123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- /* Edwards curve operations
- * Daniel Beer <dlbeer@gmail.com>, 9 Jan 2014
- *
- * This file is in the public domain.
- */
- #include "ed25519.h"
- /* Base point is (numbers wrapped):
- *
- * x = 151122213495354007725011514095885315114
- * 54012693041857206046113283949847762202
- * y = 463168356949264781694283940034751631413
- * 07993866256225615783033603165251855960
- *
- * y is derived by transforming the original Montgomery base (u=9). x
- * is the corresponding positive coordinate for the new curve equation.
- * t is x*y.
- */
- const struct ed25519_pt ed25519_base = {
- .x = {
- 0x1a, 0xd5, 0x25, 0x8f, 0x60, 0x2d, 0x56, 0xc9,
- 0xb2, 0xa7, 0x25, 0x95, 0x60, 0xc7, 0x2c, 0x69,
- 0x5c, 0xdc, 0xd6, 0xfd, 0x31, 0xe2, 0xa4, 0xc0,
- 0xfe, 0x53, 0x6e, 0xcd, 0xd3, 0x36, 0x69, 0x21
- },
- .y = {
- 0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
- 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
- 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
- 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66
- },
- .t = {
- 0xa3, 0xdd, 0xb7, 0xa5, 0xb3, 0x8a, 0xde, 0x6d,
- 0xf5, 0x52, 0x51, 0x77, 0x80, 0x9f, 0xf0, 0x20,
- 0x7d, 0xe3, 0xab, 0x64, 0x8e, 0x4e, 0xea, 0x66,
- 0x65, 0x76, 0x8b, 0xd7, 0x0f, 0x5f, 0x87, 0x67
- },
- .z = {1, 0}
- };
- static const struct ed25519_pt ed25519_neutral = {
- .x = {0},
- .y = {1, 0},
- .t = {0},
- .z = {1, 0}
- };
- /* Conversion to and from projective coordinates */
- void ed25519_project(struct ed25519_pt *p,
- const uint8_t *x, const uint8_t *y)
- {
- f25519_copy(p->x, x);
- f25519_copy(p->y, y);
- f25519_load(p->z, 1);
- f25519_mul__distinct(p->t, x, y);
- }
- void ed25519_unproject(uint8_t *x, uint8_t *y,
- const struct ed25519_pt *p)
- {
- uint8_t z1[F25519_SIZE];
- f25519_inv__distinct(z1, p->z);
- f25519_mul__distinct(x, p->x, z1);
- f25519_mul__distinct(y, p->y, z1);
- f25519_normalize(x);
- f25519_normalize(y);
- }
- /* Compress/uncompress points. We compress points by storing the x
- * coordinate and the parity of the y coordinate.
- *
- * Rearranging the curve equation, we obtain explicit formulae for the
- * coordinates:
- *
- * x = sqrt((y^2-1) / (1+dy^2))
- * y = sqrt((x^2+1) / (1-dx^2))
- *
- * Where d = (-121665/121666), or:
- *
- * d = 370957059346694393431380835087545651895
- * 42113879843219016388785533085940283555
- */
- static const uint8_t ed25519_d[F25519_SIZE] = {
- 0xa3, 0x78, 0x59, 0x13, 0xca, 0x4d, 0xeb, 0x75,
- 0xab, 0xd8, 0x41, 0x41, 0x4d, 0x0a, 0x70, 0x00,
- 0x98, 0xe8, 0x79, 0x77, 0x79, 0x40, 0xc7, 0x8c,
- 0x73, 0xfe, 0x6f, 0x2b, 0xee, 0x6c, 0x03, 0x52
- };
- void ed25519_pack(uint8_t *c, const uint8_t *x, const uint8_t *y)
- {
- uint8_t tmp[F25519_SIZE];
- uint8_t parity;
- f25519_copy(tmp, x);
- f25519_normalize(tmp);
- parity = (tmp[0] & 1) << 7;
- f25519_copy(c, y);
- f25519_normalize(c);
- c[31] |= parity;
- }
- uint8_t ed25519_try_unpack(uint8_t *x, uint8_t *y, const uint8_t *comp)
- {
- const int parity = comp[31] >> 7;
- uint8_t a[F25519_SIZE];
- uint8_t b[F25519_SIZE];
- uint8_t c[F25519_SIZE];
- /* Unpack y */
- f25519_copy(y, comp);
- y[31] &= 127;
- /* Compute c = y^2 */
- f25519_mul__distinct(c, y, y);
- /* Compute b = (1+dy^2)^-1 */
- f25519_mul__distinct(b, c, ed25519_d);
- f25519_add(a, b, f25519_one);
- f25519_inv__distinct(b, a);
- /* Compute a = y^2-1 */
- f25519_sub(a, c, f25519_one);
- /* Compute c = a*b = (y^2-1)/(1-dy^2) */
- f25519_mul__distinct(c, a, b);
- /* Compute a, b = +/-sqrt(c), if c is square */
- f25519_sqrt(a, c);
- f25519_neg(b, a);
- /* Select one of them, based on the compressed parity bit */
- f25519_select(x, a, b, (a[0] ^ parity) & 1);
- /* Verify that x^2 = c */
- f25519_mul__distinct(a, x, x);
- f25519_normalize(a);
- f25519_normalize(c);
- return f25519_eq(a, c);
