EC_P192; i <= R_EC_P521; i++) {
- ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
- ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
- if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
- ecdsa_doit[i] = 0;
- else {
- if (ecdsa_c[i][0] == 0) {
- ecdsa_c[i][0] = 1;
- ecdsa_c[i][1] = 1;
- }
- }
- }
- ecdsa_c[R_EC_K163][0] = count / 1000;
- ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
- for (i = R_EC_K233; i <= R_EC_K571; i++) {
- ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
- ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
- if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
- ecdsa_doit[i] = 0;
- else {
- if (ecdsa_c[i][0] == 0) {
- ecdsa_c[i][0] = 1;
- ecdsa_c[i][1] = 1;
- }
- }
- }
- ecdsa_c[R_EC_B163][0] = count / 1000;
- ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
- for (i = R_EC_B233; i <= R_EC_B571; i++) {
- ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
- ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
- if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0)
- ecdsa_doit[i] = 0;
- else {
- if (ecdsa_c[i][0] == 0) {
- ecdsa_c[i][0] = 1;
- ecdsa_c[i][1] = 1;
- }
- }
- }
- ecdh_c[R_EC_P160][0] = count / 1000;
- for (i = R_EC_P192; i <= R_EC_P521; i++) {
- ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
- if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
- ecdh_doit[i] = 0;
- else {
- if (ecdh_c[i][0] == 0) {
- ecdh_c[i][0] = 1;
- }
- }
- }
- ecdh_c[R_EC_K163][0] = count / 1000;
- for (i = R_EC_K233; i <= R_EC_K571; i++) {
- ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
- if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
- ecdh_doit[i] = 0;
- else {
- if (ecdh_c[i][0] == 0) {
- ecdh_c[i][0] = 1;
- }
- }
- }
- ecdh_c[R_EC_B163][0] = count / 1000;
- for (i = R_EC_B233; i <= R_EC_B571; i++) {
- ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
- if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
- ecdh_doit[i] = 0;
- else {
- if (ecdh_c[i][0] == 0) {
- ecdh_c[i][0] = 1;
- }
- }
- }
- /* repeated code good to factorize */
- ecdh_c[R_EC_BRP256R1][0] = count / 1000;
- for (i = R_EC_BRP384R1; i <= R_EC_BRP512R1; i += 2) {
- ecdh_c[i][0] = ecdh_c[i - 2][0] / 2;
- if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
- ecdh_doit[i] = 0;
- else {
- if (ecdh_c[i][0] == 0) {
- ecdh_c[i][0] = 1;
- }
- }
- }
- ecdh_c[R_EC_BRP256T1][0] = count / 1000;
- for (i = R_EC_BRP384T1; i <= R_EC_BRP512T1; i += 2) {
- ecdh_c[i][0] = ecdh_c[i - 2][0] / 2;
- if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0)
- ecdh_doit[i] = 0;
- else {
- if (ecdh_c[i][0] == 0) {
- ecdh_c[i][0] = 1;
- }
- }
- }
- /* default iteration count for the last two EC Curves */
- ecdh_c[R_EC_X25519][0] = count / 1800;
- ecdh_c[R_EC_X448][0] = count / 7200;
- # endif
- # else
- /* not worth fixing */
- # error "You cannot disable DES on systems without SIGALRM."
- # endif /* OPENSSL_NO_DES */
- #elif SIGALRM > 0
- signal(SIGALRM, alarmed);
- #endif /* SIGALRM */
- #ifndef OPENSSL_NO_MD2
- if (doit[D_MD2]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum],
- seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_MD2, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_MDC2
- if (doit[D_MDC2]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum],
- seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_MDC2, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_MD4
- if (doit[D_MD4]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum],
- seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_MD4, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_MD5
- if (doit[D_MD5]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum],
- seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, MD5_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_MD5, testnum, count, d);
- }
- }
- if (doit[D_HMAC]) {
- static const char hmac_key[] = "This is a key...";
- int len = strlen(hmac_key);
- for (i = 0; i < loopargs_len; i++) {
- loopargs[i].hctx = HMAC_CTX_new();
- if (loopargs[i].hctx == NULL) {
- BIO_printf(bio_err, "HMAC malloc failure, exiting...");
- exit(1);
- }
- HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL);
- }
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum],
- seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, HMAC_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_HMAC, testnum, count, d);
- }
- for (i = 0; i < loopargs_len; i++) {
- HMAC_CTX_free(loopargs[i].hctx);
- }
- }
- #endif
- if (doit[D_SHA1]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum],
- seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, SHA1_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_SHA1, testnum, count, d);
- }
- }
