",

wolfSS1

Instruction Manual for the wolfSSL
Example Application

Target: Renesas RSK+RX65N-2MB
RTOS: FreeRTOS+ |oT libraries

TABLE OF CONTENTS

What is this dOCUMENTTOI? ...t e b e e s ae et 3
EXample Program SEFUCLUIEcoiiiiiiiieie et ettt s 3
Requirements for building and running the example project..........ccccvieiiiiiiiienciesceee e 4
Procedure for creating a wolfSSL example application projectccooceioiiiiiinic i 4
1.Create a new executable ProJeCt ... 5
Create @ new FreeRTOS Project ... e 5
2.DEVICE INFO SETLINGS ...ttt ettt 7

3. AAdING FIT MOAUIES ... 8
£.COPY WOIFSSL PACKAGE ...t 13

5. SECEION SETEING ..ttt e e 13
6.Adding wolfSSL Library and wolfSSL demo files........ccoeiiiiiiiiiiiciic e 14
IMmporting Wolfssl IDrary Project ... e 14
Adding wolfssl demo application files ..o 15
Adding include file paths to the project ... 18
AddiNgG PreproCeSSOr MACIOcuiiuiiiiiiie ittt sttt st st 18
AddiNG TINK DIy ..o 18
7.AddiNg WOIfSSL deMO @5 @ TASK......iivieiiiiieiiie et e 19
Execution of the wolfSSL demo application ... 20
CrYPLO-TEST AEMIO. ...t e s e 20
Crypto-Benchmark demo... ...t e 21
TLS-CHENt MO ... e e s 22
Changing server cert(changing authentication method)cocoeiiiiiniii i 24
Things todo when using USer’s root CA CeIt.........cuiiiiiiiiiiiiicii e 25
RESOUICES .o 26
RENESAS SITES....viiiiiiii it 26
WOITSSL SITES ...t 26

1510 oo T o a1 e I o T ¥ =Yt R 26

WHAT IS THIS DOCUMENT FOR?

This document is an instruction to add wolfSSL TLS library and to run an example program on the
Renesas RSK+RX65N-2MB. The target MCU is expected to be used with a real-time OS when the
product is installed. Therefore, this example program is provided in a configuration that uses
FreeRTOS and FreeRTOS + TCP. The steps for generating and executing the program as a new
project of e? studio, an IDE made by Renesas, is explained below.

EXAMPLE PROGRAM STRUCTURE

The FreeRTOS kernel and FreeRTOS + TCP protocol stack are required to execute this example
program, but they are automatically prepared when creating a new e? studio project. A script that is
automatically executed when the project is created, downloads the FreeRTOS-related source files
from the GitHub and configures the settings necessary for operation on the evaluation board. The
downloaded FreeRTOS loT Libraries include several demo applications, and the demo application
selected from them is configured to be executed.

Device
Mgtt demo HTTP demo ------ Shadow Demo apps
demo
TCP OTA coeenn Device IoT Libraries
Shadow
FreeRTOS Kernel Kernel

H,/W Drivers Renesas Dirvers

fig.1. Original Structure of the FreeRTOS+loT libraries demos

The wolfSSL example program adds the wolfSSL library, the wolfSSL demo application, and the FIT
components required as the H/W driver to this configuration, and configures it as shown in fig.2.

Additional Components

Device L
Matt demo HTTP demo ------ Shadow WZ Demo apps
demo emo
TCP OTA ==---- ghe;’(;:v wolfSSL IoT Libraries
FreeRTOS Kernel Kernel
H/W Drivers TSIP Driver Renesas Dirvers

fig.2. The extended structure by adding wolfSSL demo

The added wolfSSL demo application runs as a task on the FreeRTOS kernel and utilizes the TCP
protocol stack as a communication channel. In addition, the wolfSSL library supports TSIP. By
replacing some of the encryption and TLS functions implemented by the wolfSSL library as
software with H/W (TSIP), it is possible to significantly improve the processing speed.

REQUIREMENTS FOR BUILDING AND RUNNING THE EXAMPLE PROJECT

Tools and components required for the building and execution of this example program:

1. e?studio Version 2020-07 or later
2. CC-RXTool Chain V3.02 or later
3. TSIPvi1.14 or later

4. RTOSv202002.00-rx-1.0.1 or later

5. wolfSSL v5.1.1 or later

PROCEDURE FOR CREATING A WOLFSSL EXAMPLE APPLICATION PROJECT

The following steps are roughly required to execute this example program :
1. Create an executable project including FreeRTOS+loT libraries on e* studio
2. Settings for the target MCU and the evaluation board

3. Adding FIT components and their update

4. Copy wolfSSL package

5. Section settings

6. Adding wolfSSL library project and wolfSSL demo files

7. Execution of wolfSSL demo

From now on, the above steps will be described in that order.

1.CREATE A NEW EXECUTABLE PROJECT

Launch e?studio and specify a folder to be its workspace. The folder will be the base folder of the
project. Here after, the folder is referred as <base> in this document.

CREATE A NEW FREERTOS PROJECT

Selecting “File” menu > “Import...” > “General” > “Renesas GitHub FreeRTOS(with |oT libraries)
Project” will show you dialogs below.

Pl g v Al Nt Y g voggoe

i

! Renesas GitHub FreeRTOS (with loT libraries) Project

| A, Specified folder is not empty.

