1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510 |
- #! /usr/bin/env perl
- # Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
- #
- # Licensed under the OpenSSL license (the "License"). You may not use
- # this file except in compliance with the License. You can obtain a copy
- # in the file LICENSE in the source distribution or at
- # https://www.openssl.org/source/license.html
- # ====================================================================
- # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
- # project. The module is, however, dual licensed under OpenSSL and
- # CRYPTOGAMS licenses depending on where you obtain it. For further
- # details see http://www.openssl.org/~appro/cryptogams/.
- # ====================================================================
- # March 2015
- #
- # "Teaser" Montgomery multiplication module for ARMv8. Needs more
- # work. While it does improve RSA sign performance by 20-30% (less for
- # longer keys) on most processors, for some reason RSA2048 is not
- # faster and RSA4096 goes 15-20% slower on Cortex-A57. Multiplication
- # instruction issue rate is limited on processor in question, meaning
- # that dedicated squaring procedure is a must. Well, actually all
- # contemporary AArch64 processors seem to have limited multiplication
- # issue rate, i.e. they can't issue multiplication every cycle, which
- # explains moderate improvement coefficients in comparison to
- # compiler-generated code. Recall that compiler is instructed to use
- # umulh and therefore uses same amount of multiplication instructions
- # to do the job. Assembly's edge is to minimize number of "collateral"
- # instructions and of course instruction scheduling.
- #
- # April 2015
- #
- # Squaring procedure that handles lengths divisible by 8 improves
- # RSA/DSA performance by 25-40-60% depending on processor and key
- # length. Overall improvement coefficients are always positive in
- # comparison to compiler-generated code. On Cortex-A57 improvement
- # is still modest on longest key lengths, while others exhibit e.g.
- # 50-70% improvement for RSA4096 sign. RSA2048 sign is ~25% faster
- # on Cortex-A57 and ~60-100% faster on others.
- $flavour = shift;
- $output = shift;
- $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
- ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
- ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
- die "can't locate arm-xlate.pl";
- open OUT,"| \"$^X\" $xlate $flavour $output";
- *STDOUT=*OUT;
- ($lo0,$hi0,$aj,$m0,$alo,$ahi,
- $lo1,$hi1,$nj,$m1,$nlo,$nhi,
- $ovf, $i,$j,$tp,$tj) = map("x$_",6..17,19..24);
- # int bn_mul_mont(
- $rp="x0"; # BN_ULONG *rp,
- $ap="x1"; # const BN_ULONG *ap,
- $bp="x2"; # const BN_ULONG *bp,
- $np="x3"; # const BN_ULONG *np,
- $n0="x4"; # const BN_ULONG *n0,
- $num="x5"; # int num);
- $code.=<<___;
- .text
- .globl bn_mul_mont
- .type bn_mul_mont,%function
- .align 5
- bn_mul_mont:
- tst $num,#7
- b.eq __bn_sqr8x_mont
- tst $num,#3
- b.eq __bn_mul4x_mont
- .Lmul_mont:
- stp x29,x30,[sp,#-64]!
- add x29,sp,#0
- stp x19,x20,[sp,#16]
- stp x21,x22,[sp,#32]
- stp x23,x24,[sp,#48]
- ldr $m0,[$bp],#8 // bp[0]
- sub $tp,sp,$num,lsl#3
- ldp $hi0,$aj,[$ap],#16 // ap[0..1]
- lsl $num,$num,#3
- ldr $n0,[$n0] // *n0
- and $tp,$tp,#-16 // ABI says so
- ldp $hi1,$nj,[$np],#16 // np[0..1]
- mul $lo0,$hi0,$m0 // ap[0]*bp[0]
- sub $j,$num,#16 // j=num-2
- umulh $hi0,$hi0,$m0
- mul $alo,$aj,$m0 // ap[1]*bp[0]
- umulh $ahi,$aj,$m0
- mul $m1,$lo0,$n0 // "tp[0]"*n0
- mov sp,$tp // alloca
- // (*) mul $lo1,$hi1,$m1 // np[0]*m1
- umulh $hi1,$hi1,$m1
- mul $nlo,$nj,$m1 // np[1]*m1
- // (*) adds $lo1,$lo1,$lo0 // discarded
- // (*) As for removal of first multiplication and addition
- // instructions. The outcome of first addition is
- // guaranteed to be zero, which leaves two computationally
- // significant outcomes: it either carries or not. Then
- // question is when does it carry? Is there alternative
- // way to deduce it? If you follow operations, you can
- // observe that condition for carry is quite simple:
- // $lo0 being non-zero. So that carry can be calculated
- // by adding -1 to $lo0. That's what next instruction does.
- subs xzr,$lo0,#1 // (*)
- umulh $nhi,$nj,$m1
- adc $hi1,$hi1,xzr
- cbz $j,.L1st_skip
- .L1st:
- ldr $aj,[$ap],#8
- adds $lo0,$alo,$hi0
- sub $j,$j,#8 // j--
- adc $hi0,$ahi,xzr
- ldr $nj,[$np],#8
- adds $lo1,$nlo,$hi1
- mul $alo,$aj,$m0 // ap[j]*bp[0]
- adc $hi1,$nhi,xzr
- umulh $ahi,$aj,$m0
- adds $lo1,$lo1,$lo0
- mul $nlo,$nj,$m1 // np[j]*m1
- adc $hi1,$hi1,xzr
- umulh $nhi,$nj,$m1
- str $lo1,[$tp],#8 // tp[j-1]
- cbnz $j,.L1st
- .L1st_skip:
- adds $lo0,$alo,$hi0
- sub $ap,$ap,$num // rewind $ap
- adc $hi0,$ahi,xzr
- adds $lo1,$nlo,$hi1
- sub $np,$np,$num // rewind $np
- adc $hi1,$nhi,xzr
- adds $lo1,$lo1,$lo0
- sub $i,$num,#8 // i=num-1
- adcs $hi1,$hi1,$hi0
- adc $ovf,xzr,xzr // upmost overflow bit
- stp $lo1,$hi1,[$tp]
- .Louter:
- ldr $m0,[$bp],#8 // bp[i]
- ldp $hi0,$aj,[$ap],#16
- ldr $tj,[sp] // tp[0]
- add $tp,sp,#8
- mul $lo0,$hi0,$m0 // ap[0]*bp[i]
- sub $j,$num,#16 // j=num-2
- umulh $hi0,$hi0,$m0
- ldp $hi1,$nj,[$np],#16
- mul $alo,$aj,$m0 // ap[1]*bp[i]
- adds $lo0,$lo0,$tj
- umulh $ahi,$aj,$m0
- adc $hi0,$hi0,xzr
- mul $m1,$lo0,$n0
- sub $i,$i,#8 // i--
- // (*) mul $lo1,$hi1,$m1 // np[0]*m1
- umulh $hi1,$hi1,$m1
- mul $nlo,$nj,$m1 // np[1]*m1
- // (*) adds $lo1,$lo1,$lo0
- subs xzr,$lo0,#1 // (*)
- umulh $nhi,$nj,$m1
- cbz $j,.Linner_skip
- .Linner:
- ldr $aj,[$ap],#8
- adc $hi1,$hi1,xzr
- ldr $tj,[$tp],#8 // tp[j]
- adds $lo0,$alo,$hi0
- sub $j,$j,#8 // j--
- adc $hi0,$ahi,xzr
- adds $lo1,$nlo,$hi1
- ldr $nj,[$np],#8
- adc $hi1,$nhi,xzr
- mul $alo,$aj,$m0 // ap[j]*bp[i]
- adds $lo0,$lo0,$tj
- umulh $ahi,$aj,$m0
- adc $hi0,$hi0,xzr
- mul $nlo,$nj,$m1 // np[j]*m1
- adds $lo1,$lo1,$lo0
- umulh $nhi,$nj,$m1
- str $lo1,[$tp,#-16] // tp[j-1]
- cbnz $j,.Linner
- .Linner_skip:
- ldr $tj,[$tp],#8 // tp[j]
- adc $hi1,$hi1,xzr
- adds $lo0,$alo,$hi0
- sub $ap,$ap,$num // rewind $ap
- adc $hi0,$ahi,xzr
- adds $lo1,$nlo,$hi1
- sub $np,$np,$num // rewind $np
- adcs $hi1,$nhi,$ovf
- adc $ovf,xzr,xzr
- adds $lo0,$lo0,$tj
- adc $hi0,$hi0,xzr
- adds $lo1,$lo1,$lo0
- adcs $hi1,$hi1,$hi0
- adc $ovf,$ovf,xzr // upmost overflow bit
- stp $lo1,$hi1,[$tp,#-16]
- cbnz $i,.Louter
- // Final step. We see if result is larger than modulus, and
- // if it is, subtract the modulus. But comparison implies
- // subtraction. So we subtract modulus, see if it borrowed,
- // and conditionally copy original value.