- }
- /* k = 2d */
- static const uint8_t ed25519_k[F25519_SIZE] = {
- 0x59, 0xf1, 0xb2, 0x26, 0x94, 0x9b, 0xd6, 0xeb,
- 0x56, 0xb1, 0x83, 0x82, 0x9a, 0x14, 0xe0, 0x00,
- 0x30, 0xd1, 0xf3, 0xee, 0xf2, 0x80, 0x8e, 0x19,
- 0xe7, 0xfc, 0xdf, 0x56, 0xdc, 0xd9, 0x06, 0x24
- };
- void ed25519_add(struct ed25519_pt *r,
- const struct ed25519_pt *p1, const struct ed25519_pt *p2)
- {
- /* Explicit formulas database: add-2008-hwcd-3
- *
- * source 2008 Hisil--Wong--Carter--Dawson,
- * http://eprint.iacr.org/2008/522, Section 3.1
- * appliesto extended-1
- * parameter k
- * assume k = 2 d
- * compute A = (Y1-X1)(Y2-X2)
- * compute B = (Y1+X1)(Y2+X2)
- * compute C = T1 k T2
- * compute D = Z1 2 Z2
- * compute E = B - A
- * compute F = D - C
- * compute G = D + C
- * compute H = B + A
- * compute X3 = E F
- * compute Y3 = G H
- * compute T3 = E H
- * compute Z3 = F G
- */
- uint8_t a[F25519_SIZE];
- uint8_t b[F25519_SIZE];
- uint8_t c[F25519_SIZE];
- uint8_t d[F25519_SIZE];
- uint8_t e[F25519_SIZE];
- uint8_t f[F25519_SIZE];
- uint8_t g[F25519_SIZE];
- uint8_t h[F25519_SIZE];
- /* A = (Y1-X1)(Y2-X2) */
- f25519_sub(c, p1->y, p1->x);
- f25519_sub(d, p2->y, p2->x);
- f25519_mul__distinct(a, c, d);
- /* B = (Y1+X1)(Y2+X2) */
- f25519_add(c, p1->y, p1->x);
- f25519_add(d, p2->y, p2->x);
- f25519_mul__distinct(b, c, d);
- /* C = T1 k T2 */
- f25519_mul__distinct(d, p1->t, p2->t);
- f25519_mul__distinct(c, d, ed25519_k);
- /* D = Z1 2 Z2 */
- f25519_mul__distinct(d, p1->z, p2->z);
- f25519_add(d, d, d);
- /* E = B - A */
- f25519_sub(e, b, a);
- /* F = D - C */
- f25519_sub(f, d, c);
- /* G = D + C */
- f25519_add(g, d, c);
- /* H = B + A */
- f25519_add(h, b, a);
- /* X3 = E F */
- f25519_mul__distinct(r->x, e, f);
- /* Y3 = G H */
- f25519_mul__distinct(r->y, g, h);
- /* T3 = E H */
- f25519_mul__distinct(r->t, e, h);
- /* Z3 = F G */
- f25519_mul__distinct(r->z, f, g);
- }
- static void ed25519_double(struct ed25519_pt *r, const struct ed25519_pt *p)
- {
- /* Explicit formulas database: dbl-2008-hwcd
- *
- * source 2008 Hisil--Wong--Carter--Dawson,
- * http://eprint.iacr.org/2008/522, Section 3.3
- * compute A = X1^2
- * compute B = Y1^2
- * compute C = 2 Z1^2
- * compute D = a A
- * compute E = (X1+Y1)^2-A-B
- * compute G = D + B
- * compute F = G - C
- * compute H = D - B
- * compute X3 = E F
- * compute Y3 = G H
- * compute T3 = E H
- * compute Z3 = F G
- */
- uint8_t a[F25519_SIZE];
- uint8_t b[F25519_SIZE];
- uint8_t c[F25519_SIZE];
- uint8_t e[F25519_SIZE];
- uint8_t f[F25519_SIZE];
- uint8_t g[F25519_SIZE];
- uint8_t h[F25519_SIZE];
- /* A = X1^2 */
- f25519_mul__distinct(a, p->x, p->x);
- /* B = Y1^2 */
- f25519_mul__distinct(b, p->y, p->y);
- /* C = 2 Z1^2 */
- f25519_mul__distinct(c, p->z, p->z);
- f25519_add(c, c, c);
- /* D = a A (alter sign) */
- /* E = (X1+Y1)^2-A-B */
- f25519_add(f, p->x, p->y);
- f25519_mul__distinct(e, f, f);
- f25519_sub(e, e, a);
- f25519_sub(e, e, b);
- /* G = D + B */
- f25519_sub(g, b, a);
- /* F = G - C */
- f25519_sub(f, g, c);
- /* H = D - B */
- f25519_neg(h, b);
- f25519_sub(h, h, a);
- /* X3 = E F */
- f25519_mul__distinct(r->x, e, f);
- /* Y3 = G H */
- f25519_mul__distinct(r->y, g, h);
- /* T3 = E H */
- f25519_mul__distinct(r->t, e, h);
- /* Z3 = F G */
- f25519_mul__distinct(r->z, f, g);
- }
- void ed25519_smult(struct ed25519_pt *r_out, const struct ed25519_pt *p,
- const uint8_t *e)
- {
- struct ed25519_pt r;
- int i;
- ed25519_copy(&r, &ed25519_neutral);
- for (i = 255; i >= 0; i--) {
- const uint8_t bit = (e[i >> 3] >> (i & 7)) & 1;
- struct ed25519_pt s;
- ed25519_double(&r, &r);
- ed25519_add(&s, &r, p);
- f25519_select(r.x, r.x, s.x, bit);
- f25519_select(r.y, r.y, s.y, bit);
- f25519_select(r.z, r.z, s.z, bit);
- f25519_select(r.t, r.t, s.t, bit);
- }
- ed25519_copy(r_out, &r);
- }
|