",

wolfSS1

Instruction Manual for the wolfSSL
Example Application

Target: Renesas RX72N Envision Kit
RTOS: FreeRTOS+ 10T libraries

TABLE OF CONTENTS

What IS this dOCUMENT FOI? ...ociiiiii et et et e e eabe e et e e enees 3
EXample Program SEFUCLUIEcoiiiiiiiieie et ettt s 3
Requirements for building and running the example project..........ccccvieiiiiiiiienciesceee e 4
Procedure for creating a wolfSSL example application projectccooceioiiiiiinic i 4
1.Create a new executable ProJeCt ... 5
Create @ new FreeRTOS Project ... e 5
2.DEVICE INFO SETLINGS ...ttt ettt 8

3. AAdING FIT MOAUIES ...ttt e 9
£.COPY WOIFSSL PACKAGE ...t 13

5. SECEION SETEING .ttt 14
6.Adding wolfSSL Library and wolfSSL demo files.........ccoviiiiiiiiiiiiiiee e 15
IMporting Wolfssl IDrary ProjeCt ... 15
Adding wolfssl demo application files ..o 16
Adding Include file paths to the project ... 19
AddiNg PreproCeSSOr MACIOcuicuiiiiiiiiiiee ettt sttt st st st st e 19
AddiNg LINK LIDraryo.eo et e 20
7.AddiNg WOIfSSL deMO @5 @ TASK......iivieiiiiieiiie et e 20
Execution of the wolfSSL demo application ... 21
CrYPLO-TEST AEMIO. ...t e s e 21
Crypto-Benchmark demo... ...t e 22
IS 1= o e [T T OSSP 23
Things todo when using USer's ro0t CA CEIM......uiiiiiiiiiiiie et 26
Requirements for client authentication ... 26

I g1 =1 0] o PP 27
==Y T o =L 27
=] A TTST=] | o <1 27

WOIT G S L SIS oo 28

S0 oo T o a1 e I @o T ¥ =Yt R 28

WHAT IS THIS DOCUMENT FOR?

This document is an instruction to add wolfSSL TLS library and to run an example program on the
Renesas RX72N Envision Kit. The target MCU is expected to be used with a real-time OS when the
product is installed. Therefore, this example program is provided in a configuration that uses
FreeRTOS and FreeRTOS + TCP. The steps for generating and executing the program as a new
project of e? studio, an IDE made by Renesas, is explained below.

EXAMPLE PROGRAM STRUCTURE

The FreeRTOS kernel and FreeRTOS + TCP protocol stack are required to execute this example
program, but they are automatically prepared when creating a new e? studio project. A script that is
automatically executed when the project is created, downloads the FreeRTOS-related source files
from the GitHub and configures the settings necessary for operation on the evaluation board. The
downloaded FreeRTOS loT Libraries include several demo applications, and the demo application
selected from them is configured to be executed.

Device
Matt demo HTTP demo | ------ Shadow Demo apps
demo
TCP OTA eceen- Device IoT Libraries
Shadow
FreeRTOS Kernel Kernel

H/W Drivers Renesas Dirvers

fig.1. Original Structure of the FreeRTOS+loT libraries demos

The wolfSSL example program adds the wolfSSL library, the wolfSSL demo application, and the FIT
components required as the H/W driver to this configuration, and configures it as shown in fig.2.

Additional Components

Device e
Mgtt demo HTTP demo ------ Shadow wo Demo apps
d demo
emo
TCP OTA ------ DOV WolfSSL IoT Libraries
Shadow
FreeRTOS Kernel Kernel
H/W Drivers TSIP Driver Renesas Dirvers

fig.2. The extended structure by adding wolfSSL demo

The added wolfSSL demo application runs as a task on the FreeRTOS kernel and utilizes the TCP
protocol stack as a communication channel. In addition, the wolfSSL library supports TSIP. By
replacing some of the encryption and TLS functions implemented by the wolfSSL library as
software with H/W (TSIP), it is possible to significantly improve the processing speed.

REQUIREMENTS FOR BUILDING AND RUNNING THE EXAMPLE PROJECT

Tools and components required for the building and execution of this example program:

1. e?studio Version 2021-10 or later
2. CC-RXTool Chain V3.04 or later
3. TSIPvai.1yor later

4. RTOSv202002.00-rx-1.0.1 or later

5. wolfSSL vs.5.4 or later

PROCEDURE FOR CREATING A WOLFSSL EXAMPLE APPLICATION PROJECT

The following steps are roughly required to execute this example program :

1. Create an executable project including FreeRTOS+IoT libraries on e*Studio

2. Settings for the target MCU and the evaluation board
3. Adding FIT components and their update

4. Copy wolfSSL package

5. Section settings

6. Adding wolfSSL library project and wolfSSL demo files
7. Execution of wolfSSL demo

From now on, the above steps will be described in that order.

1.CREATE A NEW EXECUTABLE PROJECT

Launch e?studio and specify a folder to be its workspace. The folder will be the base folder of the
project. Here after, the folder is referred as <base> in this document.