- if (doit[D_SHA256]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_SHA256], c[D_SHA256][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, SHA256_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_SHA256, testnum, count, d);
- }
- }
- if (doit[D_SHA512]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_SHA512], c[D_SHA512][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, SHA512_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_SHA512, testnum, count, d);
- }
- }
- #ifndef OPENSSL_NO_WHIRLPOOL
- if (doit[D_WHIRLPOOL]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_WHIRLPOOL, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_RMD160
- if (doit[D_RMD160]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_RMD160], c[D_RMD160][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_RMD160, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_RC4
- if (doit[D_RC4]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum],
- seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, RC4_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_RC4, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_DES
- if (doit[D_CBC_DES]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_CBC_DES], c[D_CBC_DES][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_CBC_DES, testnum, count, d);
- }
- }
- if (doit[D_EDE3_DES]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count =
- run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_EDE3_DES, testnum, count, d);
- }
- }
- #endif
- if (doit[D_CBC_128_AES]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count =
- run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_CBC_128_AES, testnum, count, d);
- }
- }
- if (doit[D_CBC_192_AES]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count =
- run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_CBC_192_AES, testnum, count, d);
- }
- }
- if (doit[D_CBC_256_AES]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count =
- run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_CBC_256_AES, testnum, count, d);
- }
- }
- if (doit[D_IGE_128_AES]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count =
- run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_IGE_128_AES, testnum, count, d);
- }
- }
- if (doit[D_IGE_192_AES]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count =
- run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_IGE_192_AES, testnum, count, d);
- }
- }
- if (doit[D_IGE_256_AES]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count =
- run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_IGE_256_AES, testnum, count, d);
- }
- }
- if (doit[D_GHASH]) {
- for (i = 0; i < loopargs_len; i++) {
- loopargs[i].gcm_ctx =
- CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
- CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx,
- (unsigned char *)"0123456789ab", 12);
- }
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_GHASH], c[D_GHASH][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_GHASH, testnum, count, d);
- }
- for (i = 0; i < loopargs_len; i++)
- CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
- }
- #ifndef OPENSSL_NO_CAMELLIA
- if (doit[D_CBC_128_CML]) {
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with %s\n",
- names[D_CBC_128_CML]);
- doit[D_CBC_128_CML] = 0;
- }
- for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
- print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
- Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
- (size_t)lengths[testnum], &camellia_ks1,
- iv, CAMELLIA_ENCRYPT);
- d = Time_F(STOP);
- print_result(D_CBC_128_CML, testnum, count, d);
- }
- }
- if (doit[D_CBC_192_CML]) {
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with %s\n",
- names[D_CBC_192_CML]);
- doit[D_CBC_192_CML] = 0;
- }
- for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
- print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
- lengths[testnum], seconds.sym);
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported, exiting...");
- exit(1);
- }
- Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
- Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
- (size_t)lengths[testnum], &camellia_ks2,
- iv, CAMELLIA_ENCRYPT);
- d = Time_F(STOP);
- print_result(D_CBC_192_CML, testnum, count, d);
- }
- }
- if (doit[D_CBC_256_CML]) {
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with %s\n",
- names[D_CBC_256_CML]);
- doit[D_CBC_256_CML] = 0;
- }
- for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
- print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
- Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
- (size_t)lengths[testnum], &camellia_ks3,
- iv, CAMELLIA_ENCRYPT);
- d = Time_F(STOP);
- print_result(D_CBC_256_CML, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_IDEA
- if (doit[D_CBC_IDEA]) {
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with %s\n",