- ldr $tj,[sp] // tp[0]
- add $tp,sp,#8
- ldr $nj,[$np],#8 // np[0]
- subs $j,$num,#8 // j=num-1 and clear borrow
- mov $ap,$rp
- .Lsub:
- sbcs $aj,$tj,$nj // tp[j]-np[j]
- ldr $tj,[$tp],#8
- sub $j,$j,#8 // j--
- ldr $nj,[$np],#8
- str $aj,[$ap],#8 // rp[j]=tp[j]-np[j]
- cbnz $j,.Lsub
- sbcs $aj,$tj,$nj
- sbcs $ovf,$ovf,xzr // did it borrow?
- str $aj,[$ap],#8 // rp[num-1]
- ldr $tj,[sp] // tp[0]
- add $tp,sp,#8
- ldr $aj,[$rp],#8 // rp[0]
- sub $num,$num,#8 // num--
- nop
- .Lcond_copy:
- sub $num,$num,#8 // num--
- csel $nj,$tj,$aj,lo // did it borrow?
- ldr $tj,[$tp],#8
- ldr $aj,[$rp],#8
- str xzr,[$tp,#-16] // wipe tp
- str $nj,[$rp,#-16]
- cbnz $num,.Lcond_copy
- csel $nj,$tj,$aj,lo
- str xzr,[$tp,#-8] // wipe tp
- str $nj,[$rp,#-8]
- ldp x19,x20,[x29,#16]
- mov sp,x29
- ldp x21,x22,[x29,#32]
- mov x0,#1
- ldp x23,x24,[x29,#48]
- ldr x29,[sp],#64
- ret
- .size bn_mul_mont,.-bn_mul_mont
- ___
- {
- ########################################################################
- # Following is ARMv8 adaptation of sqrx8x_mont from x86_64-mont5 module.
- my ($a0,$a1,$a2,$a3,$a4,$a5,$a6,$a7)=map("x$_",(6..13));
- my ($t0,$t1,$t2,$t3)=map("x$_",(14..17));
- my ($acc0,$acc1,$acc2,$acc3,$acc4,$acc5,$acc6,$acc7)=map("x$_",(19..26));
- my ($cnt,$carry,$topmost)=("x27","x28","x30");
- my ($tp,$ap_end,$na0)=($bp,$np,$carry);
- $code.=<<___;
- .type __bn_sqr8x_mont,%function
- .align 5
- __bn_sqr8x_mont:
- cmp $ap,$bp
- b.ne __bn_mul4x_mont
- .Lsqr8x_mont:
- stp x29,x30,[sp,#-128]!
- add x29,sp,#0
- stp x19,x20,[sp,#16]
- stp x21,x22,[sp,#32]
- stp x23,x24,[sp,#48]
- stp x25,x26,[sp,#64]
- stp x27,x28,[sp,#80]
- stp $rp,$np,[sp,#96] // offload rp and np
- ldp $a0,$a1,[$ap,#8*0]
- ldp $a2,$a3,[$ap,#8*2]
- ldp $a4,$a5,[$ap,#8*4]
- ldp $a6,$a7,[$ap,#8*6]
- sub $tp,sp,$num,lsl#4
- lsl $num,$num,#3
- ldr $n0,[$n0] // *n0
- mov sp,$tp // alloca
- sub $cnt,$num,#8*8
- b .Lsqr8x_zero_start
- .Lsqr8x_zero:
- sub $cnt,$cnt,#8*8
- stp xzr,xzr,[$tp,#8*0]
- stp xzr,xzr,[$tp,#8*2]
- stp xzr,xzr,[$tp,#8*4]
- stp xzr,xzr,[$tp,#8*6]
- .Lsqr8x_zero_start:
- stp xzr,xzr,[$tp,#8*8]
- stp xzr,xzr,[$tp,#8*10]
- stp xzr,xzr,[$tp,#8*12]
- stp xzr,xzr,[$tp,#8*14]
- add $tp,$tp,#8*16
- cbnz $cnt,.Lsqr8x_zero
- add $ap_end,$ap,$num
- add $ap,$ap,#8*8
- mov $acc0,xzr
- mov $acc1,xzr
- mov $acc2,xzr
- mov $acc3,xzr
- mov $acc4,xzr
- mov $acc5,xzr
- mov $acc6,xzr
- mov $acc7,xzr
- mov $tp,sp
- str $n0,[x29,#112] // offload n0
- // Multiply everything but a[i]*a[i]
- .align 4
- .Lsqr8x_outer_loop:
- // a[1]a[0] (i)
- // a[2]a[0]
- // a[3]a[0]
- // a[4]a[0]
- // a[5]a[0]
- // a[6]a[0]
- // a[7]a[0]
- // a[2]a[1] (ii)
- // a[3]a[1]
- // a[4]a[1]
- // a[5]a[1]
- // a[6]a[1]
- // a[7]a[1]
- // a[3]a[2] (iii)
- // a[4]a[2]
- // a[5]a[2]
- // a[6]a[2]
- // a[7]a[2]
- // a[4]a[3] (iv)
- // a[5]a[3]
- // a[6]a[3]
- // a[7]a[3]
- // a[5]a[4] (v)
- // a[6]a[4]
- // a[7]a[4]
- // a[6]a[5] (vi)
- // a[7]a[5]
- // a[7]a[6] (vii)
- mul $t0,$a1,$a0 // lo(a[1..7]*a[0]) (i)
- mul $t1,$a2,$a0
- mul $t2,$a3,$a0
- mul $t3,$a4,$a0
- adds $acc1,$acc1,$t0 // t[1]+lo(a[1]*a[0])
- mul $t0,$a5,$a0
- adcs $acc2,$acc2,$t1
- mul $t1,$a6,$a0
- adcs $acc3,$acc3,$t2
- mul $t2,$a7,$a0
- adcs $acc4,$acc4,$t3
- umulh $t3,$a1,$a0 // hi(a[1..7]*a[0])
- adcs $acc5,$acc5,$t0
- umulh $t0,$a2,$a0
- adcs $acc6,$acc6,$t1
- umulh $t1,$a3,$a0
- adcs $acc7,$acc7,$t2
- umulh $t2,$a4,$a0
- stp $acc0,$acc1,[$tp],#8*2 // t[0..1]
- adc $acc0,xzr,xzr // t[8]
- adds $acc2,$acc2,$t3 // t[2]+lo(a[1]*a[0])
- umulh $t3,$a5,$a0
- adcs $acc3,$acc3,$t0
- umulh $t0,$a6,$a0
- adcs $acc4,$acc4,$t1
- umulh $t1,$a7,$a0
- adcs $acc5,$acc5,$t2
- mul $t2,$a2,$a1 // lo(a[2..7]*a[1]) (ii)
- adcs $acc6,$acc6,$t3
- mul $t3,$a3,$a1
- adcs $acc7,$acc7,$t0
- mul $t0,$a4,$a1
- adc $acc0,$acc0,$t1
- mul $t1,$a5,$a1
- adds $acc3,$acc3,$t2
- mul $t2,$a6,$a1
- adcs $acc4,$acc4,$t3
- mul $t3,$a7,$a1
- adcs $acc5,$acc5,$t0
- umulh $t0,$a2,$a1 // hi(a[2..7]*a[1])
- adcs $acc6,$acc6,$t1
- umulh $t1,$a3,$a1
- adcs $acc7,$acc7,$t2
- umulh $t2,$a4,$a1
- adcs $acc0,$acc0,$t3