CREATE A NEW FREERTOS PROJECT

Selecting “File” menu > “Import...” > “General” > “Renesas GitHub FreeRTOS(with |oT libraries)
Project” will show you dialogs below.

e o =k |®~& Qg
Renesas GitHub FreeRTOS (with loT libraries) Project o eovra~ |
€3 Missing RTOS Version. L Q ':__‘| [Ei.q(,++
| B
1 Specify a folder to copy selected RTOS version in order to if
FreeRTOS (with loT libraries) Module Download
Folder: [F:\Work\1_Ren5as\?2n_demo\EN ¢) B d
Select RTOS modules for download and specify download location g E I
RTOS version setting {download path should be short, for example "Ci\afr")
Version: | Title Rev. Issue date A || Select All
I Check for more version... I [FreeRTOS (with loT libraries) v202012.00-rza2m-1.0.0 2021-12-09 Deselect All
\ [J FreeRTOS (with loT libraries) v202012.00-re-1.0.0 2021-10-26
[] FreeRTOS (with loT libraries) v202012.00-r178-1.0.0 2021-10-18
I [/ FreeRTOS (with loT libraries) v202012.00-rx-1.0.0 l 2021-10-07
[Fre S (with loT libraries) v202002.00-re-1.0.5 2021-05-10
[] FreeRYQS (with loT libraries) v202002.00-m-1.0.4 2021-03-16
[0 Free (with loT libraries) v202002.00-r78-1.0.3 2021-02-17
[] FreeRTOS\with loT libraries) v202002.00-rc-1.0.3 2021-01-28
[l FreeRTOS (th loT libraries) 202002.00-ri78-1.0.2 2020-11-19
LT FreeRTOS fwitg InT libraries) 207002.00-re-1.0.3 2020-10-16 24
Module Folder Path:
Fi\afr | Browse...
Cance
@ < Back Next > |

4 R

fig.3. Steps to choose FreeRTOS module to download

On a FreeRTOS(with loT libraries) Module Download dialog, select FreeRTOS with revision
"v202012.00-rx-1.0.0". Next, specify the download destination folder. Note that the folder path
should be short enough to avoid errors where the path length is too long.

Once the download is complete, you will be able to see the location of your project and the version
of FreeRTOS, shown in fig.4.

Renesas GitHub FreeRTOS (with loT libraries) Project
1, Specified folder is not empty.

Specify a folder to copy selected RTOS version in order to impart the project.

Folder: | FAWork\1_Renesas\72n_demo\EN Browse...

RTOS version setting

Version] v202012.00-mx-1.0.0 w

Check for more version...

@ < Back Next > Finish Cancel

fig.4. The project location and the version of FreeRTOS to use

The folder is identical to the workspace folder and is to be referred as <base>. For the next step, you
need to choose a demo type for the target MCU and the compiler.

The dialog show in fig.5 lists up products ready for import to your <base> folder. The list contains

three types(aws_demo, aws_test and boot_loader). Pick up

‘aws_demos(...\projects\renesas\rxy2n-envision-kit\e2studio\aws_demos)”

from the list.

Import Projects

Select a directory to search for existing Renesas projects.

¢
| (@ Select root directory: i F\Work\1_Renesas\72n_demo\EN
it

1 Projects:

[t}-pe filter text

[] aws_demes (F:\Work\1_Renesas\72n_demo\EN\projects\renesas\n65n-rsk\e2studio\aws_demos)
[] aws_demos (F:\Work\1_Renesas\72n_demo\EN\projects\renesas\r65n-rsk\e2studio-gcc\aws_demos)
[:l aws_demos (F:\Work\1_Renesas\72n_demo\EN\projects\renesas\n671-rski e2studio\aws_demos)

o .rr\ui Lo e P | LCAn 2 bl TR e L WL X WL 107 WO 1 A o \
= bl

@ aws_demos (F A\Work\1 Renesad\?zn _demol\EN\projects\renesas\nc72n-envision-| ht\elstucho\aws demos]

n-envision- gcclaws_demos)
[] aws_demos (F \Wurk\l _Renesas\72n_demo\EN\projects\renesas\nc72n-envision-kit-uart-sx-ulpgn\ e2studio\aws_demos)

< >

71 aws demos (F:\Work\1 Renesas\72n demc\EN\oroiects\renesas\rn«72n-envision-kit-uart-sx-uloan\e2studio-acc\aws dem¢ ¥

~ I Browse...
Select All

*|| Deselect All
Refresh

Options
[Search for nested projects
[[]Hide projects that already exist in the workspace

@ < Back Next > Cancel

fig.5. Import Projects dialog

Script runs to extract selected source files and organize project folders in the project explore pane.

v | aws_demos
[l Includes
= application_code
= config_files

» (= demos
v (= freertos_kernel
(= libraries
(= vendors
15¢ aws_demos.scfg
|= aws_demos HardwareDebug.launch

fig.6. Imported and organized aws_demos project

2.DEVICE INFO SETTINGS

Before adding FIT modules, set the board and device information. Double-click aws_demos.scfg on
the Project Explorer to open the Smart Configurator Perspective and select the Board tab at the
bottom to display the “"Device selection” settings pane.

In the “Board” type selection list, choose “"RX72NEnvisionKit(V1.10)" . If no board type listed, you
can get them by clicking the link named “"Download more boards...".

When you choose the board, “Device” is filled with “R5F72NDHxFB” automatically.

- - y ¥

o)

[{'; Project Explorer 53

v =5 aws_demos

» it Includes

(= application_code
» (= config_files
» (= demos
v (= freertos_kernel
=> libranies
= output

= oo

mareDebug.launch

3.ADDING FIT MODULES

Board:

RX72NEnvisionKit (V1.10)

Device: | RSF57ZNDHxFB

Download more bo

ards. ..

