123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- #! /usr/bin/env perl
- # Copyright 2010-2016 The OpenSSL Project Authors. All Rights Reserved.
- #
- # Licensed under the OpenSSL license (the "License"). You may not use
- # this file except in compliance with the License. You can obtain a copy
- # in the file LICENSE in the source distribution or at
- # https://www.openssl.org/source/license.html
- # ====================================================================
- # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
- # project. The module is, however, dual licensed under OpenSSL and
- # CRYPTOGAMS licenses depending on where you obtain it. For further
- # details see http://www.openssl.org/~appro/cryptogams/.
- # ====================================================================
- # September 2010.
- #
- # The module implements "4-bit" GCM GHASH function and underlying
- # single multiplication operation in GF(2^128). "4-bit" means that it
- # uses 256 bytes per-key table [+128 bytes shared table]. Performance
- # was measured to be ~18 cycles per processed byte on z10, which is
- # almost 40% better than gcc-generated code. It should be noted that
- # 18 cycles is worse result than expected: loop is scheduled for 12
- # and the result should be close to 12. In the lack of instruction-
- # level profiling data it's impossible to tell why...
- # November 2010.
- #
- # Adapt for -m31 build. If kernel supports what's called "highgprs"
- # feature on Linux [see /proc/cpuinfo], it's possible to use 64-bit
- # instructions and achieve "64-bit" performance even in 31-bit legacy
- # application context. The feature is not specific to any particular
- # processor, as long as it's "z-CPU". Latter implies that the code
- # remains z/Architecture specific. On z990 it was measured to perform
- # 2.8x better than 32-bit code generated by gcc 4.3.
- # March 2011.
- #
- # Support for hardware KIMD-GHASH is verified to produce correct
- # result and therefore is engaged. On z196 it was measured to process
- # 8KB buffer ~7 faster than software implementation. It's not as
- # impressive for smaller buffer sizes and for smallest 16-bytes buffer
- # it's actually almost 2 times slower. Which is the reason why
- # KIMD-GHASH is not used in gcm_gmult_4bit.
- $flavour = shift;
- if ($flavour =~ /3[12]/) {
- $SIZE_T=4;
- $g="";
- } else {
- $SIZE_T=8;
- $g="g";
- }
- while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {}
- open STDOUT,">$output";
- $softonly=0;
- $Zhi="%r0";
- $Zlo="%r1";
- $Xi="%r2"; # argument block
- $Htbl="%r3";
- $inp="%r4";
- $len="%r5";
- $rem0="%r6"; # variables
- $rem1="%r7";
- $nlo="%r8";
- $nhi="%r9";
- $xi="%r10";
- $cnt="%r11";
- $tmp="%r12";
- $x78="%r13";
- $rem_4bit="%r14";
- $sp="%r15";
- $code.=<<___;
- #include "s390x_arch.h"
- .text
- .globl gcm_gmult_4bit
- .align 32
- gcm_gmult_4bit:
- ___
- $code.=<<___ if(!$softonly && 0); # hardware is slow for single block...
- larl %r1,OPENSSL_s390xcap_P
- lghi %r0,0
- lg %r1,S390X_KIMD+8(%r1) # load second word of kimd capabilities
- # vector
- tmhh %r1,0x4000 # check for function 65
- jz .Lsoft_gmult
- stg %r0,16($sp) # arrange 16 bytes of zero input
- stg %r0,24($sp)
- lghi %r0,S390X_GHASH # function 65
- la %r1,0($Xi) # H lies right after Xi in gcm128_context
- la $inp,16($sp)
- lghi $len,16
