Browse Source

update changelog with researchers names, thanks Aina and Olivier

Jacob Barthelmeh 3 years ago
parent
commit
3a9d533d2c
3 changed files with 3 additions and 3 deletions
  1. 1 1
      ChangeLog.md
  2. 1 1
      README
  3. 1 1
      README.md

+ 1 - 1
ChangeLog.md

@@ -45,7 +45,7 @@ Release 4.7.0 of wolfSSL embedded TLS has bug fixes and new features including:
 * Out of directory builds resolved, wolfSSL can now be built in a separate directory than the root wolfssl directory
 
 ### Vulnerabilities
-* [HIGH] CVE-2021-3336: In earlier versions of wolfSSL there exists a potential man in the middle attack on TLS 1.3 clients. Malicious attackers with a privileged network position can impersonate TLS 1.3 servers and bypass authentication. Users that have applications with client side code and have TLS 1.3 turned on, should update to the latest version of wolfSSL. Users that do not have TLS 1.3 turned on, or that are server side only, are NOT affected by this report. For the code change see https://github.com/wolfSSL/wolfssl/pull/3676.
+* [HIGH] CVE-2021-3336: In earlier versions of wolfSSL there exists a potential man in the middle attack on TLS 1.3 clients. Malicious attackers with a privileged network position can impersonate TLS 1.3 servers and bypass authentication. Users that have applications with client side code and have TLS 1.3 turned on, should update to the latest version of wolfSSL. Users that do not have TLS 1.3 turned on, or that are server side only, are NOT affected by this report. For the code change see https://github.com/wolfSSL/wolfssl/pull/3676. Thanks to Aina Toky Rasoamanana and Olivier Levillain from Télécom SudParis for the report.
 * [LOW] In the case of using custom ECC curves there is the potential for a crafted compressed ECC key that has a custom prime value to cause a hang when imported. This only affects applications that are loading in ECC keys with wolfSSL builds that have compressed ECC keys and custom ECC curves enabled.
 * [LOW] With TLS 1.3 authenticated-only ciphers a section of the server hello could contain 16 bytes of uninitialized data when sent to the connected peer. This affects only a specific build of wolfSSL with TLS 1.3 early data enabled and using authenticated-only ciphers with TLS 1.3.
 

+ 1 - 1
README

@@ -120,7 +120,7 @@ Release 4.7.0 of wolfSSL embedded TLS has bug fixes and new features including:
 * Out of directory builds resolved, wolfSSL can now be built in a separate directory than the root wolfssl directory
 
 ### Vulnerabilities
-* [HIGH] CVE-2021-3336: In earlier versions of wolfSSL there exists a potential man in the middle attack on TLS 1.3 clients. Malicious attackers with a privileged network position can impersonate TLS 1.3 servers and bypass authentication. Users that have applications with client side code and have TLS 1.3 turned on, should update to the latest version of wolfSSL. Users that do not have TLS 1.3 turned on, or that are server side only, are NOT affected by this report. For the code change see https://github.com/wolfSSL/wolfssl/pull/3676.
+* [HIGH] CVE-2021-3336: In earlier versions of wolfSSL there exists a potential man in the middle attack on TLS 1.3 clients. Malicious attackers with a privileged network position can impersonate TLS 1.3 servers and bypass authentication. Users that have applications with client side code and have TLS 1.3 turned on, should update to the latest version of wolfSSL. Users that do not have TLS 1.3 turned on, or that are server side only, are NOT affected by this report. For the code change see https://github.com/wolfSSL/wolfssl/pull/3676. Thanks to Aina Toky Rasoamanana and Olivier Levillain from Télécom SudParis for the report.
 * [LOW] In the case of using custom ECC curves there is the potential for a crafted compressed ECC key that has a custom prime value to cause a hang when imported. This only affects applications that are loading in ECC keys with wolfSSL builds that have compressed ECC keys and custom ECC curves enabled.
 * [LOW] With TLS 1.3 authenticated-only ciphers a section of the server hello could contain 16 bytes of uninitialized data when sent to the connected peer. This affects only a specific build of wolfSSL with TLS 1.3 early data enabled and using authenticated-only ciphers with TLS 1.3.
 

+ 1 - 1
README.md

@@ -123,7 +123,7 @@ Release 4.7.0 of wolfSSL embedded TLS has bug fixes and new features including:
 * Out of directory builds resolved, wolfSSL can now be built in a separate directory than the root wolfssl directory
 
 ### Vulnerabilities
-* [HIGH] CVE-2021-3336: In earlier versions of wolfSSL there exists a potential man in the middle attack on TLS 1.3 clients. Malicious attackers with a privileged network position can impersonate TLS 1.3 servers and bypass authentication. Users that have applications with client side code and have TLS 1.3 turned on, should update to the latest version of wolfSSL. Users that do not have TLS 1.3 turned on, or that are server side only, are NOT affected by this report. For the code change see https://github.com/wolfSSL/wolfssl/pull/3676.
+* [HIGH] CVE-2021-3336: In earlier versions of wolfSSL there exists a potential man in the middle attack on TLS 1.3 clients. Malicious attackers with a privileged network position can impersonate TLS 1.3 servers and bypass authentication. Users that have applications with client side code and have TLS 1.3 turned on, should update to the latest version of wolfSSL. Users that do not have TLS 1.3 turned on, or that are server side only, are NOT affected by this report. For the code change see https://github.com/wolfSSL/wolfssl/pull/3676. Thanks to Aina Toky Rasoamanana and Olivier Levillain from Télécom SudParis for the report.
 * [LOW] In the case of using custom ECC curves there is the potential for a crafted compressed ECC key that has a custom prime value to cause a hang when imported. This only affects applications that are loading in ECC keys with wolfSSL builds that have compressed ECC keys and custom ECC curves enabled.
 * [LOW] With TLS 1.3 authenticated-only ciphers a section of the server hello could contain 16 bytes of uninitialized data when sent to the connected peer. This affects only a specific build of wolfSSL with TLS 1.3 early data enabled and using authenticated-only ciphers with TLS 1.3.