« Feature Selection

To add a component, make th

The configurations for each a

election from the table below and click on t
ed component can be further configured in

Features
Ethernet Interface
LCD Display
LEDs
Light Sensor
microS0 Slot
Pmod Connectgr (INTP)
Pmod Connector 1

\

Pmeod Connglctar 2
Serial Flash
T A=t Thb e mmm,
Overviepv | Board

Components
@ FEthernet Driver. (r
Graphics LCD Cor
Ports
Simple lIC Driver.
SD Mode SDHI Dr
Interrupt Controll
SPI Clock Synchre
5PI Clock Synchrc

QSPI Clock Synch

s JIED Llaek

[locks | System Components Pins: Interrupts |

fig.7. Device selection

At this point, the project has the source files for FreeRTOS, the loT library and the demo
application. In addition, the source files of the necessary FIT components (drivers provided by
Renesas) have already been generated. However, some FIT component libraries need to be
downloaded and obtained from the Renesas site.

Double-click aws_demos.scfg on the Project Explorer to open the Smart Configurator Perspective
and select the "Components" tab at the bottom to display the “Software components
configuration” pane. Then push the icon to show “Software Component Selection” dialog shown in

fig.8.

i Project Explorer 23 |

v =5 aws_demos
> @il Includes
» = application_code
» [= config_files
» [= demos
¥ (= freertos_kernel
» = libranes
» (= output

reDebug.launch

Software component configuration

| type filter text

v [= Startup
w = Generic
9 rbsp
v = Drivers
v = A/D Converter
w rsllad_nx
w [= Memory
w' r_flash_rx
w = Communications
‘}f r_ether_rx
w rsci_m
v = Middleware
v = Generic
= 1 _byteq

Overview . Board :Clacks -Sy;ter

h | Components li'ms- [

fig.8. Software components configuration

pr! =] —

In the “Software Component Selection” dialog, find and choose one FIT component to add the
project. If no components are listed in the dialog, it means that you need to download FIT
components from Renesas site into your PC. Click the "Download the latest FIT drivers and

middleware” link.

10

|
Software Component Selection

Select component from those available in list

Category All W
{ Function | All w
Fitter |
: Components ~ Short Mame Type Version #~
| B8 8-Bit Timer Code Generator 1.9.0
3 Board Support Packages. r_bsp Firmware Integr... 6.20
{8 Buses Code Generator 1.10.0
Clock Frequency Accuracy Measuremen... Code Generator 1.10.0
H## Compare Match Timer Code Generator ~ 2.2.0
Complementary PWM Mode Timer Code Generator 1.10.0
¥ Continuous Scan Mode S12AD Code Generator 1120
8 Convert the TCP/IP(T4) - RX Ethernet Dri... r t4 driver rx Firmware Integr... 1.08
CRC Calculator Code Generator 1,100
i D/A Converter Code Generator 1.10.0
Data Operation Circuit Code Generator 1100 [w

[Show only latest version
Description

that comprise two 8-bit counter channels, totaling four channels.

This software component generates two units (unit 0, unit 1) of an on-chip 8-bit timer (TMR) module

Download the fatest FIT dovers and middlieware

@ < Back Next >

fig.9. Software Component Selection Dialog

Cancel

If you have downloaded the latest FIT components in your PC, you can extract the components to

add in the list by specifying the function type of the component.

wolfSSL demo requires following FIT components to add the project:

1. TSIP component(r_tsip_rx)

11

2. CMT component(r_cmt_rx)

Let's take an example of how to add a TSIP component. Select “Security” function category in the
following dialog lists up TSIP in the component list. Click the TSIP in the list and then push "Finish"
button to add the component. Since you can add only one FIT component at a time, repeat the
same steps to add other components.

adstar BFA L SFLA lsdsdr ali WAsLSEE L

|
| Software Component Selection .-I.,

Select component from those available in list

Category__ All “w
Function| | Security W
Fitter |

Components B Short Name Type Version

3 TSIP(Trusted Secure IP) driver. r_tsip_rx Firmware Integr... 1.14.

41 Show only latest version
Description

Download the latest FIT drivers and middleware

Confiqure general settings...

'i“:?_) < Back Mext » Finish Cancel

fig.10. How to add TSIP

After adding TSIP and CMT driver to the project, you can see those components are listed in the
components pane.

12

Software component configuration

Components g | - [# 3 v Con
L r

|t].rpefiltertent | .

ol

w = Startup ~
v [= Generic
? r_bsp
v = Drivers
~ [= A/D Converter
9 rs12ad_nx
v = Memory
%; r_flash_rx
v = Security
@ rtsip_
v o Communeanene
%1 r_ether_m

ﬂ-" r_sci_m
1=

i
?(" r_cnt_rx
v (== Middleware

» = Generic

% rbyteg
w = RTOS

w = RTOS Kernel
@ FreeRTOS_Kernel

v = RTOS Object
@ FreeRTOS Object

w = RTOS Library
& AWS_device_shadow
& AWS_ggd
@ AWS mgtt v

[a

|| Overview Board | Clocks System ' Components ' Pins| I

fig.11. Component list

After specifying the required FIT components, let SMC(SMart Configurator) generate source files.
Push the button on the top right of the “"Software component configuration” pane. Generated files
are added to the aws_demos project.

4.COPY WOLFSSL PACKAGE

13

If you have a wolfSSL package downloaded from the GitHub or wolfSSL download page, it has
version string in its top folder name(such as wolfssl-5.1.1-stable) like as the right box of fig.12. Copy
the entire package under the <base> folder with the name “wolfss|”.