- names[D_CBC_IDEA]);
- doit[D_CBC_IDEA] = 0;
- }
- for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
- print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
- IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
- (size_t)lengths[testnum], &idea_ks,
- iv, IDEA_ENCRYPT);
- d = Time_F(STOP);
- print_result(D_CBC_IDEA, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_SEED
- if (doit[D_CBC_SEED]) {
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with %s\n",
- names[D_CBC_SEED]);
- doit[D_CBC_SEED] = 0;
- }
- for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
- print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
- SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
- (size_t)lengths[testnum], &seed_ks, iv, 1);
- d = Time_F(STOP);
- print_result(D_CBC_SEED, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_RC2
- if (doit[D_CBC_RC2]) {
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with %s\n",
- names[D_CBC_RC2]);
- doit[D_CBC_RC2] = 0;
- }
- for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
- print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum],
- lengths[testnum], seconds.sym);
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported, exiting...");
- exit(1);
- }
- Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
- RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
- (size_t)lengths[testnum], &rc2_ks,
- iv, RC2_ENCRYPT);
- d = Time_F(STOP);
- print_result(D_CBC_RC2, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_RC5
- if (doit[D_CBC_RC5]) {
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with %s\n",
- names[D_CBC_RC5]);
- doit[D_CBC_RC5] = 0;
- }
- for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
- print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum],
- lengths[testnum], seconds.sym);
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported, exiting...");
- exit(1);
- }
- Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
- RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
- (size_t)lengths[testnum], &rc5_ks,
- iv, RC5_ENCRYPT);
- d = Time_F(STOP);
- print_result(D_CBC_RC5, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_BF
- if (doit[D_CBC_BF]) {
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with %s\n",
- names[D_CBC_BF]);
- doit[D_CBC_BF] = 0;
- }
- for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
- print_message(names[D_CBC_BF], c[D_CBC_BF][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
- BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
- (size_t)lengths[testnum], &bf_ks,
- iv, BF_ENCRYPT);
- d = Time_F(STOP);
- print_result(D_CBC_BF, testnum, count, d);
- }
- }
- #endif
- #ifndef OPENSSL_NO_CAST
- if (doit[D_CBC_CAST]) {
- if (async_jobs > 0) {
- BIO_printf(bio_err, "Async mode is not supported with %s\n",
- names[D_CBC_CAST]);
- doit[D_CBC_CAST] = 0;
- }
- for (testnum = 0; testnum < size_num && async_init == 0; testnum++) {
- print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum],
- lengths[testnum], seconds.sym);
- Time_F(START);
- for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
- CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
- (size_t)lengths[testnum], &cast_ks,
- iv, CAST_ENCRYPT);
- d = Time_F(STOP);
- print_result(D_CBC_CAST, testnum, count, d);
- }
- }
- #endif
- if (doit[D_RAND]) {
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum],
- seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_RAND, testnum, count, d);
- }
- }
- if (doit[D_EVP]) {
- if (evp_cipher != NULL) {
- int (*loopfunc)(void *args) = EVP_Update_loop;
- if (multiblock && (EVP_CIPHER_flags(evp_cipher) &
- EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
- multiblock_speed(evp_cipher, lengths_single, &seconds);
- ret = 0;
- goto end;
- }
- names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
- if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_CCM_MODE) {
- loopfunc = EVP_Update_loop_ccm;
- } else if (aead && (EVP_CIPHER_flags(evp_cipher) &
- EVP_CIPH_FLAG_AEAD_CIPHER)) {
- loopfunc = EVP_Update_loop_aead;
- if (lengths == lengths_list) {
- lengths = aead_lengths_list;
- size_num = OSSL_NELEM(aead_lengths_list);
- }
- }
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_EVP], save_count, lengths[testnum],
- seconds.sym);
- for (k = 0; k < loopargs_len; k++) {
- loopargs[k].ctx = EVP_CIPHER_CTX_new();
- EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, NULL,
- iv, decrypt ? 0 : 1);
- EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
- keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx);
- loopargs[k].key = app_malloc(keylen, "evp_cipher key");
- EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key);
- EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL,
- loopargs[k].key, NULL, -1);