- umulh $t3,$a5,$a1
- stp $acc2,$acc3,[$tp],#8*2 // t[2..3]
- adc $acc1,xzr,xzr // t[9]
- adds $acc4,$acc4,$t0
- umulh $t0,$a6,$a1
- adcs $acc5,$acc5,$t1
- umulh $t1,$a7,$a1
- adcs $acc6,$acc6,$t2
- mul $t2,$a3,$a2 // lo(a[3..7]*a[2]) (iii)
- adcs $acc7,$acc7,$t3
- mul $t3,$a4,$a2
- adcs $acc0,$acc0,$t0
- mul $t0,$a5,$a2
- adc $acc1,$acc1,$t1
- mul $t1,$a6,$a2
- adds $acc5,$acc5,$t2
- mul $t2,$a7,$a2
- adcs $acc6,$acc6,$t3
- umulh $t3,$a3,$a2 // hi(a[3..7]*a[2])
- adcs $acc7,$acc7,$t0
- umulh $t0,$a4,$a2
- adcs $acc0,$acc0,$t1
- umulh $t1,$a5,$a2
- adcs $acc1,$acc1,$t2
- umulh $t2,$a6,$a2
- stp $acc4,$acc5,[$tp],#8*2 // t[4..5]
- adc $acc2,xzr,xzr // t[10]
- adds $acc6,$acc6,$t3
- umulh $t3,$a7,$a2
- adcs $acc7,$acc7,$t0
- mul $t0,$a4,$a3 // lo(a[4..7]*a[3]) (iv)
- adcs $acc0,$acc0,$t1
- mul $t1,$a5,$a3
- adcs $acc1,$acc1,$t2
- mul $t2,$a6,$a3
- adc $acc2,$acc2,$t3
- mul $t3,$a7,$a3
- adds $acc7,$acc7,$t0
- umulh $t0,$a4,$a3 // hi(a[4..7]*a[3])
- adcs $acc0,$acc0,$t1
- umulh $t1,$a5,$a3
- adcs $acc1,$acc1,$t2
- umulh $t2,$a6,$a3
- adcs $acc2,$acc2,$t3
- umulh $t3,$a7,$a3
- stp $acc6,$acc7,[$tp],#8*2 // t[6..7]
- adc $acc3,xzr,xzr // t[11]
- adds $acc0,$acc0,$t0
- mul $t0,$a5,$a4 // lo(a[5..7]*a[4]) (v)
- adcs $acc1,$acc1,$t1
- mul $t1,$a6,$a4
- adcs $acc2,$acc2,$t2
- mul $t2,$a7,$a4
- adc $acc3,$acc3,$t3
- umulh $t3,$a5,$a4 // hi(a[5..7]*a[4])
- adds $acc1,$acc1,$t0
- umulh $t0,$a6,$a4
- adcs $acc2,$acc2,$t1
- umulh $t1,$a7,$a4
- adcs $acc3,$acc3,$t2
- mul $t2,$a6,$a5 // lo(a[6..7]*a[5]) (vi)
- adc $acc4,xzr,xzr // t[12]
- adds $acc2,$acc2,$t3
- mul $t3,$a7,$a5
- adcs $acc3,$acc3,$t0
- umulh $t0,$a6,$a5 // hi(a[6..7]*a[5])
- adc $acc4,$acc4,$t1
- umulh $t1,$a7,$a5
- adds $acc3,$acc3,$t2
- mul $t2,$a7,$a6 // lo(a[7]*a[6]) (vii)
- adcs $acc4,$acc4,$t3
- umulh $t3,$a7,$a6 // hi(a[7]*a[6])
- adc $acc5,xzr,xzr // t[13]
- adds $acc4,$acc4,$t0
- sub $cnt,$ap_end,$ap // done yet?
- adc $acc5,$acc5,$t1
- adds $acc5,$acc5,$t2
- sub $t0,$ap_end,$num // rewinded ap
- adc $acc6,xzr,xzr // t[14]
- add $acc6,$acc6,$t3
- cbz $cnt,.Lsqr8x_outer_break
- mov $n0,$a0
- ldp $a0,$a1,[$tp,#8*0]
- ldp $a2,$a3,[$tp,#8*2]
- ldp $a4,$a5,[$tp,#8*4]
- ldp $a6,$a7,[$tp,#8*6]
- adds $acc0,$acc0,$a0
- adcs $acc1,$acc1,$a1
- ldp $a0,$a1,[$ap,#8*0]
- adcs $acc2,$acc2,$a2
- adcs $acc3,$acc3,$a3
- ldp $a2,$a3,[$ap,#8*2]
- adcs $acc4,$acc4,$a4
- adcs $acc5,$acc5,$a5
- ldp $a4,$a5,[$ap,#8*4]
- adcs $acc6,$acc6,$a6
- mov $rp,$ap
- adcs $acc7,xzr,$a7
- ldp $a6,$a7,[$ap,#8*6]
- add $ap,$ap,#8*8
- //adc $carry,xzr,xzr // moved below
- mov $cnt,#-8*8
- // a[8]a[0]
- // a[9]a[0]
- // a[a]a[0]
- // a[b]a[0]
- // a[c]a[0]
- // a[d]a[0]
- // a[e]a[0]
- // a[f]a[0]
- // a[8]a[1]
- // a[f]a[1]........................
- // a[8]a[2]
- // a[f]a[2]........................
- // a[8]a[3]
- // a[f]a[3]........................
- // a[8]a[4]
- // a[f]a[4]........................
- // a[8]a[5]
- // a[f]a[5]........................
- // a[8]a[6]
- // a[f]a[6]........................
- // a[8]a[7]
- // a[f]a[7]........................
- .Lsqr8x_mul:
- mul $t0,$a0,$n0
- adc $carry,xzr,xzr // carry bit, modulo-scheduled
- mul $t1,$a1,$n0
- add $cnt,$cnt,#8
- mul $t2,$a2,$n0
- mul $t3,$a3,$n0
- adds $acc0,$acc0,$t0
- mul $t0,$a4,$n0
- adcs $acc1,$acc1,$t1
- mul $t1,$a5,$n0
- adcs $acc2,$acc2,$t2
- mul $t2,$a6,$n0
- adcs $acc3,$acc3,$t3
- mul $t3,$a7,$n0
- adcs $acc4,$acc4,$t0
- umulh $t0,$a0,$n0
- adcs $acc5,$acc5,$t1
- umulh $t1,$a1,$n0
- adcs $acc6,$acc6,$t2
- umulh $t2,$a2,$n0
- adcs $acc7,$acc7,$t3
- umulh $t3,$a3,$n0
- adc $carry,$carry,xzr
- str $acc0,[$tp],#8
- adds $acc0,$acc1,$t0
- umulh $t0,$a4,$n0
- adcs $acc1,$acc2,$t1
- umulh $t1,$a5,$n0
- adcs $acc2,$acc3,$t2
- umulh $t2,$a6,$n0
- adcs $acc3,$acc4,$t3
- umulh $t3,$a7,$n0
- ldr $n0,[$rp,$cnt]
- adcs $acc4,$acc5,$t0
- adcs $acc5,$acc6,$t1
- adcs $acc6,$acc7,$t2
- adcs $acc7,$carry,$t3
- //adc $carry,xzr,xzr // moved above
- cbnz $cnt,.Lsqr8x_mul
- // note that carry flag is guaranteed
- // to be zero at this point
- cmp $ap,$ap_end // done yet?