This is important because both wolfSSL demo and aws_demos refer each other by traversing their
path names. Therefore, name of wolfssl top folder and the location should be exact the same as
fig.12.

,J <base> ---- e2studio workspace folder

I ,.JI .metadata

— J demos
— FHJ doc
— J freertos_kernel

_,J libraries wolfssl package
__| wolfssl-5.1.1-stable

—__J' projects
L] tests —i | .github
— _J tools _"j certs

copy —{__| cmake

— ,HJI vendors
I ,,JI wolfss|

fig.12. folder structure after wolfssl package added

5.SECTION SETTING

Section setting in the memory map is necessary. Open the property page of the aws_demos
project, then choose “C/C++ Build” > “Settings” > “Linker” > “Section” to show section setting pane.
Push the button located in the right most of the pane to show the “Section Viewer” dialog.

Push the “Import...” button to show the dialog for specifying the section setting file to import.

14

BACAS MASAE WIIA. UUIAASLL eain

| [type filter text |

Settings

Pwp

» Resource
Builders
w C/C++ Build
Build Variables
Environment

Tool Chain Eitor

» C/C++ General
Project Matures
Project References
Renesas QE
Run/Debug Settings
Task Tags

» Validation

v 1 Common
& cpu
@3 PIC/PID
% Miscellaneous
~ 183 Compiler
~ (3 Source
L,‘:E? Advanced
(% Object
5 List
v (& Optimization
(% Advanced
(22 Output
(8 MISRA C Rule Check
(22 Miscellaneous
3 User
w 8 Assembler
(2 Source
(2 Object
5 List
(3 Optimization
@ Miscellaneous
(52 User
v 153 Linker
~ (3 Input
(5 Advanced
~ (5 Output
(%2 Advanced

wétion

(22 Symbol file
(& Advanced
(%2 Subcommand file
(2 Miscellaneous
(8 User
~ 3 Library Generator
(3 Mode
(% Standard Library
(2 Object
~ (2 Optimization

—
Sections (-start) [SU,S|,B_1R_1,B_2,R 2,B,RB_8R 8/04,C_1C2CC8CH |.

Section Viewer

Address
0x00000004

[[] Override Linkey/Script

Import...

Export... .

Re-Apply.

fig.13. How to show the “Section Viewer” dialog

In the dialog for a section file, specify the following file:

<base>\wolfSSL\IDE\Renesas\e2studio\RX72N\EnvisionKit\resource\section.esi

6.ADDING WOLFSSL LIBRARY AND WOLFSSL DEMO FILES

Add Section

| NewOverlay |

Remove Section

N‘Iove- U.p

Move Down

Browse

0K | Cancel

The next thing you need to do is add the wolfSSL library project and the code for the wolfSSL demo
application to the aws_demos project.

IMPORTING WOLFSSL LIBRARY PROJECT

15

Then import the project that builds the wolfSSL library into the project explorer on e* studio. The
wolfSSL library project is already available as an e? studio project in the wolfSSL package.

On e?studio, selecting “File” menu > “Open a project from the file system” > “Directory” pops up
the dialog for specifying a folder including a project file. Specify the following folder:

<base>\wolfssI\IDE\Renesas\e2studio\RX72N\EnvisionKit\wolfss|

The dialog finds out a wolfssl project to import.

[Pt Bgionr | = 5

v -5 aws_demos [HardwareDebug]
it Includes
2 vendors/renesas/boards/r72n-envisi
= application_code
cenfig_files

.-—
L]

TR

demos
freertos_kemnel
libraries
output

vendors

G

TRTRT

F

R

aws_demos.scfg
aws_demos HardwareDebug.launch

i) 48%

y 15 wolfss!

fig.14. Project structure after wolfssl project imported

You can see that the wolfssl project has been added in the project explorer. In the added wolfssl
library project, there is nothing to set because the path to the include files generated by the
aws_demos project is already set.

ADDING WOLFSSL DEMO APPLICATION FILES

Add wolfSSL demo application files which work as a kind of FreeRTOS demo task. Point to the
aws_demos folder on the project explorer pane, then open the floating dialog by right button click
to create a new source file folder named “wolfSSL demo”.

16

B Project Explorer X Sy
5% Y 8
r_'l'\-l..._'l
L New |
» 2 vendors/renesas/bo Go Into
» = application_code
l_“' PP ey Open in New Window
» (= config_files
) = demos Show In
>y B f_reert_cs_l:emel B Copy
» (= libraries > 5
= output aste
» (= vendors # Delete
» (B trash Source
{8 aws_demos.scfg Movas:
= aws_demos Hardwa R
ENME...
> % wolfssl
L Import...
3 Export..
Build Project

Alt+Shift+W »

Ctrl+C
Ctrl=V

Project...

Code Generator
File

File from Template
Folder

Class
Header File

Source File

Source Folder |

G q Create a new source folder i
™ Example...

™i Other... Ctrl+N

I

fig.15. Creating a source folder for wolfssl_demo

Open the following folder with explorer and grab all the files(*.c, *.h) in there and drop them on the

created “wolfss|_demo” folder in the project explorer pane of the e studio.