Specify a folder to copy selected RTOS version in order{ e

Folder: [F:\Work\]_Renesas\rskSSn\rtos

RTOS version setting
Version: |v202012.00-re-1.0.0

I Check for more version... I

7\
l\'L‘ < Back

FreeRTOS (with loT libraries) Module Download

Select RTOS modules for download and specify download location

1 (download path should be short, for example "C:\afr")

N\

==

Title
[FreeRTOS (with loT libraries)
[J FreeRTOS (with loT libraries)

Rev.

v202012.00-rza2m-1.0.0

v202012.00-re-1.0.0
o -

Issue date

2021-12-09

2021-10-26
-

v202012.00-rx-1.0.0

2021-10-07 I

e lilpani
[FreeRTOS (with loT libraries)
FreeRTOS (With 10T braries)

[J FreeRTOS (with loT libraries)
[C] FreeRTOS (with loT libraries)
[J FreeRTOS (with loT libraries)
[FreeRTOS (with loT libraries)

<

v202002.00-rx-1.0.5
v202002.00-rx-1.0.4
v202002.00-r178-1.0.3
v202002.00-rx-1.0.3
202002.00-r178-1.0.2

2021-05-10
2021-03-16
2021-02-17
2021-01-28
2020-11-19

v
>

Select All

Deselect All

Module Folder Path:

[F:\afr

J Browse...

TIKA FY-

fig.3. Steps to choose FreeRTOS module to download

Cancel

On a FreeRTOS(with loT libraries) Module Download dialog, select FreeRTOS with revision
"v202012.00-rx-1.0.0" or later. Next, specify the download destination folder. Note that the folder
path should be short enough to avoid errors where the path length is too long.

Once the download is complete, you will be able to see the location of your project and the version
of FreeRTOS, shown in fig.4.

| Renesas GitHub FreeRTOS (with loT libraries) Project
I 1, Specified folder is not empty.

Specify a folder to copy selected RTOS version in order to import the project.

Folder: lF:\Work\1_Renesas\rsk65n\ltos Browse...
RTOS version setting \
Version: | v202012.00-rx-1.0.0 v

Check for more version...

'@ < Back Finish Cancel ;

TR RND

fig.4. The project location and the version of FreeRTOS to use

The folder is identical to the workspace folder and is to be referred as <base>. For the next step, you
need to choose a demo type for the target MCU and the compiler.

The dialog show in fig.5 lists up products ready for import to your <base> folder. The list contains
three types(aws_demo, aws_test and boot_loader). Pick up

“aws_demos(...\projects\renesas\rx65n-rsk\e2studio\aws_demos)”

from the list.

O

Import Projects
Select a directory to search for existing Renesas projects.
(®) Select root directory: |F:\Work\1_Renesas\rsk65n\rtos v I Browse...
Projects:
[type filter text | | SelectAl

[] aws_demos (F:\Work\1_Renesas\rsk65n\rtos\projects\renesas\rx65n-gr-rose\e2studio-gcc\aws_demos) Al Deselect All

[] aws_demos (F:\Work\1 Renesas\rsk65n\rtos\pro;ects\renesas\rx65n gr-rose uart-esp8266\e2$tud|o\aws demos) p

o . 0 Q c \aws_demos) Refresh

E aws_demos (F:\Work\1 Renesas\rsk65n\rtos\pmJects\renesas\rxSSn -rsk\e2studio\aws_demos)
é ol LOAMALlAd D \ __pee oy o\ 20 okl A gc TR P A o 3

[] aws_demos (F:\Work\1_Renesas\rsk65n\rtos\projects\renesas\rx671- rsk\eZstudlo\aws demos)

[] aws_demos (F:\Work\1_Renesas\rsk65n\rtos\projects\renesas\rx671-rsk\e2studio-gcc\aws_demos)

"1 aws demos (F:\Work\1 Renesas\rsk65n\rtos\proiects\renesas\rx72n-envision-kit\e2studio\aws demos) w2

<

Options
[Search for nested projects
[[J Hide projects that already exist in the workspace

® e [[o

fig.5. Import Projects dialog

Script runs to extract selected source files and organize project folders in the project explore pane.

D -=v ¢ -0

v 5 aws_demos
>)Y Includes
> (= application_code
> (= config_files
> (= demos

> (= freertos_kernel

>

>

(= libraries

(= vendors

{5t aws_demos.scfg

aws_demos HardwareDebug.launch
x65n_rsk_aws HardwareDebug.launch

i))

fig.6. Imported and organized aws_demos project

2.DEVICE INFO SETTINGS

Before adding FIT modules, set the board and device information. Double-click aws_demos.scfg on
the Project Explorer to open the Smart Configurator Perspective and select the Board tab at the
bottom to display the "Device selection” settings pane.

In the "Board” type selection list, choose "RSKRX65N-2MB(TSIP)(V1.00)"or later. If no board type
listed, you can get them by clicking the link named "Download more boards...”. There are several
similar files to download, so be sure to select one that has “TSIP” in the file name.

When you choose the board, "Device” is filled with automatically.

i Project Explorer £3 — b _

¢ | Device selection

|
ik

v =5 aws_demos

m Includes

(= application_code Device selection

(= config_files

(= demos Board:] | RSKRX65N-2MB(TSIP) (V1.00) v
(= freertos_kernel

= libraries Device: RSFSBSNEHXF?