- b.eq .Lsqr8x_break
- ldp $a0,$a1,[$tp,#8*0]
- ldp $a2,$a3,[$tp,#8*2]
- ldp $a4,$a5,[$tp,#8*4]
- ldp $a6,$a7,[$tp,#8*6]
- adds $acc0,$acc0,$a0
- ldr $n0,[$rp,#-8*8]
- adcs $acc1,$acc1,$a1
- ldp $a0,$a1,[$ap,#8*0]
- adcs $acc2,$acc2,$a2
- adcs $acc3,$acc3,$a3
- ldp $a2,$a3,[$ap,#8*2]
- adcs $acc4,$acc4,$a4
- adcs $acc5,$acc5,$a5
- ldp $a4,$a5,[$ap,#8*4]
- adcs $acc6,$acc6,$a6
- mov $cnt,#-8*8
- adcs $acc7,$acc7,$a7
- ldp $a6,$a7,[$ap,#8*6]
- add $ap,$ap,#8*8
- //adc $carry,xzr,xzr // moved above
- b .Lsqr8x_mul
- .align 4
- .Lsqr8x_break:
- ldp $a0,$a1,[$rp,#8*0]
- add $ap,$rp,#8*8
- ldp $a2,$a3,[$rp,#8*2]
- sub $t0,$ap_end,$ap // is it last iteration?
- ldp $a4,$a5,[$rp,#8*4]
- sub $t1,$tp,$t0
- ldp $a6,$a7,[$rp,#8*6]
- cbz $t0,.Lsqr8x_outer_loop
- stp $acc0,$acc1,[$tp,#8*0]
- ldp $acc0,$acc1,[$t1,#8*0]
- stp $acc2,$acc3,[$tp,#8*2]
- ldp $acc2,$acc3,[$t1,#8*2]
- stp $acc4,$acc5,[$tp,#8*4]
- ldp $acc4,$acc5,[$t1,#8*4]
- stp $acc6,$acc7,[$tp,#8*6]
- mov $tp,$t1
- ldp $acc6,$acc7,[$t1,#8*6]
- b .Lsqr8x_outer_loop
- .align 4
- .Lsqr8x_outer_break:
- // Now multiply above result by 2 and add a[n-1]*a[n-1]|...|a[0]*a[0]
- ldp $a1,$a3,[$t0,#8*0] // recall that $t0 is &a[0]
- ldp $t1,$t2,[sp,#8*1]
- ldp $a5,$a7,[$t0,#8*2]
- add $ap,$t0,#8*4
- ldp $t3,$t0,[sp,#8*3]
- stp $acc0,$acc1,[$tp,#8*0]
- mul $acc0,$a1,$a1
- stp $acc2,$acc3,[$tp,#8*2]
- umulh $a1,$a1,$a1
- stp $acc4,$acc5,[$tp,#8*4]
- mul $a2,$a3,$a3
- stp $acc6,$acc7,[$tp,#8*6]
- mov $tp,sp
- umulh $a3,$a3,$a3
- adds $acc1,$a1,$t1,lsl#1
- extr $t1,$t2,$t1,#63
- sub $cnt,$num,#8*4
- .Lsqr4x_shift_n_add:
- adcs $acc2,$a2,$t1
- extr $t2,$t3,$t2,#63
- sub $cnt,$cnt,#8*4
- adcs $acc3,$a3,$t2
- ldp $t1,$t2,[$tp,#8*5]
- mul $a4,$a5,$a5
- ldp $a1,$a3,[$ap],#8*2
- umulh $a5,$a5,$a5
- mul $a6,$a7,$a7
- umulh $a7,$a7,$a7
- extr $t3,$t0,$t3,#63
- stp $acc0,$acc1,[$tp,#8*0]
- adcs $acc4,$a4,$t3
- extr $t0,$t1,$t0,#63
- stp $acc2,$acc3,[$tp,#8*2]
- adcs $acc5,$a5,$t0
- ldp $t3,$t0,[$tp,#8*7]
- extr $t1,$t2,$t1,#63
- adcs $acc6,$a6,$t1
- extr $t2,$t3,$t2,#63
- adcs $acc7,$a7,$t2
- ldp $t1,$t2,[$tp,#8*9]
- mul $a0,$a1,$a1
- ldp $a5,$a7,[$ap],#8*2
- umulh $a1,$a1,$a1
- mul $a2,$a3,$a3
- umulh $a3,$a3,$a3
- stp $acc4,$acc5,[$tp,#8*4]
- extr $t3,$t0,$t3,#63
- stp $acc6,$acc7,[$tp,#8*6]
- add $tp,$tp,#8*8
- adcs $acc0,$a0,$t3
- extr $t0,$t1,$t0,#63
- adcs $acc1,$a1,$t0
- ldp $t3,$t0,[$tp,#8*3]
- extr $t1,$t2,$t1,#63
- cbnz $cnt,.Lsqr4x_shift_n_add
- ___
- my ($np,$np_end)=($ap,$ap_end);
- $code.=<<___;
- ldp $np,$n0,[x29,#104] // pull np and n0
- adcs $acc2,$a2,$t1
- extr $t2,$t3,$t2,#63
- adcs $acc3,$a3,$t2
- ldp $t1,$t2,[$tp,#8*5]
- mul $a4,$a5,$a5
- umulh $a5,$a5,$a5
- stp $acc0,$acc1,[$tp,#8*0]
- mul $a6,$a7,$a7
- umulh $a7,$a7,$a7
- stp $acc2,$acc3,[$tp,#8*2]
- extr $t3,$t0,$t3,#63
- adcs $acc4,$a4,$t3
- extr $t0,$t1,$t0,#63
- ldp $acc0,$acc1,[sp,#8*0]
- adcs $acc5,$a5,$t0
- extr $t1,$t2,$t1,#63
- ldp $a0,$a1,[$np,#8*0]
- adcs $acc6,$a6,$t1
- extr $t2,xzr,$t2,#63
- ldp $a2,$a3,[$np,#8*2]
- adc $acc7,$a7,$t2
- ldp $a4,$a5,[$np,#8*4]
- // Reduce by 512 bits per iteration
- mul $na0,$n0,$acc0 // t[0]*n0
- ldp $a6,$a7,[$np,#8*6]
- add $np_end,$np,$num
- ldp $acc2,$acc3,[sp,#8*2]
- stp $acc4,$acc5,[$tp,#8*4]
- ldp $acc4,$acc5,[sp,#8*4]
- stp $acc6,$acc7,[$tp,#8*6]
- ldp $acc6,$acc7,[sp,#8*6]
- add $np,$np,#8*8
- mov $topmost,xzr // initial top-most carry
- mov $tp,sp
- mov $cnt,#8
- .Lsqr8x_reduction:
- // (*) mul $t0,$a0,$na0 // lo(n[0-7])*lo(t[0]*n0)
- mul $t1,$a1,$na0
- sub $cnt,$cnt,#1
- mul $t2,$a2,$na0
- str $na0,[$tp],#8 // put aside t[0]*n0 for tail processing
- mul $t3,$a3,$na0
- // (*) adds xzr,$acc0,$t0
- subs xzr,$acc0,#1 // (*)
- mul $t0,$a4,$na0
- adcs $acc0,$acc1,$t1
- mul $t1,$a5,$na0
- adcs $acc1,$acc2,$t2
- mul $t2,$a6,$na0
- adcs $acc2,$acc3,$t3
- mul $t3,$a7,$na0
- adcs $acc3,$acc4,$t0
- umulh $t0,$a0,$na0 // hi(n[0-7])*lo(t[0]*n0)
- adcs $acc4,$acc5,$t1
- umulh $t1,$a1,$na0
- adcs $acc5,$acc6,$t2
- umulh $t2,$a2,$na0
- adcs $acc6,$acc7,$t3
- umulh $t3,$a3,$na0
- adc $acc7,xzr,xzr
- adds $acc0,$acc0,$t0
- umulh $t0,$a4,$na0
- adcs $acc1,$acc1,$t1
- umulh $t1,$a5,$na0
- adcs $acc2,$acc2,$t2
- umulh $t2,$a6,$na0
- adcs $acc3,$acc3,$t3
- umulh $t3,$a7,$na0
- mul $na0,$n0,$acc0 // next t[0]*n0
- adcs $acc4,$acc4,$t0
- adcs $acc5,$acc5,$t1
- adcs $acc6,$acc6,$t2
- adc $acc7,$acc7,$t3
- cbnz $cnt,.Lsqr8x_reduction
- ldp $t0,$t1,[$tp,#8*0]
- ldp $t2,$t3,[$tp,#8*2]
- mov $rp,$tp
- sub $cnt,$np_end,$np // done yet?