<base>\wolfssI\IDE\Renesas\e2studio\RX72N\EnvisionKit\wolfss|_demo

e -

[8][%][@] [# v
SRR

- - v|-£

|| [aws_demos HardwareDebug

v =5 aws_demos [HardwareDebug]
> [l Includes

» [wolfssl_demo

> (= application_code

» (= config_files

» (= demos

» (= freertos_kernel

> (= libraries

» (= output

> (= vendors

> ﬁ trash
{5} aws_demos.scfg
|Z| aws_demos HardwareDebug.launch

> =% wolfssl

17

oards/m72n-envision-ki €

M=

Share

“ 9

EnvisionKit
.metadata
commeon
smc
test

wolfssl

View

wolfssl_demo

RISCV

ROWLEY-CROSSWORKS-ARM

STM32Cube

« RAGM4 A Name
\\] key_data.c
RX72N

fig.16. Adding wolfssl_demo source files

U ®~-R @i H L

« 72n_demo » EN » wolfssl » IDE » Renesas » elstudio » RX72ZN » E

~

B key_data.h
B user_settings.h
[wolfssl_demo.c

B wolfssl_demo.h

You will be asked whether you want to process these files by copying or linking. Choose linking.

~ |5 aws_demos [HardwareDebug]
> i Includes
29 vendors/renesas/boards/m72n-envision-kit/aws_demos/|
2 wolfssl_demo
= application_code

(= config_files
(= demos
(= freertos_kernel
(= libraries @
(= output
(@ veadoes Select how files should be imported into the project:
34 trash) Copy files
127 aws_demos.scfg @® Link to files
= aws_demos HardwareDebug.launch
» 15 wolfssl Create link locations relative to: | PROJECT_LOC v

Configure Drag and Drop Settings...

fig.17. Copying files by linking

Add more files below to the wolfss|_demo folder by linking:
1. <base>\wolfssl\wolfcrypt\benchmark\benchmark.c

2. <base>\wolfssl\wolfcrypt\benchmark\benchmark.h

3. <base>\wolfssl\wolfcrypt\test\test.c

4. <base>\wolfssl\wolfcrypt\test\test.h

Finally, you should see the wolfssl_demo folder in the project explorer, as shown in fig.18.

18

~ i-_—f; aws_demos [HardwareDebug]
+ i Includes

—entermenesassbenrds/ m T2n-envision-kit/aws_demos/|

+ (2 wolfssl_demo

: m benchmark.c

» |t benchmark.h

» [key_data.c

+ [B key_data.h

g test.c

» |k testh

» [user_settings.h

+ [& wolfssl_demo.c

» [wolfssl_demo.h

= a;plicatinn_cnde

» (= config_files

» = demos

» = freertos_kernel
» (= libraries
» = output
» = vendors
b ié trash
% aws_demos.scfg
| aws_demos HardwareDebug.launch
y ﬁ wolfssl

fig.18. files in the wolfssl_demo folder

ADDING INCLUDE FILE PATHS TO THE PROJECT

Open aws_demos project property setting dialog, then select “C/C++ build” > "Settings” >
“"Compiler” > “Source” to show “include file directories” pane. Add following include file paths:

@ s{ProjDirPath}/../..[..[..[../wolfss]

@ s{ProjDirPath}/../../..|..[../wolfss|/IDE/Renesas/e2studio/RX72N/EnvisionKit/wolfss|_demo

ADDING PREPROCESSOR MACRO

Open aws_demos project property setting dialog, then select “C/C++ build” > "Settings” >
“"Compiler” > “Source” to show “Macro definition” pane. Add following macro definition:

€ WOLFSSL_USER_SETTINGS

This macro definition lets wolfSSL demo application refer the user_settings.h file.

19

ADDING LINK LIBRARY

Open aws_demos project property setting dialog, then select “"C/C++ build” > “Settings” > “Linker” >
“Input” to show “Relocateable files, objects files and library files” pane. Add following library file:

€ s{ProjDirPath}/../../..]..]..Jwolfssl/IDE/Renesas/e2studio/RX72N/EnvisionKit/wolfssl/Debug/w
olfssl.lib

7.ADDING WOLFSSL DEMO AS A TASK

wolfSSL_demo has been added as one of the demo applications to the project but not enabled yet.
To do this, enable the demo and register its entry function to the demo runner environment. Open
the following configuration file with editor.

<base>\venders\renesas\boards\rxy2n-envision-kit\aws_demos\config_files\aws_demo_config.h

In the file, find "CONFIG_CORE_MQTT_DEMO_ENABLED” macro definition and make it
commented out. Instead add definition of “*CONFIG_WOLFSSL_DEMO_ENABLED” macro to set
wolfssl demo enable.

ity 70U+ 15270-5- 2 BEe Y § =0
» 2 vendors/renesas/boards/n72n-envision-kit/aws_demc A 27 #define _AWS_DEMO_CONFIG_H_
v (8 wolfssl_demo 28
[benchmark.c e
[benchmark.h 8/* To rt
> |g; key_datac
E;". key_data.h
8 test.c
| test.h
[user_settings.h
|_{; wolfssl_demo.c

#include "FreeRTOSApplicationCenfig.h”

[wolfssl_demo.h
(= application_code
v (= config_files
[aws_bufferpocl_config.h
L‘h aws_demo_config.h
[.k aws_ggd_contig-h
Lh‘;‘. aws_iot_network_config.h

5 [aws_matt_config.h
& aws_ota_agent_config.h
[y aws_secure_sockets_config.h
'_h; aws_shadow_config.h

» g aws_wifi_config.h
L corehhnp‘conh_g,h S
g} core_maqtt_config.h 55 - #elif (OTA == 1)

& core_pkes11_config.h #define CONFIG_OTA UPDATE_DEMO_ENABLED

| defender_config.h 57 #endif

|8 defender_demo_config.h it

y #de
#define

~ e 59 /* Default configuration for all demos. Individual demos can override the
e FreeRTOSAppI fig.h

L, Free pelicationConfig 60 #define democonfigDEMO_STACKSIZE (<o
i FreeRTOSConfig.h 61 #define democonfigDEMO PRIORITY (ts

fig.19. Add macro in the configuration file

Moreover, open the following file.
<base>\demos\include\iot_demo_runner.h

Then add the two lines of code below at just before the last #else statement of the file.