(= output Download morg/boards...

eiendore

{5 aws_demos.scfg
rawareDebug.launch

=] m65n_rsk_aws HandyareDebug.launch

m Board | CJocks | System | Components | Pins | Interrupts

fig.7. Device selection

3.ADDING FIT MODULES

At this point, the project has the source files for FreeRTOS, the loT library and the demo
application. In addition, the source files of the necessary FIT components (drivers provided by
Renesas) have already been generated. However, some FIT component libraries need to be
downloaded and obtained from the Renesas site.

Double-click aws_demos.scfg on the Project Explorer to open the Smart Configurator Perspective
and select the "Components" tab at the bottom to display the “Software components
configuration” pane. Then push the icon to show “Software Component Selection” dialog shown in
fig.8.

B Project Explorer 5 | - O _

B3 Y 8 ‘ Software component configuration

v 15 aws_demos

> Y Includes S -
> (= application_code Components gy ¢ |7, -] [+ 5p v Confic
> (= config_files _|_
> (= demos bl 3
> (= freertos_kernel |type filter text |
> (= libraries v & Startup
? [_52 output v (= Generic
— e 9 1 bsp
{:5,} aws_demos.scfg v i B

|=| aws_dernos HardwareDebug.launch v B A/D Converter

' r_s12ad_rx

v (= Memory
w' r_flash_rnx

v (= Communications
$ r_ether_rx
W r_sci_rx

v = Middleware

v (> Generic

w' r_byteq
v (= RTOS

v (= RTOS Kernel

@& FreeRTOS Kernel
(= RTOS Object

@& FreeRTOS_Object

v (= X]JOS Library
@ NWS_device_shadow
.v: AW ggd
& AWS_INgtt
.; AWS_sechre_socket
@ AWS_tcp_ip

| Overview | Board | Clocks | System{| Components [Pins |

p— = [o BT a_r— —_ —_

fig.8. Software components configuration

In the “Software Component Selection” dialog, find and choose one FIT component to add the
project. If no components are listed in the dialog, it means that you need to download FIT
components from Renesas site into your PC. Click the "Download the latest FIT drivers and
middleware” link.

Software Component Selection

Select component from those available in list

Category All v
Function All v
Fiter |

Components Short Name Type Version A

£ 8-Bit Timer Code Generator 1.9.0

£ Board Support Packages. r_bsp Firmware Integr... 6.20

Buses Code Generator 1.10.0

Clock Frequency Accuracy Measuremen... Code Generator 1.10.0

Compare Match Timer Code Generator 220

Complementary PWM Mode Timer Code Generator 1.10.0

Continuous Scan Mode S12AD Code Generator 1.12.0

£ Convert the TCP/IP(T4) - RX Ethernet Dri... r_t4_driver_rx Firmware Integr... 1.08

CRC Calculator Code Generator 1.10.0

% D/A Converter Code Generator 1.10.0

Data Operation Circuit Code Generator 1.10.0 v

ot

(4 Show only latest version
Description

This software component generates two units (unit 0, unit 1) of an on-chip 8-bit timer (TMR) module

that comprise two 8-bit counter channels, totaling four channels.

Download the latest FIT drivers and middleware

Configure general settings...

@ |

fig.9. Software C.o;nponent Selection Dialog

Next > Cancel

If you have downloaded the latest FIT components in your PC, you can extract the components to
add in the list by specifying the function type of the component.

wolfSSL demo requires following FIT components to add the project:
1. TSIP component(r_tsip_rx)

2. CMT component(r_cmt_rx)

10

Let's take an example of how to add a TSIP component. Select “Security” function category in the
following dialog lists up TSIP in the component list. Click the TSIP in the list and then push "Finish"
button to add the component. Since you can add only one FIT component at a time, repeat the
same steps to add other components.

|

|
|
| Software Component Selection _E

Select component from those available in list

Category All w
Functiony ' Secunty b
Filter | /
| Components / Short Mame Type Version

&3 TSIP(Trusted Secure IP) driver, r_tsip_n Firmware Integr.. 1.14.

[Show only latest version

Description

Download the latest FIT drivers and middleware

Configure general settings...

o :
() < Back Mext > Finish Cancel

{

fig.10. How to add TSIP

After adding TSIP and CMT driver to the project, you can see those components are listed in the
components pane.

11

Software component configuration

Components x5 ¢/ . - 4 Zp v Co

%
|type filter text |

v (= Startup A
v (= Generic
& rbsp
v (= Drivers
v (= A/D Converter
? r_s12ad_rx
v (= Memory
g\ r_flash_rx
v G S :
3\ r_tsip_nx
v (= Communications
g\ r_ether_rx
$ r_sci_rx
v = Timers
&‘ r_cmt_rx
v = Middleware
v (= Generic
% rbyteq
v (= RTOS
v (= RTOS Kernel
@& FreeRTOS Kernel
v (= RTOS Object
@ FreeRTOS_Object
v (= RTOS Library
.v\ AWS_device_shadow
& AWS qqd v

'OverviewT BoardTCIocks-‘ System } Components [Pit
: I

fig.11. Component list

After specifying the required FIT components, let SMC(SMart Configurator) generate source files.
Push the button on the top right of the “"Software component configuration” pane. Generated files
are added to the aws_demos project.