- adds $acc0,$acc0,$t0
- adcs $acc1,$acc1,$t1
- ldp $t0,$t1,[$tp,#8*4]
- adcs $acc2,$acc2,$t2
- adcs $acc3,$acc3,$t3
- ldp $t2,$t3,[$tp,#8*6]
- adcs $acc4,$acc4,$t0
- adcs $acc5,$acc5,$t1
- adcs $acc6,$acc6,$t2
- adcs $acc7,$acc7,$t3
- //adc $carry,xzr,xzr // moved below
- cbz $cnt,.Lsqr8x8_post_condition
- ldr $n0,[$tp,#-8*8]
- ldp $a0,$a1,[$np,#8*0]
- ldp $a2,$a3,[$np,#8*2]
- ldp $a4,$a5,[$np,#8*4]
- mov $cnt,#-8*8
- ldp $a6,$a7,[$np,#8*6]
- add $np,$np,#8*8
- .Lsqr8x_tail:
- mul $t0,$a0,$n0
- adc $carry,xzr,xzr // carry bit, modulo-scheduled
- mul $t1,$a1,$n0
- add $cnt,$cnt,#8
- mul $t2,$a2,$n0
- mul $t3,$a3,$n0
- adds $acc0,$acc0,$t0
- mul $t0,$a4,$n0
- adcs $acc1,$acc1,$t1
- mul $t1,$a5,$n0
- adcs $acc2,$acc2,$t2
- mul $t2,$a6,$n0
- adcs $acc3,$acc3,$t3
- mul $t3,$a7,$n0
- adcs $acc4,$acc4,$t0
- umulh $t0,$a0,$n0
- adcs $acc5,$acc5,$t1
- umulh $t1,$a1,$n0
- adcs $acc6,$acc6,$t2
- umulh $t2,$a2,$n0
- adcs $acc7,$acc7,$t3
- umulh $t3,$a3,$n0
- adc $carry,$carry,xzr
- str $acc0,[$tp],#8
- adds $acc0,$acc1,$t0
- umulh $t0,$a4,$n0
- adcs $acc1,$acc2,$t1
- umulh $t1,$a5,$n0
- adcs $acc2,$acc3,$t2
- umulh $t2,$a6,$n0
- adcs $acc3,$acc4,$t3
- umulh $t3,$a7,$n0
- ldr $n0,[$rp,$cnt]
- adcs $acc4,$acc5,$t0
- adcs $acc5,$acc6,$t1
- adcs $acc6,$acc7,$t2
- adcs $acc7,$carry,$t3
- //adc $carry,xzr,xzr // moved above
- cbnz $cnt,.Lsqr8x_tail
- // note that carry flag is guaranteed
- // to be zero at this point
- ldp $a0,$a1,[$tp,#8*0]
- sub $cnt,$np_end,$np // done yet?
- sub $t2,$np_end,$num // rewinded np
- ldp $a2,$a3,[$tp,#8*2]
- ldp $a4,$a5,[$tp,#8*4]
- ldp $a6,$a7,[$tp,#8*6]
- cbz $cnt,.Lsqr8x_tail_break
- ldr $n0,[$rp,#-8*8]
- adds $acc0,$acc0,$a0
- adcs $acc1,$acc1,$a1
- ldp $a0,$a1,[$np,#8*0]
- adcs $acc2,$acc2,$a2
- adcs $acc3,$acc3,$a3
- ldp $a2,$a3,[$np,#8*2]
- adcs $acc4,$acc4,$a4
- adcs $acc5,$acc5,$a5
- ldp $a4,$a5,[$np,#8*4]
- adcs $acc6,$acc6,$a6
- mov $cnt,#-8*8
- adcs $acc7,$acc7,$a7
- ldp $a6,$a7,[$np,#8*6]
- add $np,$np,#8*8
- //adc $carry,xzr,xzr // moved above
- b .Lsqr8x_tail
- .align 4
- .Lsqr8x_tail_break:
- ldr $n0,[x29,#112] // pull n0
- add $cnt,$tp,#8*8 // end of current t[num] window
- subs xzr,$topmost,#1 // "move" top-most carry to carry bit
- adcs $t0,$acc0,$a0
- adcs $t1,$acc1,$a1
- ldp $acc0,$acc1,[$rp,#8*0]
- adcs $acc2,$acc2,$a2
- ldp $a0,$a1,[$t2,#8*0] // recall that $t2 is &n[0]
- adcs $acc3,$acc3,$a3
- ldp $a2,$a3,[$t2,#8*2]
- adcs $acc4,$acc4,$a4
- adcs $acc5,$acc5,$a5
- ldp $a4,$a5,[$t2,#8*4]
- adcs $acc6,$acc6,$a6
- adcs $acc7,$acc7,$a7
- ldp $a6,$a7,[$t2,#8*6]
- add $np,$t2,#8*8
- adc $topmost,xzr,xzr // top-most carry
- mul $na0,$n0,$acc0
- stp $t0,$t1,[$tp,#8*0]
- stp $acc2,$acc3,[$tp,#8*2]
- ldp $acc2,$acc3,[$rp,#8*2]
- stp $acc4,$acc5,[$tp,#8*4]
- ldp $acc4,$acc5,[$rp,#8*4]
- cmp $cnt,x29 // did we hit the bottom?
- stp $acc6,$acc7,[$tp,#8*6]
- mov $tp,$rp // slide the window
- ldp $acc6,$acc7,[$rp,#8*6]
- mov $cnt,#8
- b.ne .Lsqr8x_reduction
- // Final step. We see if result is larger than modulus, and
- // if it is, subtract the modulus. But comparison implies
- // subtraction. So we subtract modulus, see if it borrowed,
- // and conditionally copy original value.
- ldr $rp,[x29,#96] // pull rp
- add $tp,$tp,#8*8
- subs $t0,$acc0,$a0
- sbcs $t1,$acc1,$a1
- sub $cnt,$num,#8*8
- mov $ap_end,$rp // $rp copy
- .Lsqr8x_sub:
- sbcs $t2,$acc2,$a2
- ldp $a0,$a1,[$np,#8*0]
- sbcs $t3,$acc3,$a3
- stp $t0,$t1,[$rp,#8*0]
- sbcs $t0,$acc4,$a4
- ldp $a2,$a3,[$np,#8*2]
- sbcs $t1,$acc5,$a5
- stp $t2,$t3,[$rp,#8*2]
- sbcs $t2,$acc6,$a6
- ldp $a4,$a5,[$np,#8*4]
- sbcs $t3,$acc7,$a7
- ldp $a6,$a7,[$np,#8*6]
- add $np,$np,#8*8
- ldp $acc0,$acc1,[$tp,#8*0]
- sub $cnt,$cnt,#8*8
- ldp $acc2,$acc3,[$tp,#8*2]
- ldp $acc4,$acc5,[$tp,#8*4]
- ldp $acc6,$acc7,[$tp,#8*6]
- add $tp,$tp,#8*8
- stp $t0,$t1,[$rp,#8*4]
- sbcs $t0,$acc0,$a0
- stp $t2,$t3,[$rp,#8*6]
- add $rp,$rp,#8*8
- sbcs $t1,$acc1,$a1
- cbnz $cnt,.Lsqr8x_sub
- sbcs $t2,$acc2,$a2
- mov $tp,sp
- add $ap,sp,$num
- ldp $a0,$a1,[$ap_end,#8*0]
- sbcs $t3,$acc3,$a3
- stp $t0,$t1,[$rp,#8*0]
- sbcs $t0,$acc4,$a4
- ldp $a2,$a3,[$ap_end,#8*2]
- sbcs $t1,$acc5,$a5
- stp $t2,$t3,[$rp,#8*2]
- sbcs $t2,$acc6,$a6
- ldp $acc0,$acc1,[$ap,#8*0]
- sbcs $t3,$acc7,$a7
- ldp $acc2,$acc3,[$ap,#8*2]
- sbcs xzr,$topmost,xzr // did it borrow?