- OPENSSL_clear_free(loopargs[k].key, keylen);
- }
- Time_F(START);
- count = run_benchmark(async_jobs, loopfunc, loopargs);
- d = Time_F(STOP);
- for (k = 0; k < loopargs_len; k++) {
- EVP_CIPHER_CTX_free(loopargs[k].ctx);
- }
- print_result(D_EVP, testnum, count, d);
- }
- } else if (evp_md != NULL) {
- names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
- for (testnum = 0; testnum < size_num; testnum++) {
- print_message(names[D_EVP], save_count, lengths[testnum],
- seconds.sym);
- Time_F(START);
- count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
- d = Time_F(STOP);
- print_result(D_EVP, testnum, count, d);
- }
- }
- }
- for (i = 0; i < loopargs_len; i++)
- RAND_bytes(loopargs[i].buf, 36);
- #ifndef OPENSSL_NO_RSA
- for (testnum = 0; testnum < RSA_NUM; testnum++) {
- int st = 0;
- if (!rsa_doit[testnum])
- continue;
- for (i = 0; i < loopargs_len; i++) {
- if (primes > 2) {
- /* we haven't set keys yet, generate multi-prime RSA keys */
- BIGNUM *bn = BN_new();
- if (bn == NULL)
- goto end;
- if (!BN_set_word(bn, RSA_F4)) {
- BN_free(bn);
- goto end;
- }
- BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n",
- rsa_choices[testnum].name);
- loopargs[i].rsa_key[testnum] = RSA_new();
- if (loopargs[i].rsa_key[testnum] == NULL) {
- BN_free(bn);
- goto end;
- }
- if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum],
- rsa_bits[testnum],
- primes, bn, NULL)) {
- BN_free(bn);
- goto end;
- }
- BN_free(bn);
- }
- st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
- &loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
- if (st == 0)
- break;
- }
- if (st == 0) {
- BIO_printf(bio_err,
- "RSA sign failure. No RSA sign will be done.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- } else {
- pkey_print_message("private", "rsa",
- rsa_c[testnum][0], rsa_bits[testnum],
- seconds.rsa);
- /* RSA_blinding_on(rsa_key[testnum],NULL); */
- Time_F(START);
- count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
- d = Time_F(STOP);
- BIO_printf(bio_err,
- mr ? "+R1:%ld:%d:%.2f\n"
- : "%ld %u bits private RSA's in %.2fs\n",
- count, rsa_bits[testnum], d);
- rsa_results[testnum][0] = (double)count / d;
- rsa_count = count;
- }
- for (i = 0; i < loopargs_len; i++) {
- st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
- loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
- if (st <= 0)
- break;
- }
- if (st <= 0) {
- BIO_printf(bio_err,
- "RSA verify failure. No RSA verify will be done.\n");
- ERR_print_errors(bio_err);
- rsa_doit[testnum] = 0;
- } else {
- pkey_print_message("public", "rsa",
- rsa_c[testnum][1], rsa_bits[testnum],
- seconds.rsa);
- Time_F(START);
- count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
- d = Time_F(STOP);
- BIO_printf(bio_err,
- mr ? "+R2:%ld:%d:%.2f\n"
- : "%ld %u bits public RSA's in %.2fs\n",
- count, rsa_bits[testnum], d);
- rsa_results[testnum][1] = (double)count / d;
- }
- if (rsa_count <= 1) {
- /* if longer than 10s, don't do any more */
- for (testnum++; testnum < RSA_NUM; testnum++)
- rsa_doit[testnum] = 0;
- }
- }
- #endif /* OPENSSL_NO_RSA */
- for (i = 0; i < loopargs_len; i++)
- RAND_bytes(loopargs[i].buf, 36);
- #ifndef OPENSSL_NO_DSA
- for (testnum = 0; testnum < DSA_NUM; testnum++) {
- int st = 0;
- if (!dsa_doit[testnum])
- continue;
- /* DSA_generate_key(dsa_key[testnum]); */
- /* DSA_sign_setup(dsa_key[testnum],NULL); */
- for (i = 0; i < loopargs_len; i++) {
- st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
- &loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
- if (st == 0)
- break;
- }
- if (st == 0) {
- BIO_printf(bio_err,
- "DSA sign failure. No DSA sign will be done.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- } else {
- pkey_print_message("sign", "dsa",
- dsa_c[testnum][0], dsa_bits[testnum],
- seconds.dsa);
- Time_F(START);
- count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
- d = Time_F(STOP);
- BIO_printf(bio_err,
- mr ? "+R3:%ld:%u:%.2f\n"
- : "%ld %u bits DSA signs in %.2fs\n",
- count, dsa_bits[testnum], d);
- dsa_results[testnum][0] = (double)count / d;
- rsa_count = count;
- }
- for (i = 0; i < loopargs_len; i++) {
- st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
- loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
- if (st <= 0)
- break;
- }
- if (st <= 0) {
- BIO_printf(bio_err,
- "DSA verify failure. No DSA verify will be done.\n");
- ERR_print_errors(bio_err);
- dsa_doit[testnum] = 0;
- } else {
- pkey_print_message("verify", "dsa",
- dsa_c[testnum][1], dsa_bits[testnum],
- seconds.dsa);
- Time_F(START);
- count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
- d = Time_F(STOP);
- BIO_printf(bio_err,
- mr ? "+R4:%ld:%u:%.2f\n"
- : "%ld %u bits DSA verify in %.2fs\n",
- count, dsa_bits[testnum], d);
- dsa_results[testnum][1] = (double)count / d;