20

#elif defined(CONFIG_WOLFSSL_DEMO_ENABLED)

#define DEMO_entryFUNCTION wolfSSL_demo_task

iy 709290193705 B

#if defined(democonfigOTA_UPDATE_TASK_STACK_SIZE)

v =5 aws_demos [HardwareDebug) 1ia #undef democonfigDEMO STACKSIZE
W | #define democonfigDEMO STACKSIZE democonfigOTA_UPDATE_TASK STACK SIZE
&-Siia 116 sendif
» il Includes 117 - #if defined(democonfigOTA_UPDATE TASK_TASK_PRIORITY)
3 B vendors/renesas/boards/m72n-envision-kit/a | 118 #undef democonfigDEMO_PRIORITY

#define democonfigDEMO PRIORITY

119 democonfigOTA_UPDATE_TASK_TASK_PRIORITY
128 #endif

(8 wolfssl_demo

- appi'_‘“‘f'_‘l’"-c”de 121 = #elif defined(CONFIG_BLE GATT SERVER DEMO_ENABLED)
 fb cONG_EeES 122 #define DEMO_entryFUNCTION vGattDemoSveInit
v (= demos 123 = #if defined(democonfigNETWORK TYPES)

(= commen 124 #undef democonfigNETWORK_TYPES

» (& coreHTTP 125 #define democonTigNETHORK TYPES
. coreMQTT 126 _#endif

S 127 = gelif defined(CONFIG_MQTT_BLE_TRANSPORT_DEMO_ENABLED)

= L L 128 #define DEMO_entryFUNCTION RunMQTTBLETransportDemo
> dev_mode_key_provisioning #if defined(democonfigNETWORK TYPES)
» (= device_defender_for_aws #undef democonTigNETWORK_TYPES

» (&= device_shadow_for_aws #define democonfTigNETWORK TYPES

(AWSIOT_NETWORK_TYPE_BLE)

(AWSIOT_NETWORK_TYPE_BLE)

;o #endif
» (&= greengrass_connectivi
i _.A-.gn | dg - ¥ 133 ~#elif defined(CONFIG_SHADOW_BLE_TRANSPORT DEMO_ENABLED)
= Incluce 134 #define DEMO entryFUNCTION RunShadowBLETransportDemo
1 4

&, aws_application_version.h #3f defined(democonfigNETWORK_TYPES)

» [aws_clienteredential_keys.h
> ;ﬂ aws_clientcredential.h

#undef democonfigNETWORK_TYPES
#define democonfigNETWORK_TYPES

(AWSIOT_WETWORK_TYPE BLE)

#endif
= #elif defined(CONFIG_CLI UART DEMO_ENABLED)
#define DEMO_entryFUNCTION vRunCLIUartDemo
- #elif defined(CONFIG_DEVICE_DEFENDER_DEMO_ENABLED)
#define DEMO_entryFUNCTION RunDeviceDefenderDemo

> [B, aws_demoh
[aws_iot_demo_network.h
iy aws_ota_codesigner_certificate.h
> [iot_config_common.h
» [iot demo logaing.h
> |k} iot_demo_runnech

= #elif defined(CONFIG_WOLFSSL_DEMO_ENABLED)
#define DEMO_entryFUNCTION

wolfsSSL_demo_task

% jobs_for_aws

(= network_manager = #else /* if defined(CONFIG_CORE_MQTT BASIC_TLS DEMO_ENABLED) */

» (= ota /* if no demo was defined there will be no entry point defined and we will not be abl
& tep #error "No demo to run. One demo should be enabled”

158 gendif /* if defined{ CONFIG_CORE_MQTT_BASIC_TLS_DEMO_ENABLED) */

» = freerios_kemel
» (= HardwareDebug <
B

» = libraries

= mE| B 3y-h 2 (@ ATk Te- B Av-vIaFh

fig.20. Add definition of entry function

Those addition registers the wolfSSL_demo to run.

EXECUTION OF THE WOLFSSL DEMO APPLICATION

Internally, wolfssl_demo has three different types of demos which is selectable by the following
definitions in the wolfss|_demo.h.

L 4 #define CRYPT_TST
¢ #define BENCHMARK
€ #define TLS_CLIENT
By enabling one of the three definition and rebuild of aws_demo project changes the demo.

Whenever you make any change in user_settings.h, rebuild wolfssl| project followed by aws_demos
project. The execution of the demo can use debugger in the board and monitor the output from
demo through "Renesas debug virtual console”.

CRYPTO-TEST DEMO

21

You will see the following output in the Renesas Debug Virtual Console when you choose crypto
test demo.

error test passed!
MEMORY test passed!
bases4 test passed!

asn test passed!
RANDOM test passed!
MDS test passed!
MD4 test passed!
SHA test passed!