- ldr x30,[x29,#8] // pull return address
- stp $t0,$t1,[$rp,#8*4]
- stp $t2,$t3,[$rp,#8*6]
- sub $cnt,$num,#8*4
- .Lsqr4x_cond_copy:
- sub $cnt,$cnt,#8*4
- csel $t0,$acc0,$a0,lo
- stp xzr,xzr,[$tp,#8*0]
- csel $t1,$acc1,$a1,lo
- ldp $a0,$a1,[$ap_end,#8*4]
- ldp $acc0,$acc1,[$ap,#8*4]
- csel $t2,$acc2,$a2,lo
- stp xzr,xzr,[$tp,#8*2]
- add $tp,$tp,#8*4
- csel $t3,$acc3,$a3,lo
- ldp $a2,$a3,[$ap_end,#8*6]
- ldp $acc2,$acc3,[$ap,#8*6]
- add $ap,$ap,#8*4
- stp $t0,$t1,[$ap_end,#8*0]
- stp $t2,$t3,[$ap_end,#8*2]
- add $ap_end,$ap_end,#8*4
- stp xzr,xzr,[$ap,#8*0]
- stp xzr,xzr,[$ap,#8*2]
- cbnz $cnt,.Lsqr4x_cond_copy
- csel $t0,$acc0,$a0,lo
- stp xzr,xzr,[$tp,#8*0]
- csel $t1,$acc1,$a1,lo
- stp xzr,xzr,[$tp,#8*2]
- csel $t2,$acc2,$a2,lo
- csel $t3,$acc3,$a3,lo
- stp $t0,$t1,[$ap_end,#8*0]
- stp $t2,$t3,[$ap_end,#8*2]
- b .Lsqr8x_done
- .align 4
- .Lsqr8x8_post_condition:
- adc $carry,xzr,xzr
- ldr x30,[x29,#8] // pull return address
- // $acc0-7,$carry hold result, $a0-7 hold modulus
- subs $a0,$acc0,$a0
- ldr $ap,[x29,#96] // pull rp
- sbcs $a1,$acc1,$a1
- stp xzr,xzr,[sp,#8*0]
- sbcs $a2,$acc2,$a2
- stp xzr,xzr,[sp,#8*2]
- sbcs $a3,$acc3,$a3
- stp xzr,xzr,[sp,#8*4]
- sbcs $a4,$acc4,$a4
- stp xzr,xzr,[sp,#8*6]
- sbcs $a5,$acc5,$a5
- stp xzr,xzr,[sp,#8*8]
- sbcs $a6,$acc6,$a6
- stp xzr,xzr,[sp,#8*10]
- sbcs $a7,$acc7,$a7
- stp xzr,xzr,[sp,#8*12]
- sbcs $carry,$carry,xzr // did it borrow?
- stp xzr,xzr,[sp,#8*14]
- // $a0-7 hold result-modulus
- csel $a0,$acc0,$a0,lo
- csel $a1,$acc1,$a1,lo
- csel $a2,$acc2,$a2,lo
- csel $a3,$acc3,$a3,lo
- stp $a0,$a1,[$ap,#8*0]
- csel $a4,$acc4,$a4,lo
- csel $a5,$acc5,$a5,lo
- stp $a2,$a3,[$ap,#8*2]
- csel $a6,$acc6,$a6,lo
- csel $a7,$acc7,$a7,lo
- stp $a4,$a5,[$ap,#8*4]
- stp $a6,$a7,[$ap,#8*6]
- .Lsqr8x_done:
- ldp x19,x20,[x29,#16]
- mov sp,x29
- ldp x21,x22,[x29,#32]
- mov x0,#1
- ldp x23,x24,[x29,#48]
- ldp x25,x26,[x29,#64]
- ldp x27,x28,[x29,#80]
- ldr x29,[sp],#128
- ret
- .size __bn_sqr8x_mont,.-__bn_sqr8x_mont
- ___
- }
- {
- ########################################################################
- # Even though this might look as ARMv8 adaptation of mulx4x_mont from
- # x86_64-mont5 module, it's different in sense that it performs
- # reduction 256 bits at a time.
- my ($a0,$a1,$a2,$a3,
- $t0,$t1,$t2,$t3,
- $m0,$m1,$m2,$m3,
- $acc0,$acc1,$acc2,$acc3,$acc4,
- $bi,$mi,$tp,$ap_end,$cnt) = map("x$_",(6..17,19..28));
- my $bp_end=$rp;
- my ($carry,$topmost) = ($rp,"x30");
- $code.=<<___;
- .type __bn_mul4x_mont,%function
- .align 5
- __bn_mul4x_mont:
- stp x29,x30,[sp,#-128]!
- add x29,sp,#0
- stp x19,x20,[sp,#16]
- stp x21,x22,[sp,#32]
- stp x23,x24,[sp,#48]
- stp x25,x26,[sp,#64]
- stp x27,x28,[sp,#80]
- sub $tp,sp,$num,lsl#3
- lsl $num,$num,#3
- ldr $n0,[$n0] // *n0
- sub sp,$tp,#8*4 // alloca
- add $t0,$bp,$num
- add $ap_end,$ap,$num
- stp $rp,$t0,[x29,#96] // offload rp and &b[num]
- ldr $bi,[$bp,#8*0] // b[0]
- ldp $a0,$a1,[$ap,#8*0] // a[0..3]
- ldp $a2,$a3,[$ap,#8*2]
- add $ap,$ap,#8*4
- mov $acc0,xzr
- mov $acc1,xzr
- mov $acc2,xzr
- mov $acc3,xzr
- ldp $m0,$m1,[$np,#8*0] // n[0..3]
- ldp $m2,$m3,[$np,#8*2]
- adds $np,$np,#8*4 // clear carry bit
- mov $carry,xzr
- mov $cnt,#0
- mov $tp,sp
- .Loop_mul4x_1st_reduction:
- mul $t0,$a0,$bi // lo(a[0..3]*b[0])
- adc $carry,$carry,xzr // modulo-scheduled
- mul $t1,$a1,$bi
- add $cnt,$cnt,#8
- mul $t2,$a2,$bi
- and $cnt,$cnt,#31
- mul $t3,$a3,$bi
- adds $acc0,$acc0,$t0
- umulh $t0,$a0,$bi // hi(a[0..3]*b[0])
- adcs $acc1,$acc1,$t1
- mul $mi,$acc0,$n0 // t[0]*n0
- adcs $acc2,$acc2,$t2
- umulh $t1,$a1,$bi
- adcs $acc3,$acc3,$t3
- umulh $t2,$a2,$bi
- adc $acc4,xzr,xzr
- umulh $t3,$a3,$bi
- ldr $bi,[$bp,$cnt] // next b[i] (or b[0])
- adds $acc1,$acc1,$t0
- // (*) mul $t0,$m0,$mi // lo(n[0..3]*t[0]*n0)
- str $mi,[$tp],#8 // put aside t[0]*n0 for tail processing
- adcs $acc2,$acc2,$t1
- mul $t1,$m1,$mi
- adcs $acc3,$acc3,$t2
- mul $t2,$m2,$mi
- adc $acc4,$acc4,$t3 // can't overflow
- mul $t3,$m3,$mi
- // (*) adds xzr,$acc0,$t0
- subs xzr,$acc0,#1 // (*)
- umulh $t0,$m0,$mi // hi(n[0..3]*t[0]*n0)
- adcs $acc0,$acc1,$t1
- umulh $t1,$m1,$mi
- adcs $acc1,$acc2,$t2
- umulh $t2,$m2,$mi
- adcs $acc2,$acc3,$t3
- umulh $t3,$m3,$mi
- adcs $acc3,$acc4,$carry
- adc $carry,xzr,xzr
- adds $acc0,$acc0,$t0
- sub $t0,$ap_end,$ap
- adcs $acc1,$acc1,$t1
- adcs $acc2,$acc2,$t2
- adcs $acc3,$acc3,$t3
- //adc $carry,$carry,xzr
- cbnz $cnt,.Loop_mul4x_1st_reduction
- cbz $t0,.Lmul4x4_post_condition
- ldp $a0,$a1,[$ap,#8*0] // a[4..7]
- ldp $a2,$a3,[$ap,#8*2]
- add $ap,$ap,#8*4
- ldr $mi,[sp] // a[0]*n0
- ldp $m0,$m1,[$np,#8*0] // n[4..7]
- ldp $m2,$m3,[$np,#8*2]
- add $np,$np,#8*4
- .Loop_mul4x_1st_tail:
- mul $t0,$a0,$bi // lo(a[4..7]*b[i])
- adc $carry,$carry,xzr // modulo-scheduled
- mul $t1,$a1,$bi
- add $cnt,$cnt,#8
- mul $t2,$a2,$bi
- and $cnt,$cnt,#31
- mul $t3,$a3,$bi
- adds $acc0,$acc0,$t0
- umulh $t0,$a0,$bi // hi(a[4..7]*b[i])
- adcs $acc1,$acc1,$t1
- umulh $t1,$a1,$bi
- adcs $acc2,$acc2,$t2
- umulh $t2,$a2,$bi
- adcs $acc3,$acc3,$t3
- umulh $t3,$a3,$bi
- adc $acc4,xzr,xzr
- ldr $bi,[$bp,$cnt] // next b[i] (or b[0])
- adds $acc1,$acc1,$t0
- mul $t0,$m0,$mi // lo(n[4..7]*a[0]*n0)
- adcs $acc2,$acc2,$t1
- mul $t1,$m1,$mi
- adcs $acc3,$acc3,$t2
- mul $t2,$m2,$mi
- adc $acc4,$acc4,$t3 // can't overflow
- mul $t3,$m3,$mi
- adds $acc0,$acc0,$t0
- umulh $t0,$m0,$mi // hi(n[4..7]*a[0]*n0)
- adcs $acc1,$acc1,$t1
- umulh $t1,$m1,$mi
- adcs $acc2,$acc2,$t2
- umulh $t2,$m2,$mi
- adcs $acc3,$acc3,$t3
- adcs $acc4,$acc4,$carry
- umulh $t3,$m3,$mi
- adc $carry,xzr,xzr
- ldr $mi,[sp,$cnt] // next t[0]*n0
- str $acc0,[$tp],#8 // result!!!