- }
- if (rsa_count <= 1) {
- /* if longer than 10s, don't do any more */
- for (testnum++; testnum < DSA_NUM; testnum++)
- dsa_doit[testnum] = 0;
- }
- }
- #endif /* OPENSSL_NO_DSA */
- #ifndef OPENSSL_NO_EC
- for (testnum = 0; testnum < ECDSA_NUM; testnum++) {
- int st = 1;
- if (!ecdsa_doit[testnum])
- continue; /* Ignore Curve */
- for (i = 0; i < loopargs_len; i++) {
- loopargs[i].ecdsa[testnum] =
- EC_KEY_new_by_curve_name(test_curves[testnum].nid);
- if (loopargs[i].ecdsa[testnum] == NULL) {
- st = 0;
- break;
- }
- }
- if (st == 0) {
- BIO_printf(bio_err, "ECDSA failure.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- } else {
- for (i = 0; i < loopargs_len; i++) {
- EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL);
- /* Perform ECDSA signature test */
- EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
- st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
- &loopargs[i].siglen,
- loopargs[i].ecdsa[testnum]);
- if (st == 0)
- break;
- }
- if (st == 0) {
- BIO_printf(bio_err,
- "ECDSA sign failure. No ECDSA sign will be done.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- } else {
- pkey_print_message("sign", "ecdsa",
- ecdsa_c[testnum][0],
- test_curves[testnum].bits, seconds.ecdsa);
- Time_F(START);
- count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
- d = Time_F(STOP);
- BIO_printf(bio_err,
- mr ? "+R5:%ld:%u:%.2f\n" :
- "%ld %u bits ECDSA signs in %.2fs \n",
- count, test_curves[testnum].bits, d);
- ecdsa_results[testnum][0] = (double)count / d;
- rsa_count = count;
- }
- /* Perform ECDSA verification test */
- for (i = 0; i < loopargs_len; i++) {
- st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
- loopargs[i].siglen,
- loopargs[i].ecdsa[testnum]);
- if (st != 1)
- break;
- }
- if (st != 1) {
- BIO_printf(bio_err,
- "ECDSA verify failure. No ECDSA verify will be done.\n");
- ERR_print_errors(bio_err);
- ecdsa_doit[testnum] = 0;
- } else {
- pkey_print_message("verify", "ecdsa",
- ecdsa_c[testnum][1],
- test_curves[testnum].bits, seconds.ecdsa);
- Time_F(START);
- count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
- d = Time_F(STOP);
- BIO_printf(bio_err,
- mr ? "+R6:%ld:%u:%.2f\n"
- : "%ld %u bits ECDSA verify in %.2fs\n",
- count, test_curves[testnum].bits, d);
- ecdsa_results[testnum][1] = (double)count / d;
- }
- if (rsa_count <= 1) {
- /* if longer than 10s, don't do any more */
- for (testnum++; testnum < EC_NUM; testnum++)
- ecdsa_doit[testnum] = 0;
- }
- }
- }
- for (testnum = 0; testnum < EC_NUM; testnum++) {
- int ecdh_checks = 1;
- if (!ecdh_doit[testnum])
- continue;
- for (i = 0; i < loopargs_len; i++) {
- EVP_PKEY_CTX *kctx = NULL;
- EVP_PKEY_CTX *test_ctx = NULL;
- EVP_PKEY_CTX *ctx = NULL;
- EVP_PKEY *key_A = NULL;
- EVP_PKEY *key_B = NULL;
- size_t outlen;
- size_t test_outlen;
- /* Ensure that the error queue is empty */
- if (ERR_peek_error()) {
- BIO_printf(bio_err,
- "WARNING: the error queue contains previous unhandled errors.\n");
- ERR_print_errors(bio_err);
- }
- /* Let's try to create a ctx directly from the NID: this works for
- * curves like Curve25519 that are not implemented through the low
- * level EC interface.
- * If this fails we try creating a EVP_PKEY_EC generic param ctx,
- * then we set the curve by NID before deriving the actual keygen
- * ctx for that specific curve. */
- kctx = EVP_PKEY_CTX_new_id(test_curves[testnum].nid, NULL); /* keygen ctx from NID */
- if (!kctx) {
- EVP_PKEY_CTX *pctx = NULL;
- EVP_PKEY *params = NULL;
- /* If we reach this code EVP_PKEY_CTX_new_id() failed and a
- * "int_ctx_new:unsupported algorithm" error was added to the
- * error queue.
- * We remove it from the error queue as we are handling it. */
- unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */
- if (error == ERR_peek_last_error() && /* oldest and latest errors match */
- /* check that the error origin matches */
- ERR_GET_LIB(error) == ERR_LIB_EVP &&
- ERR_GET_FUNC(error) == EVP_F_INT_CTX_NEW &&
- ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM)
- ERR_get_error(); /* pop error from queue */
- if (ERR_peek_error()) {
- BIO_printf(bio_err,
- "Unhandled error in the error queue during ECDH init.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- break;
- }
- if ( /* Create the context for parameter generation */
- !(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) ||
- /* Initialise the parameter generation */
- !EVP_PKEY_paramgen_init(pctx) ||
- /* Set the curve by NID */
- !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx,
- test_curves
- [testnum].nid) ||
- /* Create the parameter object params */
- !EVP_PKEY_paramgen(pctx, ¶ms)) {
- ecdh_checks = 0;
- BIO_printf(bio_err, "ECDH EC params init failure.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- break;
- }