12

4.COPY WOLFSSL PACKAGE

If you have a wolfSSL package downloaded from the GitHub or wolfSSL download page, it has
version string in its top folder name(such as wolfssl-5.1.1-stable) like as the right box of fig.12. Copy
the entire package under the <base> folder with the name “wolfss|”.

This is important because both wolfSSL demo and aws_demos refer each other by traversing their
path names. Therefore, name of wolfssl top folder and the location should be exact the same as
fig.12.

F,J <base> ---- e2studio workspace folder

I ,J .metadata

— FHJ demos
- #__J doc
— FHJ freertos_kernel

— J libraries wolfss| package

,J act ,J wolfssl-5.1.1-stable
— projects

- F,J toste — ,J .github

I _J tools - ‘*’J certs
copy — cmake

— _Jl vendors ;

I _,JI wolfssl

fig.12. folder structure after wolfssl package added

5.SECTION SETTING

Section setting in the memory map is necessary. Open the property page of the aws_demos
project, then choose “C/C++ Build” > “Settings” > “Linker” > “Section” to show section setting pane.
Push the button located in the right most of the pane to show the “Section Viewer” dialog.

Push the “Import..." button to show the dialog for specifying the section setting file to import.

13

ltype filter text

v Resource
Linked Resources
Resource Filters

Builders

v C/C++ Build

Build Variables

Environment

Logging

Settings

Wy swwrwssuiige UUILIIGHT UEVILE g0 LDUIIU JLERS

v & Common
& cpu
¢ PIC/PID
(2 Miscellaneous
v 5 Compiler
v (2 Source

LUNU AMIUIaLL

o

U1y LIICIY FAISCI> WY LIIUI FaICIS

Sections (-start) [SU,SI,B_1,R_1,B_2,R_2,B,R/04,C_1,C_2,C,CS*,D* W*, L,P"/OFFEOOOO(I

Section Viewer

(2 Advanced
NCANSy (3 Object
Tool\Chain Editor (5 List - o
> C/C++ Ggneral v (2 Optimization

Sl
(2 Advanced

= B_1
Project Refelences (222 Output

R1
Renesas QF (2 MISRA C Rule Check
Run/Debug Setl

(2 Miscellaneous B2
Task Tags
» Validation

Address Section Name

(2 User R2
v) Assembler g
3 S,
(2 Source
= Ohi OxFFEO0000 C.1
L/:;? iject c2 Remove Section
(3 List =
¢ Optimization c
(2 Miscellaneous cs
(2 User D~
v i Linker w*

v (33 Input / L

(2 Advanced p*

v (2 Output EXCEPTVE
) (2 Advanced RESETVE
3 List
B3 O ot

23 Symbol file

(2 Advanced

(2 Subcommand file
(2 Miscellaneous
2 User

v ¥ Library Generator

2 Mode

(2 Standard Library

EES—

Add Section

New Overlay

Move Up

Move Down

OxFFFFFFE0
OXFFFFFFFC

[[] Override Linker Script

Browse

Export... | Re-Apply

OK ' | Cancel

fig.13. How to show the “Section Viewer” dialog

In the dialog for a section file, specify the following file:

<base>\wolfSSL\IDE\Renesas\e2studio\RX65N\RSK\resource\section.esi

6.ADDING WOLFSSL LIBRARY AND WOLFSSL DEMO FILES

The next thing you need to do is add the wolfSSL library project and the code for the wolfSSL demo
application to the aws_demos project.

IMPORTING WOLFSSL LIBRARY PROJECT

Then import the project that builds the wolfSSL library into the project explorer on e* studio. The
wolfSSL library project is already available as an e? studio project in the wolfSSL package.

14

On e?studio, selecting “File” menu > “Open a project from the file system” > “Directory” pops up
the dialog for specifying a folder including a project file. Specify the following folder:

<base>\aws_demos\wolfssI\IDE\Renesas\e2studio\RX65N\RSK\wolfss|

The dialog finds out a wolfssl| project to import.

| PrjectEplors | o

25
<
000

v -5 aws_demos [HardwareDebug
) Includes
(= application_code
(= config_files
(= demos
(= freertos_kernel
@2 libraries
(= output
» (= vendors
{5 aws_demos.scfg
=] aws_demos HardwareDebug.launch
= x65n_rsk_aws HardwareDebug.launch

=5 wolfss|

fig.14. Project structure after wolfssl project imported

You can see that the wolfssl project has been added in the project explorer. In the added wolfssl
library project, there is nothing to set because the path to the include files generated by the
aws_demos project is already set.

ADDING WOLFSSL DEMO APPLICATION FILES

Add wolfSSL demo application files which work as a kind of FreeRTOS demo task. Point to the
aws_demos folder on the project explorer pane, then open the floating dialog by right button click
to create a new source file folder named “wolfSSL demo”.

15

S -
< aws_demos [HardwareD :
v I aws. [New ™ Project...

