123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- =pod
- =head1 NAME
- EVP_aes_128_cbc,
- EVP_aes_192_cbc,
- EVP_aes_256_cbc,
- EVP_aes_128_cfb,
- EVP_aes_192_cfb,
- EVP_aes_256_cfb,
- EVP_aes_128_cfb1,
- EVP_aes_192_cfb1,
- EVP_aes_256_cfb1,
- EVP_aes_128_cfb8,
- EVP_aes_192_cfb8,
- EVP_aes_256_cfb8,
- EVP_aes_128_ctr,
- EVP_aes_192_ctr,
- EVP_aes_256_ctr,
- EVP_aes_128_ecb,
- EVP_aes_192_ecb,
- EVP_aes_256_ecb,
- EVP_aes_128_ofb,
- EVP_aes_192_ofb,
- EVP_aes_256_ofb,
- EVP_aes_128_cbc_hmac_sha1,
- EVP_aes_256_cbc_hmac_sha1,
- EVP_aes_128_cbc_hmac_sha256,
- EVP_aes_256_cbc_hmac_sha256,
- EVP_aes_128_ccm,
- EVP_aes_192_ccm,
- EVP_aes_256_ccm,
- EVP_aes_128_gcm,
- EVP_aes_192_gcm,
- EVP_aes_256_gcm,
- EVP_aes_128_ocb,
- EVP_aes_192_ocb,
- EVP_aes_256_ocb,
- EVP_aes_128_wrap,
- EVP_aes_192_wrap,
- EVP_aes_256_wrap,
- EVP_aes_128_wrap_pad,
- EVP_aes_192_wrap_pad,
- EVP_aes_256_wrap_pad,
- EVP_aes_128_xts,
- EVP_aes_256_xts
- - EVP AES cipher
- =head1 SYNOPSIS
- =for comment generic
- #include <openssl/evp.h>
- const EVP_CIPHER *EVP_ciphername(void)
- I<EVP_ciphername> is used a placeholder for any of the described cipher
- functions, such as I<EVP_aes_128_cbc>.
- =head1 DESCRIPTION
- The AES encryption algorithm for EVP.
- =over 4
- =item EVP_aes_128_cbc(),
- EVP_aes_192_cbc(),
- EVP_aes_256_cbc(),
- EVP_aes_128_cfb(),
- EVP_aes_192_cfb(),
- EVP_aes_256_cfb(),
- EVP_aes_128_cfb1(),
- EVP_aes_192_cfb1(),
- EVP_aes_256_cfb1(),
- EVP_aes_128_cfb8(),
- EVP_aes_192_cfb8(),
- EVP_aes_256_cfb8(),
- EVP_aes_128_ctr(),
- EVP_aes_192_ctr(),
- EVP_aes_256_ctr(),
- EVP_aes_128_ecb(),
- EVP_aes_192_ecb(),
- EVP_aes_256_ecb(),
- EVP_aes_128_ofb(),
- EVP_aes_192_ofb(),
- EVP_aes_256_ofb()
- AES for 128, 192 and 256 bit keys in the following modes: CBC, CFB with 128-bit
- shift, CFB with 1-bit shift, CFB with 8-bit shift, CTR, ECB, and OFB.
- =item EVP_aes_128_cbc_hmac_sha1(),
- EVP_aes_256_cbc_hmac_sha1()
- Authenticated encryption with AES in CBC mode using SHA-1 as HMAC, with keys of
- 128 and 256 bits length respectively. The authentication tag is 160 bits long.
- WARNING: this is not intended for usage outside of TLS and requires calling of
- some undocumented ctrl functions. These ciphers do not conform to the EVP AEAD
- interface.
- =item EVP_aes_128_cbc_hmac_sha256(),
- EVP_aes_256_cbc_hmac_sha256()
- Authenticated encryption with AES in CBC mode using SHA256 (SHA-2, 256-bits) as
- HMAC, with keys of 128 and 256 bits length respectively. The authentication tag
- is 256 bits long.
- WARNING: this is not intended for usage outside of TLS and requires calling of
- some undocumented ctrl functions. These ciphers do not conform to the EVP AEAD
- interface.
- =item EVP_aes_128_ccm(),
- EVP_aes_192_ccm(),
- EVP_aes_256_ccm(),
- EVP_aes_128_gcm(),
- EVP_aes_192_gcm(),
- EVP_aes_256_gcm(),
- EVP_aes_128_ocb(),
- EVP_aes_192_ocb(),
- EVP_aes_256_ocb()
- AES for 128, 192 and 256 bit keys in CBC-MAC Mode (CCM), Galois Counter Mode
- (GCM) and OCB Mode respectively. These ciphers require additional control
- operations to function correctly, see the L<EVP_EncryptInit(3)/AEAD Interface>
- section for details.
- =item EVP_aes_128_wrap(),
- EVP_aes_192_wrap(),
- EVP_aes_256_wrap(),
- EVP_aes_128_wrap_pad(),
- EVP_aes_128_wrap(),
- EVP_aes_192_wrap(),
- EVP_aes_256_wrap(),
- EVP_aes_192_wrap_pad(),
- EVP_aes_128_wrap(),
- EVP_aes_192_wrap(),
- EVP_aes_256_wrap(),
- EVP_aes_256_wrap_pad()
- AES key wrap with 128, 192 and 256 bit keys, as according to RFC 3394 section
- 2.2.1 ("wrap") and RFC 5649 section 4.1 ("wrap with padding") respectively.
- =item EVP_aes_128_xts(),
- EVP_aes_256_xts()
- AES XTS mode (XTS-AES) is standardized in IEEE Std. 1619-2007 and described in NIST
- SP 800-38E. The XTS (XEX-based tweaked-codebook mode with ciphertext stealing)
- mode was designed by Prof. Phillip Rogaway of University of California, Davis,
- intended for encrypting data on a storage device.
- XTS-AES provides confidentiality but not authentication of data. It also
- requires a key of double-length for protection of a certain key size.
- In particular, XTS-AES-128 (B<EVP_aes_128_xts>) takes input of a 256-bit key to
- achieve AES 128-bit security, and XTS-AES-256 (B<EVP_aes_256_xts>) takes input
- of a 512-bit key to achieve AES 256-bit security.
- =back
- =head1 RETURN VALUES
- These functions return an B<EVP_CIPHER> structure that contains the
- implementation of the symmetric cipher. See L<EVP_CIPHER_meth_new(3)> for
- details of the B<EVP_CIPHER> structure.
- =head1 SEE ALSO
- L<evp(7)>,
- L<EVP_EncryptInit(3)>,
- L<EVP_CIPHER_meth_new(3)>
- =head1 COPYRIGHT
- Copyright 2017 The OpenSSL Project Authors. All Rights Reserved.
- Licensed under the OpenSSL license (the "License"). You may not use
- this file except in compliance with the License. You can obtain a copy
- in the file LICENSE in the source distribution or at
- L<https://www.openssl.org/source/license.html>.
- =cut
|