/* pk.c * * Copyright (C) 2006-2024 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ #ifdef HAVE_CONFIG_H #include #endif #include #include #ifndef WC_NO_RNG #include #endif #ifdef HAVE_ECC #include #ifdef HAVE_SELFTEST /* point compression types. */ #define ECC_POINT_COMP_EVEN 0x02 #define ECC_POINT_COMP_ODD 0x03 #define ECC_POINT_UNCOMP 0x04 #endif #endif #ifndef WOLFSSL_HAVE_ECC_KEY_GET_PRIV /* FIPS build has replaced ecc.h. */ #define wc_ecc_key_get_priv(key) (&((key)->k)) #define WOLFSSL_HAVE_ECC_KEY_GET_PRIV #endif #if !defined(WOLFSSL_PK_INCLUDED) #ifndef WOLFSSL_IGNORE_FILE_WARN #warning pk.c does not need to be compiled separately from ssl.c #endif #else #ifndef NO_RSA #include #endif /******************************************************************************* * COMMON FUNCTIONS ******************************************************************************/ /* Calculate the number of bytes require to represent a length value in ASN. * * @param [in] l Length value to use. * @return Number of bytes required to represent length value. */ #define ASN_LEN_SIZE(l) \ (((l) < 128) ? 1 : (((l) < 256) ? 2 : 3)) #if defined(OPENSSL_EXTRA) #ifndef NO_ASN #if (!defined(NO_FILESYSTEM) && (defined(OPENSSL_EXTRA) || \ defined(OPENSSL_ALL))) || (!defined(NO_BIO) && defined(OPENSSL_EXTRA)) /* Convert the PEM encoding in the buffer to DER. * * @param [in] pem Buffer containing PEM encoded data. * @param [in] pemSz Size of data in buffer in bytes. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM * encrypted. * @param [in] keyType Type of key to match against PEM header/footer. * @param [out] keyFormat Format of key. * @param [out] der Buffer holding DER encoding. * @return Negative on failure. * @return Number of bytes consumed on success. */ static int pem_mem_to_der(const char* pem, int pemSz, wc_pem_password_cb* cb, void* pass, int keyType, int* keyFormat, DerBuffer** der) { #ifdef WOLFSSL_SMALL_STACK EncryptedInfo* info = NULL; #else EncryptedInfo info[1]; #endif /* WOLFSSL_SMALL_STACK */ wc_pem_password_cb* localCb = NULL; int ret = 0; if (cb != NULL) { localCb = cb; } else if (pass != NULL) { localCb = wolfSSL_PEM_def_callback; } #ifdef WOLFSSL_SMALL_STACK info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); if (info == NULL) { WOLFSSL_ERROR_MSG("Error getting memory for EncryptedInfo structure"); ret = MEMORY_E; } #endif /* WOLFSSL_SMALL_STACK */ if (ret == 0) { XMEMSET(info, 0, sizeof(EncryptedInfo)); info->passwd_cb = localCb; info->passwd_userdata = pass; /* Do not strip PKCS8 header */ ret = PemToDer((const unsigned char *)pem, pemSz, keyType, der, NULL, info, keyFormat); if (ret < 0) { WOLFSSL_ERROR_MSG("Bad PEM To DER"); } } if (ret >= 0) { ret = (int)info->consumed; } #ifdef WOLFSSL_SMALL_STACK XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return ret; } #endif #if !defined(NO_RSA) || !defined(WOLFCRYPT_ONLY) #ifndef NO_BIO /* Read PEM data from a BIO and decode to DER in a new buffer. * * @param [in, out] bio BIO object to read with. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM * encrypted. * @param [in] keyType Type of key to match against PEM header/footer. * @param [out] keyFormat Format of key. * @param [out] der Buffer holding DER encoding. * @return Negative on failure. * @return Number of bytes consumed on success. */ static int pem_read_bio_key(WOLFSSL_BIO* bio, wc_pem_password_cb* cb, void* pass, int keyType, int* keyFormat, DerBuffer** der) { int ret; char* mem = NULL; int memSz; int alloced = 0; ret = wolfssl_read_bio(bio, &mem, &memSz, &alloced); if (ret == 0) { ret = pem_mem_to_der(mem, memSz, cb, pass, keyType, keyFormat, der); /* Write left over data back to BIO if not a file BIO */ if ((ret > 0) && ((memSz - ret) > 0) && (bio->type != WOLFSSL_BIO_FILE)) { int res = wolfSSL_BIO_write(bio, mem + ret, memSz - ret); if (res != memSz - ret) { WOLFSSL_ERROR_MSG("Unable to write back excess data"); if (res < 0) { ret = res; } else { ret = MEMORY_E; } } } if (alloced) { XFREE(mem, NULL, DYNAMIC_TYPE_TMP_BUFFER); } } return ret; } #endif /* !NO_BIO */ #if !defined(NO_FILESYSTEM) /* Read PEM data from a file and decode to DER in a new buffer. * * @param [in] fp File pointer to read with. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM * encrypted. * @param [in] keyType Type of key to match against PEM header/footer. * @param [out] keyFormat Format of key. * @param [out] der Buffer holding DER encoding. * @return Negative on failure. * @return Number of bytes consumed on success. */ static int pem_read_file_key(XFILE fp, wc_pem_password_cb* cb, void* pass, int keyType, int* keyFormat, DerBuffer** der) { int ret; char* mem = NULL; int memSz; ret = wolfssl_read_file(fp, &mem, &memSz); if (ret == 0) { ret = pem_mem_to_der(mem, memSz, cb, pass, keyType, keyFormat, der); XFREE(mem, NULL, DYNAMIC_TYPE_OPENSSL); } return ret; } #endif /* !NO_FILESYSTEM */ #endif #if defined(OPENSSL_EXTRA) && ((!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)) \ || !defined(WOLFCRYPT_ONLY)) /* Convert DER data to PEM in an allocated buffer. * * @param [in] der Buffer containing DER data. * @param [in] derSz Size of DER data in bytes. * @param [in] type Type of key being encoded. * @param [in] heap Heap hint for dynamic memory allocation. * @param [out] out Allocated buffer containing PEM. * @param [out] outSz Size of PEM encoding. * @return 1 on success. * @return 0 on error. */ static int der_to_pem_alloc(const unsigned char* der, int derSz, int type, void* heap, byte** out, int* outSz) { int ret = 1; int pemSz; byte* pem = NULL; (void)heap; /* Convert DER to PEM - to get size. */ pemSz = wc_DerToPem(der, (word32)derSz, NULL, 0, type); if (pemSz < 0) { ret = 0; } if (ret == 1) { /* Allocate memory for PEM to be encoded into. */ pem = (byte*)XMALLOC((size_t)pemSz, heap, DYNAMIC_TYPE_TMP_BUFFER); if (pem == NULL) { ret = 0; } } /* Convert DER to PEM. */ if ((ret == 1) && (wc_DerToPem(der, (word32)derSz, pem, (word32)pemSz, type) < 0)) { ret = 0; XFREE(pem, heap, DYNAMIC_TYPE_TMP_BUFFER); pem = NULL; } *out = pem; *outSz = pemSz; return ret; } #ifndef NO_BIO /* Write the DER data as PEM into BIO. * * @param [in] der Buffer containing DER data. * @param [in] derSz Size of DER data in bytes. * @param [in, out] bio BIO object to write with. * @param [in] type Type of key being encoded. * @return 1 on success. * @return 0 on error. */ static int der_write_to_bio_as_pem(const unsigned char* der, int derSz, WOLFSSL_BIO* bio, int type) { int ret; int pemSz; byte* pem = NULL; ret = der_to_pem_alloc(der, derSz, type, bio->heap, &pem, &pemSz); if (ret == 1) { int len = wolfSSL_BIO_write(bio, pem, pemSz); if (len != pemSz) { WOLFSSL_ERROR_MSG("Unable to write full PEM to BIO"); ret = 0; } } XFREE(pem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif #endif #if (!defined(NO_RSA) && defined(WOLFSSL_KEY_GEN)) || \ (!defined(NO_DH) && defined(WOLFSSL_DH_EXTRA)) || \ (defined(HAVE_ECC) && defined(WOLFSSL_KEY_GEN)) #if !defined(NO_FILESYSTEM) /* Write the DER data as PEM into file pointer. * * @param [in] der Buffer containing DER data. * @param [in] derSz Size of DER data in bytes. * @param [in] fp File pointer to write with. * @param [in] type Type of key being encoded. * @param [in] heap Heap hint for dynamic memory allocation. * @return 1 on success. * @return 0 on error. */ static int der_write_to_file_as_pem(const unsigned char* der, int derSz, XFILE fp, int type, void* heap) { int ret; int pemSz; byte* pem = NULL; ret = der_to_pem_alloc(der, derSz, type, heap, &pem, &pemSz); if (ret == 1) { int len = (int)XFWRITE(pem, 1, (size_t)pemSz, fp); if (len != pemSz) { WOLFSSL_ERROR_MSG("Unable to write full PEM to BIO"); ret = 0; } } XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif #endif #if defined(WOLFSSL_KEY_GEN) && defined(WOLFSSL_PEM_TO_DER) /* Encrypt private key into PEM format. * * DER is encrypted in place. * * @param [in] der DER encoding of private key. * @param [in] derSz Size of DER in bytes. * @param [in] cipher EVP cipher. * @param [in] passwd Password to use with encryption. * @param [in] passedSz Size of password in bytes. * @param [out] cipherInfo PEM cipher information lines. * @param [in] maxDerSz Maximum size of DER buffer. * @return 1 on success. * @return 0 on error. */ int EncryptDerKey(byte *der, int *derSz, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, byte **cipherInfo, int maxDerSz) { int ret = 0; int paddingSz = 0; word32 idx; word32 cipherInfoSz; #ifdef WOLFSSL_SMALL_STACK EncryptedInfo* info = NULL; #else EncryptedInfo info[1]; #endif WOLFSSL_ENTER("EncryptDerKey"); /* Validate parameters. */ if ((der == NULL) || (derSz == NULL) || (cipher == NULL) || (passwd == NULL) || (cipherInfo == NULL)) { ret = BAD_FUNC_ARG; } #ifdef WOLFSSL_SMALL_STACK if (ret == 0) { /* Allocate encrypted info. */ info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); if (info == NULL) { WOLFSSL_MSG("malloc failed"); ret = MEMORY_E; } } #endif if (ret == 0) { /* Clear the encrypted info and set name. */ XMEMSET(info, 0, sizeof(EncryptedInfo)); XSTRNCPY(info->name, cipher, NAME_SZ - 1); info->name[NAME_SZ - 1] = '\0'; /* null term */ /* Get encrypted info from name. */ ret = wc_EncryptedInfoGet(info, info->name); if (ret != 0) { WOLFSSL_MSG("unsupported cipher"); } } if (ret == 0) { /* Generate a random salt. */ if (wolfSSL_RAND_bytes(info->iv, info->ivSz) != 1) { WOLFSSL_MSG("generate iv failed"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Calculate padding size - always a padding block. */ paddingSz = info->ivSz - ((*derSz) % info->ivSz); /* Check der is big enough. */ if (maxDerSz < (*derSz) + paddingSz) { WOLFSSL_MSG("not enough DER buffer allocated"); ret = BAD_FUNC_ARG; } } if (ret == 0) { /* Set padding bytes to padding length. */ XMEMSET(der + (*derSz), (byte)paddingSz, paddingSz); /* Add padding to DER size. */ (*derSz) += (int)paddingSz; /* Encrypt DER buffer. */ ret = wc_BufferKeyEncrypt(info, der, (word32)*derSz, passwd, passwdSz, WC_MD5); if (ret != 0) { WOLFSSL_MSG("encrypt key failed"); } } if (ret == 0) { /* Create cipher info : 'cipher_name,Salt(hex)' */ cipherInfoSz = (word32)(2 * info->ivSz + XSTRLEN(info->name) + 2); /* Allocate memory for PEM encryption lines. */ *cipherInfo = (byte*)XMALLOC(cipherInfoSz, NULL, DYNAMIC_TYPE_STRING); if (*cipherInfo == NULL) { WOLFSSL_MSG("malloc failed"); ret = MEMORY_E; } } if (ret == 0) { /* Copy in name and add on comma. */ XSTRLCPY((char*)*cipherInfo, info->name, cipherInfoSz); XSTRLCAT((char*)*cipherInfo, ",", cipherInfoSz); /* Find end of string. */ idx = (word32)XSTRLEN((char*)*cipherInfo); /* Calculate remaining bytes. */ cipherInfoSz -= idx; /* Encode IV into PEM encryption lines. */ ret = Base16_Encode(info->iv, info->ivSz, *cipherInfo + idx, &cipherInfoSz); if (ret != 0) { WOLFSSL_MSG("Base16_Encode failed"); XFREE(*cipherInfo, NULL, DYNAMIC_TYPE_STRING); *cipherInfo = NULL; } } #ifdef WOLFSSL_SMALL_STACK /* Free dynamically allocated info. */ XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO); #endif return ret == 0; } #endif /* WOLFSSL_KEY_GEN || WOLFSSL_PEM_TO_DER */ #if defined(WOLFSSL_KEY_GEN) && \ (defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)) && \ (!defined(NO_RSA) || defined(HAVE_ECC)) /* Encrypt the DER in PEM format. * * @param [in] der DER encoded private key. * @param [in] derSz Size of DER in bytes. * @param [in] cipher EVP cipher. * @param [in] passwd Password to use in encryption. * @param [in] passwdSz Size of password in bytes. * @param [in] type PEM type of write out. * @param [in] heap Dynamic memory hint. * @param [out] out Allocated buffer containing PEM encoding. * heap was NULL and dynamic type is DYNAMIC_TYPE_KEY. * @param [out] outSz Size of PEM encoding in bytes. * @return 1 on success. * @return 0 on failure. */ static int der_to_enc_pem_alloc(unsigned char* der, int derSz, const EVP_CIPHER *cipher, unsigned char *passwd, int passwdSz, int type, void* heap, byte** out, int* outSz) { int ret = 1; byte* tmp = NULL; byte* cipherInfo = NULL; int pemSz = 0; /* Macro doesn't always use it. */ (void)heap; /* Encrypt DER buffer if required. */ if ((ret == 1) && (passwd != NULL) && (passwdSz > 0) && (cipher != NULL)) { int blockSz = wolfSSL_EVP_CIPHER_block_size(cipher); byte *tmpBuf; /* Add space for padding. */ tmpBuf = (byte*)XREALLOC(der, (size_t)(derSz + blockSz), heap, DYNAMIC_TYPE_TMP_BUFFER); if (tmpBuf == NULL) { WOLFSSL_ERROR_MSG("Extending DER buffer failed"); ret = 0; /* der buffer is free'd at the end of the function */ } else { der = tmpBuf; /* Encrypt DER inline. */ ret = EncryptDerKey(der, &derSz, cipher, passwd, passwdSz, &cipherInfo, derSz + blockSz); if (ret != 1) { WOLFSSL_ERROR_MSG("EncryptDerKey failed"); } } } if (ret == 1) { /* Calculate PEM encoding size. */ pemSz = wc_DerToPemEx(der, (word32)derSz, NULL, 0, cipherInfo, type); if (pemSz <= 0) { WOLFSSL_ERROR_MSG("wc_DerToPemEx failed"); ret = 0; } } if (ret == 1) { /* Allocate space for PEM encoding plus a NUL terminator. */ tmp = (byte*)XMALLOC((size_t)(pemSz + 1), NULL, DYNAMIC_TYPE_KEY); if (tmp == NULL) { WOLFSSL_ERROR_MSG("malloc failed"); ret = 0; } } if (ret == 1) { /* DER to PEM */ pemSz = wc_DerToPemEx(der, (word32)derSz, tmp, (word32)pemSz, cipherInfo, type); if (pemSz <= 0) { WOLFSSL_ERROR_MSG("wc_DerToPemEx failed"); ret = 0; } } if (ret == 1) { /* NUL terminate string - PEM. */ tmp[pemSz] = 0x00; /* Return allocated buffer and size. */ *out = tmp; *outSz = pemSz; /* Don't free returning buffer. */ tmp = NULL; } XFREE(tmp, NULL, DYNAMIC_TYPE_KEY); XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); XFREE(der, heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif #endif /* !NO_ASN */ #if !defined(NO_CERTS) && defined(XFPRINTF) && !defined(NO_FILESYSTEM) && \ !defined(NO_STDIO_FILESYSTEM) && (!defined(NO_RSA) || !defined(NO_DSA) || \ defined(HAVE_ECC)) && defined(OPENSSL_EXTRA) /* Print the number bn in hex with name field and indentation indent to file fp. * * Used by wolfSSL_DSA_print_fp, wolfSSL_RSA_print_fp and * wolfSSL_EC_KEY_print_fp to print DSA, RSA and ECC keys and parameters. * * @param [in] fp File pointer to write to. * @param [in] indent Number of spaces to prepend to each line. * @param [in] field Name of field. * @param [in] bn Big number to print. * @return 1 on success. * @return 0 on failure. * @return BAD_FUNC_ARG when fp is invalid, indent is less than 0, or field or * bn or NULL. */ static int pk_bn_field_print_fp(XFILE fp, int indent, const char* field, const WOLFSSL_BIGNUM* bn) { static const int HEX_INDENT = 4; static const int MAX_DIGITS_PER_LINE = 30; int ret = 1; int i = 0; char* buf = NULL; /* Internal function - assume parameters are valid. */ /* Convert BN to hexadecimal character array (allocates buffer). */ buf = wolfSSL_BN_bn2hex(bn); if (buf == NULL) { ret = 0; } if (ret == 1) { /* Print leading spaces, name and spaces before data. */ if (indent > 0) { if (XFPRINTF(fp, "%*s", indent, "") < 0) ret = 0; } } if (ret == 1) { if (XFPRINTF(fp, "%s:\n", field) < 0) ret = 0; } if (ret == 1) { if (indent > 0) { if (XFPRINTF(fp, "%*s", indent, "") < 0) ret = 0; } } if (ret == 1) { if (XFPRINTF(fp, "%*s", HEX_INDENT, "") < 0) ret = 0; } if (ret == 1) { /* Print first byte - should always exist. */ if ((buf[i] != '\0') && (buf[i+1] != '\0')) { if (XFPRINTF(fp, "%c", buf[i++]) < 0) ret = 0; else if (XFPRINTF(fp, "%c", buf[i++]) < 0) ret = 0; } } if (ret == 1) { /* Print each hexadecimal character with byte separator. */ while ((buf[i] != '\0') && (buf[i+1] != '\0')) { /* Byte separator every two nibbles - one byte. */ if (XFPRINTF(fp, ":") < 0) { ret = 0; break; } /* New line after every 15 bytes - 30 nibbles. */ if (i % MAX_DIGITS_PER_LINE == 0) { if (XFPRINTF(fp, "\n") < 0) { ret = 0; break; } if (indent > 0) { if (XFPRINTF(fp, "%*s", indent, "") < 0) { ret = 0; break; } } if (XFPRINTF(fp, "%*s", HEX_INDENT, "") < 0) { ret = 0; break; } } /* Print two nibbles - one byte. */ if (XFPRINTF(fp, "%c", buf[i++]) < 0) { ret = 0; break; } if (XFPRINTF(fp, "%c", buf[i++]) < 0) { ret = 0; break; } } /* Ensure on new line after data. */ if (XFPRINTF(fp, "\n") < 0) { ret = 0; } } /* Dispose of any allocated character array. */ XFREE(buf, NULL, DYNAMIC_TYPE_OPENSSL); return ret; } #endif /* !NO_CERTS && XFPRINTF && !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM && * (!NO_DSA || !NO_RSA || HAVE_ECC) */ #if defined(XSNPRINTF) && !defined(NO_BIO) && !defined(NO_RSA) /* snprintf() must be available */ /* Maximum number of extra indent spaces on each line. */ #define PRINT_NUM_MAX_INDENT 48 /* Maximum size of a line containing a value. */ #define PRINT_NUM_MAX_VALUE_LINE PRINT_NUM_MAX_INDENT /* Number of leading spaces on each line. */ #define PRINT_NUM_INDENT_CNT 4 /* Indent spaces for number lines. */ #define PRINT_NUM_INDENT " " /* 4 leading spaces and 15 bytes with colons is a complete line. */ #define PRINT_NUM_MAX_DIGIT_LINE (PRINT_NUM_INDENT_CNT + 3 * 15) /* Print indent to BIO. * * @param [in] bio BIO object to write to. * @param [in] line Buffer to put characters to before writing to BIO. * @param [in] lineLen Length of buffer. * @return 1 on success. * @return 0 on failure. */ static int wolfssl_print_indent(WOLFSSL_BIO* bio, char* line, int lineLen, int indent) { int ret = 1; if (indent > 0) { /* Print indent spaces. */ int len_wanted = XSNPRINTF(line, (size_t)lineLen, "%*s", indent, " "); if (len_wanted >= lineLen) { WOLFSSL_ERROR_MSG("Buffer overflow formatting indentation"); ret = 0; } else { /* Write indents string to BIO */ if (wolfSSL_BIO_write(bio, line, len_wanted) <= 0) { ret = 0; } } } return ret; } /* Print out name, and value in decimal and hex to BIO. * * @param [in] bio BIO object to write to. * @param [in] value MP integer to write. * @param [in] name Name of value. * @param [in] indent Number of leading spaces before line. * @return 1 on success. * @return 0 on failure. */ static int wolfssl_print_value(WOLFSSL_BIO* bio, mp_int* value, const char* name, int indent) { int ret = 1; int len; char line[PRINT_NUM_MAX_VALUE_LINE + 1]; /* Get the length of hex encoded value. */ len = mp_unsigned_bin_size(value); /* Value must no more than 32-bits - 4 bytes. */ if ((len < 0) || (len > 4)) { WOLFSSL_ERROR_MSG("Error getting exponent size"); ret = 0; } if (ret == 1) { /* Print any indent spaces. */ ret = wolfssl_print_indent(bio, line, sizeof(line), indent); } if (ret == 1) { /* Get 32-bits of value. */ word32 v = (word32)value->dp[0]; /* Print the line to the string. */ len = (int)XSNPRINTF(line, sizeof(line), "%s %u (0x%x)\n", name, v, v); if (len >= (int)sizeof(line)) { WOLFSSL_ERROR_MSG("Buffer overflow while formatting value"); ret = 0; } else { /* Write string to BIO */ if (wolfSSL_BIO_write(bio, line, len) <= 0) { ret = 0; } } } return ret; } /* Print out name and multi-precision number to BIO. * * @param [in] bio BIO object to write to. * @param [in] num MP integer to write. * @param [in] name Name of value. * @param [in] indent Number of leading spaces before each line. * @return 1 on success. * @return 0 on failure. */ static int wolfssl_print_number(WOLFSSL_BIO* bio, mp_int* num, const char* name, int indent) { int ret = 1; int rawLen = 0; byte* rawKey = NULL; char line[PRINT_NUM_MAX_DIGIT_LINE + 1]; int li = 0; /* Line index. */ int i; /* Allocate a buffer to hold binary encoded data. */ rawLen = mp_unsigned_bin_size(num); if (rawLen == 0) { WOLFSSL_ERROR_MSG("Invalid number"); ret = 0; } if (ret == 1) { rawKey = (byte*)XMALLOC((size_t)rawLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (rawKey == NULL) { WOLFSSL_ERROR_MSG("Memory allocation error"); ret = 0; } } /* Encode number as big-endian byte array. */ if ((ret == 1) && (mp_to_unsigned_bin(num, rawKey) < 0)) { ret = 0; } if (ret == 1) { /* Print any indent spaces. */ ret = wolfssl_print_indent(bio, line, sizeof(line), indent); } if (ret == 1) { /* Print header string line to string. */ li = XSNPRINTF(line, sizeof(line), "%s\n", name); if (li >= (int)sizeof(line)) { WOLFSSL_ERROR_MSG("Buffer overflow formatting name"); ret = 0; } else { if (wolfSSL_BIO_write(bio, line, li) <= 0) { ret = 0; } } } if (ret == 1) { /* Print any indent spaces. */ ret = wolfssl_print_indent(bio, line, sizeof(line), indent); } if (ret == 1) { /* Start first digit line with spaces. * Writing out zeros ensures number is a positive value. */ li = XSNPRINTF(line, sizeof(line), PRINT_NUM_INDENT "%s", mp_leading_bit(num) ? "00:" : ""); if (li >= (int)sizeof(line)) { WOLFSSL_ERROR_MSG("Buffer overflow formatting spaces"); ret = 0; } } /* Put out each line of numbers. */ for (i = 0; (ret == 1) && (i < rawLen); i++) { /* Encode another byte as 2 hex digits and append colon. */ int len_wanted = XSNPRINTF(line + li, sizeof(line) - (size_t)li, "%02x:", rawKey[i]); /* Check if there was room -- if not, print the current line, not * including the newest octet. */ if (len_wanted >= (int)sizeof(line) - li) { /* bump current octet to the next line. */ --i; /* More bytes coming so add a line break. */ line[li++] = '\n'; /* Write out the line. */ if (wolfSSL_BIO_write(bio, line, li) <= 0) { ret = 0; } if (ret == 1) { /* Print any indent spaces. */ ret = wolfssl_print_indent(bio, line, sizeof(line), indent); } /* Put the leading spaces on new line. */ XSTRNCPY(line, PRINT_NUM_INDENT, PRINT_NUM_INDENT_CNT + 1); li = PRINT_NUM_INDENT_CNT; } else { li += len_wanted; } } if (ret == 1) { /* Put out last line - replace last colon with carriage return. */ line[li-1] = '\n'; if (wolfSSL_BIO_write(bio, line, li) <= 0) { ret = 0; } } /* Dispose of any allocated data. */ XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif /* XSNPRINTF && !NO_BIO && !NO_RSA */ #endif /* OPENSSL_EXTRA */ #if !defined(NO_CERTS) || (defined(OPENSSL_EXTRA) && (!defined(NO_RSA) || \ (!defined(NO_DH) && defined(HAVE_FIPS) && !FIPS_VERSION_GT(2,0)) || \ defined(HAVE_ECC))) /* Uses the DER SEQUENCE to determine size of DER data. * * Outer SEQUENCE encapsulates all the DER encoding. * Add the length of the SEQUENCE data to the length of the SEQUENCE header. * * @param [in] seq Buffer holding DER encoded sequence. * @param [in] len Length of data in buffer (may be larger than SEQ). * @return Size of complete DER encoding on success. * @return 0 on failure. */ static int wolfssl_der_length(const unsigned char* seq, int len) { int ret = 0; word32 i = 0; /* Check it is a SEQUENCE and get the length of the underlying data. * i is updated to be after SEQUENCE header bytes. */ if (GetSequence_ex(seq, &i, &ret, (word32)len, 0) >= 0) { /* Add SEQUENCE header length to underlying data length. */ ret += (int)i; } return ret; } #endif /******************************************************************************* * START OF RSA API ******************************************************************************/ #ifndef NO_RSA /* * RSA METHOD * Could be used to hold function pointers to implementations of RSA operations. */ #if defined(OPENSSL_EXTRA) /* Return a blank RSA method and set the name and flags. * * Only one implementation of RSA operations. * name is duplicated. * * @param [in] name Name to use in method. * @param [in] flags Flags to set into method. * @return Newly allocated RSA method on success. * @return NULL on failure. */ WOLFSSL_RSA_METHOD *wolfSSL_RSA_meth_new(const char *name, int flags) { WOLFSSL_RSA_METHOD* meth = NULL; int name_len = 0; int err; /* Validate name is not NULL. */ err = (name == NULL); if (!err) { /* Allocate an RSA METHOD to return. */ meth = (WOLFSSL_RSA_METHOD*)XMALLOC(sizeof(WOLFSSL_RSA_METHOD), NULL, DYNAMIC_TYPE_OPENSSL); err = (meth == NULL); } if (!err) { XMEMSET(meth, 0, sizeof(*meth)); meth->flags = flags; meth->dynamic = 1; name_len = (int)XSTRLEN(name); meth->name = (char*)XMALLOC((size_t)(name_len + 1), NULL, DYNAMIC_TYPE_OPENSSL); err = (meth->name == NULL); } if (!err) { XMEMCPY(meth->name, name, (size_t)(name_len + 1)); } if (err) { /* meth->name won't be allocated on error. */ XFREE(meth, NULL, DYNAMIC_TYPE_OPENSSL); meth = NULL; } return meth; } /* Default RSA method is one with wolfSSL name and no flags. * * @return Newly allocated wolfSSL RSA method on success. * @return NULL on failure. */ const WOLFSSL_RSA_METHOD* wolfSSL_RSA_get_default_method(void) { static const WOLFSSL_RSA_METHOD wolfssl_rsa_meth = { 0, /* No flags. */ (char*)"wolfSSL RSA", 0 /* Static definition. */ }; return &wolfssl_rsa_meth; } /* Dispose of RSA method and allocated data. * * @param [in] meth RSA method to free. */ void wolfSSL_RSA_meth_free(WOLFSSL_RSA_METHOD *meth) { /* Free method if available and dynamically allocated. */ if ((meth != NULL) && meth->dynamic) { /* Name was duplicated and must be freed. */ XFREE(meth->name, NULL, DYNAMIC_TYPE_OPENSSL); /* Dispose of RSA method. */ XFREE(meth, NULL, DYNAMIC_TYPE_OPENSSL); } } #ifndef NO_WOLFSSL_STUB /* Stub function for any RSA method setting function. * * Nothing is stored - not even flags or name. * * @param [in] meth RSA method. * @param [in] p A pointer. * @return 1 to indicate success. */ int wolfSSL_RSA_meth_set(WOLFSSL_RSA_METHOD *meth, void* p) { WOLFSSL_STUB("RSA_METHOD is not implemented."); (void)meth; (void)p; return 1; } #endif /* !NO_WOLFSSL_STUB */ #endif /* OPENSSL_EXTRA */ /* * RSA constructor/deconstructor APIs */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Dispose of RSA key and allocated data. * * Cannot use rsa after this call. * * @param [in] rsa RSA key to free. */ void wolfSSL_RSA_free(WOLFSSL_RSA* rsa) { int doFree = 1; WOLFSSL_ENTER("wolfSSL_RSA_free"); /* Validate parameter. */ if (rsa == NULL) { doFree = 0; } if (doFree) { int err; /* Decrement reference count. */ wolfSSL_RefDec(&rsa->ref, &doFree, &err); #ifndef WOLFSSL_REFCNT_ERROR_RETURN (void)err; #endif } if (doFree) { void* heap = rsa->heap; /* Dispose of allocated reference counting data. */ wolfSSL_RefFree(&rsa->ref); #ifdef HAVE_EX_DATA_CLEANUP_HOOKS wolfSSL_CRYPTO_cleanup_ex_data(&rsa->ex_data); #endif if (rsa->internal != NULL) { #if !defined(HAVE_FIPS) && defined(WC_RSA_BLINDING) /* Check if RNG is owned before freeing it. */ if (rsa->ownRng) { WC_RNG* rng = ((RsaKey*)(rsa->internal))->rng; if ((rng != NULL) && (rng != wolfssl_get_global_rng())) { wc_FreeRng(rng); XFREE(rng, heap, DYNAMIC_TYPE_RNG); } /* RNG isn't freed by wolfCrypt RSA free. */ } #endif /* Dispose of allocated data in wolfCrypt RSA key. */ wc_FreeRsaKey((RsaKey*)rsa->internal); /* Dispose of memory for wolfCrypt RSA key. */ XFREE(rsa->internal, heap, DYNAMIC_TYPE_RSA); } /* Dispose of external representation of RSA values. */ wolfSSL_BN_clear_free(rsa->iqmp); wolfSSL_BN_clear_free(rsa->dmq1); wolfSSL_BN_clear_free(rsa->dmp1); wolfSSL_BN_clear_free(rsa->q); wolfSSL_BN_clear_free(rsa->p); wolfSSL_BN_clear_free(rsa->d); wolfSSL_BN_free(rsa->e); wolfSSL_BN_free(rsa->n); #if defined(OPENSSL_EXTRA) if (rsa->meth) { wolfSSL_RSA_meth_free((WOLFSSL_RSA_METHOD*)rsa->meth); } #endif /* Set back to