> By m\‘?
> (2 vendors/renesas/boar €% Code Generator
> & app:'_catf{fn-wde Open in New [File
> (&= config_files % =
. Z demogs Show In Alt+Shift+W > _v File from Template
> (= freertos_kernel [Copy Ctrl+C 9 Folder
> (5. Ilb:anu:s Paste Ctrl+V (& Class
> (= outp o .
> @ vendors K Delete Delete |n] HeaderFile
> (2% trash Source &

{5 aws_demos.scfg Move... 5% Source Folder

= aws_demos HardwareD

= - Ri F2 ; :

= ™65n_rsk_aws Hardwar ename [€] C/C++ Project Create a new

> 15 wolfssl L Import... [Example...
iy Export..
el Exp
[Other. Ctrl+N
Build Project r

fig.15. Creating a source folder for wolfssl_demo

Open the following folder with explorer and grab all the files(*.c, *.h) in there and drop them on the

created “wolfss|_demo” folder in the project explorer pane of the e studio.

<base>\wolfssI\IDE\Renesas\e2studio\RX65N\RSK\wolfssl_demo

BSY § =08

v 15 aws_demos [HardwareDebug]
> [Includes
> vendors/renesas/boards/rx65n-rsk/aws_demos/src/smc_gen
> (= application_code
> (& config_files
> (= demos
> (= freertos_kernel
> (& libraries
> (& output
> (& vendors
> Lé trash
{85 aws_demos.scfg
|= aws_demos HardwareDebug.launch
= ~x65n_rsk_aws HardwareDebug.launch

= A [z mMcumeus)

| @ % | wolfssl_demo
“ Home Share View
<« v A <« Work > 1_Renesas > rsk65n > rtos > wolfssl > IDE > Renesa

~

RA6M3 A Name
RABMIG D key_data.c
B key_data.h

RX65N B user_settings.h
GR-ROSE B wolfssl_demo.c
RSK B wolfssl_demo.h

resource

wolfss|

‘ wolfssl_demo

RX72N

RISC\/

fig.16. Adding wolfssl_demo source files

You will be asked whether you want to process these files by copying or linking. Choose linking.

16

4 v =5 aws_demos [HardwareDebug]

» [Includes

> (2 vendors/renesas/boards/rx65n-rsk/aws_demos/src/smc_gen
» (3 wolfssl_demo

> (= application_code &8
» (= config_files
» (= demos Select how files should be imported into the project:
(& freertos_kernel)
Copy fil
» (& libraries O Copy files
> (= output @) Link to files
> (= vendors]))
, fé‘/) trash [Create link locations relative to: PROJECT_LOC v
% aws_demos.scfg Configure Drag and Drop Settings...

=| aws_demos HardwareDebug.launch

| m65n_rsk_aws HardwareDebug.launch @ Cancel

> 1= wolfssl

fig.17. Copying files by linking

Add more files below to the wolfss|_demo folder by linking:
1. <base>\wolfssl\wolfcrypt\benchmark\benchmark.c

2. <base>\wolfssl\wolfcrypt\benchmark\benchmark.h

3. <base>\wolfssl\wolfcrypt\test\test.c

4. <base>\wolfssl\wolfcrypt\test\test.h

Finally, you should see the wolfssl_demo folder in the project explorer, as shown in fig.18.

17

i
M
<
1]
(W]

v 11-:"3- aws_demos [HardwareDebug]
» nY Includes
e vendors/renecas/hoards/m65n-rsk/aws_demos/src/smc_gen
V|2 wolfssl_demo
. [benchmark.c
[y benchmark.h
[key_data.c
- [# key_data.h
- |6 test.c
[testh
[} user_settings.h
» [wolfssl_demo.c
[wolfssl_demo.h
- > application_code
(= config_files

(= demos
» (= freertos_kernel
» (= libraries

fig.18. files in the wolfssl_demo folder

ADDING INCLUDE FILE PATHS TO THE PROJECT

Open aws_demos project property setting dialog, then select “"C/C++ build” > “Settings” >
“"Compiler” > “Source” to show “include file directories” pane. Add following include file paths:

@ s{ProjDirPath}/../..[..[..[../wolfss]

@ s{ProjDirPath}/../../..|..[../wolfss|/IDE/Renesas/e2studio/RX65N/RSK/wolfss|_demo

ADDING PREPROCESSOR MACRO

Open aws_demos project property setting dialog, then select “"C/C++ build” > “Settings” >
“"Compiler” > “Source” to show “Macro definition” pane. Add following macro definition:

€ WOLFSSL_USER_SETTINGS

This macro definition lets wolfSSL demo application refer the user_settings.h file.

ADDING LINK LIBRARY

Open aws_demos project property setting dialog, then select "C/C++ build” > “Settings” > “Linker” >
“Input” to show “Relocateable files, objects files and library files” pane. Add following library file:

18

€ s{ProjDirPath}/../../..]..]..Jwolfssl/IDE/Renesas/e2studio/RX65N/RSK/wolfssl/Debug/wolfssl.li
b

7.ADDING WOLFSSL DEMO AS A TASK

wolfSSL_demo has been added as one of the demo applications to the project but not enabled yet.
To do this, enable the demo and register its entry function to the demo runner environment. Open
the following configuration file with editor.

<base>\venders\renesas\boards\rx65n-rsk\aws_demos\config_files\aws_demo_config.h

In the file, find "CONFIG_CORE_MQTT_DEMO_ENABLED” macro definition and make it
commented out. Instead add definition of *CONFIG_WOLFSSL_DEMO_ENABLED” macro to set
wolfssl demo enable.