- /* Create the context for the key generation */
- kctx = EVP_PKEY_CTX_new(params, NULL);
- EVP_PKEY_free(params);
- params = NULL;
- EVP_PKEY_CTX_free(pctx);
- pctx = NULL;
- }
- if (kctx == NULL || /* keygen ctx is not null */
- !EVP_PKEY_keygen_init(kctx) /* init keygen ctx */ ) {
- ecdh_checks = 0;
- BIO_printf(bio_err, "ECDH keygen failure.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- break;
- }
- if (!EVP_PKEY_keygen(kctx, &key_A) || /* generate secret key A */
- !EVP_PKEY_keygen(kctx, &key_B) || /* generate secret key B */
- !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */
- !EVP_PKEY_derive_init(ctx) || /* init derivation ctx */
- !EVP_PKEY_derive_set_peer(ctx, key_B) || /* set peer pubkey in ctx */
- !EVP_PKEY_derive(ctx, NULL, &outlen) || /* determine max length */
- outlen == 0 || /* ensure outlen is a valid size */
- outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) {
- ecdh_checks = 0;
- BIO_printf(bio_err, "ECDH key generation failure.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- break;
- }
- /* Here we perform a test run, comparing the output of a*B and b*A;
- * we try this here and assume that further EVP_PKEY_derive calls
- * never fail, so we can skip checks in the actually benchmarked
- * code, for maximum performance. */
- if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */
- !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */
- !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */
- !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */
- !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */
- !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */
- test_outlen != outlen /* compare output length */ ) {
- ecdh_checks = 0;
- BIO_printf(bio_err, "ECDH computation failure.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- break;
- }
- /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */
- if (CRYPTO_memcmp(loopargs[i].secret_a,
- loopargs[i].secret_b, outlen)) {
- ecdh_checks = 0;
- BIO_printf(bio_err, "ECDH computations don't match.\n");
- ERR_print_errors(bio_err);
- rsa_count = 1;
- break;
- }
- loopargs[i].ecdh_ctx[testnum] = ctx;
- loopargs[i].outlen[testnum] = outlen;
- EVP_PKEY_free(key_A);
- EVP_PKEY_free(key_B);
- EVP_PKEY_CTX_free(kctx);
- kctx = NULL;
- EVP_PKEY_CTX_free(test_ctx);
- test_ctx = NULL;
- }
- if (ecdh_checks != 0) {
- pkey_print_message("", "ecdh",
- ecdh_c[testnum][0],
- test_curves[testnum].bits, seconds.ecdh);
- Time_F(START);
- count =
- run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs);
- d = Time_F(STOP);
- BIO_printf(bio_err,
- mr ? "+R7:%ld:%d:%.2f\n" :
- "%ld %u-bits ECDH ops in %.2fs\n", count,
- test_curves[testnum].bits, d);
- ecdh_results[testnum][0] = (double)count / d;
- rsa_count = count;
- }
- if (rsa_count <= 1) {
- /* if longer than 10s, don't do any more */
- for (testnum++; testnum < OSSL_NELEM(ecdh_doit); testnum++)
- ecdh_doit[testnum] = 0;
- }
- }
- #endif /* OPENSSL_NO_EC */
- #ifndef NO_FORK
- show_res:
- #endif
- if (!mr) {
- printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
- printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
- printf("options:");
- printf("%s ", BN_options());
- #ifndef OPENSSL_NO_MD2
- printf("%s ", MD2_options());
- #endif
- #ifndef OPENSSL_NO_RC4
- printf("%s ", RC4_options());
- #endif
- #ifndef OPENSSL_NO_DES
- printf("%s ", DES_options());
- #endif
- printf("%s ", AES_options());
- #ifndef OPENSSL_NO_IDEA
- printf("%s ", IDEA_options());
- #endif
- #ifndef OPENSSL_NO_BF
- printf("%s ", BF_options());
- #endif
- printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
- }
- if (pr_header) {
- if (mr)
- printf("+H");
- else {
- printf
- ("The 'numbers' are in 1000s of bytes per second processed.\n");
- printf("type ");
- }
- for (testnum = 0; testnum < size_num; testnum++)
- printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
- printf("\n");
- }
- for (k = 0; k < ALGOR_NUM; k++) {
- if (!doit[k])
- continue;
- if (mr)
- printf("+F:%u:%s", k, names[k]);
- else
- printf("%-13s", names[k]);
- for (testnum = 0; testnum < size_num; testnum++) {
- if (results[k][testnum] > 10000 && !mr)
- printf(" %11.2fk", results[k][testnum] / 1e3);
- else
- printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
- }
- printf("\n");
- }
- #ifndef OPENSSL_NO_RSA
- testnum = 1;
- for (k = 0; k < RSA_NUM; k++) {
- if (!rsa_doit[k])
- continue;
- if (testnum && !mr) {
- printf("%18ssign verify sign/s verify/s\n", " ");
- testnum = 0;
- }
- if (mr)
- printf("+F2:%u:%u:%f:%f\n",
- k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
- else
- printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
- rsa_bits[k], 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1],
- rsa_results[k][0], rsa_results[k][1]);
- }
- #endif