NULLs for safety. */ ForceZero(rsa, sizeof(*rsa)); XFREE(rsa, heap, DYNAMIC_TYPE_RSA); (void)heap; } } /* Allocate and initialize a new RSA key. * * Not OpenSSL API. * * @param [in] heap Heap hint for dynamic memory allocation. * @param [in] devId Device identifier value. * @return RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA* wolfSSL_RSA_new_ex(void* heap, int devId) { WOLFSSL_RSA* rsa = NULL; RsaKey* key = NULL; int err = 0; int rsaKeyInited = 0; WOLFSSL_ENTER("wolfSSL_RSA_new"); /* Allocate memory for new wolfCrypt RSA key. */ key = (RsaKey*)XMALLOC(sizeof(RsaKey), heap, DYNAMIC_TYPE_RSA); if (key == NULL) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_new malloc RsaKey failure"); err = 1; } if (!err) { /* Allocate memory for new RSA key. */ rsa = (WOLFSSL_RSA*)XMALLOC(sizeof(WOLFSSL_RSA), heap, DYNAMIC_TYPE_RSA); if (rsa == NULL) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_new malloc WOLFSSL_RSA failure"); err = 1; } } if (!err) { /* Clear all fields of RSA key. */ XMEMSET(rsa, 0, sizeof(WOLFSSL_RSA)); /* Cache heap to use for all allocations. */ rsa->heap = heap; #ifdef OPENSSL_EXTRA /* Always have a method set. */ rsa->meth = wolfSSL_RSA_get_default_method(); #endif /* Initialize reference counting. */ wolfSSL_RefInit(&rsa->ref, &err); #ifdef WOLFSSL_REFCNT_ERROR_RETURN } if (!err) { #endif /* Initialize wolfCrypt RSA key. */ if (wc_InitRsaKey_ex(key, heap, devId) != 0) { WOLFSSL_ERROR_MSG("InitRsaKey WOLFSSL_RSA failure"); err = 1; } else { rsaKeyInited = 1; } } #if !defined(HAVE_FIPS) && defined(WC_RSA_BLINDING) if (!err) { WC_RNG* rng; /* Create a local RNG. */ rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), heap, DYNAMIC_TYPE_RNG); if ((rng != NULL) && (wc_InitRng_ex(rng, heap, devId) != 0)) { WOLFSSL_MSG("InitRng failure, attempting to use global RNG"); XFREE(rng, heap, DYNAMIC_TYPE_RNG); rng = NULL; } rsa->ownRng = 1; if (rng == NULL) { /* Get the wolfSSL global RNG - not thread safe. */ rng = wolfssl_get_global_rng(); rsa->ownRng = 0; } if (rng == NULL) { /* Couldn't create global either. */ WOLFSSL_ERROR_MSG("wolfSSL_RSA_new no WC_RNG for blinding"); err = 1; } else { /* Set the local or global RNG into the wolfCrypt RSA key. */ (void)wc_RsaSetRNG(key, rng); /* Won't fail as key and rng are not NULL. */ } } #endif /* !HAVE_FIPS && WC_RSA_BLINDING */ if (!err) { /* Set wolfCrypt RSA key into RSA key. */ rsa->internal = key; /* Data from external RSA key has not been set into internal one. */ rsa->inSet = 0; } if (err) { /* Dispose of any allocated data on error. */ /* No failure after RNG allocation - no need to free RNG. */ if (rsaKeyInited) { wc_FreeRsaKey(key); } XFREE(key, heap, DYNAMIC_TYPE_RSA); XFREE(rsa, heap, DYNAMIC_TYPE_RSA); /* Return NULL. */ rsa = NULL; } return rsa; } /* Allocate and initialize a new RSA key. * * @return RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA* wolfSSL_RSA_new(void) { /* Call wolfSSL API to do work. */ return wolfSSL_RSA_new_ex(NULL, INVALID_DEVID); } /* Increments ref count of RSA key. * * @param [in, out] rsa RSA key. * @return 1 on success * @return 0 on error */ int wolfSSL_RSA_up_ref(WOLFSSL_RSA* rsa) { int err = 0; if (rsa != NULL) { wolfSSL_RefInc(&rsa->ref, &err); } return !err; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA #if defined(WOLFSSL_KEY_GEN) /* Allocate a new RSA key and make it a copy. * * Encodes to and from DER to copy. * * @param [in] rsa RSA key to duplicate. * @return RSA key on success. * @return NULL on error. */ WOLFSSL_RSA* wolfSSL_RSAPublicKey_dup(WOLFSSL_RSA *rsa) { WOLFSSL_RSA* ret = NULL; int derSz = 0; byte* derBuf = NULL; int err; WOLFSSL_ENTER("wolfSSL_RSAPublicKey_dup"); err = (rsa == NULL); if (!err) { /* Create a new RSA key to return. */ ret = wolfSSL_RSA_new(); if (ret == NULL) { WOLFSSL_ERROR_MSG("Error creating a new WOLFSSL_RSA structure"); err = 1; } } if (!err) { /* Encode RSA public key to copy to DER - allocates DER buffer. */ if ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 1, rsa->heap)) < 0) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed"); err = 1; } } if (!err) { /* Decode DER of the RSA public key into new key. */ if (wolfSSL_RSA_LoadDer_ex(ret, derBuf, derSz, WOLFSSL_RSA_LOAD_PUBLIC) != 1) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_LoadDer_ex failed"); err = 1; } } /* Dispose of any allocated DER buffer. */ XFREE(derBuf, rsa ? rsa->heap : NULL, DYNAMIC_TYPE_ASN1); if (err) { /* Disposes of any created RSA key - on error. */ wolfSSL_RSA_free(ret); ret = NULL; } return ret; } /* wolfSSL_RSAPrivateKey_dup not supported */ #endif /* WOLFSSL_KEY_GEN */ static int wolfSSL_RSA_To_Der_ex(WOLFSSL_RSA* rsa, byte** outBuf, int publicKey, void* heap); /* * RSA to/from bin APIs */ /* Convert RSA public key data to internal. * * Creates new RSA key from the DER encoded RSA public key. * * @param [out] out Pointer to RSA key to return through. May be NULL. * @param [in, out] derBuf Pointer to start of DER encoded data. * @param [in] derSz Length of the data in the DER buffer. * @return RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA *wolfSSL_d2i_RSAPublicKey(WOLFSSL_RSA **out, const unsigned char **derBuf, long derSz) { WOLFSSL_RSA *rsa = NULL; int err = 0; WOLFSSL_ENTER("wolfSSL_d2i_RSAPublicKey"); /* Validate parameters. */ if (derBuf == NULL) { WOLFSSL_ERROR_MSG("Bad argument"); err = 1; } /* Create a new RSA key to return. */ if ((!err) && ((rsa = wolfSSL_RSA_new()) == NULL)) { WOLFSSL_ERROR_MSG("RSA_new failed"); err = 1; } /* Decode RSA key from DER. */ if ((!err) && (wolfSSL_RSA_LoadDer_ex(rsa, *derBuf, (int)derSz, WOLFSSL_RSA_LOAD_PUBLIC) != 1)) { WOLFSSL_ERROR_MSG("RSA_LoadDer failed"); err = 1; } if ((!err) && (out != NULL)) { /* Return through parameter too. */ *out = rsa; /* Move buffer on by the used amount. */ *derBuf += wolfssl_der_length(*derBuf, (int)derSz); } if (err) { /* Dispose of any created RSA key. */ wolfSSL_RSA_free(rsa); rsa = NULL; } return rsa; } /* Convert RSA private key data to internal. * * Create a new RSA key from the DER encoded RSA private key. * * @param [out] out Pointer to RSA key to return through. May be NULL. * @param [in, out] derBuf Pointer to start of DER encoded data. * @param [in] derSz Length of the data in the DER buffer. * @return RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA *wolfSSL_d2i_RSAPrivateKey(WOLFSSL_RSA **out, const unsigned char **derBuf, long derSz) { WOLFSSL_RSA *rsa = NULL; int err = 0; WOLFSSL_ENTER("wolfSSL_d2i_RSAPublicKey"); /* Validate parameters. */ if (derBuf == NULL) { WOLFSSL_ERROR_MSG("Bad argument"); err = 1; } /* Create a new RSA key to return. */ if ((!err) && ((rsa = wolfSSL_RSA_new()) == NULL)) { WOLFSSL_ERROR_MSG("RSA_new failed"); err = 1; } /* Decode RSA key from DER. */ if ((!err) && (wolfSSL_RSA_LoadDer_ex(rsa, *derBuf, (int)derSz, WOLFSSL_RSA_LOAD_PRIVATE) != 1)) { WOLFSSL_ERROR_MSG("RSA_LoadDer failed"); err = 1; } if ((!err) && (out != NULL)) { /* Return through parameter too. */ *out = rsa; /* Move buffer on by the used amount. */ *derBuf += wolfssl_der_length(*derBuf, (int)derSz); } if (err) { /* Dispose of any created RSA key. */ wolfSSL_RSA_free(rsa); rsa = NULL; } return rsa; } /* Converts an internal RSA structure to DER format for the private key. * * If "pp" is null then buffer size only is returned. * If "*pp" is null then a created buffer is set in *pp and the caller is * responsible for free'ing it. * * @param [in] rsa RSA key. * @param [in, out] pp On in, pointer to allocated buffer or NULL. * May be NULL. * On out, newly allocated buffer or pointer to byte after * encoding in passed in buffer. * * @return Size of DER encoding on success * @return BAD_FUNC_ARG when rsa is NULL. * @return 0 on failure. */ int wolfSSL_i2d_RSAPrivateKey(WOLFSSL_RSA *rsa, unsigned char **pp) { int ret; WOLFSSL_ENTER("wolfSSL_i2d_RSAPrivateKey"); /* Validate parameters. */ if (rsa == NULL) { WOLFSSL_ERROR_MSG("Bad Function Arguments"); ret = BAD_FUNC_ARG; } /* Encode the RSA key as a DER. Call allocates buffer into pp. * No heap hint as this gets returned to the user */ else if ((ret = wolfSSL_RSA_To_Der_ex(rsa, pp, 0, NULL)) < 0) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed"); ret = 0; } /* Size of DER encoding. */ return ret; } /* Converts an internal RSA structure to DER format for the public key. * * If "pp" is null then buffer size only is returned. * If "*pp" is null then a created buffer is set in *pp and the caller is * responsible for free'ing it. * * @param [in] rsa RSA key. * @param [in, out] pp On in, pointer to allocated buffer or NULL. * May be NULL. * On out, newly allocated buffer or pointer to byte after * encoding in passed in buffer. * @return Size of DER encoding on success * @return BAD_FUNC_ARG when rsa is NULL. * @return 0 on failure. */ int wolfSSL_i2d_RSAPublicKey(WOLFSSL_RSA *rsa, unsigned char **pp) { int ret; WOLFSSL_ENTER("wolfSSL_i2d_RSAPublicKey"); /* check for bad functions arguments */ if (rsa == NULL) { WOLFSSL_ERROR_MSG("Bad Function Arguments"); ret = BAD_FUNC_ARG; } /* Encode the RSA key as a DER. Call allocates buffer into pp. * No heap hint as this gets returned to the user */ else if ((ret = wolfSSL_RSA_To_Der_ex(rsa, pp, 1, NULL)) < 0) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed"); ret = 0; } return ret; } #endif /* OPENSSL_EXTRA */ /* * RSA to/from BIO APIs */ /* wolfSSL_d2i_RSAPublicKey_bio not supported */ #if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || defined(WOLFSSL_HAPROXY) \ || defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT) #if defined(WOLFSSL_KEY_GEN) && !defined(NO_BIO) /* Read DER data from a BIO. * * DER structures start with a constructed sequence. Use this to calculate the * total length of the DER data. * * @param [in] bio BIO object to read from. * @param [out] out Buffer holding DER encoding. * @return Number of bytes to DER encoding on success. * @return 0 on failure. */ static int wolfssl_read_der_bio(WOLFSSL_BIO* bio, unsigned char** out) { int err = 0; unsigned char seq[MAX_SEQ_SZ]; unsigned char* der = NULL; int derLen = 0; /* Read in a minimal amount to get a SEQUENCE header of any size. */ if (wolfSSL_BIO_read(bio, seq, sizeof(seq)) != sizeof(seq)) { WOLFSSL_ERROR_MSG("wolfSSL_BIO_read() of sequence failure"); err = 1; } /* Calculate complete DER encoding length. */ if ((!err) && ((derLen = wolfssl_der_length(seq, sizeof(seq))) <= 0)) { WOLFSSL_ERROR_MSG("DER SEQUENCE decode failed"); err = 1; } /* Allocate a buffer to read DER data into. */ if ((!err) && ((der = (unsigned char*)XMALLOC((size_t)derLen, bio->heap, DYNAMIC_TYPE_TMP_BUFFER)) == NULL)) { WOLFSSL_ERROR_MSG("Malloc failure"); err = 1; } if (!err) { /* Calculate the unread amount. */ int len = derLen - (int)sizeof(seq); /* Copy the previously read data into the buffer. */ XMEMCPY(der, seq, sizeof(seq)); /* Read rest of DER data from BIO. */ if (wolfSSL_BIO_read(bio, der + sizeof(seq), len) != len) { WOLFSSL_ERROR_MSG("wolfSSL_BIO_read() failure"); err = 1; } } if (!err) { /* Return buffer through parameter. */ *out = der; } if (err) { /* Dispose of any allocated buffer on error. */ XFREE(der, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); derLen = 0; } return derLen; } /* Reads the RSA private key data from a BIO to the internal form. * * Creates new RSA key from the DER encoded RSA private key read from the BIO. * * @param [in] bio BIO object to read from. * @param [out] out Pointer to RSA key to return through. May be NULL. * @return RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA* wolfSSL_d2i_RSAPrivateKey_bio(WOLFSSL_BIO *bio, WOLFSSL_RSA **out) { WOLFSSL_RSA* key = NULL; unsigned char* der = NULL; int derLen = 0; int err; WOLFSSL_ENTER("wolfSSL_d2i_RSAPrivateKey_bio"); /* Validate parameters. */ err = (bio == NULL); /* Read just DER encoding from BIO - buffer allocated in call. */ if ((!err) && ((derLen = wolfssl_read_der_bio(bio, &der)) == 0)) { err = 1; } if (!err) { /* Keep der for call to deallocate. */ const unsigned char* cder = der; /* Create an RSA key from the data from the BIO. */ key = wolfSSL_d2i_RSAPrivateKey(NULL, &cder, derLen); err = (key == NULL); } if ((!err) && (out != NULL)) { /* Return the created RSA key through the parameter. */ *out = key; } if (err) { /* Dispose of created key on error. */ wolfSSL_RSA_free(key); key = NULL; } /* Dispose of allocated data. */ XFREE(der, bio ? bio->heap : NULL, DYNAMIC_TYPE_TMP_BUFFER); return key; } #endif /* defined(WOLFSSL_KEY_GEN) && !NO_BIO */ #endif /* OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || WOLFSSL_QT */ /* * RSA DER APIs */ #ifdef OPENSSL_EXTRA /* Create a DER encoding of key. * * Not OpenSSL API. * * @param [in] rsa RSA key. * @param [out] outBuf Allocated buffer containing DER encoding. * May be NULL. * @param [in] publicKey Whether to encode as public key. * @param [in] heap Heap hint. * @return Encoding size on success. * @return Negative on failure. */ int wolfSSL_RSA_To_Der(WOLFSSL_RSA* rsa, byte** outBuf, int publicKey, void* heap) { byte* p = NULL; int ret; if (outBuf != NULL) { p = *outBuf; } ret = wolfSSL_RSA_To_Der_ex(rsa, outBuf, publicKey, heap); if ((ret > 0) && (p != NULL)) { *outBuf = p; } return ret; } /* Create a DER encoding of key. * * Buffer allocated with heap and DYNAMIC_TYPE_TMP_BUFFER. * * @param [in] rsa RSA key. * @param [in, out] outBuf On in, pointer to allocated buffer or NULL. * May be NULL. * On out, newly allocated buffer or pointer to byte * after encoding in passed in buffer. * @param [in] publicKey Whether to encode as public key. * @param [in] heap Heap hint. * @return Encoding size on success. * @return Negative on failure. */ static int wolfSSL_RSA_To_Der_ex(WOLFSSL_RSA* rsa, byte** outBuf, int publicKey, void* heap) { int ret = 1; int derSz = 0; byte* derBuf = NULL; WOLFSSL_ENTER("wolfSSL_RSA_To_Der"); /* Unused if memory is disabled. */ (void)heap; /* Validate parameters. */ if ((rsa == NULL) || ((publicKey != 0) && (publicKey != 1))) { WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", BAD_FUNC_ARG); ret = BAD_FUNC_ARG; } /* Push external RSA data into internal RSA key if not set. */ if ((ret == 1) && (!rsa->inSet)) { ret = SetRsaInternal(rsa); } /* wc_RsaKeyToPublicDer encode regardless of values. */ if ((ret == 1) && publicKey && (mp_iszero(&((RsaKey*)rsa->internal)->n) || mp_iszero(&((RsaKey*)rsa->internal)->e))) { ret = BAD_FUNC_ARG; } if (ret == 1) { if (publicKey) { /* Calculate length of DER encoded RSA public key. */ derSz = wc_RsaPublicKeyDerSize((RsaKey*)rsa->internal, 1); if (derSz < 0) { WOLFSSL_ERROR_MSG("wc_RsaPublicKeyDerSize failed"); ret = derSz; } } else { /* Calculate length of DER encoded RSA private key. */ derSz = wc_RsaKeyToDer((RsaKey*)rsa->internal, NULL, 0); if (derSz < 0) { WOLFSSL_ERROR_MSG("wc_RsaKeyToDer failed"); ret = derSz; } } } if ((ret == 1) && (outBuf != NULL)) { derBuf = *outBuf; if (derBuf == NULL) { /* Allocate buffer to hold DER encoded RSA key. */ derBuf = (byte*)XMALLOC((size_t)derSz, heap, DYNAMIC_TYPE_TMP_BUFFER); if (derBuf == NULL) { WOLFSSL_ERROR_MSG("Memory allocation failed"); ret = MEMORY_ERROR; } } } if ((ret == 1) && (outBuf != NULL)) { if (publicKey > 0) { /* RSA public key to DER. */ derSz = wc_RsaKeyToPublicDer((RsaKey*)rsa->internal, derBuf, (word32)derSz); } else { /* RSA private key to DER. */ derSz = wc_RsaKeyToDer((RsaKey*)rsa->internal, derBuf, (word32)derSz); } if (derSz < 0) { WOLFSSL_ERROR_MSG("RSA key encoding failed"); ret = derSz; } else if ((*outBuf) != NULL) { derBuf = NULL; *outBuf += derSz; } else { /* Return allocated buffer. */ *outBuf = derBuf; } } if (ret == 1) { /* Success - return DER encoding size. */ ret = derSz; } if ((outBuf != NULL) && (*outBuf != derBuf)) { /* Not returning buffer, needs to be disposed of. */ XFREE(derBuf, heap, DYNAMIC_TYPE_TMP_BUFFER); } WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", ret); return ret; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Load the DER encoded private RSA key. * * Not OpenSSL API. * * @param [in] rsa RSA key. * @param [in] derBuf Buffer holding DER encoding. * @param [in] derSz Length of DER encoding. * @return 1 on success. * @return -1 on failure. */ int wolfSSL_RSA_LoadDer(WOLFSSL_RSA* rsa, const unsigned char* derBuf, int derSz) { /* Call implementation that handles both private and public keys. */ return wolfSSL_RSA_LoadDer_ex(rsa, derBuf, derSz, WOLFSSL_RSA_LOAD_PRIVATE); } /* Load the DER encoded public or private RSA key. * * Not OpenSSL API. * * @param [in] rsa RSA key. * @param [in] derBuf Buffer holding DER encoding. * @param [in] derSz Length of DER encoding. * @param [in] opt Indicates public or private key. * (WOLFSSL_RSA_LOAD_PUBLIC or WOLFSSL_RSA_LOAD_PRIVATE) * @return 1 on success. * @return -1 on failure. */ int wolfSSL_RSA_LoadDer_ex(WOLFSSL_RSA* rsa, const unsigned char* derBuf, int derSz, int opt) { int ret = 1; int res; word32 idx = 0; word32 algId; WOLFSSL_ENTER("wolfSSL_RSA_LoadDer"); /* Validate parameters. */ if ((rsa == NULL) || (rsa->internal == NULL) || (derBuf == NULL) || (derSz <= 0)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 1) { rsa->pkcs8HeaderSz = 0; /* Check if input buffer has PKCS8 header. In the case that it does not * have a PKCS8 header then do not error out. */ res = ToTraditionalInline_ex((const byte*)derBuf, &idx, (word32)derSz, &algId); if (res > 0) { /* Store size of PKCS#8 header for encoding. */ WOLFSSL_MSG("Found PKCS8 header"); rsa->pkcs8HeaderSz = (word16)idx; } /* When decoding and not PKCS#8, return will be ASN_PARSE_E. */ else if (res != WC_NO_ERR_TRACE(ASN_PARSE_E)) { /* Something went wrong while decoding. */ WOLFSSL_ERROR_MSG("Unexpected error with trying to remove PKCS#8 " "header"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 1) { /* Decode private or public key data. */ if (opt == WOLFSSL_RSA_LOAD_PRIVATE) { res = wc_RsaPrivateKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal, (word32)derSz); } else { res = wc_RsaPublicKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal, (word32)derSz); } /* Check for error. */ if (res < 0) { if (opt == WOLFSSL_RSA_LOAD_PRIVATE) { WOLFSSL_ERROR_MSG("RsaPrivateKeyDecode failed"); } else { WOLFSSL_ERROR_MSG("RsaPublicKeyDecode failed"); } WOLFSSL_ERROR_VERBOSE(res); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 1) { /* Set external RSA key data from wolfCrypt key. */ if (SetRsaExternal(rsa) != 1) { ret = WOLFSSL_FATAL_ERROR; } else { rsa->inSet = 1; } } return ret; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) #if !defined(NO_BIO) || !defined(NO_FILESYSTEM) /* Load DER encoded data into WOLFSSL_RSA object. * * Creates a new WOLFSSL_RSA object if one is not passed in. * * @param [in, out] rsa WOLFSSL_RSA object to load into. * When rsa or *rsa is NULL a new object is created. * When not NULL and *rsa is NULL then new object * returned through pointer. * @param [in] in DER encoded RSA key data. * @param [in] inSz Size of DER encoded data in bytes. * @param [in] opt Public or private key encoded in data. Valid values: * WOLFSSL_RSA_LOAD_PRIVATE, WOLFSSL_RSA_LOAD_PUBLIC. * @return NULL on failure. * @return WOLFSSL_RSA object on success. */ static WOLFSSL_RSA* wolfssl_rsa_d2i(WOLFSSL_RSA** rsa, const unsigned char* in, long inSz, int opt) { WOLFSSL_RSA* ret = NULL; if ((rsa != NULL) && (*rsa != NULL)) { ret = *rsa; } else { ret = wolfSSL_RSA_new(); } if ((ret != NULL) && (wolfSSL_RSA_LoadDer_ex(ret, in, (int)inSz, opt) != 1)) { if ((rsa == NULL) || (ret != *rsa)) { wolfSSL_RSA_free(ret); } ret = NULL; } if ((rsa != NULL) && (*rsa == NULL)) { *rsa = ret; } return ret; } #endif #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ /* * RSA PEM APIs */ #ifdef OPENSSL_EXTRA #ifndef NO_BIO #if defined(WOLFSSL_KEY_GEN) /* Writes PEM encoding of an RSA public key to a BIO. * * @param [in] bio BIO object to write to. * @param [in] rsa RSA key to write. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_write_bio_RSA_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_RSA* rsa) { int ret = 1; int derSz = 0; byte* derBuf = NULL; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_RSA_PUBKEY"); /* Validate parameters. */ if ((bio == NULL) || (rsa == NULL)) { WOLFSSL_ERROR_MSG("Bad Function Arguments"); return 0; } if ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 1, bio->heap)) < 0) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed"); ret = 0; } if (derBuf == NULL) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed to get buffer"); ret = 0; } if ((ret == 1) && (der_write_to_bio_as_pem(derBuf, derSz, bio, PUBLICKEY_TYPE) != 1)) { ret = 0; } /* Dispose of DER buffer. */ XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif /* WOLFSSL_KEY_GEN */ #endif /* !NO_BIO */ #if defined(WOLFSSL_KEY_GEN) #ifndef NO_FILESYSTEM /* Writes PEM encoding of an RSA public key to a file pointer. * * @param [in] fp File pointer to write to. * @param [in] rsa RSA key to write. * @param [in] type PEM type to write out. * @return 1 on success. * @return 0 on failure. */ static int wolfssl_pem_write_rsa_public_key(XFILE fp, WOLFSSL_RSA* rsa, int type) { int ret = 1; int derSz; byte* derBuf = NULL; /* Validate parameters. */ if ((fp == XBADFILE) || (rsa == NULL)) { WOLFSSL_ERROR_MSG("Bad Function Arguments"); return 0; } if ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 1, rsa->heap)) < 0) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed"); ret = 0; } if (derBuf == NULL) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed to get buffer"); ret = 0; } if ((ret == 1) && (der_write_to_file_as_pem(derBuf, derSz, fp, type, rsa->heap) != 1)) { ret = 0; } /* Dispose of DER buffer. */ XFREE(derBuf, rsa->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } /* Writes PEM encoding of an RSA public key to a file pointer. * * Header/footer will contain: PUBLIC KEY * * @param [in] fp File pointer to write to. * @param [in] rsa RSA key to write. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_write_RSA_PUBKEY(XFILE fp, WOLFSSL_RSA* rsa) { return wolfssl_pem_write_rsa_public_key(fp, rsa, PUBLICKEY_TYPE); } /* Writes PEM encoding of an RSA public key to a file pointer. * * Header/footer will contain: RSA PUBLIC KEY * * @param [in] fp File pointer to write to. * @param [in] rsa RSA key to write. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_write_RSAPublicKey(XFILE fp, WOLFSSL_RSA* rsa) { return wolfssl_pem_write_rsa_public_key(fp, rsa, RSA_PUBLICKEY_TYPE); } #endif /* !NO_FILESYSTEM */ #endif /* WOLFSSL_KEY_GEN */ #ifndef NO_BIO /* Create an RSA public key by reading the PEM encoded data from the BIO. * * @param [in] bio BIO object to read from. * @param [out] out RSA key created. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM encrypted. * @return RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA *wolfSSL_PEM_read_bio_RSA_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_RSA** out, wc_pem_password_cb* cb, void *pass) { WOLFSSL_RSA* rsa = NULL; DerBuffer* der = NULL; int keyFormat = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_RSA_PUBKEY"); if ((bio != NULL) && (pem_read_bio_key(bio, cb, pass, PUBLICKEY_TYPE, &keyFormat, &der) >= 0)) { rsa = wolfssl_rsa_d2i(out, der->buffer, der->length, WOLFSSL_RSA_LOAD_PUBLIC); if (rsa == NULL) { WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_RSA"); } } FreeDer(&der); if ((out != NULL) && (rsa != NULL)) { *out = rsa; } return rsa; } WOLFSSL_RSA *wolfSSL_d2i_RSA_PUBKEY_bio(WOLFSSL_BIO *bio, WOLFSSL_RSA **out) { char* data = NULL; int dataSz = 0; int memAlloced = 0; WOLFSSL_RSA* rsa = NULL; WOLFSSL_ENTER("wolfSSL_d2i_RSA_PUBKEY_bio"); if (bio == NULL) return NULL; if (wolfssl_read_bio(bio, &data, &dataSz, &memAlloced) != 0) { if (memAlloced) XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER); return NULL; } rsa = wolfssl_rsa_d2i(out, (const unsigned char*)data, dataSz, WOLFSSL_RSA_LOAD_PUBLIC); if (memAlloced) XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER); return rsa; } #endif /* !NO_BIO */ #ifndef NO_FILESYSTEM /* Create an RSA public key by reading the PEM encoded data from the BIO. * * Header/footer should contain: PUBLIC KEY * PEM decoder supports either 'RSA PUBLIC KEY' or 'PUBLIC KEY'. * * @param [in] fp File pointer to read from. * @param [out] out RSA key created. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM encrypted. * @return RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA *wolfSSL_PEM_read_RSA_PUBKEY(XFILE fp, WOLFSSL_RSA** out, wc_pem_password_cb* cb, void *pass) { WOLFSSL_RSA* rsa = NULL; DerBuffer* der = NULL; int keyFormat = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_RSA_PUBKEY"); if ((fp != XBADFILE) && (pem_read_file_key(fp, cb, pass, PUBLICKEY_TYPE, &keyFormat, &der) >= 0)) { rsa = wolfssl_rsa_d2i(out, der->buffer, der->length, WOLFSSL_RSA_LOAD_PUBLIC); if (rsa == NULL) { WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_RSA"); } } FreeDer(&der); if ((out != NULL) && (rsa != NULL)) { *out = rsa; } return rsa; } /* Create an RSA public key by reading the PEM encoded data from the BIO. * * Header/footer should contain: RSA PUBLIC KEY * PEM decoder supports either 'RSA PUBLIC KEY' or 'PUBLIC KEY'. * * @param [in] fp File pointer to read from. * @param [out] rsa RSA key created. * @param [in] cb Password callback when PEM encrypted. May be NULL. * @param [in] pass NUL terminated string for passphrase when PEM encrypted. * May be NULL. * @return RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA* wolfSSL_PEM_read_RSAPublicKey(XFILE fp, WOLFSSL_RSA** rsa, wc_pem_password_cb* cb, void* pass) { return wolfSSL_PEM_read_RSA_PUBKEY(fp, rsa, cb, pass); } #endif /* NO_FILESYSTEM */ #if defined(WOLFSSL_KEY_GEN) && \ (defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)) /* Writes PEM encoding of an RSA private key to newly allocated buffer. * * Buffer returned was allocated with: DYNAMIC_TYPE_KEY. * * @param [in] rsa RSA key to write. * @param [in] cipher Cipher to use when PEM encrypted. May be NULL. * @param [in] passwd Password string when PEM encrypted. May be NULL. * @param [in] passwdSz Length of password string when PEM encrypted. * @param [out] pem Allocated buffer with PEM encoding. * @param [out] pLen Length of PEM encoding. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_write_mem_RSAPrivateKey(RSA* rsa, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, unsigned char **pem, int *pLen) { int ret = 1; byte* derBuf = NULL; int derSz = 0; WOLFSSL_ENTER("wolfSSL_PEM_write_mem_RSAPrivateKey"); /* Validate parameters. */ if ((pem == NULL) || (pLen == NULL) || (rsa == NULL) || (rsa->internal == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } /* Set the RSA key data into the wolfCrypt RSA key if not done so. */ if ((ret == 1) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) { ret = 0; } /* Encode wolfCrypt RSA key to DER - derBuf allocated in call. */ if ((ret == 1) && ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 0, rsa->heap)) < 0)) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_To_Der failed"); ret = 0; } if ((ret == 1) && (der_to_enc_pem_alloc(derBuf, derSz, cipher, passwd, passwdSz, PRIVATEKEY_TYPE, NULL, pem, pLen) != 1)) { WOLFSSL_ERROR_MSG("der_to_enc_pem_alloc failed"); ret = 0; } return ret; } #ifndef NO_BIO /* Writes PEM encoding of an RSA private key to a BIO. * * @param [in] bio BIO object to write to. * @param [in] rsa RSA key to write. * @param [in] cipher Cipher to use when PEM encrypted. * @param [in] passwd Password string when PEM encrypted. * @param [in] len Length of password string when PEM encrypted. * @param [in] cb Password callback to use when PEM encrypted. * @param [in] arg NUL terminated string for passphrase when PEM encrypted. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_write_bio_RSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_RSA* rsa, const WOLFSSL_EVP_CIPHER* cipher, unsigned char* passwd, int len, wc_pem_password_cb* cb, void* arg) { int ret = 1; byte* pem = NULL; int pLen = 0; (void)cb; (void)arg; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_RSAPrivateKey"); /* Validate parameters. */ if ((bio == NULL) || (rsa == NULL) || (rsa->internal == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } if (ret == 1) { /* Write PEM to buffer that is allocated in the call. */ ret = wolfSSL_PEM_write_mem_RSAPrivateKey(rsa, cipher, passwd, len, &pem, &pLen); if (ret != 1) { WOLFSSL_ERROR_MSG("wolfSSL_PEM_write_mem_RSAPrivateKey failed"); } } /* Write PEM to BIO. */ if ((ret == 1) && (wolfSSL_BIO_write(bio, pem, pLen) <= 0)) { WOLFSSL_ERROR_MSG("RSA private key BIO write failed"); ret = 0; } /* Dispose of any allocated PEM buffer. */ XFREE(pem, NULL, DYNAMIC_TYPE_KEY); return ret; } #endif /* !NO_BIO */ #ifndef NO_FILESYSTEM /* Writes PEM encoding of an RSA private key to a file pointer. * * TODO: Support use of the password callback and callback context. * * @param [in] fp File pointer to write to. * @param [in] rsa RSA key to write. * @param [in] cipher Cipher to use when PEM encrypted. May be NULL. * @param [in] passwd Password string when PEM encrypted. May be NULL. * @param [in] passwdSz Length of password string when PEM encrypted. * @param [in] cb Password callback to use when PEM encrypted. Unused. * @param [in] arg NUL terminated string for passphrase when PEM * encrypted. Unused. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_write_RSAPrivateKey(XFILE fp, WOLFSSL_RSA *rsa, const EVP_CIPHER *cipher, unsigned char *passwd, int passwdSz, wc_pem_password_cb *cb, void *arg) { int ret = 1; byte* pem = NULL; int pLen = 0; (void)cb; (void)arg; WOLFSSL_ENTER("wolfSSL_PEM_write_RSAPrivateKey"); /* Validate parameters. */ if ((fp == XBADFILE) || (rsa == NULL) || (rsa->internal == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } if (ret == 1) { /* Write PEM to buffer that is allocated in the call. */ ret = wolfSSL_PEM_write_mem_RSAPrivateKey(rsa, cipher, passwd, passwdSz, &pem, &pLen); if (ret != 1) { WOLFSSL_ERROR_MSG("wolfSSL_PEM_write_mem_RSAPrivateKey failed"); } } /* Write PEM to file pointer. */ if ((ret == 1) && ((int)XFWRITE(pem, 1, (size_t)pLen, fp) != pLen)) { WOLFSSL_ERROR_MSG("RSA private key file write failed"); ret = 0; } /* Dispose of any allocated PEM buffer. */ XFREE(pem, NULL, DYNAMIC_TYPE_KEY); return ret; } #endif /* NO_FILESYSTEM */ #endif /* WOLFSSL_KEY_GEN && WOLFSSL_PEM_TO_DER */ #ifndef NO_BIO /* Create an RSA private key by reading the PEM encoded data from the BIO. * * @param [in] bio BIO object to read from. * @param [out] out RSA key created. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM encrypted. * @return RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA* wolfSSL_PEM_read_bio_RSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_RSA** out, wc_pem_password_cb* cb, void* pass) { WOLFSSL_RSA* rsa = NULL; DerBuffer* der = NULL; int keyFormat = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_RSAPrivateKey"); if ((bio != NULL) && (pem_read_bio_key(bio, cb, pass, PRIVATEKEY_TYPE, &keyFormat, &der) >= 0)) { rsa = wolfssl_rsa_d2i(out, der->buffer, der->length, WOLFSSL_RSA_LOAD_PRIVATE); if (rsa == NULL) { WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_RSA"); } } FreeDer(&der); if ((out != NULL) && (rsa != NULL)) { *out = rsa; } return rsa; } #endif /* !NO_BIO */ /* Create an RSA private key by reading the PEM encoded data from the file * pointer. * * @param [in] fp File pointer to read from. * @param [out] out RSA key created. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM encrypted. * @return RSA key on success. * @return NULL on failure. */ #ifndef NO_FILESYSTEM WOLFSSL_RSA* wolfSSL_PEM_read_RSAPrivateKey(XFILE fp, WOLFSSL_RSA** out, wc_pem_password_cb* cb, void* pass) { WOLFSSL_RSA* rsa = NULL; DerBuffer* der = NULL; int keyFormat = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_RSAPrivateKey"); if ((fp != XBADFILE) && (pem_read_file_key(fp, cb, pass, PRIVATEKEY_TYPE, &keyFormat, &der) >= 0)) { rsa = wolfssl_rsa_d2i(out, der->buffer, der->length, WOLFSSL_RSA_LOAD_PRIVATE); if (rsa == NULL) { WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_RSA"); } } FreeDer(&der); if ((out != NULL) && (rsa != NULL)) { *out = rsa; } return rsa; } #endif /* !NO_FILESYSTEM */ /* * RSA print APIs */ #if defined(XFPRINTF) && !defined(NO_FILESYSTEM) && \ !defined(NO_STDIO_FILESYSTEM) /* Print an RSA key to a file pointer. * * @param [in] fp File pointer to write to. * @param [in] rsa RSA key to write. * @param [in] indent Number of spaces to prepend to each line. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_print_fp(XFILE fp, WOLFSSL_RSA* rsa, int indent) { int ret = 1; WOLFSSL_ENTER("wolfSSL_RSA_print_fp"); /* Validate parameters. */ if ((fp == XBADFILE) || (rsa == NULL)) { ret = 0; } /* Set the external data from the wolfCrypt RSA key if not done. */ if ((ret == 1) && (!rsa->exSet)) { ret = SetRsaExternal(rsa); } /* Get the key size from modulus if available. */ if ((ret == 1) && (rsa->n != NULL)) { int keySize = wolfSSL_BN_num_bits(rsa->n); if (keySize == 0) { ret = 0; } else { if (XFPRINTF(fp, "%*s", indent, "") < 0) ret = 0; else if (XFPRINTF(fp, "RSA Private-Key: (%d bit, 2 primes)\n", keySize) < 0) ret = 0; } } /* Print out any components available. */ if ((ret == 1) && (rsa->n != NULL)) { ret = pk_bn_field_print_fp(fp, indent, "modulus", rsa->n); } if ((ret == 1) && (rsa->d != NULL)) { ret = pk_bn_field_print_fp(fp, indent, "privateExponent", rsa->d); } if ((ret == 1) && (rsa->p != NULL)) { ret = pk_bn_field_print_fp(fp, indent, "prime1", rsa->p); } if ((ret == 1) && (rsa->q != NULL)) { ret = pk_bn_field_print_fp(fp, indent, "prime2", rsa->q); } if ((ret == 1) && (rsa->dmp1 != NULL)) { ret = pk_bn_field_print_fp(fp, indent, "exponent1", rsa->dmp1); } if ((ret == 1) && (rsa->dmq1 != NULL)) { ret = pk_bn_field_print_fp(fp, indent, "exponent2", rsa->dmq1); } if ((ret == 1) && (rsa->iqmp != NULL)) { ret = pk_bn_field_print_fp(fp, indent, "coefficient", rsa->iqmp); } WOLFSSL_LEAVE("wolfSSL_RSA_print_fp", ret); return ret; } #endif /* XFPRINTF && !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM */ #if defined(XSNPRINTF) && !defined(NO_BIO) /* snprintf() must be available */ /* Maximum size of a header line. */ #define RSA_PRINT_MAX_HEADER_LINE PRINT_NUM_MAX_INDENT /* Writes the human readable form of RSA to a BIO. * * @param [in] bio BIO object to write to. * @param [in] rsa RSA key to write. * @param [in] indent Number of spaces before each line. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_print(WOLFSSL_BIO* bio, WOLFSSL_RSA* rsa, int indent) { int ret = 1; int sz = 0; RsaKey* key = NULL; char line[RSA_PRINT_MAX_HEADER_LINE]; int i = 0; mp_int *num = NULL; /* Header strings. */ const char *name[] = { "Modulus:", "Exponent:", "PrivateExponent:", "Prime1:", "Prime2:", "Exponent1:", "Exponent2:", "Coefficient:" }; WOLFSSL_ENTER("wolfSSL_RSA_print"); /* Validate parameters. */ if ((bio == NULL) || (rsa == NULL) || (indent > PRINT_NUM_MAX_INDENT)) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 1) { key = (RsaKey*)rsa->internal; /* Get size in bits of key for printing out. */ sz = wolfSSL_RSA_bits(rsa); if (sz <= 0) { WOLFSSL_ERROR_MSG("Error getting RSA key size"); ret = 0; } } if (ret == 1) { /* Print any indent spaces. */ ret = wolfssl_print_indent(bio, line, sizeof(line), indent); } if (ret == 1) { /* Print header line. */ int len = XSNPRINTF(line, sizeof(line), "\nRSA %s: (%d bit)\n", (!mp_iszero(&key->d)) ? "Private-Key" : "Public-Key", sz); if (len >= (int)sizeof(line)) { WOLFSSL_ERROR_MSG("Buffer overflow while formatting key preamble"); ret = 0; } else { if (wolfSSL_BIO_write(bio, line, len) <= 0) { ret = 0; } } } for (i = 0; (ret == 1) && (i < RSA_INTS); i++) { /* Get mp_int for index. */ switch (i) { case 0: /* Print out modulus */ num = &key->n; break; case 1: num = &key->e; break; case 2: num = &key->d; break; case 3: num = &key->p; break; case 4: num = &key->q; break; case 5: num = &key->dP; break; case 6: num = &key->dQ; break; case 7: num = &key->u; break; default: WOLFSSL_ERROR_MSG("Bad index value"); } if (i == 1) { /* Print exponent as a 32-bit value. */ ret = wolfssl_print_value(bio, num, name[i], indent); } else if (!mp_iszero(num)) { /* Print name and MP integer. */ ret = wolfssl_print_number(bio, num, name[i], indent); } } return ret; } #endif /* XSNPRINTF && !NO_BIO */ #endif /* OPENSSL_EXTRA */ /* * RSA get/set/test APIs */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Set RSA key data (external) from wolfCrypt RSA key (internal). * * @param [in, out] rsa RSA key. * @return 1 on success. * @return 0 on failure. */ int SetRsaExternal(WOLFSSL_RSA* rsa) { int ret = 1; WOLFSSL_ENTER("SetRsaExternal"); /* Validate parameters. */ if ((rsa == NULL) || (rsa->internal == NULL)) { WOLFSSL_ERROR_MSG("rsa key NULL error"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 1) { RsaKey* key = (RsaKey*)rsa->internal; /* Copy modulus. */ ret = wolfssl_bn_set_value(&rsa->n, &key->n); if (ret != 1) { WOLFSSL_ERROR_MSG("rsa n error"); } if (ret == 1) { /* Copy public exponent. */ ret = wolfssl_bn_set_value(&rsa->e, &key->e); if (ret != 1) { WOLFSSL_ERROR_MSG("rsa e error"); } } if (key->type == RSA_PRIVATE) { if (ret == 1) { /* Copy private exponent. */ ret = wolfssl_bn_set_value(&rsa->d, &key->d); if (ret != 1) { WOLFSSL_ERROR_MSG("rsa d error"); } } if (ret == 1) { /* Copy first prime. */ ret = wolfssl_bn_set_value(&rsa->p, &key->p); if (ret != 1) { WOLFSSL_ERROR_MSG("rsa p error"); } } if (ret == 1) { /* Copy second prime. */ ret = wolfssl_bn_set_value(&rsa->q, &key->q); if (ret != 1) { WOLFSSL_ERROR_MSG("rsa q error"); } } #ifndef RSA_LOW_MEM if (ret == 1) { /* Copy d mod p-1. */ ret = wolfssl_bn_set_value(&rsa->dmp1, &key->dP); if (ret != 1) { WOLFSSL_ERROR_MSG("rsa dP error"); } } if (ret == 1) { /* Copy d mod q-1. */ ret = wolfssl_bn_set_value(&rsa->dmq1, &key->dQ); if (ret != 1) { WOLFSSL_ERROR_MSG("rsa dq error"); } } if (ret == 1) { /* Copy 1/q mod p. */ ret = wolfssl_bn_set_value(&rsa->iqmp, &key->u); if (ret != 1) { WOLFSSL_ERROR_MSG("rsa u error"); } } #endif /* !RSA_LOW_MEM */ } } if (ret == 1) { /* External values set. */ rsa->exSet = 1; } else { /* Return 0 on failure. */ ret = 0; } return ret; } #endif /* (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) */ #ifdef OPENSSL_EXTRA /* Set wolfCrypt RSA key data (internal) from RSA key (external). * * @param [in, out] rsa RSA key. * @return 1 on success. * @return 0 on failure. */ int SetRsaInternal(WOLFSSL_RSA* rsa) { int ret = 1; WOLFSSL_ENTER("SetRsaInternal"); /* Validate parameters. */ if ((rsa == NULL) || (rsa->internal == NULL)) { WOLFSSL_ERROR_MSG("rsa key NULL error"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 1) { RsaKey* key = (RsaKey*)rsa->internal; /* Copy down modulus if available. */ if ((rsa->n != NULL) && (wolfssl_bn_get_value(rsa->n, &key->n) != 1)) { WOLFSSL_ERROR_MSG("rsa n key error"); ret = WOLFSSL_FATAL_ERROR; } /* Copy down public exponent if available. */ if ((ret == 1) && (rsa->e != NULL) && (wolfssl_bn_get_value(rsa->e, &key->e) != 1)) { WOLFSSL_ERROR_MSG("rsa e key error"); ret = WOLFSSL_FATAL_ERROR; } /* Enough numbers for public key */ key->type = RSA_PUBLIC; /* Copy down private exponent if available. */ if ((ret == 1) && (rsa->d != NULL)) { if (wolfssl_bn_get_value(rsa->d, &key->d) != 1) { WOLFSSL_ERROR_MSG("rsa d key error"); ret = WOLFSSL_FATAL_ERROR; } else { /* Enough numbers for private key */ key->type = RSA_PRIVATE; } } /* Copy down first prime if available. */ if ((ret == 1) && (rsa->p != NULL) && (wolfssl_bn_get_value(rsa->p, &key->p) != 1)) { WOLFSSL_ERROR_MSG("rsa p key error"); ret = WOLFSSL_FATAL_ERROR; } /* Copy down second prime if available. */ if ((ret == 1) && (rsa->q != NULL) && (wolfssl_bn_get_value(rsa->q, &key->q) != 1)) { WOLFSSL_ERROR_MSG("rsa q key error"); ret = WOLFSSL_FATAL_ERROR; } #ifndef RSA_LOW_MEM /* Copy down d mod p-1 if available. */ if ((ret == 1) && (rsa->dmp1 != NULL) && (wolfssl_bn_get_value(rsa->dmp1, &key->dP) != 1)) { WOLFSSL_ERROR_MSG("rsa dP key error"); ret = WOLFSSL_FATAL_ERROR; } /* Copy down d mod q-1 if available. */ if ((ret == 1) && (rsa->dmq1 != NULL) && (wolfssl_bn_get_value(rsa->dmq1, &key->dQ) != 1)) { WOLFSSL_ERROR_MSG("rsa dQ key error"); ret = WOLFSSL_FATAL_ERROR; } /* Copy down 1/q mod p if available. */ if ((ret == 1) && (rsa->iqmp != NULL) && (wolfssl_bn_get_value(rsa->iqmp, &key->u) != 1)) { WOLFSSL_ERROR_MSG("rsa u key error"); ret = WOLFSSL_FATAL_ERROR; } #endif /* !RSA_LOW_MEM */ if (ret == 1) { /* All available numbers have been set down. */ rsa->inSet = 1; } } return ret; } /* Set the RSA method into object. * * @param [in, out] rsa RSA key. * @param [in] meth RSA method. * @return 1 always. */ int wolfSSL_RSA_set_method(WOLFSSL_RSA *rsa, WOLFSSL_RSA_METHOD *meth) { if (rsa != NULL) { /* Store the method into object. */ rsa->meth = meth; /* Copy over flags. */ rsa->flags = meth->flags; } /* OpenSSL always assumes it will work. */ return 1; } /* Get the RSA method from the RSA object. * * @param [in] rsa RSA key. * @return RSA method on success. * @return NULL when RSA is NULL or no method set. */ const WOLFSSL_RSA_METHOD* wolfSSL_RSA_get_method(const WOLFSSL_RSA *rsa) { return (rsa != NULL) ? rsa->meth : NULL; } /* Get the size in bytes of the RSA key. * * Return compliant with OpenSSL * * @param [in] rsa RSA key. * @return RSA modulus size in bytes. * @return 0 on error. */ int wolfSSL_RSA_size(const WOLFSSL_RSA* rsa) { int ret = 0; WOLFSSL_ENTER("wolfSSL_RSA_size"); if (rsa != NULL) { /* Make sure we have set the RSA values into wolfCrypt RSA key. */ if (rsa->inSet || (SetRsaInternal((WOLFSSL_RSA*)rsa) == 1)) { /* Get key size in bytes using wolfCrypt RSA key. */ ret = wc_RsaEncryptSize((RsaKey*)rsa->internal); } } return ret; } /* Get the size in bits of the RSA key. * * Uses external modulus field. * * @param [in] rsa RSA key. * @return RSA modulus size in bits. * @return 0 on error. */ int wolfSSL_RSA_bits(const WOLFSSL_RSA* rsa) { int ret = 0; WOLFSSL_ENTER("wolfSSL_RSA_bits"); if (rsa != NULL) { /* Get number of bits in external modulus. */ ret = wolfSSL_BN_num_bits(rsa->n); } return ret; } /* Get the BN objects that are the Chinese-Remainder Theorem (CRT) parameters. * * Only for those that are not NULL parameters. * * @param [in] rsa RSA key. * @param [out] dmp1 BN that is d mod (p - 1). May be NULL. * @param [out] dmq1 BN that is d mod (q - 1). May be NULL. * @param [out] iqmp BN that is 1/q mod p. May be NULL. */ void wolfSSL_RSA_get0_crt_params(const WOLFSSL_RSA *rsa, const WOLFSSL_BIGNUM **dmp1, const WOLFSSL_BIGNUM **dmq1, const WOLFSSL_BIGNUM **iqmp) { WOLFSSL_ENTER("wolfSSL_RSA_get0_crt_params"); /* For any parameters not NULL, return the BN from the key or NULL. */ if (dmp1 != NULL) { *dmp1 = (rsa != NULL) ? rsa->dmp1 : NULL; } if (dmq1 != NULL) { *dmq1 = (rsa != NULL) ? rsa->dmq1 : NULL; } if (iqmp != NULL) { *iqmp = (rsa != NULL) ? rsa->iqmp : NULL; } } /* Set the BN objects that are the Chinese-Remainder Theorem (CRT) parameters * into RSA key. * * If CRT parameter is NULL then there must be one in the RSA key already. * * @param [in, out] rsa RSA key. * @param [in] dmp1 BN that is d mod (p - 1). May be NULL. * @param [in] dmq1 BN that is d mod (q - 1). May be NULL. * @param [in] iqmp BN that is 1/q mod p. May be NULL. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_set0_crt_params(WOLFSSL_RSA *rsa, WOLFSSL_BIGNUM *dmp1, WOLFSSL_BIGNUM *dmq1, WOLFSSL_BIGNUM *iqmp) { int ret = 1; WOLFSSL_ENTER("wolfSSL_RSA_set0_crt_params"); /* If a param is NULL in rsa then it must be non-NULL in the * corresponding user input. */ if ((rsa == NULL) || ((rsa->dmp1 == NULL) && (dmp1 == NULL)) || ((rsa->dmq1 == NULL) && (dmq1 == NULL)) || ((rsa->iqmp == NULL) && (iqmp == NULL))) { WOLFSSL_ERROR_MSG("Bad parameters"); ret = 0; } if (ret == 1) { /* Replace the BNs. */ if (dmp1 != NULL) { wolfSSL_BN_clear_free(rsa->dmp1); rsa->dmp1 = dmp1; } if (dmq1 != NULL) { wolfSSL_BN_clear_free(rsa->dmq1); rsa->dmq1 = dmq1; } if (iqmp != NULL) { wolfSSL_BN_clear_free(rsa->iqmp); rsa->iqmp = iqmp; } /* Set the values into the wolfCrypt RSA key. */ if (SetRsaInternal(rsa) != 1) { if (dmp1 != NULL) { rsa->dmp1 = NULL; } if (dmq1 != NULL) { rsa->dmq1 = NULL; } if (iqmp != NULL) { rsa->iqmp = NULL; } ret = 0; } } return ret; } /* Get the BN objects that are the factors of the RSA key (two primes p and q). * * @param [in] rsa RSA key. * @param [out] p BN that is first prime. May be NULL. * @param [out] q BN that is second prime. May be NULL. */ void wolfSSL_RSA_get0_factors(const WOLFSSL_RSA *rsa, const WOLFSSL_BIGNUM **p, const WOLFSSL_BIGNUM **q) { WOLFSSL_ENTER("wolfSSL_RSA_get0_factors"); /* For any primes not NULL, return the BN from the key or NULL. */ if (p != NULL) { *p = (rsa != NULL) ? rsa->p : NULL; } if (q != NULL) { *q = (rsa != NULL) ? rsa->q : NULL; } } /* Set the BN objects that are the factors of the RSA key (two primes p and q). * * If factor parameter is NULL then there must be one in the RSA key already. * * @param [in, out] rsa RSA key. * @param [in] p BN that is first prime. May be NULL. * @param [in] q BN that is second prime. May be NULL. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_set0_factors(WOLFSSL_RSA *rsa, WOLFSSL_BIGNUM *p, WOLFSSL_BIGNUM *q) { int ret = 1; WOLFSSL_ENTER("wolfSSL_RSA_set0_factors"); /* If a param is null in r then it must be non-null in the * corresponding user input. */ if (rsa == NULL || ((rsa->p == NULL) && (p == NULL)) || ((rsa->q == NULL) && (q == NULL))) { WOLFSSL_ERROR_MSG("Bad parameters"); ret = 0; } if (ret == 1) { /* Replace the BNs. */ if (p != NULL) { wolfSSL_BN_clear_free(rsa->p); rsa->p = p; } if (q != NULL) { wolfSSL_BN_clear_free(rsa->q); rsa->q = q; } /* Set the values into the wolfCrypt RSA key. */ if (SetRsaInternal(rsa) != 1) { if (p != NULL) { rsa->p = NULL; } if (q != NULL) { rsa->q = NULL; } ret = 0; } } return ret; } /* Get the BN objects for the basic key numbers of the RSA key (modulus, public * exponent, private exponent). * * @param [in] rsa RSA key. * @param [out] n BN that is the modulus. May be NULL. * @param [out] e BN that is the public exponent. May be NULL. * @param [out] d BN that is the private exponent. May be NULL. */ void wolfSSL_RSA_get0_key(const WOLFSSL_RSA *rsa, const WOLFSSL_BIGNUM **n, const WOLFSSL_BIGNUM **e, const WOLFSSL_BIGNUM **d) { WOLFSSL_ENTER("wolfSSL_RSA_get0_key"); /* For any parameters not NULL, return the BN from the key or NULL. */ if (n != NULL) { *n = (rsa != NULL) ? rsa->n : NULL; } if (e != NULL) { *e = (rsa != NULL) ? rsa->e : NULL; } if (d != NULL) { *d = (rsa != NULL) ? rsa->d : NULL; } } /* Set the BN objects for the basic key numbers into the RSA key (modulus, * public exponent, private exponent). * * If BN parameter is NULL then there must be one in the RSA key already. * * @param [in,out] rsa RSA key. * @param [in] n BN that is the modulus. May be NULL. * @param [in] e BN that is the public exponent. May be NULL. * @param [in] d BN that is the private exponent. May be NULL. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_set0_key(WOLFSSL_RSA *rsa, WOLFSSL_BIGNUM *n, WOLFSSL_BIGNUM *e, WOLFSSL_BIGNUM *d) { int ret = 1; /* If the fields n and e in r are NULL, the corresponding input * parameters MUST be non-NULL for n and e. d may be * left NULL (in case only the public key is used). */ if ((rsa == NULL) || ((rsa->n == NULL) && (n == NULL)) || ((rsa->e == NULL) && (e == NULL))) { ret = 0; } if (ret == 1) { /* Replace the BNs. */ if (n != NULL) { wolfSSL_BN_free(rsa->n); rsa->n = n; } if (e != NULL) { wolfSSL_BN_free(rsa->e); rsa->e = e; } if (d != NULL) { /* Private key is sensitive data. */ wolfSSL_BN_clear_free(rsa->d); rsa->d = d; } /* Set the values into the wolfCrypt RSA key. */ if (SetRsaInternal(rsa) != 1) { if (n != NULL) { rsa->n = NULL; } if (e != NULL) { rsa->e = NULL; } if (d != NULL) { rsa->d = NULL; } ret = 0; } } return ret; } /* Get the flags of the RSA key. * * @param [in] rsa RSA key. * @return Flags set in RSA key on success. * @return 0 when RSA key is NULL. */ int wolfSSL_RSA_flags(const WOLFSSL_RSA *rsa) { int ret = 0; /* Get flags from the RSA key if available. */ if (rsa != NULL) { ret = rsa->flags; } return ret; } /* Set the flags into the RSA key. * * @param [in, out] rsa RSA key. * @param [in] flags Flags to set. */ void wolfSSL_RSA_set_flags(WOLFSSL_RSA *rsa, int flags) { /* Add the flags into RSA key if available. */ if (rsa != NULL) { rsa->flags |= flags; } } /* Clear the flags in the RSA key. * * @param [in, out] rsa RSA key. * @param [in] flags Flags to clear. */ void wolfSSL_RSA_clear_flags(WOLFSSL_RSA *rsa, int flags) { /* Clear the flags passed in that are on the RSA key if available. */ if (rsa != NULL) { rsa->flags &= ~flags; } } /* Test the flags in the RSA key. * * @param [in] rsa RSA key. * @return Matching flags of RSA key on success. * @return 0 when RSA key is NULL. */ int wolfSSL_RSA_test_flags(const WOLFSSL_RSA *rsa, int flags) { /* Return the flags passed in that are set on the RSA key if available. */ return (rsa != NULL) ? (rsa->flags & flags) : 0; } /* Get the extra data, by index, associated with the RSA key. * * @param [in] rsa RSA key. * @param [in] idx Index of extra data. * @return Extra data (anonymous type) on success. * @return NULL on failure. */ void* wolfSSL_RSA_get_ex_data(const WOLFSSL_RSA *rsa, int idx) { WOLFSSL_ENTER("wolfSSL_RSA_get_ex_data"); #ifdef HAVE_EX_DATA return (rsa == NULL) ? NULL : wolfSSL_CRYPTO_get_ex_data(&rsa->ex_data, idx); #else (void)rsa; (void)idx; return NULL; #endif } /* Set extra data against the RSA key at an index. * * @param [in, out] rsa RSA key. * @param [in] idx Index set set extra data at. * @param [in] data Extra data of anonymous type. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_set_ex_data(WOLFSSL_RSA *rsa, int idx, void *data) { WOLFSSL_ENTER("wolfSSL_RSA_set_ex_data"); #ifdef HAVE_EX_DATA return (rsa == NULL) ? 0 : wolfSSL_CRYPTO_set_ex_data(&rsa->ex_data, idx, data); #else (void)rsa; (void)idx; (void)data; return 0; #endif } #ifdef HAVE_EX_DATA_CLEANUP_HOOKS /* Set the extra data and cleanup callback against the RSA key at an index. * * Not OpenSSL API. * * @param [in, out] rsa RSA key. * @param [in] idx Index set set extra data at. * @param [in] data Extra data of anonymous type. * @param [in] freeCb Callback function to free extra data. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_set_ex_data_with_cleanup(WOLFSSL_RSA *rsa, int idx, void *data, wolfSSL_ex_data_cleanup_routine_t freeCb) { WOLFSSL_ENTER("wolfSSL_RSA_set_ex_data_with_cleanup"); return (rsa == NULL) ? 0 : wolfSSL_CRYPTO_set_ex_data_with_cleanup(&rsa->ex_data, idx, data, freeCb); } #endif /* HAVE_EX_DATA_CLEANUP_HOOKS */ /* * RSA check key APIs */ #ifdef WOLFSSL_RSA_KEY_CHECK /* Check that the RSA key is valid using wolfCrypt. * * @param [in] rsa RSA key. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_check_key(const WOLFSSL_RSA* rsa) { int ret = 1; WOLFSSL_ENTER("wolfSSL_RSA_check_key"); /* Validate parameters. */ if ((rsa == NULL) || (rsa->internal == NULL)) { ret = 0; } /* Constant RSA - assume internal data has been set. */ /* Check wolfCrypt RSA key. */ if ((ret == 1) && (wc_CheckRsaKey((RsaKey*)rsa->internal) != 0)) { ret = 0; } WOLFSSL_LEAVE("wolfSSL_RSA_check_key", ret); return ret; } #endif /* WOLFSSL_RSA_KEY_CHECK */ /* * RSA generate APIs */ /* Get a random number generator associated with the RSA key. * * If not able, then get the global if possible. * *tmpRng must not be an initialized RNG. * *tmpRng is allocated when WOLFSSL_SMALL_STACK is defined and an RNG isn't * associated with the wolfCrypt RSA key. * * @param [in] rsa RSA key. * @param [out] tmpRng Temporary random number generator. * @param [out] initTmpRng Temporary random number generator was initialized. * * @return A wolfCrypt RNG to use on success. * @return NULL on error. */ WC_RNG* WOLFSSL_RSA_GetRNG(WOLFSSL_RSA* rsa, WC_RNG** tmpRng, int* initTmpRng) { WC_RNG* rng = NULL; int err = 0; /* Check validity of parameters. */ if ((rsa == NULL) || (initTmpRng == NULL)) { err = 1; } if (!err) { /* Haven't initialized any RNG passed through tmpRng. */ *initTmpRng = 0; #if !defined(HAVE_FIPS) && defined(WC_RSA_BLINDING) /* Use wolfCrypt RSA key's RNG if available/set. */ rng = ((RsaKey*)rsa->internal)->rng; #endif } if ((!err) && (rng == NULL) && (tmpRng != NULL)) { /* Make an RNG with tmpRng or get global. */ rng = wolfssl_make_rng(*tmpRng, initTmpRng); if ((rng != NULL) && *initTmpRng) { *tmpRng = rng; } } return rng; } /* Use the wolfCrypt RSA APIs to generate a new RSA key. * * @param [in, out] rsa RSA key. * @param [in] bits Number of bits that the modulus must have. * @param [in] e A BN object holding the public exponent to use. * @param [in] cb Status callback. Unused. * @return 0 on success. * @return wolfSSL native error code on error. */ static int wolfssl_rsa_generate_key_native(WOLFSSL_RSA* rsa, int bits, WOLFSSL_BIGNUM* e, void* cb) { #ifdef WOLFSSL_KEY_GEN int ret = 0; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG _tmpRng[1]; WC_RNG* tmpRng = _tmpRng; #endif int initTmpRng = 0; WC_RNG* rng = NULL; long en; #endif (void)cb; WOLFSSL_ENTER("wolfssl_rsa_generate_key_native"); #ifdef WOLFSSL_KEY_GEN /* Get RNG in wolfCrypt RSA key or initialize a new one (or global). */ rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng); if (rng == NULL) { /* Something went wrong so return memory error. */ ret = MEMORY_E; } if ((ret == 0) && ((en = (long)wolfSSL_BN_get_word(e)) <= 0)) { ret = BAD_FUNC_ARG; } if (ret == 0) { /* Generate an RSA key. */ ret = wc_MakeRsaKey((RsaKey*)rsa->internal, bits, en, rng); if (ret != MP_OKAY) { WOLFSSL_ERROR_MSG("wc_MakeRsaKey failed"); } } if (ret == 0) { /* Get the values from wolfCrypt RSA key into external RSA key. */ ret = SetRsaExternal(rsa); if (ret == 1) { /* Internal matches external. */ rsa->inSet = 1; /* Return success. */ ret = 0; } else { /* Something went wrong so return memory error. */ ret = MEMORY_E; } } /* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */ if (initTmpRng) { wc_FreeRng(tmpRng); } #ifdef WOLFSSL_SMALL_STACK /* Dispose of any allocated RNG. */ XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG); #endif return ret; #else WOLFSSL_ERROR_MSG("No Key Gen built in"); (void)rsa; (void)e; (void)bits; return NOT_COMPILED_IN; #endif } /* Generate an RSA key that has the specified modulus size and public exponent. * * Note: Because of wc_MakeRsaKey an RSA key size generated can be rounded * down to nearest multiple of 8. For example generating a key of size * 2999 bits will make a key of size 374 bytes instead of 375 bytes. * * @param [in] bits Number of bits that the modulus must have i.e. 2048. * @param [in] e Public exponent to use i.e. 65537. * @param [in] cb Status callback. Unused. * @param [in] data Data to pass to status callback. Unused. * @return A new RSA key on success. * @return NULL on failure. */ WOLFSSL_RSA* wolfSSL_RSA_generate_key(int bits, unsigned long e, void(*cb)(int, int, void*), void* data) { WOLFSSL_RSA* rsa = NULL; WOLFSSL_BIGNUM* bn = NULL; int err = 0; WOLFSSL_ENTER("wolfSSL_RSA_generate_key"); (void)cb; (void)data; /* Validate bits. */ if (bits < 0) { WOLFSSL_ERROR_MSG("Bad argument: bits was less than 0"); err = 1; } /* Create a new BN to hold public exponent - for when wolfCrypt supports * longer values. */ if ((!err) && ((bn = wolfSSL_BN_new()) == NULL)) { WOLFSSL_ERROR_MSG("Error creating big number"); err = 1; } /* Set public exponent. */ if ((!err) && (wolfSSL_BN_set_word(bn, e) != 1)) { WOLFSSL_ERROR_MSG("Error using e value"); err = 1; } /* Create an RSA key object to hold generated key. */ if ((!err) && ((rsa = wolfSSL_RSA_new()) == NULL)) { WOLFSSL_ERROR_MSG("memory error"); err = 1; } while (!err) { int ret; /* Use wolfCrypt to generate RSA key. */ ret = wolfssl_rsa_generate_key_native(rsa, bits, bn, NULL); #ifdef HAVE_FIPS /* Keep trying if failed to find a prime. */ if (ret == WC_NO_ERR_TRACE(PRIME_GEN_E)) { continue; } #endif if (ret != WOLFSSL_ERROR_NONE) { /* Unrecoverable error in generation. */ err = 1; } /* Done generating - unrecoverable error or success. */ break; } if (err) { /* Dispose of RSA key object if generation didn't work. */ wolfSSL_RSA_free(rsa); /* Returning NULL on error. */ rsa = NULL; } /* Dispose of the temporary BN used for the public exponent. */ wolfSSL_BN_free(bn); return rsa; } /* Generate an RSA key that has the specified modulus size and public exponent. * * Note: Because of wc_MakeRsaKey an RSA key size generated can be rounded * down to nearest multiple of 8. For example generating a key of size * 2999 bits will make a key of size 374 bytes instead of 375 bytes. * * @param [in] bits Number of bits that the modulus must have i.e. 2048. * @param [in] e Public exponent to use, i.e. 65537, as a BN. * @param [in] cb Status callback. Unused. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_generate_key_ex(WOLFSSL_RSA* rsa, int bits, WOLFSSL_BIGNUM* e, void* cb) { int ret = 1; /* Validate parameters. */ if ((rsa == NULL) || (rsa->internal == NULL)) { WOLFSSL_ERROR_MSG("bad arguments"); ret = 0; } else { for (;;) { /* Use wolfCrypt to generate RSA key. */ int gen_ret = wolfssl_rsa_generate_key_native(rsa, bits, e, cb); #ifdef HAVE_FIPS /* Keep trying again if public key value didn't work. */ if (gen_ret == WC_NO_ERR_TRACE(PRIME_GEN_E)) { continue; } #endif if (gen_ret != WOLFSSL_ERROR_NONE) { /* Unrecoverable error in generation. */ ret = 0; } /* Done generating - unrecoverable error or success. */ break; } } return ret; } #endif /* OPENSSL_EXTRA */ /* * RSA padding APIs */ #if defined(WC_RSA_PSS) && (defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || \ defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_NGINX)) #if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0) /* Add PKCS#1 PSS padding to hash. * * * +-----------+ * | M | * +-----------+ * | * V * Hash * | * V * +--------+----------+----------+ * M' = |Padding1| mHash | salt | * +--------+----------+----------+ * | * +--------+----------+ V * DB = |Padding2|maskedseed| Hash * +--------+----------+ | * | | * V | +--+ * xor <--- MGF <---| |bc| * | | +--+ * | | | * V V V * +-------------------+----------+--+ * EM = | maskedDB |maskedseed|bc| * +-------------------+----------+--+ * Diagram taken from https://tools.ietf.org/html/rfc3447#section-9.1 * * @param [in] rsa RSA key. * @param [out] em Encoded message. * @param [in[ mHash Message hash. * @param [in] hashAlg Hash algorithm. * @param [in] saltLen Length of salt to generate. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_padding_add_PKCS1_PSS(WOLFSSL_RSA *rsa, unsigned char *em, const unsigned char *mHash, const WOLFSSL_EVP_MD *hashAlg, int saltLen) { int ret = 1; enum wc_HashType hashType; int hashLen = 0; int emLen = 0; int mgf = 0; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG _tmpRng[1]; WC_RNG* tmpRng = _tmpRng; #endif WOLFSSL_ENTER("wolfSSL_RSA_padding_add_PKCS1_PSS"); /* Validate parameters. */ if ((rsa == NULL) || (em == NULL) || (mHash == NULL) || (hashAlg == NULL)) { ret = 0; } if (ret == 1) { /* Get/create an RNG. */ rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng); if (rng == NULL) { WOLFSSL_ERROR_MSG("WOLFSSL_RSA_GetRNG error"); ret = 0; } } /* TODO: use wolfCrypt RSA key to get emLen and bits? */ /* Set the external data from the wolfCrypt RSA key if not done. */ if ((ret == 1) && (!rsa->exSet)) { ret = SetRsaExternal(rsa); } if (ret == 1) { /* Get the wolfCrypt hash algorithm type. */ hashType = EvpMd2MacType(hashAlg); if (hashType > WC_HASH_TYPE_MAX) { WOLFSSL_ERROR_MSG("EvpMd2MacType error"); ret = 0; } } if (ret == 1) { /* Get the wolfCrypt MGF algorithm from hash algorithm. */ mgf = wc_hash2mgf(hashType); if (mgf == WC_MGF1NONE) { WOLFSSL_ERROR_MSG("wc_hash2mgf error"); ret = 0; } } if (ret == 1) { /* Get the length of the hash output. */ hashLen = wolfSSL_EVP_MD_size(hashAlg); if (hashLen < 0) { WOLFSSL_ERROR_MSG("wolfSSL_EVP_MD_size error"); ret = 0; } } if (ret == 1) { /* Get length of RSA key - encrypted message length. */ emLen = wolfSSL_RSA_size(rsa); if (emLen <= 0) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_size error"); ret = 0; } } if (ret == 1) { /* Calculate the salt length to use for special cases. */ /* TODO: use special case wolfCrypt values? */ switch (saltLen) { /* Negative saltLen values are treated differently. */ case RSA_PSS_SALTLEN_DIGEST: saltLen = hashLen; break; case RSA_PSS_SALTLEN_MAX_SIGN: case RSA_PSS_SALTLEN_MAX: #ifdef WOLFSSL_PSS_LONG_SALT saltLen = emLen - hashLen - 2; #else saltLen = hashLen; #endif break; default: if (saltLen < 0) { /* No other negative values implemented. */ WOLFSSL_ERROR_MSG("invalid saltLen"); ret = 0; } } } if (ret == 1) { /* Generate RSA PKCS#1 PSS padding for hash using wolfCrypt. */ if (wc_RsaPad_ex(mHash, (word32)hashLen, em, (word32)emLen, RSA_BLOCK_TYPE_1, rng, WC_RSA_PSS_PAD, hashType, mgf, NULL, 0, saltLen, wolfSSL_BN_num_bits(rsa->n), NULL) != MP_OKAY) { WOLFSSL_ERROR_MSG("wc_RsaPad_ex error"); ret = 0; } } /* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */ if (initTmpRng) { wc_FreeRng(tmpRng); } #ifdef WOLFSSL_SMALL_STACK /* Dispose of any allocated RNG. */ XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG); #endif return ret; } /* Checks that the hash is valid for the RSA PKCS#1 PSS encoded message. * * Refer to wolfSSL_RSA_padding_add_PKCS1_PSS for a diagram. * * @param [in] rsa RSA key. * @param [in[ mHash Message hash. * @param [in] hashAlg Hash algorithm. * @param [in] em Encoded message. * @param [in] saltLen Length of salt to generate. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_verify_PKCS1_PSS(WOLFSSL_RSA *rsa, const unsigned char *mHash, const WOLFSSL_EVP_MD *hashAlg, const unsigned char *em, int saltLen) { int ret = 1; int hashLen = 0; int mgf = 0; int emLen = 0; int mPrimeLen = 0; enum wc_HashType hashType = WC_HASH_TYPE_NONE; byte *mPrime = NULL; byte *buf = NULL; WOLFSSL_ENTER("wolfSSL_RSA_verify_PKCS1_PSS"); /* Validate parameters. */ if ((rsa == NULL) || (mHash == NULL) || (hashAlg == NULL) || (em == NULL)) { ret = 0; } /* TODO: use wolfCrypt RSA key to get emLen and bits? */ /* Set the external data from the wolfCrypt RSA key if not done. */ if ((ret == 1) && (!rsa->exSet)) { ret = SetRsaExternal(rsa); } if (ret == 1) { /* Get hash length for hash algorithm. */ hashLen = wolfSSL_EVP_MD_size(hashAlg); if (hashLen < 0) { ret = 0; } } if (ret == 1) { /* Get length of RSA key - encrypted message length. */ emLen = wolfSSL_RSA_size(rsa); if (emLen <= 0) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_size error"); ret = 0; } } if (ret == 1) { /* Calculate the salt length to use for special cases. */ switch (saltLen) { /* Negative saltLen values are treated differently */ case RSA_PSS_SALTLEN_DIGEST: saltLen = hashLen; break; case RSA_PSS_SALTLEN_AUTO: #ifdef WOLFSSL_PSS_SALT_LEN_DISCOVER saltLen = RSA_PSS_SALT_LEN_DISCOVER; break; #endif case RSA_PSS_SALTLEN_MAX: #ifdef WOLFSSL_PSS_LONG_SALT saltLen = emLen - hashLen - 2; #else saltLen = hashLen; #endif break; default: if (saltLen < 0) { /* No other negative values implemented. */ WOLFSSL_ERROR_MSG("invalid saltLen"); ret = 0; } } } if (ret == 1) { /* Get the wolfCrypt hash algorithm type. */ hashType = EvpMd2MacType(hashAlg); if (hashType > WC_HASH_TYPE_MAX) { WOLFSSL_ERROR_MSG("EvpMd2MacType error"); ret = 0; } } if (ret == 1) { /* Get the wolfCrypt MGF algorithm from hash algorithm. */ if ((mgf = wc_hash2mgf(hashType)) == WC_MGF1NONE) { WOLFSSL_ERROR_MSG("wc_hash2mgf error"); ret = 0; } } if (ret == 1) { /* Allocate buffer to unpad inline with. */ buf = (byte*)XMALLOC((size_t)emLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { WOLFSSL_ERROR_MSG("malloc error"); ret = 0; } } if (ret == 1) { /* Copy encrypted message to temp for inline unpadding. */ XMEMCPY(buf, em, (size_t)emLen); /* Remove and verify the PSS padding. */ mPrimeLen = wc_RsaUnPad_ex(buf, (word32)emLen, &mPrime, RSA_BLOCK_TYPE_1, WC_RSA_PSS_PAD, hashType, mgf, NULL, 0, saltLen, wolfSSL_BN_num_bits(rsa->n), NULL); if (mPrimeLen < 0) { WOLFSSL_ERROR_MSG("wc_RsaPad_ex error"); ret = 0; } } if (ret == 1) { /* Verify the hash is correct. */ if (wc_RsaPSS_CheckPadding_ex(mHash, (word32)hashLen, mPrime, (word32)mPrimeLen, hashType, saltLen, wolfSSL_BN_num_bits(rsa->n)) != MP_OKAY) { WOLFSSL_ERROR_MSG("wc_RsaPSS_CheckPadding_ex error"); ret = 0; } } /* Dispose of any allocated buffer. */ XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif /* !HAVE_FIPS || FIPS_VERSION_GT(2,0) */ #endif /* WC_RSA_PSS && (OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || * WOLFSSL_NGINX) */ /* * RSA sign/verify APIs */ #ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER #define DEF_PSS_SALT_LEN RSA_PSS_SALT_LEN_DEFAULT #else #define DEF_PSS_SALT_LEN RSA_PSS_SALT_LEN_DISCOVER #endif #if defined(OPENSSL_EXTRA) /* Encode the message hash. * * Used by signing and verification. * * @param [in] hashAlg Hash algorithm OID. * @param [in] hash Hash of message to encode for signing. * @param [in] hLen Length of hash of message. * @param [out] enc Encoded message hash. * @param [out] encLen Length of encoded message hash. * @param [in] padding Which padding scheme is being used. * @return 1 on success. * @return 0 on failure. */ static int wolfssl_rsa_sig_encode(int hashAlg, const unsigned char* hash, unsigned int hLen, unsigned char* enc, unsigned int* encLen, int padding) { int ret = 1; int hType = WC_HASH_TYPE_NONE; /* Validate parameters. */ if ((hash == NULL) || (enc == NULL) || (encLen == NULL)) { ret = 0; } if ((ret == 1) && (hashAlg != NID_undef) && (padding == RSA_PKCS1_PADDING)) { /* Convert hash algorithm to hash type for PKCS#1.5 padding. */ hType = (int)nid2oid(hashAlg, oidHashType); if (hType == -1) { ret = 0; } } if ((ret == 1) && (padding == RSA_PKCS1_PADDING)) { /* PKCS#1.5 encoding. */ word32 encSz = wc_EncodeSignature(enc, hash, hLen, hType); if (encSz == 0) { WOLFSSL_ERROR_MSG("Bad Encode Signature"); ret = 0; } else { *encLen = (unsigned int)encSz; } } /* Other padding schemes require the hash as is. */ if ((ret == 1) && (padding != RSA_PKCS1_PADDING)) { XMEMCPY(enc, hash, hLen); *encLen = hLen; } return ret; } /* Sign the message hash using hash algorithm and RSA key. * * @param [in] hashAlg Hash algorithm OID. * @param [in] hash Hash of message to encode for signing. * @param [in] hLen Length of hash of message. * @param [out] enc Encoded message hash. * @param [out] encLen Length of encoded message hash. * @param [in] rsa RSA key. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_sign(int hashAlg, const unsigned char* hash, unsigned int hLen, unsigned char* sigRet, unsigned int* sigLen, WOLFSSL_RSA* rsa) { if (sigLen != NULL) { /* No size checking in this API */ *sigLen = RSA_MAX_SIZE / CHAR_BIT; } /* flag is 1: output complete signature. */ return wolfSSL_RSA_sign_generic_padding(hashAlg, hash, hLen, sigRet, sigLen, rsa, 1, RSA_PKCS1_PADDING); } /* Sign the message hash using hash algorithm and RSA key. * * Not OpenSSL API. * * @param [in] hashAlg Hash algorithm NID. * @param [in] hash Hash of message to encode for signing. * @param [in] hLen Length of hash of message. * @param [out] enc Encoded message hash. * @param [out] encLen Length of encoded message hash. * @param [in] rsa RSA key. * @param [in] flag When 1: Output encrypted signature. * When 0: Output encoded hash. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_sign_ex(int hashAlg, const unsigned char* hash, unsigned int hLen, unsigned char* sigRet, unsigned int* sigLen, WOLFSSL_RSA* rsa, int flag) { int ret = 0; if ((flag == 0) || (flag == 1)) { if (sigLen != NULL) { /* No size checking in this API */ *sigLen = RSA_MAX_SIZE / CHAR_BIT; } ret = wolfSSL_RSA_sign_generic_padding(hashAlg, hash, hLen, sigRet, sigLen, rsa, flag, RSA_PKCS1_PADDING); } return ret; } /** * Sign a message hash with the chosen message digest, padding, and RSA key. * * Not OpenSSL API. * * @param [in] hashAlg Hash NID * @param [in] hash Message hash to sign. * @param [in] mLen Length of message hash to sign. * @param [out] sigRet Output buffer. * @param [in, out] sigLen On Input: length of sigRet buffer. * On Output: length of data written to sigRet. * @param [in] rsa RSA key used to sign the input. * @param [in] flag 1: Output the signature. * 0: Output the value that the unpadded signature * should be compared to. * @param [in] padding Padding to use. Only RSA_PKCS1_PSS_PADDING and * RSA_PKCS1_PADDING are currently supported for * signing. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_sign_generic_padding(int hashAlg, const unsigned char* hash, unsigned int hLen, unsigned char* sigRet, unsigned int* sigLen, WOLFSSL_RSA* rsa, int flag, int padding) { int ret = 1; word32 outLen = 0; int signSz = 0; WC_RNG* rng = NULL; int initTmpRng = 0; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; byte* encodedSig = NULL; #else WC_RNG _tmpRng[1]; WC_RNG* tmpRng = _tmpRng; byte encodedSig[MAX_ENCODED_SIG_SZ]; #endif unsigned int encSz = 0; WOLFSSL_ENTER("wolfSSL_RSA_sign_generic_padding"); if (flag == 0) { /* Only encode message. */ return wolfssl_rsa_sig_encode(hashAlg, hash, hLen, sigRet, sigLen, padding); } /* Validate parameters. */ if ((hash == NULL) || (sigRet == NULL) || sigLen == NULL || rsa == NULL) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } /* Set wolfCrypt RSA key data from external if not already done. */ if ((ret == 1) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) { ret = 0; } if (ret == 1) { /* Get the maximum signature length. */ outLen = (word32)wolfSSL_BN_num_bytes(rsa->n); /* Check not an error return. */ if (outLen == 0) { WOLFSSL_ERROR_MSG("Bad RSA size"); ret = 0; } /* Check signature buffer is big enough. */ else if (outLen > *sigLen) { WOLFSSL_ERROR_MSG("Output buffer too small"); ret = 0; } } #ifdef WOLFSSL_SMALL_STACK if (ret == 1) { /* Allocate encoded signature buffer if doing PKCS#1 padding. */ encodedSig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ, NULL, DYNAMIC_TYPE_SIGNATURE); if (encodedSig == NULL) { ret = 0; } } #endif if (ret == 1) { /* Get/create an RNG. */ rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng); if (rng == NULL) { WOLFSSL_ERROR_MSG("WOLFSSL_RSA_GetRNG error"); ret = 0; } } /* Either encodes with PKCS#1.5 or copies hash into encodedSig. */ if ((ret == 1) && (wolfssl_rsa_sig_encode(hashAlg, hash, hLen, encodedSig, &encSz, padding) == 0)) { WOLFSSL_ERROR_MSG("Bad Encode Signature"); ret = 0; } if (ret == 1) { switch (padding) { #if defined(WC_RSA_NO_PADDING) || defined(WC_RSA_DIRECT) case RSA_NO_PADDING: if ((signSz = wc_RsaDirect(encodedSig, encSz, sigRet, &outLen, (RsaKey*)rsa->internal, RSA_PRIVATE_ENCRYPT, rng)) <= 0) { WOLFSSL_ERROR_MSG("Bad Rsa Sign no pad"); ret = 0; } break; #endif #if defined(WC_RSA_PSS) && !defined(HAVE_SELFTEST) && \ (!defined(HAVE_FIPS) || FIPS_VERSION_GE(5,1)) case RSA_PKCS1_PSS_PADDING: { enum wc_HashType hType = wc_OidGetHash((int)nid2oid(hashAlg, oidHashType)); #ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER WOLFSSL_MSG("Using RSA-PSS with hash length salt. " "OpenSSL uses max length by default."); #endif /* Create RSA PSS signature. */ if ((signSz = wc_RsaPSS_Sign_ex(encodedSig, encSz, sigRet, outLen, hType, wc_hash2mgf(hType), DEF_PSS_SALT_LEN, (RsaKey*)rsa->internal, rng)) <= 0) { WOLFSSL_ERROR_MSG("Bad Rsa Sign"); ret = 0; } break; } #endif #ifndef WC_NO_RSA_OAEP case RSA_PKCS1_OAEP_PADDING: /* Not a signature padding scheme. */ WOLFSSL_ERROR_MSG("RSA_PKCS1_OAEP_PADDING not supported for " "signing"); ret = 0; break; #endif case RSA_PKCS1_PADDING: { /* Sign (private encrypt) PKCS#1 encoded signature. */ if ((signSz = wc_RsaSSL_Sign(encodedSig, encSz, sigRet, outLen, (RsaKey*)rsa->internal, rng)) <= 0) { WOLFSSL_ERROR_MSG("Bad Rsa Sign"); ret = 0; } break; } default: WOLFSSL_ERROR_MSG("Unsupported padding"); ret = 0; break; } } if (ret == 1) { /* Return the size of signature generated. */ *sigLen = (unsigned int)signSz; } /* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */ if (initTmpRng) { wc_FreeRng(tmpRng); } #ifdef WOLFSSL_SMALL_STACK /* Dispose of any allocated RNG and encoded signature. */ XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG); XFREE(encodedSig, NULL, DYNAMIC_TYPE_SIGNATURE); #endif WOLFSSL_LEAVE("wolfSSL_RSA_sign_generic_padding", ret); return ret; } /** * Verify a message hash with the chosen message digest, padding, and RSA key. * * @param [in] hashAlg Hash NID * @param [in] hash Message hash. * @param [in] mLen Length of message hash. * @param [in] sigRet Signature data. * @param [in] sigLen Length of signature data. * @param [in] rsa RSA key used to sign the input * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_verify(int hashAlg, const unsigned char* hash, unsigned int hLen, const unsigned char* sig, unsigned int sigLen, WOLFSSL_RSA* rsa) { return wolfSSL_RSA_verify_ex(hashAlg, hash, hLen, sig, sigLen, rsa, RSA_PKCS1_PADDING); } /** * Verify a message hash with the chosen message digest, padding, and RSA key. * * Not OpenSSL API. * * @param [in] hashAlg Hash NID * @param [in] hash Message hash. * @param [in] mLen Length of message hash. * @param [in] sigRet Signature data. * @param [in] sigLen Length of signature data. * @param [in] rsa RSA key used to sign the input * @param [in] padding Padding to use. Only RSA_PKCS1_PSS_PADDING and * RSA_PKCS1_PADDING are currently supported for * signing. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_RSA_verify_ex(int hashAlg, const unsigned char* hash, unsigned int hLen, const unsigned char* sig, unsigned int sigLen, WOLFSSL_RSA* rsa, int padding) { int ret = 1; #ifdef WOLFSSL_SMALL_STACK unsigned char* encodedSig = NULL; #else unsigned char encodedSig[MAX_ENCODED_SIG_SZ]; #endif unsigned char* sigDec = NULL; unsigned int len = MAX_ENCODED_SIG_SZ; int verLen = 0; #if (!defined(HAVE_FIPS) || FIPS_VERSION_GE(5, 1)) && !defined(HAVE_SELFTEST) enum wc_HashType hType = WC_HASH_TYPE_NONE; #endif WOLFSSL_ENTER("wolfSSL_RSA_verify"); /* Validate parameters. */ if ((hash == NULL) || (sig == NULL) || (rsa == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } if (ret == 1) { /* Allocate memory for decrypted signature. */ sigDec = (unsigned char *)XMALLOC(sigLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (sigDec == NULL) { WOLFSSL_ERROR_MSG("Memory allocation failure"); ret = 0; } } #ifdef WOLFSSL_SMALL_STACK if ((ret == 1) && (padding != RSA_PKCS1_PSS_PADDING)) { /* Allocate memory for encoded signature. */ encodedSig = (unsigned char *)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (encodedSig == NULL) { WOLFSSL_ERROR_MSG("Memory allocation failure"); ret = 0; } } #endif if ((ret == 1) && (padding != RSA_PKCS1_PSS_PADDING)) { /* Make encoded signature to compare with decrypted signature. */ if (wolfssl_rsa_sig_encode(hashAlg, hash, hLen, encodedSig, &len, padding) <= 0) { WOLFSSL_ERROR_MSG("Message Digest Error"); ret = 0; } } if (ret == 1) { /* Decrypt signature */ #if (!defined(HAVE_FIPS) || FIPS_VERSION_GE(5, 1)) && \ !defined(HAVE_SELFTEST) hType = wc_OidGetHash((int)nid2oid(hashAlg, oidHashType)); if ((verLen = wc_RsaSSL_Verify_ex2(sig, sigLen, (unsigned char *)sigDec, sigLen, (RsaKey*)rsa->internal, padding, hType)) <= 0) { WOLFSSL_ERROR_MSG("RSA Decrypt error"); ret = 0; } #else verLen = wc_RsaSSL_Verify(sig, sigLen, (unsigned char *)sigDec, sigLen, (RsaKey*)rsa->internal); if (verLen < 0) { ret = 0; } #endif } if (ret == 1) { #if defined(WC_RSA_PSS) && !defined(HAVE_SELFTEST) && \ (!defined(HAVE_FIPS) || FIPS_VERSION_GE(5, 1)) if (padding == RSA_PKCS1_PSS_PADDING) { /* Check PSS padding is valid. */ if (wc_RsaPSS_CheckPadding_ex(hash, hLen, sigDec, (word32)verLen, hType, DEF_PSS_SALT_LEN, mp_count_bits(&((RsaKey*)rsa->internal)->n)) != 0) { WOLFSSL_ERROR_MSG("wc_RsaPSS_CheckPadding_ex error"); ret = 0; } } else #endif /* WC_RSA_PSS && !HAVE_SELFTEST && (!HAVE_FIPS || * FIPS_VERSION >= 5.1) */ /* Compare decrypted signature to encoded signature. */ if (((int)len != verLen) || (XMEMCMP(encodedSig, sigDec, (size_t)verLen) != 0)) { WOLFSSL_ERROR_MSG("wolfSSL_RSA_verify_ex failed"); ret = 0; } } /* Dispose of any allocated data. */ #ifdef WOLFSSL_SMALL_STACK XFREE(encodedSig, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif XFREE(sigDec, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } /* * RSA public/private encrypt/decrypt APIs */ /* Encrypt with the RSA public key. * * Return compliant with OpenSSL. * * @param [in] len Length of data to encrypt. * @param [in] from Data to encrypt. * @param [out] to Encrypted data. * @param [in] rsa RSA key. * @param [in] padding Type of padding to place around plaintext. * @return Size of encrypted data on success. * @return -1 on failure. */ int wolfSSL_RSA_public_encrypt(int len, const unsigned char* from, unsigned char* to, WOLFSSL_RSA* rsa, int padding) { int ret = 0; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG _tmpRng[1]; WC_RNG* tmpRng = _tmpRng; #endif #if !defined(HAVE_FIPS) int mgf = WC_MGF1NONE; enum wc_HashType hash = WC_HASH_TYPE_NONE; int pad_type = WC_RSA_NO_PAD; #endif int outLen = 0; WOLFSSL_ENTER("wolfSSL_RSA_public_encrypt"); /* Validate parameters. */ if ((len < 0) || (rsa == NULL) || (rsa->internal == NULL) || (from == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { #if !defined(HAVE_FIPS) /* Convert to wolfCrypt padding, hash and MGF. */ switch (padding) { case RSA_PKCS1_PADDING: pad_type = WC_RSA_PKCSV15_PAD; break; case RSA_PKCS1_OAEP_PADDING: pad_type = WC_RSA_OAEP_PAD; hash = WC_HASH_TYPE_SHA; mgf = WC_MGF1SHA1; break; case RSA_NO_PADDING: pad_type = WC_RSA_NO_PAD; break; default: WOLFSSL_ERROR_MSG("RSA_public_encrypt doesn't support padding " "scheme"); ret = WOLFSSL_FATAL_ERROR; } #else /* Check for supported padding schemes in FIPS. */ /* TODO: Do we support more schemes in later versions of FIPS? */ if (padding != RSA_PKCS1_PADDING) { WOLFSSL_ERROR_MSG("RSA_public_encrypt pad type not supported in " "FIPS"); ret = WOLFSSL_FATAL_ERROR; } #endif } /* Set wolfCrypt RSA key data from external if not already done. */ if ((ret == 0) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { /* Calculate maximum length of encrypted data. */ outLen = wolfSSL_RSA_size(rsa); if (outLen == 0) { WOLFSSL_ERROR_MSG("Bad RSA size"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Get an RNG. */ rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng); if (rng == NULL) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Use wolfCrypt to public-encrypt with RSA key. */ #if !defined(HAVE_FIPS) ret = wc_RsaPublicEncrypt_ex(from, (word32)len, to, (word32)outLen, (RsaKey*)rsa->internal, rng, pad_type, hash, mgf, NULL, 0); #else ret = wc_RsaPublicEncrypt(from, (word32)len, to, (word32)outLen, (RsaKey*)rsa->internal, rng); #endif } /* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */ if (initTmpRng) { wc_FreeRng(tmpRng); } #ifdef WOLFSSL_SMALL_STACK /* Dispose of any allocated RNG. */ XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG); #endif /* wolfCrypt error means return -1. */ if (ret <= 0) { ret = WOLFSSL_FATAL_ERROR; } WOLFSSL_LEAVE("wolfSSL_RSA_public_encrypt", ret); return ret; } /* Decrypt with the RSA public key. * * Return compliant with OpenSSL. * * @param [in] len Length of encrypted data. * @param [in] from Encrypted data. * @param [out] to Decrypted data. * @param [in] rsa RSA key. * @param [in] padding Type of padding to around plaintext to remove. * @return Size of decrypted data on success. * @return -1 on failure. */ int wolfSSL_RSA_private_decrypt(int len, const unsigned char* from, unsigned char* to, WOLFSSL_RSA* rsa, int padding) { int ret = 0; #if !defined(HAVE_FIPS) int mgf = WC_MGF1NONE; enum wc_HashType hash = WC_HASH_TYPE_NONE; int pad_type = WC_RSA_NO_PAD; #endif int outLen = 0; WOLFSSL_ENTER("wolfSSL_RSA_private_decrypt"); /* Validate parameters. */ if ((len < 0) || (rsa == NULL) || (rsa->internal == NULL) || (from == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { #if !defined(HAVE_FIPS) switch (padding) { case RSA_PKCS1_PADDING: pad_type = WC_RSA_PKCSV15_PAD; break; case RSA_PKCS1_OAEP_PADDING: pad_type = WC_RSA_OAEP_PAD; hash = WC_HASH_TYPE_SHA; mgf = WC_MGF1SHA1; break; case RSA_NO_PADDING: pad_type = WC_RSA_NO_PAD; break; default: WOLFSSL_ERROR_MSG("RSA_private_decrypt unsupported padding"); ret = WOLFSSL_FATAL_ERROR; } #else /* Check for supported padding schemes in FIPS. */ /* TODO: Do we support more schemes in later versions of FIPS? */ if (padding != RSA_PKCS1_PADDING) { WOLFSSL_ERROR_MSG("RSA_public_encrypt pad type not supported in " "FIPS"); ret = WOLFSSL_FATAL_ERROR; } #endif } /* Set wolfCrypt RSA key data from external if not already done. */ if ((ret == 0) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { /* Calculate maximum length of decrypted data. */ outLen = wolfSSL_RSA_size(rsa); if (outLen == 0) { WOLFSSL_ERROR_MSG("Bad RSA size"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Use wolfCrypt to private-decrypt with RSA key. * Size of 'to' buffer must be size of RSA key */ #if !defined(HAVE_FIPS) ret = wc_RsaPrivateDecrypt_ex(from, (word32)len, to, (word32)outLen, (RsaKey*)rsa->internal, pad_type, hash, mgf, NULL, 0); #else ret = wc_RsaPrivateDecrypt(from, (word32)len, to, (word32)outLen, (RsaKey*)rsa->internal); #endif } /* wolfCrypt error means return -1. */ if (ret <= 0) { ret = WOLFSSL_FATAL_ERROR; } WOLFSSL_LEAVE("wolfSSL_RSA_private_decrypt", ret); return ret; } /* Decrypt with the RSA public key. * * @param [in] len Length of encrypted data. * @param [in] from Encrypted data. * @param [out] to Decrypted data. * @param [in] rsa RSA key. * @param [in] padding Type of padding to around plaintext to remove. * @return Size of decrypted data on success. * @return -1 on failure. */ int wolfSSL_RSA_public_decrypt(int len, const unsigned char* from, unsigned char* to, WOLFSSL_RSA* rsa, int padding) { int ret = 0; #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)) int pad_type = WC_RSA_NO_PAD; #endif int outLen = 0; WOLFSSL_ENTER("wolfSSL_RSA_public_decrypt"); /* Validate parameters. */ if ((len < 0) || (rsa == NULL) || (rsa->internal == NULL) || (from == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)) switch (padding) { case RSA_PKCS1_PADDING: pad_type = WC_RSA_PKCSV15_PAD; break; case RSA_NO_PADDING: pad_type = WC_RSA_NO_PAD; break; /* TODO: RSA_X931_PADDING not supported */ default: WOLFSSL_ERROR_MSG("RSA_public_decrypt unsupported padding"); ret = WOLFSSL_FATAL_ERROR; } #else if (padding != RSA_PKCS1_PADDING) { WOLFSSL_ERROR_MSG("RSA_public_decrypt pad type not supported in " "FIPS"); ret = WOLFSSL_FATAL_ERROR; } #endif } /* Set wolfCrypt RSA key data from external if not already done. */ if ((ret == 0) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { /* Calculate maximum length of encrypted data. */ outLen = wolfSSL_RSA_size(rsa); if (outLen == 0) { WOLFSSL_ERROR_MSG("Bad RSA size"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Use wolfCrypt to public-decrypt with RSA key. */ #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)) /* Size of 'to' buffer must be size of RSA key. */ ret = wc_RsaSSL_Verify_ex(from, (word32)len, to, (word32)outLen, (RsaKey*)rsa->internal, pad_type); #else /* For FIPS v1/v2 only PKCSV15 padding is supported */ ret = wc_RsaSSL_Verify(from, (word32)len, to, (word32)outLen, (RsaKey*)rsa->internal); #endif } /* wolfCrypt error means return -1. */ if (ret <= 0) { ret = WOLFSSL_FATAL_ERROR; } WOLFSSL_LEAVE("wolfSSL_RSA_public_decrypt", ret); return ret; } /* Encrypt with the RSA private key. * * Calls wc_RsaSSL_Sign. * * @param [in] len Length of data to encrypt. * @param [in] from Data to encrypt. * @param [out] to Encrypted data. * @param [in] rsa RSA key. * @param [in] padding Type of padding to place around plaintext. * @return Size of encrypted data on success. * @return -1 on failure. */ int wolfSSL_RSA_private_encrypt(int len, const unsigned char* from, unsigned char* to, WOLFSSL_RSA* rsa, int padding) { int ret = 0; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG _tmpRng[1]; WC_RNG* tmpRng = _tmpRng; #endif WOLFSSL_ENTER("wolfSSL_RSA_private_encrypt"); /* Validate parameters. */ if ((len < 0) || (rsa == NULL) || (rsa->internal == NULL) || (from == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { switch (padding) { case RSA_PKCS1_PADDING: #ifdef WC_RSA_NO_PADDING case RSA_NO_PADDING: #endif break; /* TODO: RSA_X931_PADDING not supported */ default: WOLFSSL_ERROR_MSG("RSA_private_encrypt unsupported padding"); ret = WOLFSSL_FATAL_ERROR; } } /* Set wolfCrypt RSA key data from external if not already done. */ if ((ret == 0) && (!rsa->inSet) && (SetRsaInternal(rsa) != 1)) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { /* Get an RNG. */ rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRng, &initTmpRng); if (rng == NULL) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Use wolfCrypt to private-encrypt with RSA key. * Size of output buffer must be size of RSA key. */ if (padding == RSA_PKCS1_PADDING) { ret = wc_RsaSSL_Sign(from, (word32)len, to, (word32)wolfSSL_RSA_size(rsa), (RsaKey*)rsa->internal, rng); } #ifdef WC_RSA_NO_PADDING else if (padding == RSA_NO_PADDING) { word32 outLen = (word32)wolfSSL_RSA_size(rsa); ret = wc_RsaFunction(from, (word32)len, to, &outLen, RSA_PRIVATE_ENCRYPT, (RsaKey*)rsa->internal, rng); if (ret == 0) ret = (int)outLen; } #endif } /* Finalize RNG if initialized in WOLFSSL_RSA_GetRNG(). */ if (initTmpRng) { wc_FreeRng(tmpRng); } #ifdef WOLFSSL_SMALL_STACK /* Dispose of any allocated RNG. */ XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG); #endif /* wolfCrypt error means return -1. */ if (ret <= 0) { ret = WOLFSSL_FATAL_ERROR; } WOLFSSL_LEAVE("wolfSSL_RSA_private_encrypt", ret); return ret; } /* * RSA misc operation APIs */ /* Calculate d mod p-1 and q-1 into BNs. * * Not OpenSSL API. * * @param [in, out] rsa RSA key. * @return 1 on success. * @return -1 on failure. */ int wolfSSL_RSA_GenAdd(WOLFSSL_RSA* rsa) { int ret = 1; int err; mp_int* t = NULL; #ifdef WOLFSSL_SMALL_STACK mp_int *tmp = NULL; #else mp_int tmp[1]; #endif WOLFSSL_ENTER("wolfSSL_RsaGenAdd"); /* Validate parameters. */ if ((rsa == NULL) || (rsa->p == NULL) || (rsa->q == NULL) || (rsa->d == NULL) || (rsa->dmp1 == NULL) || (rsa->dmq1 == NULL)) { WOLFSSL_ERROR_MSG("rsa no init error"); ret = WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_SMALL_STACK if (ret == 1) { tmp = (mp_int *)XMALLOC(sizeof(*tmp), rsa->heap, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) { WOLFSSL_ERROR_MSG("Memory allocation failure"); ret = WOLFSSL_FATAL_ERROR; } } #endif if (ret == 1) { /* Initialize temp MP integer. */ if (mp_init(tmp) != MP_OKAY) { WOLFSSL_ERROR_MSG("mp_init error"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 1) { t = tmp; /* Sub 1 from p into temp. */ err = mp_sub_d((mp_int*)rsa->p->internal, 1, tmp); if (err != MP_OKAY) { WOLFSSL_ERROR_MSG("mp_sub_d error"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 1) { /* Calculate d mod (p - 1) into dmp1 MP integer of BN. */ err = mp_mod((mp_int*)rsa->d->internal, tmp, (mp_int*)rsa->dmp1->internal); if (err != MP_OKAY) { WOLFSSL_ERROR_MSG("mp_mod error"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 1) { /* Sub 1 from q into temp. */ err = mp_sub_d((mp_int*)rsa->q->internal, 1, tmp); if (err != MP_OKAY) { WOLFSSL_ERROR_MSG("mp_sub_d error"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 1) { /* Calculate d mod (q - 1) into dmq1 MP integer of BN. */ err = mp_mod((mp_int*)rsa->d->internal, tmp, (mp_int*)rsa->dmq1->internal); if (err != MP_OKAY) { WOLFSSL_ERROR_MSG("mp_mod error"); ret = WOLFSSL_FATAL_ERROR; } } mp_clear(t); #ifdef WOLFSSL_SMALL_STACK if (rsa != NULL) { XFREE(tmp, rsa->heap, DYNAMIC_TYPE_TMP_BUFFER); } #endif return ret; } #ifndef NO_WOLFSSL_STUB /* Enable blinding for RSA key operations. * * Blinding is a compile time option in wolfCrypt. * * @param [in] rsa RSA key. Unused. * @param [in] bnCtx BN context to use for blinding. Unused. * @return 1 always. */ int wolfSSL_RSA_blinding_on(WOLFSSL_RSA* rsa, WOLFSSL_BN_CTX* bnCtx) { WOLFSSL_STUB("RSA_blinding_on"); WOLFSSL_ENTER("wolfSSL_RSA_blinding_on"); (void)rsa; (void)bnCtx; return 1; /* on by default */ } #endif #endif /* OPENSSL_EXTRA */ #endif /* !NO_RSA */ /******************************************************************************* * END OF RSA API ******************************************************************************/ /******************************************************************************* * START OF DSA API ******************************************************************************/ #ifndef NO_DSA #if defined(OPENSSL_EXTRA) && defined(XFPRINTF) && !defined(NO_FILESYSTEM) && \ !defined(NO_STDIO_FILESYSTEM) /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_DSA_print_fp(XFILE fp, WOLFSSL_DSA* dsa, int indent) { int ret = 1; WOLFSSL_ENTER("wolfSSL_DSA_print_fp"); if (fp == XBADFILE || dsa == NULL) { ret = 0; } if (ret == 1 && dsa->p != NULL) { int pBits = wolfSSL_BN_num_bits(dsa->p); if (pBits == 0) { ret = 0; } else { if (XFPRINTF(fp, "%*s", indent, "") < 0) ret = 0; else if (XFPRINTF(fp, "Private-Key: (%d bit)\n", pBits) < 0) ret = 0; } } if (ret == 1 && dsa->priv_key != NULL) { ret = pk_bn_field_print_fp(fp, indent, "priv", dsa->priv_key); } if (ret == 1 && dsa->pub_key != NULL) { ret = pk_bn_field_print_fp(fp, indent, "pub", dsa->pub_key); } if (ret == 1 && dsa->p != NULL) { ret = pk_bn_field_print_fp(fp, indent, "P", dsa->p); } if (ret == 1 && dsa->q != NULL) { ret = pk_bn_field_print_fp(fp, indent, "Q", dsa->q); } if (ret == 1 && dsa->g != NULL) { ret = pk_bn_field_print_fp(fp, indent, "G", dsa->g); } WOLFSSL_LEAVE("wolfSSL_DSA_print_fp", ret); return ret; } #endif /* OPENSSL_EXTRA && XSNPRINTF && !NO_FILESYSTEM && NO_STDIO_FILESYSTEM */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) static void InitwolfSSL_DSA(WOLFSSL_DSA* dsa) { if (dsa) { dsa->p = NULL; dsa->q = NULL; dsa->g = NULL; dsa->pub_key = NULL; dsa->priv_key = NULL; dsa->internal = NULL; dsa->inSet = 0; dsa->exSet = 0; } } WOLFSSL_DSA* wolfSSL_DSA_new(void) { WOLFSSL_DSA* external; DsaKey* key; WOLFSSL_MSG("wolfSSL_DSA_new"); key = (DsaKey*) XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA); if (key == NULL) { WOLFSSL_MSG("wolfSSL_DSA_new malloc DsaKey failure"); return NULL; } external = (WOLFSSL_DSA*) XMALLOC(sizeof(WOLFSSL_DSA), NULL, DYNAMIC_TYPE_DSA); if (external == NULL) { WOLFSSL_MSG("wolfSSL_DSA_new malloc WOLFSSL_DSA failure"); XFREE(key, NULL, DYNAMIC_TYPE_DSA); return NULL; } InitwolfSSL_DSA(external); if (wc_InitDsaKey(key) != 0) { WOLFSSL_MSG("wolfSSL_DSA_new InitDsaKey failure"); XFREE(key, NULL, DYNAMIC_TYPE_DSA); wolfSSL_DSA_free(external); return NULL; } external->internal = key; return external; } void wolfSSL_DSA_free(WOLFSSL_DSA* dsa) { WOLFSSL_MSG("wolfSSL_DSA_free"); if (dsa) { if (dsa->internal) { FreeDsaKey((DsaKey*)dsa->internal); XFREE(dsa->internal, NULL, DYNAMIC_TYPE_DSA); dsa->internal = NULL; } wolfSSL_BN_free(dsa->priv_key); wolfSSL_BN_free(dsa->pub_key); wolfSSL_BN_free(dsa->g); wolfSSL_BN_free(dsa->q); wolfSSL_BN_free(dsa->p); InitwolfSSL_DSA(dsa); /* set back to NULLs for safety */ XFREE(dsa, NULL, DYNAMIC_TYPE_DSA); /* dsa = NULL, don't try to access or double free it */ } } /* wolfSSL -> OpenSSL */ int SetDsaExternal(WOLFSSL_DSA* dsa) { DsaKey* key; WOLFSSL_MSG("Entering SetDsaExternal"); if (dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("dsa key NULL error"); return WOLFSSL_FATAL_ERROR; } key = (DsaKey*)dsa->internal; if (wolfssl_bn_set_value(&dsa->p, &key->p) != 1) { WOLFSSL_MSG("dsa p key error"); return WOLFSSL_FATAL_ERROR; } if (wolfssl_bn_set_value(&dsa->q, &key->q) != 1) { WOLFSSL_MSG("dsa q key error"); return WOLFSSL_FATAL_ERROR; } if (wolfssl_bn_set_value(&dsa->g, &key->g) != 1) { WOLFSSL_MSG("dsa g key error"); return WOLFSSL_FATAL_ERROR; } if (wolfssl_bn_set_value(&dsa->pub_key, &key->y) != 1) { WOLFSSL_MSG("dsa y key error"); return WOLFSSL_FATAL_ERROR; } if (wolfssl_bn_set_value(&dsa->priv_key, &key->x) != 1) { WOLFSSL_MSG("dsa x key error"); return WOLFSSL_FATAL_ERROR; } dsa->exSet = 1; return 1; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA /* Openssl -> WolfSSL */ int SetDsaInternal(WOLFSSL_DSA* dsa) { DsaKey* key; WOLFSSL_MSG("Entering SetDsaInternal"); if (dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("dsa key NULL error"); return WOLFSSL_FATAL_ERROR; } key = (DsaKey*)dsa->internal; if (dsa->p != NULL && wolfssl_bn_get_value(dsa->p, &key->p) != 1) { WOLFSSL_MSG("rsa p key error"); return WOLFSSL_FATAL_ERROR; } if (dsa->q != NULL && wolfssl_bn_get_value(dsa->q, &key->q) != 1) { WOLFSSL_MSG("rsa q key error"); return WOLFSSL_FATAL_ERROR; } if (dsa->g != NULL && wolfssl_bn_get_value(dsa->g, &key->g) != 1) { WOLFSSL_MSG("rsa g key error"); return WOLFSSL_FATAL_ERROR; } if (dsa->pub_key != NULL) { if (wolfssl_bn_get_value(dsa->pub_key, &key->y) != 1) { WOLFSSL_MSG("rsa pub_key error"); return WOLFSSL_FATAL_ERROR; } /* public key */ key->type = DSA_PUBLIC; } if (dsa->priv_key != NULL) { if (wolfssl_bn_get_value(dsa->priv_key, &key->x) != 1) { WOLFSSL_MSG("rsa priv_key error"); return WOLFSSL_FATAL_ERROR; } /* private key */ key->type = DSA_PRIVATE; } dsa->inSet = 1; return 1; } /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_DSA_generate_key(WOLFSSL_DSA* dsa) { int ret = 0; WOLFSSL_ENTER("wolfSSL_DSA_generate_key"); if (dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("Bad arguments"); return 0; } if (dsa->inSet == 0) { WOLFSSL_MSG("No DSA internal set, do it"); if (SetDsaInternal(dsa) != 1) { WOLFSSL_MSG("SetDsaInternal failed"); return ret; } } #ifdef WOLFSSL_KEY_GEN { int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRng; #else WC_RNG tmpRng[1]; #endif #ifdef WOLFSSL_SMALL_STACK tmpRng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRng == NULL) return WOLFSSL_FATAL_ERROR; #endif if (wc_InitRng(tmpRng) == 0) { rng = tmpRng; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); rng = wolfssl_get_global_rng(); } if (rng) { /* These were allocated above by SetDsaInternal(). They should * be cleared before wc_MakeDsaKey() which reinitializes * x and y. */ mp_clear(&((DsaKey*)dsa->internal)->x); mp_clear(&((DsaKey*)dsa->internal)->y); if (wc_MakeDsaKey(rng, (DsaKey*)dsa->internal) != MP_OKAY) WOLFSSL_MSG("wc_MakeDsaKey failed"); else if (SetDsaExternal(dsa) != 1) WOLFSSL_MSG("SetDsaExternal failed"); else ret = 1; } if (initTmpRng) wc_FreeRng(tmpRng); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG); #endif } #else /* WOLFSSL_KEY_GEN */ WOLFSSL_MSG("No Key Gen built in"); #endif return ret; } /* Returns a pointer to a new WOLFSSL_DSA structure on success and NULL on fail */ WOLFSSL_DSA* wolfSSL_DSA_generate_parameters(int bits, unsigned char* seed, int seedLen, int* counterRet, unsigned long* hRet, WOLFSSL_BN_CB cb, void* CBArg) { WOLFSSL_DSA* dsa; WOLFSSL_ENTER("wolfSSL_DSA_generate_parameters"); (void)cb; (void)CBArg; dsa = wolfSSL_DSA_new(); if (dsa == NULL) { return NULL; } if (wolfSSL_DSA_generate_parameters_ex(dsa, bits, seed, seedLen, counterRet, hRet, NULL) != 1) { wolfSSL_DSA_free(dsa); return NULL; } return dsa; } /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_DSA_generate_parameters_ex(WOLFSSL_DSA* dsa, int bits, unsigned char* seed, int seedLen, int* counterRet, unsigned long* hRet, void* cb) { int ret = 0; (void)bits; (void)seed; (void)seedLen; (void)counterRet; (void)hRet; (void)cb; WOLFSSL_ENTER("wolfSSL_DSA_generate_parameters_ex"); if (dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("Bad arguments"); return 0; } #ifdef WOLFSSL_KEY_GEN { int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRng; #else WC_RNG tmpRng[1]; #endif #ifdef WOLFSSL_SMALL_STACK tmpRng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRng == NULL) return WOLFSSL_FATAL_ERROR; #endif if (wc_InitRng(tmpRng) == 0) { rng = tmpRng; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); rng = wolfssl_get_global_rng(); } if (rng) { if (wc_MakeDsaParameters(rng, bits, (DsaKey*)dsa->internal) != MP_OKAY) WOLFSSL_MSG("wc_MakeDsaParameters failed"); else if (SetDsaExternal(dsa) != 1) WOLFSSL_MSG("SetDsaExternal failed"); else ret = 1; } if (initTmpRng) wc_FreeRng(tmpRng); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG); #endif } #else /* WOLFSSL_KEY_GEN */ WOLFSSL_MSG("No Key Gen built in"); #endif return ret; } void wolfSSL_DSA_get0_pqg(const WOLFSSL_DSA *d, const WOLFSSL_BIGNUM **p, const WOLFSSL_BIGNUM **q, const WOLFSSL_BIGNUM **g) { WOLFSSL_ENTER("wolfSSL_DSA_get0_pqg"); if (d != NULL) { if (p != NULL) *p = d->p; if (q != NULL) *q = d->q; if (g != NULL) *g = d->g; } } int wolfSSL_DSA_set0_pqg(WOLFSSL_DSA *d, WOLFSSL_BIGNUM *p, WOLFSSL_BIGNUM *q, WOLFSSL_BIGNUM *g) { WOLFSSL_ENTER("wolfSSL_DSA_set0_pqg"); if (d == NULL || p == NULL || q == NULL || g == NULL) { WOLFSSL_MSG("Bad parameter"); return 0; } wolfSSL_BN_free(d->p); wolfSSL_BN_free(d->q); wolfSSL_BN_free(d->g); d->p = p; d->q = q; d->g = g; return 1; } void wolfSSL_DSA_get0_key(const WOLFSSL_DSA *d, const WOLFSSL_BIGNUM **pub_key, const WOLFSSL_BIGNUM **priv_key) { WOLFSSL_ENTER("wolfSSL_DSA_get0_key"); if (d != NULL) { if (pub_key != NULL) *pub_key = d->pub_key; if (priv_key != NULL) *priv_key = d->priv_key; } } int wolfSSL_DSA_set0_key(WOLFSSL_DSA *d, WOLFSSL_BIGNUM *pub_key, WOLFSSL_BIGNUM *priv_key) { WOLFSSL_ENTER("wolfSSL_DSA_set0_key"); /* The private key may be NULL */ if (d->pub_key == NULL && pub_key == NULL) { WOLFSSL_MSG("Bad parameter"); return 0; } if (pub_key != NULL) { wolfSSL_BN_free(d->pub_key); d->pub_key = pub_key; } if (priv_key != NULL) { wolfSSL_BN_free(d->priv_key); d->priv_key = priv_key; } return 1; } WOLFSSL_DSA_SIG* wolfSSL_DSA_SIG_new(void) { WOLFSSL_DSA_SIG* sig; WOLFSSL_ENTER("wolfSSL_DSA_SIG_new"); sig = (WOLFSSL_DSA_SIG*)XMALLOC(sizeof(WOLFSSL_DSA_SIG), NULL, DYNAMIC_TYPE_OPENSSL); if (sig) XMEMSET(sig, 0, sizeof(WOLFSSL_DSA_SIG)); return sig; } void wolfSSL_DSA_SIG_free(WOLFSSL_DSA_SIG *sig) { WOLFSSL_ENTER("wolfSSL_DSA_SIG_free"); if (sig) { if (sig->r) { wolfSSL_BN_free(sig->r); } if (sig->s) { wolfSSL_BN_free(sig->s); } XFREE(sig, NULL, DYNAMIC_TYPE_OPENSSL); } } void wolfSSL_DSA_SIG_get0(const WOLFSSL_DSA_SIG *sig, const WOLFSSL_BIGNUM **r, const WOLFSSL_BIGNUM **s) { WOLFSSL_ENTER("wolfSSL_DSA_SIG_get0"); if (sig != NULL) { *r = sig->r; *s = sig->s; } } int wolfSSL_DSA_SIG_set0(WOLFSSL_DSA_SIG *sig, WOLFSSL_BIGNUM *r, WOLFSSL_BIGNUM *s) { WOLFSSL_ENTER("wolfSSL_DSA_SIG_set0"); if (r == NULL || s == NULL) { WOLFSSL_MSG("Bad parameter"); return 0; } wolfSSL_BN_clear_free(sig->r); wolfSSL_BN_clear_free(sig->s); sig->r = r; sig->s = s; return 1; } #ifndef HAVE_SELFTEST /** * * @param sig The input signature to encode * @param out The output buffer. If *out is NULL then a new buffer is * allocated. Otherwise the output is written to the buffer. * @return length on success and -1 on error */ int wolfSSL_i2d_DSA_SIG(const WOLFSSL_DSA_SIG *sig, byte **out) { /* Space for sequence + two asn ints */ byte buf[MAX_SEQ_SZ + 2*(ASN_TAG_SZ + MAX_LENGTH_SZ + DSA_MAX_HALF_SIZE)]; word32 bufLen = sizeof(buf); WOLFSSL_ENTER("wolfSSL_i2d_DSA_SIG"); if (sig == NULL || sig->r == NULL || sig->s == NULL || out == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } if (StoreECC_DSA_Sig(buf, &bufLen, (mp_int*)sig->r->internal, (mp_int*)sig->s->internal) != 0) { WOLFSSL_MSG("StoreECC_DSA_Sig error"); return WOLFSSL_FATAL_ERROR; } if (*out == NULL) { byte* tmp = (byte*)XMALLOC(bufLen, NULL, DYNAMIC_TYPE_ASN1); if (tmp == NULL) { WOLFSSL_MSG("malloc error"); return WOLFSSL_FATAL_ERROR; } *out = tmp; } XMEMCPY(*out, buf, bufLen); return (int)bufLen; } /** * Same as wolfSSL_DSA_SIG_new but also initializes the internal bignums as well. * @return New WOLFSSL_DSA_SIG with r and s created as well */ static WOLFSSL_DSA_SIG* wolfSSL_DSA_SIG_new_bn(void) { WOLFSSL_DSA_SIG* ret; if ((ret = wolfSSL_DSA_SIG_new()) == NULL) { WOLFSSL_MSG("wolfSSL_DSA_SIG_new error"); return NULL; } if ((ret->r = wolfSSL_BN_new()) == NULL) { WOLFSSL_MSG("wolfSSL_BN_new error"); wolfSSL_DSA_SIG_free(ret); return NULL; } if ((ret->s = wolfSSL_BN_new()) == NULL) { WOLFSSL_MSG("wolfSSL_BN_new error"); wolfSSL_DSA_SIG_free(ret); return NULL; } return ret; } /** * This parses a DER encoded ASN.1 structure. The ASN.1 encoding is: * ASN1_SEQUENCE * ASN1_INTEGER (DSA r) * ASN1_INTEGER (DSA s) * Alternatively, if the input is DSA_160_SIG_SIZE or DSA_256_SIG_SIZE in * length then this API interprets this as two unsigned binary numbers. * @param sig If non-null then free'd first and then newly created * WOLFSSL_DSA_SIG is assigned * @param pp Input buffer that is moved forward on success * @param length Length of input buffer * @return Newly created WOLFSSL_DSA_SIG on success or NULL on failure */ WOLFSSL_DSA_SIG* wolfSSL_d2i_DSA_SIG(WOLFSSL_DSA_SIG **sig, const unsigned char **pp, long length) { WOLFSSL_DSA_SIG* ret; mp_int* r; mp_int* s; WOLFSSL_ENTER("wolfSSL_d2i_DSA_SIG"); if (pp == NULL || *pp == NULL || length < 0) { WOLFSSL_MSG("Bad function arguments"); return NULL; } if ((ret = wolfSSL_DSA_SIG_new_bn()) == NULL) { WOLFSSL_MSG("wolfSSL_DSA_SIG_new_bn error"); return NULL; } r = (mp_int*)ret->r->internal; s = (mp_int*)ret->s->internal; if (DecodeECC_DSA_Sig(*pp, (word32)length, r, s) != 0) { if (length == DSA_160_SIG_SIZE || length == DSA_256_SIG_SIZE) { /* Two raw numbers of length/2 size each */ if (mp_read_unsigned_bin(r, *pp, (word32)length/2) != 0) { WOLFSSL_MSG("r mp_read_unsigned_bin error"); wolfSSL_DSA_SIG_free(ret); return NULL; } if (mp_read_unsigned_bin(s, *pp + (length/2), (word32)length/2) != 0) { WOLFSSL_MSG("s mp_read_unsigned_bin error"); wolfSSL_DSA_SIG_free(ret); return NULL; } *pp += length; } else { WOLFSSL_MSG("DecodeECC_DSA_Sig error"); wolfSSL_DSA_SIG_free(ret); return NULL; } } else { /* DecodeECC_DSA_Sig success move pointer forward */ #ifndef NO_STRICT_ECDSA_LEN *pp += length; #else { /* We need to figure out how much to move by ourselves */ word32 idx = 0; int len = 0; if (GetSequence(*pp, &idx, &len, (word32)length) < 0) { WOLFSSL_MSG("GetSequence error"); wolfSSL_DSA_SIG_free(ret); return NULL; } *pp += len; } #endif } if (sig != NULL) { if (*sig != NULL) wolfSSL_DSA_SIG_free(*sig); *sig = ret; } return ret; } #endif /* HAVE_SELFTEST */ /* return 1 on success, < 0 otherwise */ int wolfSSL_DSA_do_sign(const unsigned char* d, unsigned char* sigRet, WOLFSSL_DSA* dsa) { int ret = WC_NO_ERR_TRACE(WOLFSSL_FATAL_ERROR); int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif WOLFSSL_ENTER("wolfSSL_DSA_do_sign"); if (d == NULL || sigRet == NULL || dsa == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } if (dsa->inSet == 0) { WOLFSSL_MSG("No DSA internal set, do it"); if (SetDsaInternal(dsa) != 1) { WOLFSSL_MSG("SetDsaInternal failed"); return WOLFSSL_FATAL_ERROR; } } #ifdef WOLFSSL_SMALL_STACK tmpRng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG); if (tmpRng == NULL) return WOLFSSL_FATAL_ERROR; #endif if (wc_InitRng(tmpRng) == 0) { rng = tmpRng; initTmpRng = 1; } else { WOLFSSL_MSG("Bad RNG Init, trying global"); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG); tmpRng = NULL; #endif rng = wolfssl_get_global_rng(); if (! rng) return WOLFSSL_FATAL_ERROR; } if (rng) { if (wc_DsaSign(d, sigRet, (DsaKey*)dsa->internal, rng) < 0) { WOLFSSL_MSG("DsaSign failed"); ret = WOLFSSL_FATAL_ERROR; } else ret = WOLFSSL_SUCCESS; } if (initTmpRng) wc_FreeRng(tmpRng); #ifdef WOLFSSL_SMALL_STACK XFREE(tmpRng, NULL, DYNAMIC_TYPE_RNG); #endif return ret; } #ifndef HAVE_SELFTEST WOLFSSL_DSA_SIG* wolfSSL_DSA_do_sign_ex(const unsigned char* digest, int inLen, WOLFSSL_DSA* dsa) { byte sigBin[DSA_MAX_SIG_SIZE]; const byte *tmp = sigBin; int sigLen; WOLFSSL_ENTER("wolfSSL_DSA_do_sign_ex"); if (!digest || !dsa || inLen != WC_SHA_DIGEST_SIZE) { WOLFSSL_MSG("Bad function arguments"); return NULL; } if (wolfSSL_DSA_do_sign(digest, sigBin, dsa) != 1) { WOLFSSL_MSG("wolfSSL_DSA_do_sign error"); return NULL; } if (dsa->internal == NULL) { WOLFSSL_MSG("dsa->internal is null"); return NULL; } sigLen = mp_unsigned_bin_size(&((DsaKey*)dsa->internal)->q); if (sigLen <= 0) { WOLFSSL_MSG("mp_unsigned_bin_size error"); return NULL; } /* 2 * sigLen for the two points r and s */ return wolfSSL_d2i_DSA_SIG(NULL, &tmp, 2 * sigLen); } #endif /* !HAVE_SELFTEST */ int wolfSSL_DSA_do_verify(const unsigned char* d, unsigned char* sig, WOLFSSL_DSA* dsa, int *dsacheck) { int ret; WOLFSSL_ENTER("wolfSSL_DSA_do_verify"); if (d == NULL || sig == NULL || dsa == NULL) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } if (dsa->inSet == 0) { WOLFSSL_MSG("No DSA internal set, do it"); if (SetDsaInternal(dsa) != 1) { WOLFSSL_MSG("SetDsaInternal failed"); return WOLFSSL_FATAL_ERROR; } } ret = DsaVerify(d, sig, (DsaKey*)dsa->internal, dsacheck); if (ret != 0 || *dsacheck != 1) { WOLFSSL_MSG("DsaVerify failed"); return ret; } return 1; } int wolfSSL_DSA_bits(const WOLFSSL_DSA *d) { if (!d) return 0; if (!d->exSet && SetDsaExternal((WOLFSSL_DSA*)d) != 1) return 0; return wolfSSL_BN_num_bits(d->p); } #ifndef HAVE_SELFTEST int wolfSSL_DSA_do_verify_ex(const unsigned char* digest, int digest_len, WOLFSSL_DSA_SIG* sig, WOLFSSL_DSA* dsa) { int dsacheck, sz; byte sigBin[DSA_MAX_SIG_SIZE]; byte* sigBinPtr = sigBin; DsaKey* key; int qSz; WOLFSSL_ENTER("wolfSSL_DSA_do_verify_ex"); if (!digest || !sig || !dsa || digest_len != WC_SHA_DIGEST_SIZE) { WOLFSSL_MSG("Bad function arguments"); return 0; } if (!sig->r || !sig->s) { WOLFSSL_MSG("No signature found in DSA_SIG"); return 0; } if (dsa->inSet == 0) { WOLFSSL_MSG("No DSA internal set, do it"); if (SetDsaInternal(dsa) != 1) { WOLFSSL_MSG("SetDsaInternal failed"); return 0; } } key = (DsaKey*)dsa->internal; if (key == NULL) { WOLFSSL_MSG("dsa->internal is null"); return 0; } qSz = mp_unsigned_bin_size(&key->q); if (qSz < 0 || qSz > DSA_MAX_HALF_SIZE) { WOLFSSL_MSG("mp_unsigned_bin_size error"); return 0; } /* read r */ /* front pad with zeros */ if ((sz = wolfSSL_BN_num_bytes(sig->r)) < 0 || sz > DSA_MAX_HALF_SIZE) return 0; while (sz++ < qSz) *sigBinPtr++ = 0; if (wolfSSL_BN_bn2bin(sig->r, sigBinPtr) == -1) return 0; /* Move to s */ sigBinPtr = sigBin + qSz; /* read s */ /* front pad with zeros */ if ((sz = wolfSSL_BN_num_bytes(sig->s)) < 0 || sz > DSA_MAX_HALF_SIZE) return 0; while (sz++ < qSz) *sigBinPtr++ = 0; if (wolfSSL_BN_bn2bin(sig->s, sigBinPtr) == -1) return 0; if ((wolfSSL_DSA_do_verify(digest, sigBin, dsa, &dsacheck) != 1) || dsacheck != 1) { return 0; } return 1; } #endif /* !HAVE_SELFTEST */ int wolfSSL_i2d_DSAparams(const WOLFSSL_DSA* dsa, unsigned char** out) { int ret = 0; word32 derLen = 0; int preAllocated = 1; DsaKey* key = NULL; WOLFSSL_ENTER("wolfSSL_i2d_DSAparams"); if (dsa == NULL || dsa->internal == NULL || out == NULL) { ret = BAD_FUNC_ARG; } if (ret == 0) { key = (DsaKey*)dsa->internal; ret = wc_DsaKeyToParamsDer_ex(key, NULL, &derLen); if (ret == WC_NO_ERR_TRACE(LENGTH_ONLY_E)) { ret = 0; } } if (ret == 0 && *out == NULL) { /* If we're allocating out for the caller, we don't increment out just past the end of the DER buffer. If out is already allocated, we do. (OpenSSL convention) */ preAllocated = 0; *out = (unsigned char*)XMALLOC(derLen, key->heap, DYNAMIC_TYPE_OPENSSL); if (*out == NULL) { ret = MEMORY_E; } } if (ret == 0) { ret = wc_DsaKeyToParamsDer_ex(key, *out, &derLen); } if (ret >= 0 && preAllocated == 1) { *out += derLen; } if (ret < 0 && preAllocated == 0) { XFREE(*out, key ? key->heap : NULL, DYNAMIC_TYPE_OPENSSL); } WOLFSSL_LEAVE("wolfSSL_i2d_DSAparams", ret); return ret; } WOLFSSL_DSA* wolfSSL_d2i_DSAparams(WOLFSSL_DSA** dsa, const