& 709z0h-19270-5- 8 =97 & = o DR
» (2 vendors/renesas/boards/m72n-envision-kit/aws_deme A 27 #define _AWS_DEMO_CONFIG_H_
v 2 wolfssl_demo _

[& benchmark.c #include "FreeRTOSApplicationCenfig.h”

» [benchmarkh ‘ & /* To run a particul
L& key_data.c 32 * Only one demo can be ¢
1y key_datah 33 .

> g test.c

> [B) testh
[y user_settingsh
L.‘Q wolfssl_demo.c 3B
[B wolfssl_demo.h

= application_code

v (= config_files
> [k} aws_bufferpool_config.h

| aws_demo_config.h

&% 3%E.g9d_comgh
[y aws_iot_network_configh
> leh aws_mgtt_config.h
Llj& aws_ota_agent_config.h
E_h& aws_secure_sockets_config.h
[aws_shadow_config.h
[By aws_wifi_config.h
[, core_http_config.h

—#if (OTA
/ #define CONFIG_CORE_MQTT_MUTUAL_AUTH_DEMO_ENABLED
#define CONFIG_WOLFSSL_DEMO_ENABLED

UEmo 15 CONTigored Tar OTA

5 [y core_magtt_config.h 55 - elif (OTA ==1)
| core_pkcs11_config.h 56 #define CONFIG_OTA UPDATE_DEMO_ENABLED
[, defender_config.h =7 L

[defender_demo_config.h

7 . * Default configuration for all demos. Individual demos can override the

] OSA fig. s
|‘% FreRIOSAppicationConiqh e #define democonfigDEMO STACKSIZE (co
|-_5t FreeRTOSConfig.h 61 #define democonfigDEMO PRIORITY (ts

fig.19. Add macro in the configuration file

Moreover, open the following file.
<base>\demos\include\iot_demo_runner.h

Then add the two lines of code below at just before the last #else statement of the file.

#elif defined(CONFIG_WOLFSSL_DEMO_ENABLED)
#tdefine DEMO_entryFUNCTION wolfSSL_demo_task

19

5 0y 193J0-5- % = o Dl
7 8| 13

B #if defined(democonfigOTA UPDATE_TASK STACK_SIZE)

#undef democonfigDEMO_STACKSIZE

#define democonfigDEMO_STACKSIZE democonfigOTA UPDATE TASK_STACK_SIZE
#endif
#if defined(democonfigOTA_UPDATE_TASK_TASK_PRIORITY)

#undef democonfigDEMO_PRIORITY

#define democonfigDEMO_PRIORITY democonfigOTA_UPDATE_TASK_TASK PRIORITY
#endif

~ ‘!—-_f' aws_demos [HardwareDebug]
o -
» it Includes
» 2 vendors/renesas/boards/m72n-envision-kit/a
2 wolfssl_demo
» (= application_code

Gt = #elif defined(CONFIG_BLE GATT_ SERVER_DEMO_EMABLED)
& comiies #define DEMO_entryFUNCTION vGattDemoSveInit
~ (& demos = #if defined(democonfigHETWORK_TYPES)
» &= common #undef democonfigNETWORK_TYPES
» (= coreHTTP #define democonfigNETWORK_TYPES (AWSIOT_NETWORK_TYPE BLE)
» (= coreMQTT Hendif
e s B = #elif defined(CONFIG_MQTT_BLE TRANSPORT_DEMO_ENABLED)
- i #define DEMO_entryFUNCTION RunMQTTBLETransportDemo

» (& dev_mode_key_provisioning - #if defined(democonfigNETWORK_TYPES)
#undef democonfigNETWORK_TYPES
#define democonfigNETWORK_TYPES (AWSIOT_NETWORK_TYPE BLE)
#endif
- #elif defined(CONFIG_SHADOW_BLE_TRANSPORT DEMO_ENABLED)
#define DEMO_entryFUNCTION RunShadowBLETransportDemo
- #if defined(democonfigNETWORK_TYPES)
#undef democonfigNETWORK_TYPES
#define democonfigNETWORK_TYPES (AWSIOT_METWORK_TYPE_BLE)

= device_defender_for_aws
» (= device_shadow_for_aws
» (= greengrass_connectivity
~ (& include
> [B aws_application_version.h
> [aws_clientcredential_keys.h
> [y aws_clientcredential.h

L aws #endif

[ﬁ xsi"{":’!;u ——— = #elif defined(CONFIG_CLI_UART_DEMO_ENABLED)

Bt i Zi #define DEMO_entryFUNCTION vRunCLIUartDemo

[, aws_ota_codesigner_certificateh = #elif defined(CONFIG_DEVICE DEFENDER_DEMO_ENABLED)

[, iot_config_comman.h #define DEMO_entryFUNCTION RunDeviceDefenderDemo

g, iot demo logging.h

= #elif defined(CONFIG_WOLFSSL_DEMO_ENABLED)
#define DEMO_entryFUNCTION wolfssL_demo_task

» [network_manager

= gelse /* if defined(CONFIG_CORE_MQTT_BASIC_TLS_DEMO_ENABLED) */
* if no demo was defined there will be no entry point defined and we will not be abl
#error "No demo to run. One demo should be enabled”
#endif /* if defined(CONFIG_CORE_MQTT_BASIC_TLS_DEMO_ENABLED) */
£

> & ota
» = tep
» &= freertos_kemel
» (= HardwareDebug
% (&= libraries |* ms B v-L 2| @ AT T39- @) AV-¥IaFh

fig.20. Add definition of entry function

Those addition registers the wolfSSL_demo to run.