SHA-256 test passed!
SHA-512 test passed!
Hash test passed!
HMAC-MDS test passed!
HMAC-SHA test passed!
HMAC-SHA256 test passed!
HMAC-5HAS12 test passed!

GMAC test passed!
Rabbit test passed!
DES test passed!
DES3 test passed!
AES test passed!

AES192 test passed!
AES256 test passed!
AES-GCM test passed!

RSA test passed!
PWDBASED test passed!
ECC test passed!

ECC buffer test passed!
CURVE25519 test passed!
logging test passed!

mutex test passed!

crypto callback test passed!
Test complete

End wolfCrypt Test

fig.21. Output from Crypt-test demo

CRYPTO-BENCHMARK DEMO

You will see the following output in the Renesas Debug Virtual Console when you choose crypto-
benchmark demo.

22

_;m B % TRV mEV-L B JOYIONIIRTO-5-

‘ RS L TS
Start wolfCrypt Benchmark
wolfsSSL version 5.1.1
wolfCrypt Benchmark (block bytes 1824, min 1.8 sec each)
RNG 2 MB took 1.98@5 seconds, 2.889 MB/s
AES-128-CBC-enc 1 MB took 1.082 seconds, 1.438 MB/s
AES-128-CBC-dec 1 MB took 1.816 seconds, 1.393 MB/s
AES-192-CBC-enc 1 MB took 1.084 seconds, 1.313 MB/s
AES-192-CBC-dec 1 MB took 1.01@ seconds, 1.282 MB/s
AES-256-CBC-enc 1 MB took 1.888 seconds, 1.211 MB/s
AES-256-CBC-dec 1 MB took 1.8@8 seconds, 1.187 MB/s
AES-128-GCM-enc 650 KB tock 1.9@7 seconds, 645.738 KB/s
AES-128-GCM-dec 658 KB took 1.887 seconds, 645.546 KB/s
AES-192-GCM-enc 625 KB took 1.8@9 seconds, 619.364 KB/s
AES-192-GCM-dec 625 KB took 1.809 seconds, 619.180@ KB/s
AES-256-GCM-enc 688 KB tock 1.0@7 seconds, 595.888 KB/s
AES-256-GCM-dec 602 KB took 1.887 seconds, 596.887 KB/s
GMAC Default 1 MB toock 1.0€@ seconds, 1.214 MB/s
RABBIT 8 MB took 1.0@3 seconds, 8.253 MB/s
3DES 525 KB took 1.8492 seconds, 584.856 KB/s
MD5 24 MB took 1.8€1 seconds, 24.397 MB/s
SHA 11 MB took 1.08@ seconds, 12.984 MB/s
SHA-256 12 MB took 1.082 seconds, 11.651 MB/s
SHA-512 625 KB took 1.8@9 seconds, 619.364 KB/s
HMAC-MD5 24 MB took 1.801 seconds, 24.8385 MB/s
HMAC-SHA 11 MB took 1.88@ seconds, 1@.791 MB/s
HMAC -SHA256 11 MB took 1.€82 seconds, 11.428 MB/s
HMAC-SHAS12 625 KB took 1.826 seconds, 689.459 KB/s
PBKDF2 672 bytes took 1.8@8 seconds, 666.482 bytes/s
RSA 2848 public 94 ops took 1.885 sec, avg 18.691 ms, 93.532 ops/sec
RSA 2843 private 2 ops took 1.322 sec, avg 668.8088 ms, 1.513 ops/sec
ECC [SECP256R1] 256 key gen 6 ops took 1.835 sec, avg 172.467 ms, 5.798 cps/sec
ECDHE [SECP256R1] 256 agree 6 ops took 1.@34 sec, avg 172.300 ms, 5.884 cps/sec
ECDSA [SECP256R1] 256 sign 6 ops took 1.844 sec, avg 174.800 ms, 5.747 ops/sec
ECDSA [SECP256R1] 256 verify 4 ops took 1.33@ sec, avg 332.50@ ms, 3.8@8 ops/sec
CURVE 25519 key gen 4 ops took 1.817 sec, avg 254.325 ms, 3.932 ops/sec
CURVE 25519 agree 4 ops took 1.815 sec, avg 253.758 ms, 3.941 ops/sec
Benchmark complete
End wolfCrypt Benchmark

fig.22. output from Crypt-benchmark demo

TLS-CLIENT DEMO

When you attempt to run TLS_Client demo, prepare the communication opponent program(TLS
server program). wolfSSL package provides TLS server example application for this purpose. The
application is generated by building wolfSSL package. You can build wolfSSL on Linux(including
MacOS and WSL) with gcc installed or build using Visual Studio. The following introduces the build
on WSL.

(1) When using ECDSA certificates

23

Since USE_ECC_CERT is defined in user_settings.h on the TLS_CLIENT side, it is set to use the Build
the server-side sample program accordingly with the following configuration options. Don't forget
to give "-DNO_RSA".