- .long 0xb93e0004 # kimd %r0,$inp
- brc 1,.-4 # pay attention to "partial completion"
- br %r14
- .align 32
- .Lsoft_gmult:
- ___
- $code.=<<___;
- stm${g} %r6,%r14,6*$SIZE_T($sp)
- aghi $Xi,-1
- lghi $len,1
- lghi $x78,`0xf<<3`
- larl $rem_4bit,rem_4bit
- lg $Zlo,8+1($Xi) # Xi
- j .Lgmult_shortcut
- .type gcm_gmult_4bit,\@function
- .size gcm_gmult_4bit,(.-gcm_gmult_4bit)
- .globl gcm_ghash_4bit
- .align 32
- gcm_ghash_4bit:
- ___
- $code.=<<___ if(!$softonly);
- larl %r1,OPENSSL_s390xcap_P
- lg %r0,S390X_KIMD+8(%r1) # load second word of kimd capabilities
- # vector
- tmhh %r0,0x4000 # check for function 65
- jz .Lsoft_ghash
- lghi %r0,S390X_GHASH # function 65
- la %r1,0($Xi) # H lies right after Xi in gcm128_context
- .long 0xb93e0004 # kimd %r0,$inp
- brc 1,.-4 # pay attention to "partial completion"
- br %r14
- .align 32
- .Lsoft_ghash:
- ___
- $code.=<<___ if ($flavour =~ /3[12]/);
- llgfr $len,$len
- ___
- $code.=<<___;
- stm${g} %r6,%r14,6*$SIZE_T($sp)
- aghi $Xi,-1
- srlg $len,$len,4
- lghi $x78,`0xf<<3`
- larl $rem_4bit,rem_4bit
- lg $Zlo,8+1($Xi) # Xi
- lg $Zhi,0+1($Xi)
- lghi $tmp,0
- .Louter:
- xg $Zhi,0($inp) # Xi ^= inp
- xg $Zlo,8($inp)
- xgr $Zhi,$tmp
- stg $Zlo,8+1($Xi)
- stg $Zhi,0+1($Xi)
- .Lgmult_shortcut:
- lghi $tmp,0xf0
- sllg $nlo,$Zlo,4
- srlg $xi,$Zlo,8 # extract second byte
- ngr $nlo,$tmp
- lgr $nhi,$Zlo
- lghi $cnt,14
- ngr $nhi,$tmp
- lg $Zlo,8($nlo,$Htbl)
- lg $Zhi,0($nlo,$Htbl)
- sllg $nlo,$xi,4
- sllg $rem0,$Zlo,3
- ngr $nlo,$tmp
- ngr $rem0,$x78
- ngr $xi,$tmp
- sllg $tmp,$Zhi,60
- srlg $Zlo,$Zlo,4
- srlg $Zhi,$Zhi,4
- xg $Zlo,8($nhi,$Htbl)
- xg $Zhi,0($nhi,$Htbl)
- lgr $nhi,$xi
- sllg $rem1,$Zlo,3
- xgr $Zlo,$tmp
- ngr $rem1,$x78
- sllg $tmp,$Zhi,60
- j .Lghash_inner
- .align 16
- .Lghash_inner:
- srlg $Zlo,$Zlo,4
- srlg $Zhi,$Zhi,4
- xg $Zlo,8($nlo,$Htbl)
- llgc $xi,0($cnt,$Xi)
- xg $Zhi,0($nlo,$Htbl)
- sllg $nlo,$xi,4
- xg $Zhi,0($rem0,$rem_4bit)
- nill $nlo,0xf0
- sllg $rem0,$Zlo,3
- xgr $Zlo,$tmp
- ngr $rem0,$x78
- nill $xi,0xf0
- sllg $tmp,$Zhi,60
- srlg $Zlo,$Zlo,4
- srlg $Zhi,$Zhi,4
- xg $Zlo,8($nhi,$Htbl)
- xg $Zhi,0($nhi,$Htbl)
- lgr $nhi,$xi
- xg $Zhi,0($rem1,$rem_4bit)
- sllg $rem1,$Zlo,3
- xgr $Zlo,$tmp
- ngr $rem1,$x78
- sllg $tmp,$Zhi,60
- brct $cnt,.Lghash_inner
- srlg $Zlo,$Zlo,4
- srlg $Zhi,$Zhi,4
- xg $Zlo,8($nlo,$Htbl)
- xg $Zhi,0($nlo,$Htbl)
- sllg $xi,$Zlo,3
- xg $Zhi,0($rem0,$rem_4bit)
- xgr $Zlo,$tmp
- ngr $xi,$x78
- sllg $tmp,$Zhi,60
- srlg $Zlo,$Zlo,4
- srlg $Zhi,$Zhi,4
- xg $Zlo,8($nhi,$Htbl)
- xg $Zhi,0($nhi,$Htbl)
- xgr $Zlo,$tmp
- xg $Zhi,0($rem1,$rem_4bit)
- lg $tmp,0($xi,$rem_4bit)
- la $inp,16($inp)
- sllg $tmp,$tmp,4 # correct last rem_4bit[rem]
- brctg $len,.Louter
- xgr $Zhi,$tmp
- stg $Zlo,8+1($Xi)
- stg $Zhi,0+1($Xi)
- lm${g} %r6,%r14,6*$SIZE_T($sp)
- br %r14
- .type gcm_ghash_4bit,\@function
- .size gcm_ghash_4bit,(.-gcm_ghash_4bit)
- .align 64
- rem_4bit:
- .long `0x0000<<12`,0,`0x1C20<<12`,0,`0x3840<<12`,0,`0x2460<<12`,0
- .long `0x7080<<12`,0,`0x6CA0<<12`,0,`0x48C0<<12`,0,`0x54E0<<12`,0
- .long `0xE100<<12`,0,`0xFD20<<12`,0,`0xD940<<12`,0,`0xC560<<12`,0
- .long `0x9180<<12`,0,`0x8DA0<<12`,0,`0xA9C0<<12`,0,`0xB5E0<<12`,0
- .type rem_4bit,\@object
- .size rem_4bit,(.-rem_4bit)
- .string "GHASH for s390x, CRYPTOGAMS by <appro\@openssl.org>"
- ___
- $code =~ s/\`([^\`]*)\`/eval $1/gem;
- print $code;
- close STDOUT;
|