EXECUTION OF THE WOLFSSL DEMO APPLICATION

Internally, wolfssl_demo has three different types of demos which is selectable by the following
definitions in the wolfssl_demo.h.

L 2 #define CRYPT_TST
L 4 #define BENCHMARK
L 4 #define TLS_CLIENT
By enabling one of the three definition and rebuild of aws_demo project changes the demo.

Whenever you make any change in user_settings.h, rebuild wolfss| project followed by aws_demos
project. The execution of the demo can use debugger in the board and monitor the output from
demo through "Renesas debug virtual console”.

CRYPTO-TEST DEMO

You will see the following output in the Renesas Debug Virtual Console when you choose crypto
test demo.

20

error test passed!
MEMORY test passed!
base64 test passed!

asn test passed!
RANDOM test passed!
MDS test passed!
MD4 test passed!
SHA test passed!

SHA-256 test passed!
SHA-512 test passed!
Hash test passed!
HMAC-MDS test passed!
HMAC-SHA test passed!
HMAC-SHA256 test passed!
HMAC-SHAS12 test passed!

GHAC test passed!
Rabbit test passed!
DES test passed!
DES3 test passed!
AES test passed!

AES192 test passed!
AES256 test passed!
AES-GCM test passed!

RSA test passed!
PWOBASED test passed!
ECC test passed!

ECC buffer test passed!
CURVE25519 test passed!
logging test passed!

mutex test passed!

crypto callback test passed!
Test complete

End wolfCrypt Test

fig.21. Output from Crypt-test demo

CRYPTO-BENCHMARK DEMO

You will see the following output in the Renesas Debug Virtual Console when you choose crypto-
benchmark demo.

21

e T T e ——
0 EE L | T & B
Start wolfCrypt Benchmark

wolfCrypt Benchmark (block bytes 1824, min 1.8 sec each)

RNG 2 MB took 1.98@5 seconds, 2.889 MB/s
AES-128-CBC-enc MB took 1.882 seconds, 1.438 MB/s
AES-128-CBC-dec MB took 1.816 seconds, 1.393 MB/s
AES-192-CBC-enc MB took 1.084 seconds, 1.313 MB/s
AES-192-CBC-dec MB took 1.012 seconds, 1.282 MB/s
AES-256-CBC-enc MB took 1.888 seconds, 1.211 MB/s
AES-256-CBC-dec 1 MB took 1.8@8 seconds, 1.187 MB/s
AES-128-GCM-enc 650 KB tock 1.9@7 seconds, 645.738 KB/s
AES-128-GC(M-dec 658 KB took 1.887 seconds, 645.546 KB/s

RN

AES-192-GCM-enc 625 KB took 1.8@9 seconds, 619.364 KB/s

AES-192-GCM-dec 625 KB took 1.009 seconds, 619.180@ KB/s

AES-256-GCM-enc 688 KB tock 1.0@7 seconds, 595.888 KB/s

AES-256-GCM-dec 608 KB took 1.887 seconds, 596.887 KB/s

GMAC Default 1 MB took 1.0€@ seconds, 1.214 MB/s

RABBIT 8 MB took 1.0@3 seconds, 8.253 MB/s

3DES 525 KB took 1.8492 seconds, 584.856 KB/s

MD5 24 MB took 1.8€1 seconds, 24.397 MB/s

SHA 11 MB tock 1.08@ seconds, 12.984 MB/s

SHA-256 12 MB took 1.082 seconds, 11.651 MB/s

SHA-512 625 KB took 1.8@9 seconds, 619.364 KB/s

HMAC-MD5 24 MB took 1.801 seconds, 24.885 MB/s

HMAC - SHA 11 MB tock 1.8@@ seconds, 10.791 MB/s

HMAC-SHA256 11 MB took 1.€82 seconds, 11.428 MB/s

HMAC-SHAS12 625 KB took 1.826 seconds, 689.459 KB/s

PBKDF2 672 bytes took 1.8@8 seconds, 666.482 bytes/s

RSA 2848 public 94 ops took 1.885 sec, avg 18.691 ms, 93.532 ops/sec

RSA 2843 private 2 ops took 1.322 sec, avg 668.808 ms, 1.513 ops/sec

ECC [SECP256R1] 256 key gen 6 ops took 1.835 sec, avg 172.467 ms, 5.798 cps/sec
ECDHE [SECP256R1] 256 agree 6 ops took 1.@34 sec, avg 172.300 ms, 5.884 cps/sec
ECDSA [SECP256R1] 256 sign 6 ops took 1.844 sec, avg 174.800 ms, 5.747 ops/sec
ECDSA [SECP256R1] 256 verify 4 ops took 1.33@ sec, avg 332.50@ ms, 3.8@8 ops/sec
CURVE 25519 key gen 4 ops took 1.817 sec, avg 254.325 ms, 3.932 ops/sec

CURVE 25519 agree 4 ops took 1.815 sec, avg 253.75@ ms, 3.941 ops/sec

Benchmark complete
End wolfCrypt Benchmark

fig.22. output from Crypt-benchmark demo

TLS-CLIENT DEMO

When you attempt to run TLS_Client demo, prepare the communication opponent program(TLS
server program). wolfSSL package provides TLS server example application for this purpose. The
application is generated by building wolfSSL package. You can build wolfSSL on Linux(including
MacOS and WSL) with gcc installed or build using Visual Studio. The following introduces the build
on WSL.