- adds $acc0,$acc1,$t0
- sub $t0,$ap_end,$ap // done yet?
- adcs $acc1,$acc2,$t1
- adcs $acc2,$acc3,$t2
- adcs $acc3,$acc4,$t3
- //adc $carry,$carry,xzr
- cbnz $cnt,.Loop_mul4x_1st_tail
- sub $t1,$ap_end,$num // rewinded $ap
- cbz $t0,.Lmul4x_proceed
- ldp $a0,$a1,[$ap,#8*0]
- ldp $a2,$a3,[$ap,#8*2]
- add $ap,$ap,#8*4
- ldp $m0,$m1,[$np,#8*0]
- ldp $m2,$m3,[$np,#8*2]
- add $np,$np,#8*4
- b .Loop_mul4x_1st_tail
- .align 5
- .Lmul4x_proceed:
- ldr $bi,[$bp,#8*4]! // *++b
- adc $topmost,$carry,xzr
- ldp $a0,$a1,[$t1,#8*0] // a[0..3]
- sub $np,$np,$num // rewind np
- ldp $a2,$a3,[$t1,#8*2]
- add $ap,$t1,#8*4
- stp $acc0,$acc1,[$tp,#8*0] // result!!!
- ldp $acc0,$acc1,[sp,#8*4] // t[0..3]
- stp $acc2,$acc3,[$tp,#8*2] // result!!!
- ldp $acc2,$acc3,[sp,#8*6]
- ldp $m0,$m1,[$np,#8*0] // n[0..3]
- mov $tp,sp
- ldp $m2,$m3,[$np,#8*2]
- adds $np,$np,#8*4 // clear carry bit
- mov $carry,xzr
- .align 4
- .Loop_mul4x_reduction:
- mul $t0,$a0,$bi // lo(a[0..3]*b[4])
- adc $carry,$carry,xzr // modulo-scheduled
- mul $t1,$a1,$bi
- add $cnt,$cnt,#8
- mul $t2,$a2,$bi
- and $cnt,$cnt,#31
- mul $t3,$a3,$bi
- adds $acc0,$acc0,$t0
- umulh $t0,$a0,$bi // hi(a[0..3]*b[4])
- adcs $acc1,$acc1,$t1
- mul $mi,$acc0,$n0 // t[0]*n0
- adcs $acc2,$acc2,$t2
- umulh $t1,$a1,$bi
- adcs $acc3,$acc3,$t3
- umulh $t2,$a2,$bi
- adc $acc4,xzr,xzr
- umulh $t3,$a3,$bi
- ldr $bi,[$bp,$cnt] // next b[i]
- adds $acc1,$acc1,$t0
- // (*) mul $t0,$m0,$mi
- str $mi,[$tp],#8 // put aside t[0]*n0 for tail processing
- adcs $acc2,$acc2,$t1
- mul $t1,$m1,$mi // lo(n[0..3]*t[0]*n0
- adcs $acc3,$acc3,$t2
- mul $t2,$m2,$mi
- adc $acc4,$acc4,$t3 // can't overflow
- mul $t3,$m3,$mi
- // (*) adds xzr,$acc0,$t0
- subs xzr,$acc0,#1 // (*)
- umulh $t0,$m0,$mi // hi(n[0..3]*t[0]*n0
- adcs $acc0,$acc1,$t1
- umulh $t1,$m1,$mi
- adcs $acc1,$acc2,$t2
- umulh $t2,$m2,$mi
- adcs $acc2,$acc3,$t3
- umulh $t3,$m3,$mi
- adcs $acc3,$acc4,$carry
- adc $carry,xzr,xzr
- adds $acc0,$acc0,$t0
- adcs $acc1,$acc1,$t1
- adcs $acc2,$acc2,$t2
- adcs $acc3,$acc3,$t3
- //adc $carry,$carry,xzr
- cbnz $cnt,.Loop_mul4x_reduction
- adc $carry,$carry,xzr
- ldp $t0,$t1,[$tp,#8*4] // t[4..7]
- ldp $t2,$t3,[$tp,#8*6]
- ldp $a0,$a1,[$ap,#8*0] // a[4..7]
- ldp $a2,$a3,[$ap,#8*2]
- add $ap,$ap,#8*4
- adds $acc0,$acc0,$t0
- adcs $acc1,$acc1,$t1
- adcs $acc2,$acc2,$t2
- adcs $acc3,$acc3,$t3
- //adc $carry,$carry,xzr
- ldr $mi,[sp] // t[0]*n0
- ldp $m0,$m1,[$np,#8*0] // n[4..7]
- ldp $m2,$m3,[$np,#8*2]
- add $np,$np,#8*4
- .align 4
- .Loop_mul4x_tail:
- mul $t0,$a0,$bi // lo(a[4..7]*b[4])
- adc $carry,$carry,xzr // modulo-scheduled
- mul $t1,$a1,$bi
- add $cnt,$cnt,#8
- mul $t2,$a2,$bi
- and $cnt,$cnt,#31
- mul $t3,$a3,$bi
- adds $acc0,$acc0,$t0
- umulh $t0,$a0,$bi // hi(a[4..7]*b[4])
- adcs $acc1,$acc1,$t1
- umulh $t1,$a1,$bi
- adcs $acc2,$acc2,$t2
- umulh $t2,$a2,$bi
- adcs $acc3,$acc3,$t3
- umulh $t3,$a3,$bi
- adc $acc4,xzr,xzr
- ldr $bi,[$bp,$cnt] // next b[i]
- adds $acc1,$acc1,$t0
- mul $t0,$m0,$mi // lo(n[4..7]*t[0]*n0)
- adcs $acc2,$acc2,$t1
- mul $t1,$m1,$mi
- adcs $acc3,$acc3,$t2
- mul $t2,$m2,$mi
- adc $acc4,$acc4,$t3 // can't overflow
- mul $t3,$m3,$mi
- adds $acc0,$acc0,$t0
- umulh $t0,$m0,$mi // hi(n[4..7]*t[0]*n0)
- adcs $acc1,$acc1,$t1
- umulh $t1,$m1,$mi
- adcs $acc2,$acc2,$t2
- umulh $t2,$m2,$mi
- adcs $acc3,$acc3,$t3
- umulh $t3,$m3,$mi
- adcs $acc4,$acc4,$carry
- ldr $mi,[sp,$cnt] // next a[0]*n0
- adc $carry,xzr,xzr
- str $acc0,[$tp],#8 // result!!!