(2)

$ cd <base>/wolfss|
$./autogen.sh

$./configure --enable-ecc --enable-dsa CFLAGS="-DWOLFSSL_STATIC_RSA -DHAVE_DSA
-DHAVE_ALLCURVES -DHAVE_ECC -DHAVE_AESCCM -DNO_RSA”

$ make

$ ifconfig

When using RSA certificates

Also, when setting to use RSA certificates on the TLS_CLIENT side, comment out the
USE_ECC_CERT definition in user_settings.h and rebuild. Correspondingly, the server-side sample
builds with the following configuration options:

$ cd <base>/wolfss|
$./autogen.sh

$./configure --enable-ecc --enable-dsa CFLAGS="-DWOLFSSL_STATIC_RSA -DHAVE_DSA
-DHAVE_ALLCURVES -DHAVE_ECC -DHAVE_AES_CBC -DHAVE_AESCCM”

$ make

$ ifconfig

If “make” command reports no error, TLS server application is ready to run. Before running the
server application, get IP address of the server by typing “ifconfig”. You could see IP v4 address in
the console. Set the address to the TLSSERVER_IP macro defined in wolfSSL_demo.c.

The IP address of the target board could be set by changing value of the following macros:

24

= ipconfigUSE_DHCP defined in FreeRTOSIPCOnfig.h

= configlP_ADDRo ~ configIP_ADDR3 defined in FreeRTOSConfig.h

For debugging purpose or when you get trouble in TCP connection, try to use static IP address for
the board.

Run the TLS server application with the following command and options. The option “-v4" specifies
to use the TLS1.3 protocol. If "-v3" is specified, the TLS1.2 protocol is used.

$.Jexamples/server/server -b -v4 -i

The sever application waits for the client connection. Run the demo on the board to establish TLS
communication with the server application. You will see the following output in the Renesas Debug
Virtual Console.

TLS Client attempt to establish TLS connection six times with TLS server using six different cipher
suites respectively. The cipher suites included in the output of the TLS client depends on the TLS
version and the certificate type setting.

T Renesas s Vil Conile | el] AR B 1R

TLS _Client demo
- TLS server address:192.163.1.14 port: 11111
- with TSIP

cipher : ECDHE-RSA-AES128-GCM-SHAZS56
Received: I hear you fa shizzle!

cipher : ECDHE-RSA-AES128-SHA2S56
Received: I hear you fa shizzlel

cipher : AES128-SHA
Received: I hear you fa shizzle!

cipher : AES128-SHA256
Received: I hear you fa shizzlel

cipher : AES256-SHA
Received: I hear you fa shizzle!

cipher : AES256-SHA256
Received: I hear you fa shizzlel!

End of TLS_Client demo.

fig.23. output from TLS-Client demo

25

THINGS TODO WHEN USING USER’S ROOT CA CERT

The Root CA certificate, the server certificate and the client certificate used in this example
application, can be used only for evaluation. If you want to use your own certificate, prepare
following items:

1. Provisioning Key
2. RSAkey pair for validating RootCA certificate
3. Thesignature generated by the RootCA certificate with the private ky in 2 above.

4. Private key corresponding to the public key included in the client certificate.

Refer to the manual provided by Renesas for how to generate them.

REQUIREMENTS FOR CLIENT AUTHENTICATION

wolfSSL supports client authentication as follows:

- Both ECDSA certificates and RSA certificates are handled by TSIP.
(1) Loading client certificate

Use wolfSSL_use_certificate_buffer or wolfSSL_CTX_use_certificate_buffer to load client
certificate.

(2) Loading client private key/public key
Type of the client certificate decides the keys to be loaded.
a) ECDSA certificate:
Load private key using tsip_use_PrivateKey_buffer.
b) RSA certificate:
Load private key using tsip_use_PrivateKey_buffer.
Load public key using tsip_use_PublicKey_buffer.

Note. In case of RSA certificate, the public key will be used for internal verification of
signature process.

(3) How to generate encrypted keys

The keys (private and public keys) to be loaded should be encrypted-key format. Those keys
could be generated with Renesas Secure Flash Programmer or

26

SecurityKeyManagementTool. Refer the section 7.5 and 7.6 of the application note named
“RX Family TSIP Module Firmware Integration technology” how to operate above key
wrapping tool.

(4) Macro to be defined

Define "WOLF_PRIVATE_KEY_ID" in your user_settings.h.

LIMITATIONS

WolfSSL, which supports TSIPvi.17, has the following functional restrictions.

1. Message packets exchanged with the server during the TLS handshake are stored in plaintext in
memory. This is used to calculate the hash of handshake messages. The content will be deleted
at the end of the session.

2. Session resumption and early data using TSIP are not supported.

The above restrictions are expected to be improved by TSIP or wolfSSL from the next version
onwards.

RESOURCES

Followings are the links to the sites that contain helpful information regarding board, MCU, TSIP
and wolfSSL .

RENESAS SITES

» Renesas wiki page for RX72N Envision Kit (https://github.com/renesas/rxz2n-envision-kit/wiki)

» Renesas RX MCUs(https://www.renesas.com/us/en/products/microcontrollers-
microprocessors/rx-32-bit-performance-efficiency-mcus/

» Renesas Trusted Secure IP Driver(TSIP) (Renesas Trusted Secure IP
Driver(TSIP)(https://www.renesas.com/us/en/software-tool/trusted-secure-ip-driver/)

27

WOLFSSL SITES

wolfSSL Website (www.wolfssl.com)

wolfSSL Renesas page (https://www.wolfssl.com/docs/renesas))

wolfSSL TSIP support page (https://www.wolfss|.com/docs/wolfss|-renesas-tsip/)

YV VYV VY V

wolfSSL Renesas GitHub repo (https://github.com/wolfSSL/Renesas/)

SUPPORT AND CONTACT

For support inquiries and questions, please email support@wolfssl.com. Feel free to reach out to

info@wolfssl.jp.

28