- #ifndef OPENSSL_NO_DSA
- testnum = 1;
- for (k = 0; k < DSA_NUM; k++) {
- if (!dsa_doit[k])
- continue;
- if (testnum && !mr) {
- printf("%18ssign verify sign/s verify/s\n", " ");
- testnum = 0;
- }
- if (mr)
- printf("+F3:%u:%u:%f:%f\n",
- k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
- else
- printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
- dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1],
- dsa_results[k][0], dsa_results[k][1]);
- }
- #endif
- #ifndef OPENSSL_NO_EC
- testnum = 1;
- for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) {
- if (!ecdsa_doit[k])
- continue;
- if (testnum && !mr) {
- printf("%30ssign verify sign/s verify/s\n", " ");
- testnum = 0;
- }
- if (mr)
- printf("+F4:%u:%u:%f:%f\n",
- k, test_curves[k].bits,
- ecdsa_results[k][0], ecdsa_results[k][1]);
- else
- printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
- test_curves[k].bits, test_curves[k].name,
- 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1],
- ecdsa_results[k][0], ecdsa_results[k][1]);
- }
- testnum = 1;
- for (k = 0; k < EC_NUM; k++) {
- if (!ecdh_doit[k])
- continue;
- if (testnum && !mr) {
- printf("%30sop op/s\n", " ");
- testnum = 0;
- }
- if (mr)
- printf("+F5:%u:%u:%f:%f\n",
- k, test_curves[k].bits,
- ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
- else
- printf("%4u bits ecdh (%s) %8.4fs %8.1f\n",
- test_curves[k].bits, test_curves[k].name,
- 1.0 / ecdh_results[k][0], ecdh_results[k][0]);
- }
- #endif
- ret = 0;
- end:
- ERR_print_errors(bio_err);
- for (i = 0; i < loopargs_len; i++) {
- OPENSSL_free(loopargs[i].buf_malloc);
- OPENSSL_free(loopargs[i].buf2_malloc);
- #ifndef OPENSSL_NO_RSA
- for (k = 0; k < RSA_NUM; k++)
- RSA_free(loopargs[i].rsa_key[k]);
- #endif
- #ifndef OPENSSL_NO_DSA
- for (k = 0; k < DSA_NUM; k++)
- DSA_free(loopargs[i].dsa_key[k]);
- #endif
- #ifndef OPENSSL_NO_EC
- for (k = 0; k < ECDSA_NUM; k++)
- EC_KEY_free(loopargs[i].ecdsa[k]);
- for (k = 0; k < EC_NUM; k++)
- EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]);
- OPENSSL_free(loopargs[i].secret_a);
- OPENSSL_free(loopargs[i].secret_b);
- #endif
- }
- if (async_jobs > 0) {
- for (i = 0; i < loopargs_len; i++)
- ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx);
- }
- if (async_init) {
- ASYNC_cleanup_thread();
- }
- OPENSSL_free(loopargs);
- release_engine(e);
- return ret;
- }
- static void print_message(const char *s, long num, int length, int tm)
- {
- #ifdef SIGALRM
- BIO_printf(bio_err,
- mr ? "+DT:%s:%d:%d\n"
- : "Doing %s for %ds on %d size blocks: ", s, tm, length);
- (void)BIO_flush(bio_err);
- alarm(tm);
- #else
- BIO_printf(bio_err,
- mr ? "+DN:%s:%ld:%d\n"
- : "Doing %s %ld times on %d size blocks: ", s, num, length);
- (void)BIO_flush(bio_err);
- #endif
- }
- static void pkey_print_message(const char *str, const char *str2, long num,
- unsigned int bits, int tm)
- {
- #ifdef SIGALRM
- BIO_printf(bio_err,
- mr ? "+DTP:%d:%s:%s:%d\n"
- : "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm);
- (void)BIO_flush(bio_err);
- alarm(tm);
- #else
- BIO_printf(bio_err,
- mr ? "+DNP:%ld:%d:%s:%s\n"
- : "Doing %ld %u bits %s %s's: ", num, bits, str, str2);
- (void)BIO_flush(bio_err);
- #endif
- }
- static void print_result(int alg, int run_no, int count, double time_used)
- {
- if (count == -1) {
- BIO_puts(bio_err, "EVP error!\n");
- exit(1);
- }
- BIO_printf(bio_err,
- mr ? "+R:%d:%s:%f\n"
- : "%d %s's in %.2fs\n", count, names[alg], time_used);
- results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
- }
- #ifndef NO_FORK
- static char *sstrsep(char **string, const char *delim)
- {
- char isdelim[256];
- char *token = *string;
- if (**string == 0)
- return NULL;
- memset(isdelim, 0, sizeof(isdelim));
- isdelim[0] = 1;
- while (*delim) {
- isdelim[(unsigned char)(*delim)] = 1;
- delim++;
- }
- while (!isdelim[(unsigned char)(**string)]) {
- (*string)++;
- }
- if (**string) {
- **string = 0;
- (*string)++;
- }
- return token;
- }
- static int do_multi(int multi, int size_num)
- {
- int n;
- int fd[2];
- int *fds;
- static char sep[] = ":";
- fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi");
- for (n = 0; n < multi; ++n) {
- if (pipe(fd) == -1) {
- BIO_printf(bio_err, "pipe failure\n");
- exit(1);
- }
- fflush(stdout);
- (void)BIO_flush(bio_err);
- if (fork()) {
- close(fd[1]);
- fds[n] = fd[0];
- } else {
- close(fd[0]);
- close(1);
- if (dup(fd[1]) == -1) {
- BIO_printf(bio_err, "dup failed\n");
- exit(1);
- }
- close(fd[1]);
- mr = 1;
- usertime = 0;
- free(fds);
- return 0;
- }
- printf("Forked child %d\n", n);
- }
- /* for now, assume the pipe is long enough to take all the output */
- for (n = 0; n < multi; ++n) {
- FILE *f;
- char buf[1024];
- char *p;
- f = fdopen(fds[n], "r");
- while (fgets(buf, sizeof(buf), f)) {