22

$ cd <base>/wolfss|
$./autogen.sh

$./configure —enable-ecc —enable-dsa CFLAGS="-DWOLFSSL_STATIC_RSA -DHAVE_DSA
-DHAVE_ALLCURVES -DHAVE_ECC”

$ make

$ ifconfig

If “make” command reports no error, TLS server application is ready to run. Before running the
server application, get IP address of the server by typing “ifconfig”. You could see IP v4 address in
the console. Set the address to the TLSSERVER_IP macro defined in wolfSSL_demao.c.

The IP address of the target board could be set by changing value of the following macros:

= ipconfigUSE_DHCP defined in FreeRTOSIPCOnfig.h

= configlP_ADDRo ~ configIP_ADDR3 defined in FreeRTOSConfig.h

For debugging purpose or when you get trouble in TCP connection, try to use static IP address for
the board.

Now you can run TLS server application by typing:

$.Jexamples/server/server -b -d -i

The sever application waits for the client connection. Run the demo on the board to establish TLS
communication with the server application. You will see the following output in the Renesas Debug
Virtual Console.

TLS Client attempt to establish TLS connection six times with TLS server using six different cipher
suites respectively. You may notice RSA authentication is included in the six cipher suites. Those six
cipher suites are accelerated by TSIPvi1.14.

TSIPv1.14 supports two more cipher suites using ECDSA authentication. You can try those cipher
suites in the next section.

23

13 R Dot Vi Comnce | o Gl | 7 @ [

TLS_Client demo
- TLS server address:192.168.1.14 port: 11111
- with TSIP

cipher : ECDHE-RSA-AES128-GCM-SHA2S6
Received: I hear you fa shizzle!

cipher : ECDHE-RSA-AES128-5HAZS6
Received: I hear you fa shizzle!

cipher : AES128-SHA
Received: I hear you fa shizzle!

cipher : AES128-5HA256
Received: I hear you fa shizzle!

cipher : AES256-SHA
Received: I hear you fa shizzle!

cipher : AES256-5HA256
Received: I hear you fa shizzle!

End of TLS_Client demo.

fig.23. output from TLS-Client demo(1)

CHANGING SERVER CERT(CHANGING AUTHENTICATION METHOD)

In the previous TLS communication demo, the server certificate contains RSA public key. If you
want to use a cipher suite that includes ECDSA, you will need to change the settings of the wolfSSL
demo application setting. Opne user_settings.h, enable USE_ECC_CERT definition and rebuild
wolfSSL project and aws_demos project.

This definition causes the TLS_client to use a Root CA certificate that can validate the server
certificate containing the ECC public key presented by the server.

In addition, the opposite server application also needs to specify the server certificate and private
key file containing the ECC public key as an option, and then execute it as shown below.

$.Jexamples/server/server -b -d -i -c ./certs/server-ecc.pem -k ./certs/ecc-key.pem

You will see the following output from TLS client. Both cipher suites have ECDSA.

24

B Renesas Debug Virtual Console 2 "EREL TAH K

TLS Client demo
- TLS server address:192.168.1.14 port: 11111
- with TSIP

|cipher : ECDHE-ECDSA-AES128-GCM-SHA256
Received: I hear you fa shizzle!

|cipher : ECDHE-ECDSA-AES128-SHA256
Received: I hear you fa shizzle!

End of TLS_Client demo,

fig.24. output from TLS-Client demo(2)

THINGS TODO WHEN USING USER’S ROOT CA CERT

The Root CA certificate and the server certificate used in this example application, can be used only
for evaluation. If you want to use your own certificate, prepare following items:

1. Provisioning Key
2. RSAkey pair for validating RootCA certificate

3. The signature generated by the RootCA certificate with the private ky in 2 above.

Refer to the manual provided by Renesas for how to generate them.

25

RESOURCES

Followings are the links to the sites that contain helpful information regarding board, MCU, TSIP
and wolfSSL .

RENESAS SITES

» Renesas wiki page for RX72N Envision Kit (https://github.com/renesas/rx72n-envision-kit/wiki)

» Renesas RX MCUs(https://www.renesas.com/us/en/products/microcontrollers-
microprocessors/rx-32-bit-performance-efficiency-mcus/

» Renesas Trusted Secure IP Driver(TSIP) (Renesas Trusted Secure |P
Driver(TSIP)(https://www.renesas.com/us/en/software-tool/trusted-secure-ip-driver/)

WOLFSSL SITES

wolfSSL Website (www.wolfssl.com)

wolfSSL Renesas page (https://www.wolfssl.com/docs/renesas/)

wolfSSL TSIP support page (https://www.wolfss|.com/docs/wolfss|-renesas-tsip/)

vV VYV V V

wolfSSL Renesas GitHub repo (https://github.com/wolfSSL/Renesas/)

SUPPORT AND CONTACT

For support inquiries and questions, please email support@wolfssl.com. Feel free to reach out to

info@wolfssl.jp.

26