- adds $acc0,$acc1,$t0
- sub $t0,$ap_end,$ap // done yet?
- adcs $acc1,$acc2,$t1
- adcs $acc2,$acc3,$t2
- adcs $acc3,$acc4,$t3
- //adc $carry,$carry,xzr
- cbnz $cnt,.Loop_mul4x_tail
- sub $t1,$np,$num // rewinded np?
- adc $carry,$carry,xzr
- cbz $t0,.Loop_mul4x_break
- ldp $t0,$t1,[$tp,#8*4]
- ldp $t2,$t3,[$tp,#8*6]
- ldp $a0,$a1,[$ap,#8*0]
- ldp $a2,$a3,[$ap,#8*2]
- add $ap,$ap,#8*4
- adds $acc0,$acc0,$t0
- adcs $acc1,$acc1,$t1
- adcs $acc2,$acc2,$t2
- adcs $acc3,$acc3,$t3
- //adc $carry,$carry,xzr
- ldp $m0,$m1,[$np,#8*0]
- ldp $m2,$m3,[$np,#8*2]
- add $np,$np,#8*4
- b .Loop_mul4x_tail
- .align 4
- .Loop_mul4x_break:
- ldp $t2,$t3,[x29,#96] // pull rp and &b[num]
- adds $acc0,$acc0,$topmost
- add $bp,$bp,#8*4 // bp++
- adcs $acc1,$acc1,xzr
- sub $ap,$ap,$num // rewind ap
- adcs $acc2,$acc2,xzr
- stp $acc0,$acc1,[$tp,#8*0] // result!!!
- adcs $acc3,$acc3,xzr
- ldp $acc0,$acc1,[sp,#8*4] // t[0..3]
- adc $topmost,$carry,xzr
- stp $acc2,$acc3,[$tp,#8*2] // result!!!
- cmp $bp,$t3 // done yet?
- ldp $acc2,$acc3,[sp,#8*6]
- ldp $m0,$m1,[$t1,#8*0] // n[0..3]
- ldp $m2,$m3,[$t1,#8*2]
- add $np,$t1,#8*4
- b.eq .Lmul4x_post
- ldr $bi,[$bp]
- ldp $a0,$a1,[$ap,#8*0] // a[0..3]
- ldp $a2,$a3,[$ap,#8*2]
- adds $ap,$ap,#8*4 // clear carry bit
- mov $carry,xzr
- mov $tp,sp
- b .Loop_mul4x_reduction
- .align 4
- .Lmul4x_post:
- // Final step. We see if result is larger than modulus, and
- // if it is, subtract the modulus. But comparison implies
- // subtraction. So we subtract modulus, see if it borrowed,
- // and conditionally copy original value.
- mov $rp,$t2
- mov $ap_end,$t2 // $rp copy
- subs $t0,$acc0,$m0
- add $tp,sp,#8*8
- sbcs $t1,$acc1,$m1
- sub $cnt,$num,#8*4
- .Lmul4x_sub:
- sbcs $t2,$acc2,$m2
- ldp $m0,$m1,[$np,#8*0]
- sub $cnt,$cnt,#8*4
- ldp $acc0,$acc1,[$tp,#8*0]
- sbcs $t3,$acc3,$m3
- ldp $m2,$m3,[$np,#8*2]
- add $np,$np,#8*4
- ldp $acc2,$acc3,[$tp,#8*2]
- add $tp,$tp,#8*4
- stp $t0,$t1,[$rp,#8*0]
- sbcs $t0,$acc0,$m0
- stp $t2,$t3,[$rp,#8*2]
- add $rp,$rp,#8*4
- sbcs $t1,$acc1,$m1
- cbnz $cnt,.Lmul4x_sub
- sbcs $t2,$acc2,$m2
- mov $tp,sp
- add $ap,sp,#8*4
- ldp $a0,$a1,[$ap_end,#8*0]
- sbcs $t3,$acc3,$m3
- stp $t0,$t1,[$rp,#8*0]
- ldp $a2,$a3,[$ap_end,#8*2]
- stp $t2,$t3,[$rp,#8*2]
- ldp $acc0,$acc1,[$ap,#8*0]
- ldp $acc2,$acc3,[$ap,#8*2]
- sbcs xzr,$topmost,xzr // did it borrow?
- ldr x30,[x29,#8] // pull return address
- sub $cnt,$num,#8*4
- .Lmul4x_cond_copy:
- sub $cnt,$cnt,#8*4
- csel $t0,$acc0,$a0,lo
- stp xzr,xzr,[$tp,#8*0]
- csel $t1,$acc1,$a1,lo
- ldp $a0,$a1,[$ap_end,#8*4]
- ldp $acc0,$acc1,[$ap,#8*4]
- csel $t2,$acc2,$a2,lo
- stp xzr,xzr,[$tp,#8*2]
- add $tp,$tp,#8*4
- csel $t3,$acc3,$a3,lo
- ldp $a2,$a3,[$ap_end,#8*6]
- ldp $acc2,$acc3,[$ap,#8*6]
- add $ap,$ap,#8*4
- stp $t0,$t1,[$ap_end,#8*0]
- stp $t2,$t3,[$ap_end,#8*2]
- add $ap_end,$ap_end,#8*4
- cbnz $cnt,.Lmul4x_cond_copy
- csel $t0,$acc0,$a0,lo
- stp xzr,xzr,[$tp,#8*0]
- csel $t1,$acc1,$a1,lo
- stp xzr,xzr,[$tp,#8*2]
- csel $t2,$acc2,$a2,lo
- stp xzr,xzr,[$tp,#8*3]
- csel $t3,$acc3,$a3,lo
- stp xzr,xzr,[$tp,#8*4]
- stp $t0,$t1,[$ap_end,#8*0]
- stp $t2,$t3,[$ap_end,#8*2]
- b .Lmul4x_done
- .align 4
- .Lmul4x4_post_condition:
- adc $carry,$carry,xzr
- ldr $ap,[x29,#96] // pull rp
- // $acc0-3,$carry hold result, $m0-7 hold modulus
- subs $a0,$acc0,$m0
- ldr x30,[x29,#8] // pull return address
- sbcs $a1,$acc1,$m1
- stp xzr,xzr,[sp,#8*0]
- sbcs $a2,$acc2,$m2
- stp xzr,xzr,[sp,#8*2]
- sbcs $a3,$acc3,$m3
- stp xzr,xzr,[sp,#8*4]
- sbcs xzr,$carry,xzr // did it borrow?
- stp xzr,xzr,[sp,#8*6]
- // $a0-3 hold result-modulus
- csel $a0,$acc0,$a0,lo
- csel $a1,$acc1,$a1,lo
- csel $a2,$acc2,$a2,lo
- csel $a3,$acc3,$a3,lo
- stp $a0,$a1,[$ap,#8*0]
- stp $a2,$a3,[$ap,#8*2]
- .Lmul4x_done:
- ldp x19,x20,[x29,#16]
- mov sp,x29
- ldp x21,x22,[x29,#32]
- mov x0,#1
- ldp x23,x24,[x29,#48]
- ldp x25,x26,[x29,#64]
- ldp x27,x28,[x29,#80]
- ldr x29,[sp],#128
- ret
- .size __bn_mul4x_mont,.-__bn_mul4x_mont
- ___
- }
- $code.=<<___;
- .asciz "Montgomery Multiplication for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
- .align 4
- ___
- print $code;
- close STDOUT;
|