- p = strchr(buf, '\n');
- if (p)
- *p = '\0';
- if (buf[0] != '+') {
- BIO_printf(bio_err,
- "Don't understand line '%s' from child %d\n", buf,
- n);
- continue;
- }
- printf("Got: %s from %d\n", buf, n);
- if (strncmp(buf, "+F:", 3) == 0) {
- int alg;
- int j;
- p = buf + 3;
- alg = atoi(sstrsep(&p, sep));
- sstrsep(&p, sep);
- for (j = 0; j < size_num; ++j)
- results[alg][j] += atof(sstrsep(&p, sep));
- } else if (strncmp(buf, "+F2:", 4) == 0) {
- int k;
- double d;
- p = buf + 4;
- k = atoi(sstrsep(&p, sep));
- sstrsep(&p, sep);
- d = atof(sstrsep(&p, sep));
- rsa_results[k][0] += d;
- d = atof(sstrsep(&p, sep));
- rsa_results[k][1] += d;
- }
- # ifndef OPENSSL_NO_DSA
- else if (strncmp(buf, "+F3:", 4) == 0) {
- int k;
- double d;
- p = buf + 4;
- k = atoi(sstrsep(&p, sep));
- sstrsep(&p, sep);
- d = atof(sstrsep(&p, sep));
- dsa_results[k][0] += d;
- d = atof(sstrsep(&p, sep));
- dsa_results[k][1] += d;
- }
- # endif
- # ifndef OPENSSL_NO_EC
- else if (strncmp(buf, "+F4:", 4) == 0) {
- int k;
- double d;
- p = buf + 4;
- k = atoi(sstrsep(&p, sep));
- sstrsep(&p, sep);
- d = atof(sstrsep(&p, sep));
- ecdsa_results[k][0] += d;
- d = atof(sstrsep(&p, sep));
- ecdsa_results[k][1] += d;
- } else if (strncmp(buf, "+F5:", 4) == 0) {
- int k;
- double d;
- p = buf + 4;
- k = atoi(sstrsep(&p, sep));
- sstrsep(&p, sep);
- d = atof(sstrsep(&p, sep));
- ecdh_results[k][0] += d;
- }
- # endif
- else if (strncmp(buf, "+H:", 3) == 0) {
- ;
- } else
- BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf,
- n);
- }
- fclose(f);
- }
- free(fds);
- return 1;
- }
- #endif
- static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single,
- const openssl_speed_sec_t *seconds)
- {
- static const int mblengths_list[] =
- { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
- const int *mblengths = mblengths_list;
- int j, count, keylen, num = OSSL_NELEM(mblengths_list);
- const char *alg_name;
- unsigned char *inp, *out, *key, no_key[32], no_iv[16];
- EVP_CIPHER_CTX *ctx;
- double d = 0.0;
- if (lengths_single) {
- mblengths = &lengths_single;
- num = 1;
- }
- inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
- out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
- ctx = EVP_CIPHER_CTX_new();
- EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv);
- keylen = EVP_CIPHER_CTX_key_length(ctx);
- key = app_malloc(keylen, "evp_cipher key");
- EVP_CIPHER_CTX_rand_key(ctx, key);
- EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL);
- OPENSSL_clear_free(key, keylen);
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key);
- alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
- for (j = 0; j < num; j++) {
- print_message(alg_name, 0, mblengths[j], seconds->sym);
- Time_F(START);
- for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
- unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
- EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
- size_t len = mblengths[j];
- int packlen;
- memset(aad, 0, 8); /* avoid uninitialized values */
- aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
- aad[9] = 3; /* version */
- aad[10] = 2;
- aad[11] = 0; /* length */
- aad[12] = 0;
- mb_param.out = NULL;
- mb_param.inp = aad;
- mb_param.len = len;
- mb_param.interleave = 8;
- packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
- sizeof(mb_param), &mb_param);
- if (packlen > 0) {
- mb_param.out = out;
- mb_param.inp = inp;
- mb_param.len = len;
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
- sizeof(mb_param), &mb_param);
- } else {
- int pad;
- RAND_bytes(out, 16);
- len += 16;
- aad[11] = (unsigned char)(len >> 8);
- aad[12] = (unsigned char)(len);
- pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
- EVP_AEAD_TLS1_AAD_LEN, aad);
- EVP_Cipher(ctx, out, inp, len + pad);
- }
- }
- d = Time_F(STOP);
- BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
- : "%d %s's in %.2fs\n", count, "evp", d);
- results[D_EVP][j] = ((double)count) / d * mblengths[j];
- }
- if (mr) {
- fprintf(stdout, "+H");
- for (j = 0; j < num; j++)
- fprintf(stdout, ":%d", mblengths[j]);
- fprintf(stdout, "\n");
- fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
- for (j = 0; j < num; j++)
- fprintf(stdout, ":%.2f", results[D_EVP][j]);
- fprintf(stdout, "\n");
- } else {
- fprintf(stdout,
- "The 'numbers' are in 1000s of bytes per second processed.\n");
- fprintf(stdout, "type ");
- for (j = 0; j < num; j++)
- fprintf(stdout, "%7d bytes", mblengths[j]);
- fprintf(stdout, "\n");
- fprintf(stdout, "%-24s", alg_name);
- for (j = 0; j < num; j++) {
- if (results[D_EVP][j] > 10000)
- fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
- else
- fprintf(stdout, " %11.2f ", results[D_EVP][j]);
- }
- fprintf(stdout, "\n");
- }
- OPENSSL_free(inp);
- OPENSSL_free(out);
- EVP_CIPHER_CTX_free(ctx);
- }
|