unsigned char** der, long derLen) { WOLFSSL_DSA* ret = NULL; int err = 0; word32 idx = 0; int asnLen; DsaKey* internalKey = NULL; WOLFSSL_ENTER("wolfSSL_d2i_DSAparams"); if (der == NULL || *der == NULL || derLen <= 0) { err = 1; } if (err == 0) { ret = wolfSSL_DSA_new(); err = ret == NULL; } if (err == 0) { err = GetSequence(*der, &idx, &asnLen, (word32)derLen) <= 0; } if (err == 0) { internalKey = (DsaKey*)ret->internal; err = GetInt(&internalKey->p, *der, &idx, (word32)derLen) != 0; } if (err == 0) { err = GetInt(&internalKey->q, *der, &idx, (word32)derLen) != 0; } if (err == 0) { err = GetInt(&internalKey->g, *der, &idx, (word32)derLen) != 0; } if (err == 0) { err = wolfssl_bn_set_value(&ret->p, &internalKey->p) != 1; } if (err == 0) { err = wolfssl_bn_set_value(&ret->q, &internalKey->q) != 1; } if (err == 0) { err = wolfssl_bn_set_value(&ret->g, &internalKey->g) != 1; } if (err == 0 && dsa != NULL) { *dsa = ret; } if (err != 0 && ret != NULL) { wolfSSL_DSA_free(ret); ret = NULL; } return ret; } #if defined(WOLFSSL_KEY_GEN) #ifndef NO_BIO /* Takes a DSA Privatekey and writes it out to a WOLFSSL_BIO * Returns 1 or 0 */ int wolfSSL_PEM_write_bio_DSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_DSA* dsa, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, wc_pem_password_cb* cb, void* arg) { int ret = 1; byte *pem = NULL; int pLen = 0; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_DSAPrivateKey"); (void)cb; (void)arg; /* Validate parameters. */ if ((bio == NULL) || (dsa == NULL)) { WOLFSSL_MSG("Bad Function Arguments"); ret = 0; } if (ret == 1) { ret = wolfSSL_PEM_write_mem_DSAPrivateKey(dsa, cipher, passwd, passwdSz, &pem, &pLen); } /* Write PEM to BIO. */ if ((ret == 1) && (wolfSSL_BIO_write(bio, pem, pLen) != pLen)) { WOLFSSL_ERROR_MSG("DSA private key BIO write failed"); ret = 0; } XFREE(pem, NULL, DYNAMIC_TYPE_KEY); return ret; } #ifndef HAVE_SELFTEST /* Encode the DSA public key as DER. * * @param [in] key DSA key to encode. * @param [out] der Pointer through which buffer is returned. * @param [in] heap Heap hint. * @return Size of encoding on success. * @return 0 on error. */ static int wolfssl_dsa_key_to_pubkey_der(WOLFSSL_DSA* key, unsigned char** der, void* heap) { int sz; unsigned char* buf = NULL; /* Use maximum encoded size to allocate. */ sz = MAX_DSA_PUBKEY_SZ; /* Allocate memory to hold encoding. */ buf = (byte*)XMALLOC((size_t)sz, heap, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { WOLFSSL_MSG("malloc failed"); sz = 0; } if (sz > 0) { /* Encode public key to DER using wolfSSL. */ sz = wc_DsaKeyToPublicDer((DsaKey*)key->internal, buf, (word32)sz); if (sz < 0) { WOLFSSL_MSG("wc_DsaKeyToPublicDer failed"); sz = 0; } } /* Return buffer on success. */ if (sz > 0) { *der = buf; } else { /* Dispose of any dynamically allocated data not returned. */ XFREE(buf, heap, DYNAMIC_TYPE_TMP_BUFFER); } return sz; } /* Takes a DSA public key and writes it out to a WOLFSSL_BIO * Returns 1 or 0 */ int wolfSSL_PEM_write_bio_DSA_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_DSA* dsa) { int ret = 1; unsigned char* derBuf = NULL; int derSz = 0; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_DSA_PUBKEY"); /* Validate parameters. */ if ((bio == NULL) || (dsa == NULL)) { WOLFSSL_MSG("Bad Function Arguments"); return 0; } /* Encode public key in EC key as DER. */ derSz = wolfssl_dsa_key_to_pubkey_der(dsa, &derBuf, bio->heap); if (derSz == 0) { ret = 0; } /* Write out to BIO the PEM encoding of the DSA public key. */ if ((ret == 1) && (der_write_to_bio_as_pem(derBuf, derSz, bio, PUBLICKEY_TYPE) != 1)) { ret = 0; } /* Dispose of any dynamically allocated data. */ XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #endif /* HAVE_SELFTEST */ #endif /* !NO_BIO */ /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_PEM_write_mem_DSAPrivateKey(WOLFSSL_DSA* dsa, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, unsigned char **pem, int *pLen) { #if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM) byte *derBuf, *tmp, *cipherInfo = NULL; int der_max_len = 0, derSz = 0; const int type = DSA_PRIVATEKEY_TYPE; const char* header = NULL; const char* footer = NULL; WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey"); if (pem == NULL || pLen == NULL || dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("Bad function arguments"); return 0; } if (wc_PemGetHeaderFooter(type, &header, &footer) != 0) return 0; if (dsa->inSet == 0) { WOLFSSL_MSG("No DSA internal set, do it"); if (SetDsaInternal(dsa) != 1) { WOLFSSL_MSG("SetDsaInternal failed"); return 0; } } der_max_len = MAX_DSA_PRIVKEY_SZ; derBuf = (byte*)XMALLOC((size_t)der_max_len, NULL, DYNAMIC_TYPE_DER); if (derBuf == NULL) { WOLFSSL_MSG("malloc failed"); return 0; } /* Key to DER */ derSz = wc_DsaKeyToDer((DsaKey*)dsa->internal, derBuf, (word32)der_max_len); if (derSz < 0) { WOLFSSL_MSG("wc_DsaKeyToDer failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); return 0; } /* encrypt DER buffer if required */ if (passwd != NULL && passwdSz > 0 && cipher != NULL) { int ret; ret = EncryptDerKey(derBuf, &derSz, cipher, passwd, passwdSz, &cipherInfo, der_max_len); if (ret != 1) { WOLFSSL_MSG("EncryptDerKey failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); return ret; } /* tmp buffer with a max size */ *pLen = (derSz * 2) + (int)XSTRLEN(header) + 1 + (int)XSTRLEN(footer) + 1 + HEADER_ENCRYPTED_KEY_SIZE; } else { /* tmp buffer with a max size */ *pLen = (derSz * 2) + (int)XSTRLEN(header) + 1 + (int)XSTRLEN(footer) + 1; } tmp = (byte*)XMALLOC((size_t)*pLen, NULL, DYNAMIC_TYPE_PEM); if (tmp == NULL) { WOLFSSL_MSG("malloc failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); return 0; } /* DER to PEM */ *pLen = wc_DerToPemEx(derBuf, (word32)derSz, tmp, (word32)*pLen, cipherInfo, type); if (*pLen <= 0) { WOLFSSL_MSG("wc_DerToPemEx failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); return 0; } XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING); *pem = (byte*)XMALLOC((size_t)((*pLen)+1), NULL, DYNAMIC_TYPE_KEY); if (*pem == NULL) { WOLFSSL_MSG("malloc failed"); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return 0; } XMEMSET(*pem, 0, (size_t)((*pLen)+1)); if (XMEMCPY(*pem, tmp, (size_t)*pLen) == NULL) { WOLFSSL_MSG("XMEMCPY failed"); XFREE(pem, NULL, DYNAMIC_TYPE_KEY); XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return 0; } XFREE(tmp, NULL, DYNAMIC_TYPE_PEM); return 1; #else (void)dsa; (void)cipher; (void)passwd; (void)passwdSz; (void)pem; (void)pLen; return 0; #endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */ } #ifndef NO_FILESYSTEM /* return code compliant with OpenSSL : * 1 if success, 0 if error */ int wolfSSL_PEM_write_DSAPrivateKey(XFILE fp, WOLFSSL_DSA *dsa, const EVP_CIPHER *enc, unsigned char *kstr, int klen, wc_pem_password_cb *cb, void *u) { byte *pem; int pLen, ret; (void)cb; (void)u; WOLFSSL_MSG("wolfSSL_PEM_write_DSAPrivateKey"); if (fp == XBADFILE || dsa == NULL || dsa->internal == NULL) { WOLFSSL_MSG("Bad function arguments"); return 0; } ret = wolfSSL_PEM_write_mem_DSAPrivateKey(dsa, enc, kstr, klen, &pem, &pLen); if (ret != 1) { WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey failed"); return 0; } ret = (int)XFWRITE(pem, (size_t)pLen, 1, fp); if (ret != 1) { WOLFSSL_MSG("DSA private key file write failed"); return 0; } XFREE(pem, NULL, DYNAMIC_TYPE_KEY); return 1; } #endif /* NO_FILESYSTEM */ #endif /* defined(WOLFSSL_KEY_GEN) */ #ifndef NO_FILESYSTEM /* return code compliant with OpenSSL : * 1 if success, 0 if error */ #ifndef NO_WOLFSSL_STUB int wolfSSL_PEM_write_DSA_PUBKEY(XFILE fp, WOLFSSL_DSA *x) { (void)fp; (void)x; WOLFSSL_STUB("PEM_write_DSA_PUBKEY"); WOLFSSL_MSG("wolfSSL_PEM_write_DSA_PUBKEY not implemented"); return 0; } #endif #endif /* NO_FILESYSTEM */ #ifndef NO_BIO #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)) && (!defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && defined(WOLFSSL_KEY_GEN)) /* Uses the same format of input as wolfSSL_PEM_read_bio_PrivateKey but expects * the results to be an DSA key. * * bio structure to read DSA private key from * dsa if not null is then set to the result * cb password callback for reading PEM * pass password string * * returns a pointer to a new WOLFSSL_DSA structure on success and NULL on fail */ WOLFSSL_DSA* wolfSSL_PEM_read_bio_DSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_DSA** dsa, wc_pem_password_cb* cb, void* pass) { WOLFSSL_EVP_PKEY* pkey = NULL; WOLFSSL_DSA* local; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSAPrivateKey"); pkey = wolfSSL_PEM_read_bio_PrivateKey(bio, NULL, cb, pass); if (pkey == NULL) { WOLFSSL_MSG("Error in PEM_read_bio_PrivateKey"); return NULL; } /* Since the WOLFSSL_DSA structure is being taken from WOLFSSL_EVP_PKEY the * flag indicating that the WOLFSSL_DSA structure is owned should be FALSE * to avoid having it free'd */ pkey->ownDsa = 0; local = pkey->dsa; if (dsa != NULL) { *dsa = local; } wolfSSL_EVP_PKEY_free(pkey); return local; } /* Reads an DSA public key from a WOLFSSL_BIO into a WOLFSSL_DSA. * Returns 1 or 0 */ WOLFSSL_DSA *wolfSSL_PEM_read_bio_DSA_PUBKEY(WOLFSSL_BIO* bio,WOLFSSL_DSA** dsa, wc_pem_password_cb* cb, void* pass) { WOLFSSL_EVP_PKEY* pkey; WOLFSSL_DSA* local; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSA_PUBKEY"); pkey = wolfSSL_PEM_read_bio_PUBKEY(bio, NULL, cb, pass); if (pkey == NULL) { WOLFSSL_MSG("wolfSSL_PEM_read_bio_PUBKEY failed"); return NULL; } /* Since the WOLFSSL_DSA structure is being taken from WOLFSSL_EVP_PKEY the * flag indicating that the WOLFSSL_DSA structure is owned should be FALSE * to avoid having it free'd */ pkey->ownDsa = 0; local = pkey->dsa; if (dsa != NULL) { *dsa = local; } wolfSSL_EVP_PKEY_free(pkey); return local; } #endif /* (OPENSSL_EXTRA || OPENSSL_ALL) && (!NO_CERTS && !NO_FILESYSTEM && WOLFSSL_KEY_GEN) */ #endif /* NO_BIO */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* return 1 if success, -1 if error */ int wolfSSL_DSA_LoadDer(WOLFSSL_DSA* dsa, const unsigned char* derBuf, int derSz) { word32 idx = 0; int ret; WOLFSSL_ENTER("wolfSSL_DSA_LoadDer"); if (dsa == NULL || dsa->internal == NULL || derBuf == NULL || derSz <= 0) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } ret = DsaPrivateKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal, (word32)derSz); if (ret < 0) { WOLFSSL_MSG("DsaPrivateKeyDecode failed"); return WOLFSSL_FATAL_ERROR; } if (SetDsaExternal(dsa) != 1) { WOLFSSL_MSG("SetDsaExternal failed"); return WOLFSSL_FATAL_ERROR; } dsa->inSet = 1; return 1; } /* Loads DSA key from DER buffer. opt = DSA_LOAD_PRIVATE or DSA_LOAD_PUBLIC. returns 1 on success, or 0 on failure. */ int wolfSSL_DSA_LoadDer_ex(WOLFSSL_DSA* dsa, const unsigned char* derBuf, int derSz, int opt) { word32 idx = 0; int ret; WOLFSSL_ENTER("wolfSSL_DSA_LoadDer"); if (dsa == NULL || dsa->internal == NULL || derBuf == NULL || derSz <= 0) { WOLFSSL_MSG("Bad function arguments"); return WOLFSSL_FATAL_ERROR; } if (opt == WOLFSSL_DSA_LOAD_PRIVATE) { ret = DsaPrivateKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal, (word32)derSz); } else { ret = DsaPublicKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal, (word32)derSz); } if (ret < 0 && opt == WOLFSSL_DSA_LOAD_PRIVATE) { WOLFSSL_ERROR_VERBOSE(ret); WOLFSSL_MSG("DsaPrivateKeyDecode failed"); return WOLFSSL_FATAL_ERROR; } else if (ret < 0 && opt == WOLFSSL_DSA_LOAD_PUBLIC) { WOLFSSL_ERROR_VERBOSE(ret); WOLFSSL_MSG("DsaPublicKeyDecode failed"); return WOLFSSL_FATAL_ERROR; } if (SetDsaExternal(dsa) != 1) { WOLFSSL_MSG("SetDsaExternal failed"); return WOLFSSL_FATAL_ERROR; } dsa->inSet = 1; return 1; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA #ifndef NO_BIO WOLFSSL_DSA *wolfSSL_PEM_read_bio_DSAparams(WOLFSSL_BIO *bp, WOLFSSL_DSA **x, wc_pem_password_cb *cb, void *u) { WOLFSSL_DSA* dsa; DsaKey* key; int length; unsigned char* buf; word32 bufSz; int ret; word32 idx = 0; DerBuffer* pDer; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSAparams"); ret = wolfSSL_BIO_get_mem_data(bp, &buf); if (ret <= 0) { WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret); return NULL; } bufSz = (word32)ret; if (cb != NULL || u != NULL) { /* * cb is for a call back when encountering encrypted PEM files * if cb == NULL and u != NULL then u = null terminated password string */ WOLFSSL_MSG("Not yet supporting call back or password for encrypted PEM"); } if (PemToDer(buf, (long)bufSz, DSA_PARAM_TYPE, &pDer, NULL, NULL, NULL) < 0 ) { WOLFSSL_MSG("Issue converting from PEM to DER"); return NULL; } if (GetSequence(pDer->buffer, &idx, &length, pDer->length) < 0) { WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret); FreeDer(&pDer); return NULL; } dsa = wolfSSL_DSA_new(); if (dsa == NULL) { FreeDer(&pDer); WOLFSSL_MSG("Error creating DSA struct"); return NULL; } key = (DsaKey*)dsa->internal; if (key == NULL) { FreeDer(&pDer); wolfSSL_DSA_free(dsa); WOLFSSL_MSG("Error finding DSA key struct"); return NULL; } if (GetInt(&key->p, pDer->buffer, &idx, pDer->length) < 0 || GetInt(&key->q, pDer->buffer, &idx, pDer->length) < 0 || GetInt(&key->g, pDer->buffer, &idx, pDer->length) < 0 ) { WOLFSSL_MSG("dsa key error"); FreeDer(&pDer); wolfSSL_DSA_free(dsa); return NULL; } if (wolfssl_bn_set_value(&dsa->p, &key->p) != 1) { WOLFSSL_MSG("dsa p key error"); FreeDer(&pDer); wolfSSL_DSA_free(dsa); return NULL; } if (wolfssl_bn_set_value(&dsa->q, &key->q) != 1) { WOLFSSL_MSG("dsa q key error"); FreeDer(&pDer); wolfSSL_DSA_free(dsa); return NULL; } if (wolfssl_bn_set_value(&dsa->g, &key->g) != 1) { WOLFSSL_MSG("dsa g key error"); FreeDer(&pDer); wolfSSL_DSA_free(dsa); return NULL; } if (x != NULL) { *x = dsa; } FreeDer(&pDer); return dsa; } #endif /* !NO_BIO */ #if !defined(NO_DH) WOLFSSL_DH *wolfSSL_DSA_dup_DH(const WOLFSSL_DSA *dsa) { WOLFSSL_DH* dh; DhKey* key; WOLFSSL_ENTER("wolfSSL_DSA_dup_DH"); if (dsa == NULL) { return NULL; } dh = wolfSSL_DH_new(); if (dh == NULL) { return NULL; } key = (DhKey*)dh->internal; if (dsa->p != NULL && wolfssl_bn_get_value(((WOLFSSL_DSA*)dsa)->p, &key->p) != 1) { WOLFSSL_MSG("rsa p key error"); wolfSSL_DH_free(dh); return NULL; } if (dsa->g != NULL && wolfssl_bn_get_value(((WOLFSSL_DSA*)dsa)->g, &key->g) != 1) { WOLFSSL_MSG("rsa g key error"); wolfSSL_DH_free(dh); return NULL; } if (wolfssl_bn_set_value(&dh->p, &key->p) != 1) { WOLFSSL_MSG("dsa p key error"); wolfSSL_DH_free(dh); return NULL; } if (wolfssl_bn_set_value(&dh->g, &key->g) != 1) { WOLFSSL_MSG("dsa g key error"); wolfSSL_DH_free(dh); return NULL; } return dh; } #endif /* !NO_DH */ #endif /* OPENSSL_EXTRA */ #endif /* !NO_DSA */ /******************************************************************************* * END OF DSA API ******************************************************************************/ /******************************************************************************* * START OF DH API ******************************************************************************/ #ifndef NO_DH #ifdef OPENSSL_EXTRA /* * DH constructor/deconstructor APIs */ /* Allocate and initialize a new DH key. * * @return DH key on success. * @return NULL on failure. */ WOLFSSL_DH* wolfSSL_DH_new(void) { int err = 0; WOLFSSL_DH* dh = NULL; DhKey* key = NULL; WOLFSSL_ENTER("wolfSSL_DH_new"); /* Allocate OpenSSL DH key. */ dh = (WOLFSSL_DH*)XMALLOC(sizeof(WOLFSSL_DH), NULL, DYNAMIC_TYPE_DH); if (dh == NULL) { WOLFSSL_ERROR_MSG("wolfSSL_DH_new malloc WOLFSSL_DH failure"); err = 1; } if (!err) { /* Clear key data. */ XMEMSET(dh, 0, sizeof(WOLFSSL_DH)); /* Initialize reference counting. */ wolfSSL_RefInit(&dh->ref, &err); #ifdef WOLFSSL_REFCNT_ERROR_RETURN } if (!err) { #endif /* Allocate wolfSSL DH key. */ key = (DhKey*)XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH); if (key == NULL) { WOLFSSL_ERROR_MSG("wolfSSL_DH_new malloc DhKey failure"); err = 1; } } if (!err) { /* Set and initialize wolfSSL DH key. */ dh->internal = key; if (wc_InitDhKey(key) != 0) { WOLFSSL_ERROR_MSG("wolfSSL_DH_new InitDhKey failure"); err = 1; } } if (err && (dh != NULL)) { /* Dispose of the allocated memory. */ XFREE(key, NULL, DYNAMIC_TYPE_DH); wolfSSL_RefFree(&dh->ref); XFREE(dh, NULL, DYNAMIC_TYPE_DH); dh = NULL; } return dh; } #if defined(HAVE_PUBLIC_FFDHE) || (defined(HAVE_FIPS) && FIPS_VERSION_EQ(2,0)) /* Set the DH parameters based on the NID. * * @param [in, out] dh DH key to set. * @param [in] nid Numeric ID of predefined DH parameters. * @return 0 on success. * @return 1 on failure. */ static int wolfssl_dh_set_nid(WOLFSSL_DH* dh, int nid) { int err = 0; const DhParams* params = NULL; /* HAVE_PUBLIC_FFDHE not required to expose wc_Dh_ffdhe* functions in * FIPS v2 module */ switch (nid) { #ifdef HAVE_FFDHE_2048 case NID_ffdhe2048: params = wc_Dh_ffdhe2048_Get(); break; #endif /* HAVE_FFDHE_2048 */ #ifdef HAVE_FFDHE_3072 case NID_ffdhe3072: params = wc_Dh_ffdhe3072_Get(); break; #endif /* HAVE_FFDHE_3072 */ #ifdef HAVE_FFDHE_4096 case NID_ffdhe4096: params = wc_Dh_ffdhe4096_Get(); break; #endif /* HAVE_FFDHE_4096 */ default: break; } if (params == NULL) { WOLFSSL_ERROR_MSG("Unable to find DH params for nid."); err = 1; } if (!err) { /* Set prime from data retrieved. */ dh->p = wolfSSL_BN_bin2bn(params->p, (int)params->p_len, NULL); if (dh->p == NULL) { WOLFSSL_ERROR_MSG("Error converting p hex to WOLFSSL_BIGNUM."); err = 1; } } if (!err) { /* Set generator from data retrieved. */ dh->g = wolfSSL_BN_bin2bn(params->g, (int)params->g_len, NULL); if (dh->g == NULL) { WOLFSSL_ERROR_MSG("Error converting g hex to WOLFSSL_BIGNUM."); err = 1; } } #ifdef HAVE_FFDHE_Q if (!err) { /* Set order from data retrieved. */ dh->q = wolfSSL_BN_bin2bn(params->q, params->q_len, NULL); if (dh->q == NULL) { WOLFSSL_ERROR_MSG("Error converting q hex to WOLFSSL_BIGNUM."); err = 1; } } #endif /* Synchronize the external into internal DH key's parameters. */ if ((!err) && (SetDhInternal(dh) != 1)) { WOLFSSL_ERROR_MSG("Failed to set internal DH params."); err = 1; } if (!err) { /* External DH key parameters were set. */ dh->exSet = 1; } if (err == 1) { /* Dispose of any external parameters. */ #ifdef HAVE_FFDHE_Q wolfSSL_BN_free(dh->q); dh->q = NULL; #endif wolfSSL_BN_free(dh->p); dh->p = NULL; wolfSSL_BN_free(dh->g); dh->g = NULL; } return err; } #elif !defined(HAVE_PUBLIC_FFDHE) && (!defined(HAVE_FIPS) || \ FIPS_VERSION_GT(2,0)) /* Set the DH parameters based on the NID. * * FIPS v2 and lower doesn't support wc_DhSetNamedKey. * * @param [in, out] dh DH key to set. * @param [in] nid Numeric ID of predefined DH parameters. * @return 0 on success. * @return 1 on failure. */ static int wolfssl_dh_set_nid(WOLFSSL_DH* dh, int nid) { int err = 0; int name = 0; #ifdef HAVE_FFDHE_Q int elements = ELEMENT_P | ELEMENT_G | ELEMENT_Q; #else int elements = ELEMENT_P | ELEMENT_G; #endif /* HAVE_FFDHE_Q */ switch (nid) { #ifdef HAVE_FFDHE_2048 case NID_ffdhe2048: name = WC_FFDHE_2048; break; #endif /* HAVE_FFDHE_2048 */ #ifdef HAVE_FFDHE_3072 case NID_ffdhe3072: name = WC_FFDHE_3072; break; #endif /* HAVE_FFDHE_3072 */ #ifdef HAVE_FFDHE_4096 case NID_ffdhe4096: name = WC_FFDHE_4096; break; #endif /* HAVE_FFDHE_4096 */ default: err = 1; WOLFSSL_ERROR_MSG("Unable to find DH params for nid."); break; } /* Set the internal DH key's parameters based on name. */ if ((!err) && (wc_DhSetNamedKey((DhKey*)dh->internal, name) != 0)) { WOLFSSL_ERROR_MSG("wc_DhSetNamedKey failed."); err = 1; } /* Synchronize the internal into external DH key's parameters. */ if (!err && (SetDhExternal_ex(dh, elements) != 1)) { WOLFSSL_ERROR_MSG("Failed to set external DH params."); err = 1; } return err; } #else /* Set the DH parameters based on the NID. * * Pre-defined DH parameters not available. * * @param [in, out] dh DH key to set. * @param [in] nid Numeric ID of predefined DH parameters. * @return 1 for failure. */ static int wolfssl_dh_set_nid(WOLFSSL_DH* dh, int nid) { return 1; } #endif /* Allocate and initialize a new DH key with the parameters based on the NID. * * @param [in] nid Numeric ID of DH parameters. * * @return DH key on success. * @return NULL on failure. */ WOLFSSL_DH* wolfSSL_DH_new_by_nid(int nid) { WOLFSSL_DH* dh = NULL; int err = 0; WOLFSSL_ENTER("wolfSSL_DH_new_by_nid"); /* Allocate a new DH key. */ dh = wolfSSL_DH_new(); if (dh == NULL) { WOLFSSL_ERROR_MSG("Failed to create WOLFSSL_DH."); err = 1; } if (!err) { /* Set the parameters based on NID. */ err = wolfssl_dh_set_nid(dh, nid); } if (err && (dh != NULL)) { /* Dispose of the key on failure to set. */ wolfSSL_DH_free(dh); dh = NULL; } WOLFSSL_LEAVE("wolfSSL_DH_new_by_nid", err); return dh; } /* Dispose of DH key and allocated data. * * Cannot use dh after this call. * * @param [in] dh DH key to free. */ void wolfSSL_DH_free(WOLFSSL_DH* dh) { int doFree = 0; WOLFSSL_ENTER("wolfSSL_DH_free"); if (dh != NULL) { int err; /* Only free if all references to it are done */ wolfSSL_RefDec(&dh->ref, &doFree, &err); /* Ignore errors - doFree will be 0 on error. */ (void)err; } if (doFree) { /* Dispose of allocated reference counting data. */ wolfSSL_RefFree(&dh->ref); /* Dispose of wolfSSL DH key. */ if (dh->internal) { wc_FreeDhKey((DhKey*)dh->internal); XFREE(dh->internal, NULL, DYNAMIC_TYPE_DH); dh->internal = NULL; } /* Dispose of any allocated BNs. */ wolfSSL_BN_free(dh->priv_key); wolfSSL_BN_free(dh->pub_key); wolfSSL_BN_free(dh->g); wolfSSL_BN_free(dh->p); wolfSSL_BN_free(dh->q); /* Set back to NULLs for safety. */ XMEMSET(dh, 0, sizeof(WOLFSSL_DH)); XFREE(dh, NULL, DYNAMIC_TYPE_DH); } } /* Increments ref count of DH key. * * @param [in, out] dh DH key. * @return 1 on success * @return 0 on error */ int wolfSSL_DH_up_ref(WOLFSSL_DH* dh) { int err = 1; WOLFSSL_ENTER("wolfSSL_DH_up_ref"); if (dh != NULL) { wolfSSL_RefInc(&dh->ref, &err); } return !err; } #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) || defined(WOLFSSL_OPENSSH) || \ defined(OPENSSL_EXTRA) #ifdef WOLFSSL_DH_EXTRA /* Duplicate the DH key. * * Internal DH key in 'dh' is updated if necessary. * * @param [in, out] dh DH key to duplicate. * @return NULL on failure. * @return DH key on success. */ WOLFSSL_DH* wolfSSL_DH_dup(WOLFSSL_DH* dh) { WOLFSSL_DH* ret = NULL; int err = 0; WOLFSSL_ENTER("wolfSSL_DH_dup"); /* Validate parameters. */ if (dh == NULL) { WOLFSSL_ERROR_MSG("Bad parameter"); err = 1; } /* Ensure internal DH key is set. */ if ((!err) && (dh->inSet == 0) && (SetDhInternal(dh) != 1)) { WOLFSSL_ERROR_MSG("Bad DH set internal"); err = 1; } /* Create a new DH key object. */ if ((!err) && (!(ret = wolfSSL_DH_new()))) { WOLFSSL_ERROR_MSG("wolfSSL_DH_new error"); err = 1; } /* Copy internal DH key from original to new. */ if ((!err) && (wc_DhKeyCopy((DhKey*)dh->internal, (DhKey*)ret->internal) != MP_OKAY)) { WOLFSSL_ERROR_MSG("wc_DhKeyCopy error"); err = 1; } if (!err) { ret->inSet = 1; /* Synchronize the internal into external DH key's parameters. */ if (SetDhExternal(ret) != 1) { WOLFSSL_ERROR_MSG("SetDhExternal error"); err = 1; } } /* Dispose of any allocated DH key on error. */ if (err && (ret != NULL)) { wolfSSL_DH_free(ret); ret = NULL; } return ret; } #endif /* WOLFSSL_DH_EXTRA */ #endif /* Allocate and initialize a new DH key with 2048-bit parameters. * * See RFC 5114 section 2.3, "2048-bit MODP Group with 256-bit Prime Order * Subgroup." * * @return NULL on failure. * @return DH Key on success. */ WOLFSSL_DH* wolfSSL_DH_get_2048_256(void) { WOLFSSL_DH* dh; int err = 0; static const byte pHex[] = { 0x87, 0xA8, 0xE6, 0x1D, 0xB4, 0xB6, 0x66, 0x3C, 0xFF, 0xBB, 0xD1, 0x9C, 0x65, 0x19, 0x59, 0x99, 0x8C, 0xEE, 0xF6, 0x08, 0x66, 0x0D, 0xD0, 0xF2, 0x5D, 0x2C, 0xEE, 0xD4, 0x43, 0x5E, 0x3B, 0x00, 0xE0, 0x0D, 0xF8, 0xF1, 0xD6, 0x19, 0x57, 0xD4, 0xFA, 0xF7, 0xDF, 0x45, 0x61, 0xB2, 0xAA, 0x30, 0x16, 0xC3, 0xD9, 0x11, 0x34, 0x09, 0x6F, 0xAA, 0x3B, 0xF4, 0x29, 0x6D, 0x83, 0x0E, 0x9A, 0x7C, 0x20, 0x9E, 0x0C, 0x64, 0x97, 0x51, 0x7A, 0xBD, 0x5A, 0x8A, 0x9D, 0x30, 0x6B, 0xCF, 0x67, 0xED, 0x91, 0xF9, 0xE6, 0x72, 0x5B, 0x47, 0x58, 0xC0, 0x22, 0xE0, 0xB1, 0xEF, 0x42, 0x75, 0xBF, 0x7B, 0x6C, 0x5B, 0xFC, 0x11, 0xD4, 0x5F, 0x90, 0x88, 0xB9, 0x41, 0xF5, 0x4E, 0xB1, 0xE5, 0x9B, 0xB8, 0xBC, 0x39, 0xA0, 0xBF, 0x12, 0x30, 0x7F, 0x5C, 0x4F, 0xDB, 0x70, 0xC5, 0x81, 0xB2, 0x3F, 0x76, 0xB6, 0x3A, 0xCA, 0xE1, 0xCA, 0xA6, 0xB7, 0x90, 0x2D, 0x52, 0x52, 0x67, 0x35, 0x48, 0x8A, 0x0E, 0xF1, 0x3C, 0x6D, 0x9A, 0x51, 0xBF, 0xA4, 0xAB, 0x3A, 0xD8, 0x34, 0x77, 0x96, 0x52, 0x4D, 0x8E, 0xF6, 0xA1, 0x67, 0xB5, 0xA4, 0x18, 0x25, 0xD9, 0x67, 0xE1, 0x44, 0xE5, 0x14, 0x05, 0x64, 0x25, 0x1C, 0xCA, 0xCB, 0x83, 0xE6, 0xB4, 0x86, 0xF6, 0xB3, 0xCA, 0x3F, 0x79, 0x71, 0x50, 0x60, 0x26, 0xC0, 0xB8, 0x57, 0xF6, 0x89, 0x96, 0x28, 0x56, 0xDE, 0xD4, 0x01, 0x0A, 0xBD, 0x0B, 0xE6, 0x21, 0xC3, 0xA3, 0x96, 0x0A, 0x54, 0xE7, 0x10, 0xC3, 0x75, 0xF2, 0x63, 0x75, 0xD7, 0x01, 0x41, 0x03, 0xA4, 0xB5, 0x43, 0x30, 0xC1, 0x98, 0xAF, 0x12, 0x61, 0x16, 0xD2, 0x27, 0x6E, 0x11, 0x71, 0x5F, 0x69, 0x38, 0x77, 0xFA, 0xD7, 0xEF, 0x09, 0xCA, 0xDB, 0x09, 0x4A, 0xE9, 0x1E, 0x1A, 0x15, 0x97 }; static const byte gHex[] = { 0x3F, 0xB3, 0x2C, 0x9B, 0x73, 0x13, 0x4D, 0x0B, 0x2E, 0x77, 0x50, 0x66, 0x60, 0xED, 0xBD, 0x48, 0x4C, 0xA7, 0xB1, 0x8F, 0x21, 0xEF, 0x20, 0x54, 0x07, 0xF4, 0x79, 0x3A, 0x1A, 0x0B, 0xA1, 0x25, 0x10, 0xDB, 0xC1, 0x50, 0x77, 0xBE, 0x46, 0x3F, 0xFF, 0x4F, 0xED, 0x4A, 0xAC, 0x0B, 0xB5, 0x55, 0xBE, 0x3A, 0x6C, 0x1B, 0x0C, 0x6B, 0x47, 0xB1, 0xBC, 0x37, 0x73, 0xBF, 0x7E, 0x8C, 0x6F, 0x62, 0x90, 0x12, 0x28, 0xF8, 0xC2, 0x8C, 0xBB, 0x18, 0xA5, 0x5A, 0xE3, 0x13, 0x41, 0x00, 0x0A, 0x65, 0x01, 0x96, 0xF9, 0x31, 0xC7, 0x7A, 0x57, 0xF2, 0xDD, 0xF4, 0x63, 0xE5, 0xE9, 0xEC, 0x14, 0x4B, 0x77, 0x7D, 0xE6, 0x2A, 0xAA, 0xB8, 0xA8, 0x62, 0x8A, 0xC3, 0x76, 0xD2, 0x82, 0xD6, 0xED, 0x38, 0x64, 0xE6, 0x79, 0x82, 0x42, 0x8E, 0xBC, 0x83, 0x1D, 0x14, 0x34, 0x8F, 0x6F, 0x2F, 0x91, 0x93, 0xB5, 0x04, 0x5A, 0xF2, 0x76, 0x71, 0x64, 0xE1, 0xDF, 0xC9, 0x67, 0xC1, 0xFB, 0x3F, 0x2E, 0x55, 0xA4, 0xBD, 0x1B, 0xFF, 0xE8, 0x3B, 0x9C, 0x80, 0xD0, 0x52, 0xB9, 0x85, 0xD1, 0x82, 0xEA, 0x0A, 0xDB, 0x2A, 0x3B, 0x73, 0x13, 0xD3, 0xFE, 0x14, 0xC8, 0x48, 0x4B, 0x1E, 0x05, 0x25, 0x88, 0xB9, 0xB7, 0xD2, 0xBB, 0xD2, 0xDF, 0x01, 0x61, 0x99, 0xEC, 0xD0, 0x6E, 0x15, 0x57, 0xCD, 0x09, 0x15, 0xB3, 0x35, 0x3B, 0xBB, 0x64, 0xE0, 0xEC, 0x37, 0x7F, 0xD0, 0x28, 0x37, 0x0D, 0xF9, 0x2B, 0x52, 0xC7, 0x89, 0x14, 0x28, 0xCD, 0xC6, 0x7E, 0xB6, 0x18, 0x4B, 0x52, 0x3D, 0x1D, 0xB2, 0x46, 0xC3, 0x2F, 0x63, 0x07, 0x84, 0x90, 0xF0, 0x0E, 0xF8, 0xD6, 0x47, 0xD1, 0x48, 0xD4, 0x79, 0x54, 0x51, 0x5E, 0x23, 0x27, 0xCF, 0xEF, 0x98, 0xC5, 0x82, 0x66, 0x4B, 0x4C, 0x0F, 0x6C, 0xC4, 0x16, 0x59 }; static const byte qHex[] = { 0x8C, 0xF8, 0x36, 0x42, 0xA7, 0x09, 0xA0, 0x97, 0xB4, 0x47, 0x99, 0x76, 0x40, 0x12, 0x9D, 0xA2, 0x99, 0xB1, 0xA4, 0x7D, 0x1E, 0xB3, 0x75, 0x0B, 0xA3, 0x08, 0xB0, 0xFE, 0x64, 0xF5, 0xFB, 0xD3 }; /* Create a new DH key to return. */ dh = wolfSSL_DH_new(); if (dh == NULL) { err = 1; } if (!err) { /* Set prime. */ dh->p = wolfSSL_BN_bin2bn(pHex, (int)sizeof(pHex), NULL); if (dh->p == NULL) { WOLFSSL_ERROR_MSG("Error converting p hex to WOLFSSL_BIGNUM."); err = 1; } } if (!err) { /* Set generator. */ dh->g = wolfSSL_BN_bin2bn(gHex, (int)sizeof(gHex), NULL); if (dh->g == NULL) { WOLFSSL_ERROR_MSG("Error converting g hex to WOLFSSL_BIGNUM."); err = 1; } } if (!err) { /* Set order. */ dh->q = wolfSSL_BN_bin2bn(qHex, (int)sizeof(qHex), NULL); if (dh->q == NULL) { WOLFSSL_ERROR_MSG("Error converting q hex to WOLFSSL_BIGNUM."); err = 1; } } /* Set values into wolfSSL DH key. */ if ((!err) && (SetDhInternal(dh) != 1)) { WOLFSSL_ERROR_MSG("Error setting DH parameters."); err = 1; } if (!err) { /* External DH key parameters were set. */ dh->exSet = 1; } /* Dispose of any allocated DH key on error. */ if (err && (dh != NULL)) { wolfSSL_DH_free(dh); dh = NULL; } return dh; } /* TODO: consider changing strings to byte arrays. */ /* Returns a big number with the 768-bit prime from RFC 2409. * * @param [in, out] bn If not NULL then this BN is set and returned. * If NULL then a new BN is created, set and returned. * * @return NULL on failure. * @return WOLFSSL_BIGNUM with value set to 768-bit prime on success. */ WOLFSSL_BIGNUM* wolfSSL_DH_768_prime(WOLFSSL_BIGNUM* bn) { #if WOLFSSL_MAX_BN_BITS >= 768 static const char prm[] = { "FFFFFFFFFFFFFFFFC90FDAA22168C234" "C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6" "F44C42E9A63A3620FFFFFFFFFFFFFFFF" }; WOLFSSL_ENTER("wolfSSL_DH_768_prime"); /* Set prime into BN. Creates a new BN when bn is NULL. */ if (wolfSSL_BN_hex2bn(&bn, prm) != 1) { WOLFSSL_ERROR_MSG("Error converting DH 768 prime to big number"); bn = NULL; } return bn; #else (void)bn; return NULL; #endif } /* Returns a big number with the 1024-bit prime from RFC 2409. * * @param [in, out] bn If not NULL then this BN is set and returned. * If NULL then a new BN is created, set and returned. * * @return NULL on failure. * @return WOLFSSL_BIGNUM with value set to 1024-bit prime on success. */ WOLFSSL_BIGNUM* wolfSSL_DH_1024_prime(WOLFSSL_BIGNUM* bn) { #if WOLFSSL_MAX_BN_BITS >= 1024 static const char prm[] = { "FFFFFFFFFFFFFFFFC90FDAA22168C234" "C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6" "F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE65381FFFFFFFFFFFFFFFF" }; WOLFSSL_ENTER("wolfSSL_DH_1024_prime"); /* Set prime into BN. Creates a new BN when bn is NULL. */ if (wolfSSL_BN_hex2bn(&bn, prm) != 1) { WOLFSSL_ERROR_MSG("Error converting DH 1024 prime to big number"); bn = NULL; } return bn; #else (void)bn; return NULL; #endif } /* Returns a big number with the 1536-bit prime from RFC 3526. * * @param [in, out] bn If not NULL then this BN is set and returned. * If NULL then a new BN is created, set and returned. * * @return NULL on failure. * @return WOLFSSL_BIGNUM with value set to 1536-bit prime on success. */ WOLFSSL_BIGNUM* wolfSSL_DH_1536_prime(WOLFSSL_BIGNUM* bn) { #if WOLFSSL_MAX_BN_BITS >= 1536 static const char prm[] = { "FFFFFFFFFFFFFFFFC90FDAA22168C234" "C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6" "F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE45B3DC2007CB8A163BF05" "98DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB" "9ED529077096966D670C354E4ABC9804" "F1746C08CA237327FFFFFFFFFFFFFFFF" }; WOLFSSL_ENTER("wolfSSL_DH_1536_prime"); /* Set prime into BN. Creates a new BN when bn is NULL. */ if (wolfSSL_BN_hex2bn(&bn, prm) != 1) { WOLFSSL_ERROR_MSG("Error converting DH 1536 prime to big number"); bn = NULL; } return bn; #else (void)bn; return NULL; #endif } /* Returns a big number with the 2048-bit prime from RFC 3526. * * @param [in, out] bn If not NULL then this BN is set and returned. * If NULL then a new BN is created, set and returned. * * @return NULL on failure. * @return WOLFSSL_BIGNUM with value set to 2048-bit prime on success. */ WOLFSSL_BIGNUM* wolfSSL_DH_2048_prime(WOLFSSL_BIGNUM* bn) { #if WOLFSSL_MAX_BN_BITS >= 2048 static const char prm[] = { "FFFFFFFFFFFFFFFFC90FDAA22168C234" "C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6" "F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE45B3DC2007CB8A163BF05" "98DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB" "9ED529077096966D670C354E4ABC9804" "F1746C08CA18217C32905E462E36CE3B" "E39E772C180E86039B2783A2EC07A28F" "B5C55DF06F4C52C9DE2BCBF695581718" "3995497CEA956AE515D2261898FA0510" "15728E5A8AACAA68FFFFFFFFFFFFFFFF" }; WOLFSSL_ENTER("wolfSSL_DH_2048_prime"); /* Set prime into BN. Creates a new BN when bn is NULL. */ if (wolfSSL_BN_hex2bn(&bn, prm) != 1) { WOLFSSL_ERROR_MSG("Error converting DH 2048 prime to big number"); bn = NULL; } return bn; #else (void)bn; return NULL; #endif } /* Returns a big number with the 3072-bit prime from RFC 3526. * * @param [in, out] bn If not NULL then this BN is set and returned. * If NULL then a new BN is created, set and returned. * * @return NULL on failure. * @return WOLFSSL_BIGNUM with value set to 3072-bit prime on success. */ WOLFSSL_BIGNUM* wolfSSL_DH_3072_prime(WOLFSSL_BIGNUM* bn) { #if WOLFSSL_MAX_BN_BITS >= 3072 static const char prm[] = { "FFFFFFFFFFFFFFFFC90FDAA22168C234" "C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6" "F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE45B3DC2007CB8A163BF05" "98DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB" "9ED529077096966D670C354E4ABC9804" "F1746C08CA18217C32905E462E36CE3B" "E39E772C180E86039B2783A2EC07A28F" "B5C55DF06F4C52C9DE2BCBF695581718" "3995497CEA956AE515D2261898FA0510" "15728E5A8AAAC42DAD33170D04507A33" "A85521ABDF1CBA64ECFB850458DBEF0A" "8AEA71575D060C7DB3970F85A6E1E4C7" "ABF5AE8CDB0933D71E8C94E04A25619D" "CEE3D2261AD2EE6BF12FFA06D98A0864" "D87602733EC86A64521F2B18177B200C" "BBE117577A615D6C770988C0BAD946E2" "08E24FA074E5AB3143DB5BFCE0FD108E" "4B82D120A93AD2CAFFFFFFFFFFFFFFFF" }; WOLFSSL_ENTER("wolfSSL_DH_3072_prime"); /* Set prime into BN. Creates a new BN when bn is NULL. */ if (wolfSSL_BN_hex2bn(&bn, prm) != 1) { WOLFSSL_ERROR_MSG("Error converting DH 3072 prime to big number"); bn = NULL; } return bn; #else (void)bn; return NULL; #endif } /* Returns a big number with the 4096-bit prime from RFC 3526. * * @param [in, out] bn If not NULL then this BN is set and returned. * If NULL then a new BN is created, set and returned. * * @return NULL on failure. * @return WOLFSSL_BIGNUM with value set to 4096-bit prime on success. */ WOLFSSL_BIGNUM* wolfSSL_DH_4096_prime(WOLFSSL_BIGNUM* bn) { #if WOLFSSL_MAX_BN_BITS >= 4096 static const char prm[] = { "FFFFFFFFFFFFFFFFC90FDAA22168C234" "C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6" "F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE45B3DC2007CB8A163BF05" "98DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB" "9ED529077096966D670C354E4ABC9804" "F1746C08CA18217C32905E462E36CE3B" "E39E772C180E86039B2783A2EC07A28F" "B5C55DF06F4C52C9DE2BCBF695581718" "3995497CEA956AE515D2261898FA0510" "15728E5A8AAAC42DAD33170D04507A33" "A85521ABDF1CBA64ECFB850458DBEF0A" "8AEA71575D060C7DB3970F85A6E1E4C7" "ABF5AE8CDB0933D71E8C94E04A25619D" "CEE3D2261AD2EE6BF12FFA06D98A0864" "D87602733EC86A64521F2B18177B200C" "BBE117577A615D6C770988C0BAD946E2" "08E24FA074E5AB3143DB5BFCE0FD108E" "4B82D120A92108011A723C12A787E6D7" "88719A10BDBA5B2699C327186AF4E23C" "1A946834B6150BDA2583E9CA2AD44CE8" "DBBBC2DB04DE8EF92E8EFC141FBECAA6" "287C59474E6BC05D99B2964FA090C3A2" "233BA186515BE7ED1F612970CEE2D7AF" "B81BDD762170481CD0069127D5B05AA9" "93B4EA988D8FDDC186FFB7DC90A6C08F" "4DF435C934063199FFFFFFFFFFFFFFFF" }; WOLFSSL_ENTER("wolfSSL_DH_4096_prime"); /* Set prime into BN. Creates a new BN when bn is NULL. */ if (wolfSSL_BN_hex2bn(&bn, prm) != 1) { WOLFSSL_ERROR_MSG("Error converting DH 4096 prime to big number"); bn = NULL; } return bn; #else (void)bn; return NULL; #endif } /* Returns a big number with the 6144-bit prime from RFC 3526. * * @param [in, out] bn If not NULL then this BN is set and returned. * If NULL then a new BN is created, set and returned. * * @return NULL on failure. * @return WOLFSSL_BIGNUM with value set to 6144-bit prime on success. */ WOLFSSL_BIGNUM* wolfSSL_DH_6144_prime(WOLFSSL_BIGNUM* bn) { #if WOLFSSL_MAX_BN_BITS >= 6144 static const char prm[] = { "FFFFFFFFFFFFFFFFC90FDAA22168C234" "C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6" "F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE45B3DC2007CB8A163BF05" "98DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB" "9ED529077096966D670C354E4ABC9804" "F1746C08CA18217C32905E462E36CE3B" "E39E772C180E86039B2783A2EC07A28F" "B5C55DF06F4C52C9DE2BCBF695581718" "3995497CEA956AE515D2261898FA0510" "15728E5A8AAAC42DAD33170D04507A33" "A85521ABDF1CBA64ECFB850458DBEF0A" "8AEA71575D060C7DB3970F85A6E1E4C7" "ABF5AE8CDB0933D71E8C94E04A25619D" "CEE3D2261AD2EE6BF12FFA06D98A0864" "D87602733EC86A64521F2B18177B200C" "BBE117577A615D6C770988C0BAD946E2" "08E24FA074E5AB3143DB5BFCE0FD108E" "4B82D120A92108011A723C12A787E6D7" "88719A10BDBA5B2699C327186AF4E23C" "1A946834B6150BDA2583E9CA2AD44CE8" "DBBBC2DB04DE8EF92E8EFC141FBECAA6" "287C59474E6BC05D99B2964FA090C3A2" "233BA186515BE7ED1F612970CEE2D7AF" "B81BDD762170481CD0069127D5B05AA9" "93B4EA988D8FDDC186FFB7DC90A6C08F" "4DF435C93402849236C3FAB4D27C7026" "C1D4DCB2602646DEC9751E763DBA37BD" "F8FF9406AD9E530EE5DB382F413001AE" "B06A53ED9027D831179727B0865A8918" "DA3EDBEBCF9B14ED44CE6CBACED4BB1B" "DB7F1447E6CC254B332051512BD7AF42" "6FB8F401378CD2BF5983CA01C64B92EC" "F032EA15D1721D03F482D7CE6E74FEF6" "D55E702F46980C82B5A84031900B1C9E" "59E7C97FBEC7E8F323A97A7E36CC88BE" "0F1D45B7FF585AC54BD407B22B4154AA" "CC8F6D7EBF48E1D814CC5ED20F8037E0" "A79715EEF29BE32806A1D58BB7C5DA76" "F550AA3D8A1FBFF0EB19CCB1A313D55C" "DA56C9EC2EF29632387FE8D76E3C0468" "043E8F663F4860EE12BF2D5B0B7474D6" "E694F91E6DCC4024FFFFFFFFFFFFFFFF" }; WOLFSSL_ENTER("wolfSSL_DH_6144_prime"); /* Set prime into BN. Creates a new BN when bn is NULL. */ if (wolfSSL_BN_hex2bn(&bn, prm) != 1) { WOLFSSL_ERROR_MSG("Error converting DH 6144 prime to big number"); bn = NULL; } return bn; #else (void)bn; return NULL; #endif } /* Returns a big number with the 8192-bit prime from RFC 3526. * * @param [in, out] bn If not NULL then this BN is set and returned. * If NULL then a new BN is created, set and returned. * * @return NULL on failure. * @return WOLFSSL_BIGNUM with value set to 8192-bit prime on success. */ WOLFSSL_BIGNUM* wolfSSL_DH_8192_prime(WOLFSSL_BIGNUM* bn) { #if WOLFSSL_MAX_BN_BITS >= 8192 static const char prm[] = { "FFFFFFFFFFFFFFFFC90FDAA22168C234" "C4C6628B80DC1CD129024E088A67CC74" "020BBEA63B139B22514A08798E3404DD" "EF9519B3CD3A431B302B0A6DF25F1437" "4FE1356D6D51C245E485B576625E7EC6" "F44C42E9A637ED6B0BFF5CB6F406B7ED" "EE386BFB5A899FA5AE9F24117C4B1FE6" "49286651ECE45B3DC2007CB8A163BF05" "98DA48361C55D39A69163FA8FD24CF5F" "83655D23DCA3AD961C62F356208552BB" "9ED529077096966D670C354E4ABC9804" "F1746C08CA18217C32905E462E36CE3B" "E39E772C180E86039B2783A2EC07A28F" "B5C55DF06F4C52C9DE2BCBF695581718" "3995497CEA956AE515D2261898FA0510" "15728E5A8AAAC42DAD33170D04507A33" "A85521ABDF1CBA64ECFB850458DBEF0A" "8AEA71575D060C7DB3970F85A6E1E4C7" "ABF5AE8CDB0933D71E8C94E04A25619D" "CEE3D2261AD2EE6BF12FFA06D98A0864" "D87602733EC86A64521F2B18177B200C" "BBE117577A615D6C770988C0BAD946E2" "08E24FA074E5AB3143DB5BFCE0FD108E" "4B82D120A92108011A723C12A787E6D7" "88719A10BDBA5B2699C327186AF4E23C" "1A946834B6150BDA2583E9CA2AD44CE8" "DBBBC2DB04DE8EF92E8EFC141FBECAA6" "287C59474E6BC05D99B2964FA090C3A2" "233BA186515BE7ED1F612970CEE2D7AF" "B81BDD762170481CD0069127D5B05AA9" "93B4EA988D8FDDC186FFB7DC90A6C08F" "4DF435C93402849236C3FAB4D27C7026" "C1D4DCB2602646DEC9751E763DBA37BD" "F8FF9406AD9E530EE5DB382F413001AE" "B06A53ED9027D831179727B0865A8918" "DA3EDBEBCF9B14ED44CE6CBACED4BB1B" "DB7F1447E6CC254B332051512BD7AF42" "6FB8F401378CD2BF5983CA01C64B92EC" "F032EA15D1721D03F482D7CE6E74FEF6" "D55E702F46980C82B5A84031900B1C9E" "59E7C97FBEC7E8F323A97A7E36CC88BE" "0F1D45B7FF585AC54BD407B22B4154AA" "CC8F6D7EBF48E1D814CC5ED20F8037E0" "A79715EEF29BE32806A1D58BB7C5DA76" "F550AA3D8A1FBFF0EB19CCB1A313D55C" "DA56C9EC2EF29632387FE8D76E3C0468" "043E8F663F4860EE12BF2D5B0B7474D6" "E694F91E6DBE115974A3926F12FEE5E4" "38777CB6A932DF8CD8BEC4D073B931BA" "3BC832B68D9DD300741FA7BF8AFC47ED" "2576F6936BA424663AAB639C5AE4F568" "3423B4742BF1C978238F16CBE39D652D" "E3FDB8BEFC848AD922222E04A4037C07" "13EB57A81A23F0C73473FC646CEA306B" "4BCBC8862F8385DDFA9D4B7FA2C087E8" "79683303ED5BDD3A062B3CF5B3A278A6" "6D2A13F83F44F82DDF310EE074AB6A36" "4597E899A0255DC164F31CC50846851D" "F9AB48195DED7EA1B1D510BD7EE74D73" "FAF36BC31ECFA268359046F4EB879F92" "4009438B481C6CD7889A002ED5EE382B" "C9190DA6FC026E479558E4475677E9AA" "9E3050E2765694DFC81F56E880B96E71" "60C980DD98EDD3DFFFFFFFFFFFFFFFFF" }; WOLFSSL_ENTER("wolfSSL_DH_8192_prime"); /* Set prime into BN. Creates a new BN when bn is NULL. */ if (wolfSSL_BN_hex2bn(&bn, prm) != 1) { WOLFSSL_ERROR_MSG("Error converting DH 8192 prime to big number"); bn = NULL; } return bn; #else (void)bn; return NULL; #endif } /* * DH to/from bin APIs */ #ifndef NO_CERTS /* Load the DER encoded DH parameters into DH key. * * @param [in, out] dh DH key to load parameters into. * @param [in] der Buffer holding DER encoded parameters data. * @param [in, out] idx On in, index at which DH key DER data starts. * On out, index after DH key DER data. * @param [in] derSz Size of DER buffer in bytes. * * @return 0 on success. * @return 1 when decoding DER or setting the external key fails. */ static int wolfssl_dh_load_params(WOLFSSL_DH* dh, const unsigned char* der, word32* idx, word32 derSz) { int err = 0; #if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0) int ret; /* Decode DH parameters/key from DER. */ ret = wc_DhKeyDecode(der, idx, (DhKey*)dh->internal, derSz); if (ret != 0) { WOLFSSL_ERROR_MSG("DhKeyDecode() failed"); err = 1; } if (!err) { /* wolfSSL DH key set. */ dh->inSet = 1; /* Set the external DH key based on wolfSSL DH key. */ if (SetDhExternal(dh) != 1) { WOLFSSL_ERROR_MSG("SetDhExternal failed"); err = 1; } } #else byte* p; byte* g; word32 pSz = MAX_DH_SIZE; word32 gSz = MAX_DH_SIZE; /* Only DH parameters supported. */ /* Load external and set internal. */ p = (byte*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); g = (byte*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if ((p == NULL) || (g == NULL)) { err = 1; } /* Extract the p and g as data from the DER encoded DH parameters. */ if ((!err) && (wc_DhParamsLoad(der + *idx, derSz - *idx, p, &pSz, g, &gSz) < 0)) { err = 1; } if (!err) { /* Put p and g in as big numbers - free existing BNs. */ if (dh->p != NULL) { wolfSSL_BN_free(dh->p); dh->p = NULL; } if (dh->g != NULL) { wolfSSL_BN_free(dh->g); dh->g = NULL; } dh->p = wolfSSL_BN_bin2bn(p, (int)pSz, NULL); dh->g = wolfSSL_BN_bin2bn(g, (int)gSz, NULL); if (dh->p == NULL || dh->g == NULL) { err = 1; } else { /* External DH key parameters were set. */ dh->exSet = 1; } } /* Set internal as the outside has been updated. */ if ((!err) && (SetDhInternal(dh) != 1)) { WOLFSSL_ERROR_MSG("Unable to set internal DH structure"); err = 1; } if (!err) { *idx += wolfssl_der_length(der + *idx, derSz - *idx); } XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY); #endif return err; } #ifdef OPENSSL_ALL #if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0) /* Convert DER encoded DH parameters to a WOLFSSL_DH structure. * * @param [out] dh DH key to put parameters into. May be NULL. * @param [in, out] pp Pointer to DER encoded DH parameters. * Value updated to end of data when dh is not NULL. * @param [in] length Length of data available in bytes. * * @return DH key on success. * @return NULL on failure. */ WOLFSSL_DH *wolfSSL_d2i_DHparams(WOLFSSL_DH** dh, const unsigned char** pp, long length) { WOLFSSL_DH *newDh = NULL; word32 idx = 0; int err = 0; WOLFSSL_ENTER("wolfSSL_d2i_DHparams"); /* Validate parameters. */ if ((pp == NULL) || (length <= 0)) { WOLFSSL_ERROR_MSG("bad argument"); err = 1; } /* Create new DH key to return. */ if ((!err) && ((newDh = wolfSSL_DH_new()) == NULL)) { WOLFSSL_ERROR_MSG("wolfSSL_DH_new() failed"); err = 1; } if ((!err) && (wolfssl_dh_load_params(newDh, *pp, &idx, (word32)length) != 0)) { WOLFSSL_ERROR_MSG("Loading DH parameters failed"); err = 1; } if ((!err) && (dh != NULL)) { /* Return through parameter too. */ *dh = newDh; /* Move buffer on by the used amount. */ *pp += idx; } if (err && (newDh != NULL)) { /* Dispose of any created DH key. */ wolfSSL_DH_free(newDh); newDh = NULL; } return newDh; } #endif /* !HAVE_FIPS || FIPS_VERSION_GT(2,0) */ /* Converts internal WOLFSSL_DH structure to DER encoded DH parameters. * * @params [in] dh DH key with parameters to encode. * @params [in, out] out Pointer to buffer to encode into. * When NULL or pointer to NULL, only length returned. * @return 0 on error. * @return Size of DER encoding in bytes on success. */ int wolfSSL_i2d_DHparams(const WOLFSSL_DH *dh, unsigned char **out) { #if (!defined(HAVE_FIPS) || FIPS_VERSION_GT(5,0)) && defined(WOLFSSL_DH_EXTRA) /* Set length to an arbitrarily large value for wc_DhParamsToDer(). */ word32 len = (word32)-1; int err = 0; /* Validate parameters. */ if (dh == NULL) { WOLFSSL_ERROR_MSG("Bad parameters"); err = 1; } /* Push external DH data into internal DH key if not set. */ if ((!err) && (!dh->inSet) && (SetDhInternal((WOLFSSL_DH*)dh) != 1)) { WOLFSSL_ERROR_MSG("Bad DH set internal"); err = 1; } if (!err) { int ret; unsigned char* der = NULL; /* Use *out when available otherwise NULL. */ if (out != NULL) { der = *out; } /* Get length and/or encode. */ ret = wc_DhParamsToDer((DhKey*)dh->internal, der, &len); /* Length of encoded data is returned on success. */ if (ret > 0) { *out += len; } /* An error occurred unless only length returned. */ else if (ret != WC_NO_ERR_TRACE(LENGTH_ONLY_E)) { err = 1; } } /* Set return to 0 on error. */ if (err) { len = 0; } return (int)len; #else word32 len; int ret = 0; int pSz; int gSz; WOLFSSL_ENTER("wolfSSL_i2d_DHparams"); /* Validate parameters. */ if (dh == NULL) { WOLFSSL_ERROR_MSG("Bad parameters"); len = 0; } else { /* SEQ * INT [0x00] * INT [0x00] * Integers have 0x00 prepended if the top bit of positive number is * set. */ /* Get total length of prime including any prepended zeros. */ pSz = mp_unsigned_bin_size((mp_int*)dh->p->internal) + mp_leading_bit((mp_int*)dh->p->internal); /* Get total length of generator including any prepended zeros. */ gSz = mp_unsigned_bin_size((mp_int*)dh->g->internal) + mp_leading_bit((mp_int*)dh->g->internal); /* Calculate length of data in sequence. */ len = 1 + ASN_LEN_SIZE(pSz) + pSz + 1 + ASN_LEN_SIZE(gSz) + gSz; /* Add in the length of the SEQUENCE. */ len += 1 + ASN_LEN_SIZE(len); if ((out != NULL) && (*out != NULL)) { /* Encode parameters. */ ret = StoreDHparams(*out, &len, (mp_int*)dh->p->internal, (mp_int*)dh->g->internal); if (ret != MP_OKAY) { WOLFSSL_ERROR_MSG("StoreDHparams error"); len = 0; } else { /* Move pointer on if encoded. */ *out += len; } } } return (int)len; #endif } #endif /* OPENSSL_ALL */ #endif /* !NO_CERTS */ #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || \ ((!defined(NO_BIO) || !defined(NO_FILESYSTEM)) && \ defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) || \ defined(WOLFSSL_MYSQL_COMPATIBLE)) /* Load the DER encoded DH parameters into DH key. * * @param [in, out] dh DH key to load parameters into. * @param [in] derBuf Buffer holding DER encoded parameters data. * @param [in] derSz Size of DER data in buffer in bytes. * * @return 1 on success. * @return -1 when DH or derBuf is NULL, * internal DH key in DH is NULL, * derSz is 0 or less, * error decoding DER data or * setting external parameter values fails. */ int wolfSSL_DH_LoadDer(WOLFSSL_DH* dh, const unsigned char* derBuf, int derSz) { int ret = 1; word32 idx = 0; /* Validate parameters. */ if ((dh == NULL) || (dh->internal == NULL) || (derBuf == NULL) || (derSz <= 0)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = WOLFSSL_FATAL_ERROR; } if ((ret == 1) && (wolfssl_dh_load_params(dh, derBuf, &idx, (word32)derSz) != 0)) { WOLFSSL_ERROR_MSG("DH key decode failed"); ret = WOLFSSL_FATAL_ERROR; } return ret; } #endif /* * DH PEM APIs */ #if defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) \ || defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(OPENSSL_EXTRA) #if !defined(NO_BIO) || !defined(NO_FILESYSTEM) /* Create a DH key by reading the PEM encoded data from the BIO. * * @param [in] bio BIO object to read from. * @param [in, out] dh DH key to use. May be NULL. * @param [in] pem PEM data to decode. * @param [in] pemSz Size of PEM data in bytes. * @param [in] memAlloced Indicates that pem was allocated and is to be * freed after use. * @return DH key on success. * @return NULL on failure. */ static WOLFSSL_DH *wolfssl_dhparams_read_pem(WOLFSSL_DH **dh, unsigned char* pem, int pemSz, int memAlloced) { WOLFSSL_DH* localDh = NULL; DerBuffer *der = NULL; int err = 0; /* Convert PEM to DER assuming DH Parameter format. */ if ((!err) && (PemToDer(pem, pemSz, DH_PARAM_TYPE, &der, NULL, NULL, NULL) < 0)) { /* Convert PEM to DER assuming X9.42 DH Parameter format. */ if (PemToDer(pem, pemSz, X942_PARAM_TYPE, &der, NULL, NULL, NULL) != 0) { err = 1; } /* If Success on X9.42 DH format, clear error from failed DH format */ else { unsigned long error; CLEAR_ASN_NO_PEM_HEADER_ERROR(error); } } if (memAlloced) { /* PEM data no longer needed. */ XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); } if (!err) { /* Use the DH key passed in or allocate a new one. */ if (dh != NULL) { localDh = *dh; } if (localDh == NULL) { localDh = wolfSSL_DH_new(); if (localDh == NULL) { err = 1; } } } /* Load the DER encoded DH parameters from buffer into a DH key. */ if ((!err) && (wolfSSL_DH_LoadDer(localDh, der->buffer, (int)der->length) != 1)) { /* Free an allocated DH key. */ if ((dh == NULL) || (localDh != *dh)) { wolfSSL_DH_free(localDh); } localDh = NULL; err = 1; } /* Return the DH key on success. */ if ((!err) && (dh != NULL)) { *dh = localDh; } /* Dispose of DER data. */ if (der != NULL) { FreeDer(&der); } return localDh; } #endif /* !NO_BIO || !NO_FILESYSTEM */ #ifndef NO_BIO /* Create a DH key by reading the PEM encoded data from the BIO. * * DH parameters are public data and are not expected to be encrypted. * * @param [in] bio BIO object to read from. * @param [in, out] dh DH key to When pointer to * NULL, a new DH key is created. * @param [in] cb Password callback when PEM encrypted. Not used. * @param [in] pass NUL terminated string for passphrase when PEM * encrypted. Not used. * @return DH key on success. * @return NULL on failure. */ WOLFSSL_DH *wolfSSL_PEM_read_bio_DHparams(WOLFSSL_BIO *bio, WOLFSSL_DH **dh, wc_pem_password_cb *cb, void *pass) { WOLFSSL_DH* localDh = NULL; int err = 0; unsigned char* mem = NULL; int size = 0; int memAlloced = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DHparams"); (void)cb; (void)pass; /* Validate parameters. */ if (bio == NULL) { WOLFSSL_ERROR_MSG("Bad Function Argument bio is NULL"); err = 1; } /* Get buffer of data from BIO or read data from the BIO into a new buffer. */ if ((!err) && (wolfssl_read_bio(bio, (char**)&mem, &size, &memAlloced) != 0)) { err = 1; } if (!err) { /* Create a DH key from the PEM - try two different headers. */ localDh = wolfssl_dhparams_read_pem(dh, mem, size, memAlloced); } return localDh; } #endif /* !NO_BIO */ #ifndef NO_FILESYSTEM /* Read DH parameters from a file pointer into DH key. * * DH parameters are public data and are not expected to be encrypted. * * @param [in] fp File pointer to read DH parameter file from. * @param [in, out] dh DH key with parameters if not NULL. When pointer to * NULL, a new DH key is created. * @param [in] cb Password callback when PEM encrypted. Not used. * @param [in] pass NUL terminated string for passphrase when PEM * encrypted. Not used. * * @return NULL on failure. * @return DH key with parameters set on success. */ WOLFSSL_DH* wolfSSL_PEM_read_DHparams(XFILE fp, WOLFSSL_DH** dh, wc_pem_password_cb* cb, void* pass) { WOLFSSL_DH* localDh = NULL; int err = 0; unsigned char* mem = NULL; int size = 0; (void)cb; (void)pass; /* Read data from file pointer. */ if (wolfssl_read_file(fp, (char**)&mem, &size) != 0) { err = 1; } if (!err) { localDh = wolfssl_dhparams_read_pem(dh, mem, size, 1); } return localDh; } #endif /* !NO_FILESYSTEM */ #if defined(WOLFSSL_DH_EXTRA) && !defined(NO_FILESYSTEM) /* Encoded parameter data in DH key as DER. * * @param [in, out] dh DH key object to encode. * @param [out] out Buffer containing DER encoding. * @param [in] heap Heap hint. * @return <0 on error. * @return Length of DER encoded DH parameters in bytes. */ static int wolfssl_dhparams_to_der(WOLFSSL_DH* dh, unsigned char** out, void* heap) { int ret = WC_NO_ERR_TRACE(WOLFSSL_FATAL_ERROR); int err = 0; byte* der = NULL; word32 derSz; DhKey* key = NULL; (void)heap; /* Set internal parameters based on external parameters. */ if ((dh->inSet == 0) && (SetDhInternal(dh) != 1)) { WOLFSSL_ERROR_MSG("Unable to set internal DH structure"); err = 1; } if (!err) { /* Use wolfSSL API to get length of DER encode DH parameters. */ key = (DhKey*)dh->internal; ret = wc_DhParamsToDer(key, NULL, &derSz); if (ret != WC_NO_ERR_TRACE(LENGTH_ONLY_E)) { WOLFSSL_ERROR_MSG("Failed to get size of DH params"); err = 1; } } if (!err) { /* Allocate memory for DER encoding. */ der = (byte*)XMALLOC(derSz, heap, DYNAMIC_TYPE_TMP_BUFFER); if (der == NULL) { WOLFSSL_LEAVE("wolfssl_dhparams_to_der", MEMORY_E); err = 1; } } if (!err) { /* Encode DH parameters into DER buffer. */ ret = wc_DhParamsToDer(key, der, &derSz); if (ret < 0) { WOLFSSL_ERROR_MSG("Failed to export DH params"); err = 1; } } if (!err) { *out = der; der = NULL; } XFREE(der, heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } /* Writes the DH parameters in PEM format from "dh" out to the file pointer * passed in. * * @param [in] fp File pointer to write to. * @param [in] dh DH key to write. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_write_DHparams(XFILE fp, WOLFSSL_DH* dh) { int ret = 1; int derSz; byte* derBuf = NULL; void* heap = NULL; WOLFSSL_ENTER("wolfSSL_PEM_write_DHparams"); /* Validate parameters. */ if ((fp == XBADFILE) || (dh == NULL)) { WOLFSSL_ERROR_MSG("Bad Function Arguments"); ret = 0; } if (ret == 1) { DhKey* key = (DhKey*)dh->internal; if (key) heap = key->heap; if ((derSz = wolfssl_dhparams_to_der(dh, &derBuf, heap)) < 0) { WOLFSSL_ERROR_MSG("DER encoding failed"); ret = 0; } if (derBuf == NULL) { WOLFSSL_ERROR_MSG("DER encoding failed to get buffer"); ret = 0; } } if ((ret == 1) && (der_write_to_file_as_pem(derBuf, derSz, fp, DH_PARAM_TYPE, NULL) != 1)) { ret = 0; } /* Dispose of DER buffer. */ XFREE(derBuf, heap, DYNAMIC_TYPE_TMP_BUFFER); WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", ret); return ret; } #endif /* WOLFSSL_DH_EXTRA && !NO_FILESYSTEM */ #endif /* HAVE_LIGHTY || HAVE_STUNNEL || WOLFSSL_MYSQL_COMPATIBLE || * OPENSSL_EXTRA */ /* * DH get/set APIs */ #ifdef OPENSSL_EXTRA #if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) \ || defined(WOLFSSL_OPENSSH) || defined(OPENSSL_EXTRA) /* Set the members of DhKey into WOLFSSL_DH * Specify elements to set via the 2nd parameter * * @param [in, out] dh DH key to synchronize. * @param [in] elm Elements to synchronize. * @return 1 on success. * @return -1 on failure. */ int SetDhExternal_ex(WOLFSSL_DH *dh, int elm) { int ret = 1; DhKey *key = NULL; WOLFSSL_ENTER("SetDhExternal_ex"); /* Validate parameters. */ if ((dh == NULL) || (dh->internal == NULL)) { WOLFSSL_ERROR_MSG("dh key NULL error"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 1) { /* Get the wolfSSL DH key. */ key = (DhKey*)dh->internal; } if ((ret == 1) && (elm & ELEMENT_P)) { /* Set the prime. */ if (wolfssl_bn_set_value(&dh->p, &key->p) != 1) { WOLFSSL_ERROR_MSG("dh param p error"); ret = WOLFSSL_FATAL_ERROR; } } if ((ret == 1) && (elm & ELEMENT_G)) { /* Set the generator. */ if (wolfssl_bn_set_value(&dh->g, &key->g) != 1) { WOLFSSL_ERROR_MSG("dh param g error"); ret = WOLFSSL_FATAL_ERROR; } } if ((ret == 1) && (elm & ELEMENT_Q)) { /* Set the order. */ if (wolfssl_bn_set_value(&dh->q, &key->q) != 1) { WOLFSSL_ERROR_MSG("dh param q error"); ret = WOLFSSL_FATAL_ERROR; } } #ifdef WOLFSSL_DH_EXTRA if ((ret == 1) && (elm & ELEMENT_PRV)) { /* Set the private key. */ if (wolfssl_bn_set_value(&dh->priv_key, &key->priv) != 1) { WOLFSSL_ERROR_MSG("No DH Private Key"); ret = WOLFSSL_FATAL_ERROR; } } if ((ret == 1) && (elm & ELEMENT_PUB)) { /* Set the public key. */ if (wolfssl_bn_set_value(&dh->pub_key, &key->pub) != 1) { WOLFSSL_ERROR_MSG("No DH Public Key"); ret = WOLFSSL_FATAL_ERROR; } } #endif /* WOLFSSL_DH_EXTRA */ if (ret == 1) { /* On success record that the external values have been set. */ dh->exSet = 1; } return ret; } /* Set the members of DhKey into WOLFSSL_DH * DhKey was populated from wc_DhKeyDecode * p, g, pub_key and priv_key are set. * * @param [in, out] dh DH key to synchronize. * @return 1 on success. * @return -1 on failure. */ int SetDhExternal(WOLFSSL_DH *dh) { /* Assuming Q not required when using this API. */ int elements = ELEMENT_P | ELEMENT_G | ELEMENT_PUB | ELEMENT_PRV; WOLFSSL_ENTER("SetDhExternal"); return SetDhExternal_ex(dh, elements); } #endif /* WOLFSSL_QT || OPENSSL_ALL || WOLFSSL_OPENSSH || OPENSSL_EXTRA */ /* Set the internal/wolfSSL DH key with data from the external parts. * * @param [in, out] dh DH key to synchronize. * @return 1 on success. * @return -1 on failure. */ int SetDhInternal(WOLFSSL_DH* dh) { int ret = 1; DhKey *key = NULL; WOLFSSL_ENTER("SetDhInternal"); /* Validate parameters. */ if ((dh == NULL) || (dh->p == NULL) || (dh->g == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 1) { /* Get the wolfSSL DH key. */ key = (DhKey*)dh->internal; /* Clear out key and initialize. */ wc_FreeDhKey(key); if (wc_InitDhKey(key) != 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 1) { /* Transfer prime. */ if (wolfssl_bn_get_value(dh->p, &key->p) != 1) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 1) { /* Transfer generator. */ if (wolfssl_bn_get_value(dh->g, &key->g) != 1) { ret = WOLFSSL_FATAL_ERROR; } } #ifdef HAVE_FFDHE_Q /* Transfer order if available. */ if ((ret == 1) && (dh->q != NULL)) { if (wolfssl_bn_get_value(dh->q, &key->q) != 1) { ret = WOLFSSL_FATAL_ERROR; } } #endif #ifdef WOLFSSL_DH_EXTRA /* Transfer private key if available. */ if ((ret == 1) && (dh->priv_key != NULL) && (!wolfSSL_BN_is_zero(dh->priv_key))) { if (wolfssl_bn_get_value(dh->priv_key, &key->priv) != 1) { ret = WOLFSSL_FATAL_ERROR; } } /* Transfer public key if available. */ if ((ret == 1) && (dh->pub_key != NULL) && (!wolfSSL_BN_is_zero(dh->pub_key))) { if (wolfssl_bn_get_value(dh->pub_key, &key->pub) != 1) { ret = WOLFSSL_FATAL_ERROR; } } #endif /* WOLFSSL_DH_EXTRA */ if (ret == 1) { /* On success record that the internal values have been set. */ dh->inSet = 1; } return ret; } /* Get the size, in bytes, of the DH key. * * Return code compliant with OpenSSL. * * @param [in] dh DH key. * @return -1 on error. * @return Size of DH key in bytes on success. */ int wolfSSL_DH_size(WOLFSSL_DH* dh) { WOLFSSL_ENTER("wolfSSL_DH_size"); if (dh == NULL) return WOLFSSL_FATAL_ERROR; /* Validate parameter. */ /* Size of key is size of prime in bytes. */ return wolfSSL_BN_num_bytes(dh->p); } /** * Return parameters p, q and/or g of the DH key. * * @param [in] dh DH key to retrieve parameters from. * @param [out] p Pointer to return prime in. May be NULL. * @param [out] q Pointer to return order in. May be NULL. * @param [out] g Pointer to return generator in. May be NULL. */ void wolfSSL_DH_get0_pqg(const WOLFSSL_DH *dh, const WOLFSSL_BIGNUM **p, const WOLFSSL_BIGNUM **q, const WOLFSSL_BIGNUM **g) { WOLFSSL_ENTER("wolfSSL_DH_get0_pqg"); if (dh != NULL) { /* Return prime if required. */ if (p != NULL) { *p = dh->p; } /* Return order if required. */ if (q != NULL) { *q = dh->q; } /* Return generator if required. */ if (g != NULL) { *g = dh->g; } } } #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS) && !defined(WOLFSSL_DH_EXTRA)) \ || (defined(HAVE_FIPS_VERSION) && FIPS_VERSION_GT(2,0)) #if defined(OPENSSL_ALL) || \ defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L /* Sets the parameters p, g and optionally q into the DH key. * * Ownership of p, q and g get taken over by "dh" on success and should be * free'd with a call to wolfSSL_DH_free -- not individually. * * @param [in, out] dh DH key to set. * @param [in] p Prime value to set. May be NULL when value already * present. * @param [in] q Order value to set. May be NULL. * @param [in] g Generator value to set. May be NULL when value already * present. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_DH_set0_pqg(WOLFSSL_DH *dh, WOLFSSL_BIGNUM *p, WOLFSSL_BIGNUM *q, WOLFSSL_BIGNUM *g) { int ret = 1; WOLFSSL_ENTER("wolfSSL_DH_set0_pqg"); /* Validate parameters - q is optional. */ if (dh == NULL) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } /* p can be NULL if we already have one set. */ if ((ret == 1) && (p == NULL) && (dh->p == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } /* g can be NULL if we already have one set. */ if ((ret == 1) && (g == NULL) && (dh->g == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } if (ret == 1) { /* Invalidate internal key. */ dh->inSet = 0; /* Free external representation of parameters and set with those passed * in. */ if (p != NULL) { wolfSSL_BN_free(dh->p); dh->p = p; } if (q != NULL) { wolfSSL_BN_free(dh->q); dh->q = q; } if (g != NULL) { wolfSSL_BN_free(dh->g); dh->g = g; } /* External DH key parameters were set. */ dh->exSet = 1; /* Set internal/wolfSSL DH key as well. */ if (SetDhInternal(dh) != 1) { WOLFSSL_ERROR_MSG("Unable to set internal DH key"); /* Don't keep parameters on failure. */ dh->p = NULL; dh->q = NULL; dh->g = NULL; /* Internal and external DH key not set. */ dh->inSet = 0; dh->exSet = 0; ret = 0; } } return ret; } /* Set the length of the DH private key in bits. * * Length field is checked at generation. * * @param [in, out] dh DH key to set. * @param [in] len Length of DH private key in bytes. * @return 0 on failure. * @return 1 on success. */ int wolfSSL_DH_set_length(WOLFSSL_DH *dh, long len) { int ret = 1; WOLFSSL_ENTER("wolfSSL_DH_set_length"); /* Validate parameter. */ if (dh == NULL) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } else { /* Store length. */ dh->length = (int)len; } return ret; } #endif /* OPENSSL_ALL || (v1.1.0 or later) */ #endif /* Get the public and private keys requested. * * @param [in] dh DH key to get keys from. * @param [out] pub_key Pointer to return public key in. May be NULL. * @param [out] priv_key Pointer to return private key in. May be NULL. */ void wolfSSL_DH_get0_key(const WOLFSSL_DH *dh, const WOLFSSL_BIGNUM **pub_key, const WOLFSSL_BIGNUM **priv_key) { WOLFSSL_ENTER("wolfSSL_DH_get0_key"); /* Get only when valid DH passed in. */ if (dh != NULL) { /* Return public key if required and available. */ if ((pub_key != NULL) && (dh->pub_key != NULL)) { *pub_key = dh->pub_key; } /* Return private key if required and available. */ if ((priv_key != NULL) && (dh->priv_key != NULL)) { *priv_key = dh->priv_key; } } } /* Set the public and/or private key. * * @param [in, out] dh DH key to have keys set into. * @param [in] pub_key Public key to set. May be NULL. * @param [in] priv_key Private key to set. May be NULL. * @return 0 on failure. * @return 1 on success. */ int wolfSSL_DH_set0_key(WOLFSSL_DH *dh, WOLFSSL_BIGNUM *pub_key, WOLFSSL_BIGNUM *priv_key) { int ret = 1; #ifdef WOLFSSL_DH_EXTRA DhKey *key = NULL; #endif WOLFSSL_ENTER("wolfSSL_DH_set0_key"); /* Validate parameters. */ if (dh == NULL) { ret = 0; } #ifdef WOLFSSL_DH_EXTRA else { key = (DhKey*)dh->internal; } #endif /* Replace public key when one passed in. */ if ((ret == 1) && (pub_key != NULL)) { wolfSSL_BN_free(dh->pub_key); dh->pub_key = pub_key; #ifdef WOLFSSL_DH_EXTRA if (wolfssl_bn_get_value(dh->pub_key, &key->pub) != 1) { ret = 0; } #endif } /* Replace private key when one passed in. */ if ((ret == 1) && (priv_key != NULL)) { wolfSSL_BN_clear_free(dh->priv_key); dh->priv_key = priv_key; #ifdef WOLFSSL_DH_EXTRA if (wolfssl_bn_get_value(dh->priv_key, &key->priv) != 1) { ret = 0; } #endif } return ret; } #endif /* OPENSSL_EXTRA */ /* * DH check APIs */ #ifdef OPENSSL_EXTRA #ifndef NO_CERTS #ifdef OPENSSL_ALL /* Check whether BN number is a prime. * * @param [in] n Number to check. * @param [out] isPrime MP_YES when prime and MP_NO when not. * @return 1 on success. * @return 0 on error. */ static int wolfssl_dh_check_prime(WOLFSSL_BIGNUM* n, int* isPrime) { int ret = 1; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif WC_RNG* rng; int localRng; /* Make an RNG with tmpRng or get global. */ rng = wolfssl_make_rng(tmpRng, &localRng); if (rng == NULL) { ret = 0; } if (ret == 1) { mp_int* prime = (mp_int*)n->internal; if (mp_prime_is_prime_ex(prime, 8, isPrime, rng) != 0) { ret = 0; } /* Free local random number generator if created. */ if (localRng) { wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif } } return ret; } /* Checks the Diffie-Hellman parameters. * * Checks that the generator and prime are available. * Checks that the prime is prime. * OpenSSL expects codes to be non-NULL. * * @param [in] dh DH key to check. * @param [out] codes Codes of checks that failed. * @return 1 on success. * @return 0 when DH is NULL, there were errors or failed to create a random * number generator. */ int wolfSSL_DH_check(const WOLFSSL_DH *dh, int *codes) { int ret = 1; int errors = 0; WOLFSSL_ENTER("wolfSSL_DH_check"); /* Validate parameters. */ if (dh == NULL) { ret = 0; } /* Check generator available. */ if ((ret == 1) && ((dh->g == NULL) || (dh->g->internal == NULL))) { errors |= DH_NOT_SUITABLE_GENERATOR; } if (ret == 1) { /* Check prime available. */ if ((dh->p == NULL) || (dh->p->internal == NULL)) { errors |= DH_CHECK_P_NOT_PRIME; } else { /* Test if dh->p is prime. */ int isPrime = MP_NO; ret = wolfssl_dh_check_prime(dh->p, &isPrime); /* Set error code if parameter p is not prime. */ if ((ret == 1) && (isPrime != MP_YES)) { errors |= DH_CHECK_P_NOT_PRIME; } } } /* Return errors when user wants exact issues. */ if (codes != NULL) { *codes = errors; } else if (errors) { ret = 0; } return ret; } #endif /* OPENSSL_ALL */ #endif /* !NO_CERTS */ #endif /* OPENSSL_EXTRA */ /* * DH generate APIs */ #if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && \ (defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \ defined(HAVE_LIGHTY) || defined(WOLFSSL_HAPROXY) || \ defined(WOLFSSL_OPENSSH) || defined(HAVE_SBLIM_SFCB))) #if defined(WOLFSSL_KEY_GEN) && !defined(HAVE_SELFTEST) /* Generate DH parameters. * * @param [in] prime_len Length of prime in bits. * @param [in] generator Generator value to use. * @param [in] callback Called with progress information. Unused. * @param [in] cb_arg User callback argument. Unused. * @return NULL on failure. * @return DH key on success. */ WOLFSSL_DH *wolfSSL_DH_generate_parameters(int prime_len, int generator, void (*callback) (int, int, void *), void *cb_arg) { WOLFSSL_DH* dh = NULL; WOLFSSL_ENTER("wolfSSL_DH_generate_parameters"); /* Not supported by wolfSSl APIs. */ (void)callback; (void)cb_arg; /* Create an empty DH key. */ if ((dh = wolfSSL_DH_new()) == NULL) { WOLFSSL_ERROR_MSG("wolfSSL_DH_new error"); } /* Generate parameters into DH key. */ else if (wolfSSL_DH_generate_parameters_ex(dh, prime_len, generator, NULL) != 1) { WOLFSSL_ERROR_MSG("wolfSSL_DH_generate_parameters_ex error"); wolfSSL_DH_free(dh); dh = NULL; } return dh; } /* Generate DH parameters. * * @param [in] dh DH key to generate parameters into. * @param [in] prime_len Length of prime in bits. * @param [in] generator Generator value to use. * @param [in] callback Called with progress information. Unused. * @param [in] cb_arg User callback argument. Unused. * @return 0 on failure. * @return 1 on success. */ int wolfSSL_DH_generate_parameters_ex(WOLFSSL_DH* dh, int prime_len, int generator, void (*callback) (int, int, void *)) { int ret = 1; DhKey* key = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif WC_RNG* rng = NULL; int localRng = 0; WOLFSSL_ENTER("wolfSSL_DH_generate_parameters_ex"); /* Not supported by wolfSSL APIs. */ (void)callback; (void)generator; /* Validate parameters. */ if (dh == NULL) { WOLFSSL_ERROR_MSG("Bad parameter"); ret = 0; } if (ret == 1) { /* Make an RNG with tmpRng or get global. */ rng = wolfssl_make_rng(tmpRng, &localRng); if (rng == NULL) { WOLFSSL_ERROR_MSG("No RNG to use"); ret = 0; } } if (ret == 1) { /* Get internal/wolfSSL DH key. */ key = (DhKey*)dh->internal; /* Clear out data from internal DH key. */ wc_FreeDhKey(key); /* Re-initialize internal DH key. */ if (wc_InitDhKey(key) != 0) { ret = 0; } } if (ret == 1) { /* Generate parameters into internal DH key. */ if (wc_DhGenerateParams(rng, prime_len, key) != 0) { WOLFSSL_ERROR_MSG("wc_DhGenerateParams error"); ret = 0; } } /* Free local random number generator if created. */ if (localRng) { wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif } if (ret == 1) { /* Internal parameters set by generation. */ dh->inSet = 1; WOLFSSL_MSG("wolfSSL does not support using a custom generator."); /* Synchronize the external to the internal parameters. */ if (SetDhExternal(dh) != 1) { WOLFSSL_ERROR_MSG("SetDhExternal error"); ret = 0; } } return ret; } #endif /* WOLFSSL_KEY_GEN && !HAVE_SELFTEST */ #endif /* OPENSSL_ALL || (OPENSSL_EXTRA && (HAVE_STUNNEL || WOLFSSL_NGINX || * HAVE_LIGHTY || WOLFSSL_HAPROXY || WOLFSSL_OPENSSH || * HAVE_SBLIM_SFCB)) */ #ifdef OPENSSL_EXTRA #if !defined(HAVE_FIPS) || (defined(HAVE_FIPS) && !defined(WOLFSSL_DH_EXTRA)) \ || (defined(HAVE_FIPS_VERSION) && FIPS_VERSION_GT(2,0)) /* Generate a public/private key pair base on parameters. * * @param [in, out] dh DH key to generate keys into. * @return 1 on success. * @return 0 on error. */ int wolfSSL_DH_generate_key(WOLFSSL_DH* dh) { int ret = 1; word32 pubSz = 0; word32 privSz = 0; int localRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif unsigned char* pub = NULL; unsigned char* priv = NULL; WOLFSSL_ENTER("wolfSSL_DH_generate_key"); /* Validate parameters. */ if ((dh == NULL) || (dh->p == NULL) || (dh->g == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = 0; } /* Synchronize the external and internal parameters. */ if ((ret == 1) && (dh->inSet == 0) && (SetDhInternal(dh) != 1)) { WOLFSSL_ERROR_MSG("Bad DH set internal"); ret = 0; } if (ret == 1) { /* Make a new RNG or use global. */ rng = wolfssl_make_rng(tmpRng, &localRng); /* Check we have a random number generator. */ if (rng == NULL) { ret = 0; } } if (ret == 1) { /* Get the size of the prime in bytes. */ pubSz = (word32)wolfSSL_BN_num_bytes(dh->p); if (pubSz == 0) { WOLFSSL_ERROR_MSG("Prime parameter invalid"); ret = 0; } } if (ret == 1) { /* Private key size can be as much as the size of the prime. */ if (dh->length) { privSz = (word32)(dh->length / 8); /* to bytes */ } else { privSz = pubSz; } /* Allocate public and private key arrays. */ pub = (unsigned char*)XMALLOC(pubSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); priv = (unsigned char*)XMALLOC(privSz, NULL, DYNAMIC_TYPE_PRIVATE_KEY); if (pub == NULL || priv == NULL) { WOLFSSL_ERROR_MSG("Unable to malloc memory"); ret = 0; } } if (ret == 1) { /* Dispose of old public and private keys. */ wolfSSL_BN_free(dh->pub_key); wolfSSL_BN_free(dh->priv_key); /* Allocate new public and private keys. */ dh->pub_key = wolfSSL_BN_new(); dh->priv_key = wolfSSL_BN_new(); if (dh->pub_key == NULL) { WOLFSSL_ERROR_MSG("Bad DH new pub"); ret = 0; } if (dh->priv_key == NULL) { WOLFSSL_ERROR_MSG("Bad DH new priv"); ret = 0; } } PRIVATE_KEY_UNLOCK(); /* Generate public and private keys into arrays. */ if ((ret == 1) && (wc_DhGenerateKeyPair((DhKey*)dh->internal, rng, priv, &privSz, pub, &pubSz) < 0)) { WOLFSSL_ERROR_MSG("Bad wc_DhGenerateKeyPair"); ret = 0; } /* Set public key from array. */ if ((ret == 1) && (wolfSSL_BN_bin2bn(pub, (int)pubSz, dh->pub_key) == NULL)) { WOLFSSL_ERROR_MSG("Bad DH bn2bin error pub"); ret = 0; } /* Set private key from array. */ if ((ret == 1) && (wolfSSL_BN_bin2bn(priv, (int)privSz, dh->priv_key) == NULL)) { WOLFSSL_ERROR_MSG("Bad DH bn2bin error priv"); ret = 0; } PRIVATE_KEY_LOCK(); if (localRng) { /* Free an initialized local random number generator. */ wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif } /* Dispose of allocated data. */ XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY); return ret; } static int _DH_compute_key(unsigned char* key, const WOLFSSL_BIGNUM* otherPub, WOLFSSL_DH* dh, int ct) { int ret = 0; word32 keySz = 0; int pubSz = MAX_DHKEY_SZ; int privSz = MAX_DHKEY_SZ; int sz = 0; #ifdef WOLFSSL_SMALL_STACK unsigned char* pub = NULL; unsigned char* priv = NULL; #else unsigned char pub [MAX_DHKEY_SZ]; unsigned char priv[MAX_DHKEY_SZ]; #endif WOLFSSL_ENTER("wolfSSL_DH_compute_key"); /* Validate parameters. */ if ((dh == NULL) || (dh->priv_key == NULL) || (otherPub == NULL)) { WOLFSSL_ERROR_MSG("Bad function arguments"); ret = WOLFSSL_FATAL_ERROR; } /* Get the maximum size of computed DH key. */ if ((ret == 0) && ((keySz = (word32)DH_size(dh)) == 0)) { WOLFSSL_ERROR_MSG("Bad DH_size"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { /* Validate the size of the private key. */ sz = wolfSSL_BN_num_bytes(dh->priv_key); if (sz > (int)privSz) { WOLFSSL_ERROR_MSG("Bad priv internal size"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { #ifdef WOLFSSL_SMALL_STACK /* Keep real private key size to minimize amount allocated. */ privSz = sz; #endif /* Validate the size of the public key. */ sz = wolfSSL_BN_num_bytes(otherPub); if (sz > pubSz) { WOLFSSL_ERROR_MSG("Bad otherPub size"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { #ifdef WOLFSSL_SMALL_STACK /* Allocate memory for the public key array. */ pub = (unsigned char*)XMALLOC((size_t)sz, NULL, DYNAMIC_TYPE_PUBLIC_KEY); if (pub == NULL) ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { /* Allocate memory for the private key array. */ priv = (unsigned char*)XMALLOC((size_t)privSz, NULL, DYNAMIC_TYPE_PRIVATE_KEY); if (priv == NULL) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { #endif /* Get the private key into the array. */ privSz = wolfSSL_BN_bn2bin(dh->priv_key, priv); if (privSz <= 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Get the public key into the array. */ pubSz = wolfSSL_BN_bn2bin(otherPub, pub); if (pubSz <= 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Synchronize the external into the internal parameters. */ if ((ret == 0) && ((dh->inSet == 0) && (SetDhInternal(dh) != 1))) { WOLFSSL_ERROR_MSG("Bad DH set internal"); ret = WOLFSSL_FATAL_ERROR; } PRIVATE_KEY_UNLOCK(); /* Calculate shared secret from private and public keys. */ if (ret == 0) { word32 padded_keySz = keySz; #if (!defined(HAVE_FIPS) || FIPS_VERSION_GE(7,0)) && !defined(HAVE_SELFTEST) if (ct) { if (wc_DhAgree_ct((DhKey*)dh->internal, key, &keySz, priv, (word32)privSz, pub, (word32)pubSz) < 0) { WOLFSSL_ERROR_MSG("wc_DhAgree_ct failed"); ret = WOLFSSL_FATAL_ERROR; } } else #endif /* (!HAVE_FIPS || FIPS_VERSION_GE(7,0)) && !HAVE_SELFTEST */ { if (wc_DhAgree((DhKey*)dh->internal, key, &keySz, priv, (word32)privSz, pub, (word32)pubSz) < 0) { WOLFSSL_ERROR_MSG("wc_DhAgree failed"); ret = WOLFSSL_FATAL_ERROR; } } if ((ret == 0) && ct) { /* Arrange for correct fixed-length, right-justified key, even if * the crypto back end doesn't support it. With some crypto back * ends this forgoes formal constant-timeness on the key agreement, * but assured that wolfSSL_DH_compute_key_padded() functions * correctly. */ if (keySz < padded_keySz) { XMEMMOVE(key, key + (padded_keySz - keySz), padded_keySz - keySz); XMEMSET(key, 0, padded_keySz - keySz); } } } if (ret == 0) { /* Return actual length. */ ret = (int)keySz; } PRIVATE_KEY_LOCK(); #ifdef WOLFSSL_SMALL_STACK if (priv != NULL) #endif { /* Zeroize sensitive data. */ ForceZero(priv, (word32)privSz); } #ifdef WOLFSSL_SMALL_STACK XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY); XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY); #endif WOLFSSL_LEAVE("wolfSSL_DH_compute_key", ret); return ret; } /* Compute the shared key from the private key and peer's public key. * * Return code compliant with OpenSSL. * OpenSSL returns 0 when number of bits in p are smaller than minimum * supported. * * @param [out] key Buffer to place shared key. * @param [in] otherPub Peer's public key. * @param [in] dh DH key containing private key. * @return -1 on error. * @return Size of shared secret in bytes on success. */ int wolfSSL_DH_compute_key(unsigned char* key, const WOLFSSL_BIGNUM* otherPub, WOLFSSL_DH* dh) { return _DH_compute_key(key, otherPub, dh, 0); } /* Compute the shared key from the private key and peer's public key as in * wolfSSL_DH_compute_key, but using constant time processing, with an output * key length fixed at the nominal DH key size. Leading zeros are retained. * * Return code compliant with OpenSSL. * OpenSSL returns 0 when number of bits in p are smaller than minimum * supported. * * @param [out] key Buffer to place shared key. * @param [in] otherPub Peer's public key. * @param [in] dh DH key containing private key. * @return -1 on error. * @return Size of shared secret in bytes on success. */ int wolfSSL_DH_compute_key_padded(unsigned char* key, const WOLFSSL_BIGNUM* otherPub, WOLFSSL_DH* dh) { return _DH_compute_key(key, otherPub, dh, 1); } #endif /* !HAVE_FIPS || (HAVE_FIPS && !WOLFSSL_DH_EXTRA) || * HAVE_FIPS_VERSION > 2 */ #endif /* OPENSSL_EXTRA */ #endif /* NO_DH */ /******************************************************************************* * END OF DH API ******************************************************************************/ /******************************************************************************* * START OF EC API ******************************************************************************/ #ifdef HAVE_ECC #if defined(OPENSSL_EXTRA) /* Start EC_curve */ /* Get the NIST name for the numeric ID. * * @param [in] nid Numeric ID of an EC curve. * @return String representing NIST name of EC curve on success. * @return NULL on error. */ const char* wolfSSL_EC_curve_nid2nist(int nid) { const char* name = NULL; const WOLF_EC_NIST_NAME* nist_name; /* Attempt to find the curve info matching the NID passed in. */ for (nist_name = kNistCurves; nist_name->name != NULL; nist_name++) { if (nist_name->nid == nid) { /* NID found - return name. */ name = nist_name->name; break; } } return name; } /* Get the numeric ID for the NIST name. * * @param [in] name NIST name of EC curve. * @return NID matching NIST name on success. * @return 0 on error. */ int wolfSSL_EC_curve_nist2nid(const char* name) { int nid = 0; const WOLF_EC_NIST_NAME* nist_name; /* Attempt to find the curve info matching the NIST name passed in. */ for (nist_name = kNistCurves; nist_name->name != NULL; nist_name++) { if (XSTRCMP(nist_name->name, name) == 0) { /* Name found - return NID. */ nid = nist_name->nid; break; } } return nid; } #endif /* OPENSSL_EXTRA */ /* End EC_curve */ /* Start EC_METHOD */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Get the EC method of the EC group object. * * wolfSSL doesn't use method tables. Implementation used is dependent upon * the NID. * * @param [in] group EC group object. * @return EC method. */ const WOLFSSL_EC_METHOD* wolfSSL_EC_GROUP_method_of( const WOLFSSL_EC_GROUP *group) { /* No method table used so just return the same object. */ return group; } /* Get field type for method. * * Only prime fields are supported. * * @param [in] meth EC method. * @return X9.63 prime field NID on success. * @return 0 on error. */ int wolfSSL_EC_METHOD_get_field_type(const WOLFSSL_EC_METHOD *meth) { int nid = 0; if (meth != NULL) { /* Only field type supported by code base. */ nid = NID_X9_62_prime_field; } return nid; } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ /* End EC_METHOD */ /* Start EC_GROUP */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Converts ECC curve enum values in ecc_curve_id to the associated OpenSSL NID * value. * * @param [in] n ECC curve id. * @return ECC curve NID (OpenSSL compatible value). */ int EccEnumToNID(int n) { WOLFSSL_ENTER("EccEnumToNID"); switch(n) { case ECC_SECP192R1: return NID_X9_62_prime192v1; case ECC_PRIME192V2: return NID_X9_62_prime192v2; case ECC_PRIME192V3: return NID_X9_62_prime192v3; case ECC_PRIME239V1: return NID_X9_62_prime239v1; case ECC_PRIME239V2: return NID_X9_62_prime239v2; case ECC_PRIME239V3: return NID_X9_62_prime239v3; case ECC_SECP256R1: return NID_X9_62_prime256v1; case ECC_SECP112R1: return NID_secp112r1; case ECC_SECP112R2: return NID_secp112r2; case ECC_SECP128R1: return NID_secp128r1; case ECC_SECP128R2: return NID_secp128r2; case ECC_SECP160R1: return NID_secp160r1; case ECC_SECP160R2: return NID_secp160r2; case ECC_SECP224R1: return NID_secp224r1; case ECC_SECP384R1: return NID_secp384r1; case ECC_SECP521R1: return NID_secp521r1; case ECC_SECP160K1: return NID_secp160k1; case ECC_SECP192K1: return NID_secp192k1; case ECC_SECP224K1: return NID_secp224k1; case ECC_SECP256K1: return NID_secp256k1; case ECC_BRAINPOOLP160R1: return NID_brainpoolP160r1; case ECC_BRAINPOOLP192R1: return NID_brainpoolP192r1; case ECC_BRAINPOOLP224R1: return NID_brainpoolP224r1; case ECC_BRAINPOOLP256R1: return NID_brainpoolP256r1; case ECC_BRAINPOOLP320R1: return NID_brainpoolP320r1; case ECC_BRAINPOOLP384R1: return NID_brainpoolP384r1; case ECC_BRAINPOOLP512R1: return NID_brainpoolP512r1; #ifdef WOLFSSL_SM2 case ECC_SM2P256V1: return NID_sm2; #endif default: WOLFSSL_MSG("NID not found"); return WOLFSSL_FATAL_ERROR; } } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* Converts OpenSSL NID of EC curve to the enum value in ecc_curve_id * * Used by ecc_sets[]. * * @param [in] n OpenSSL NID of EC curve. * @return wolfCrypt EC curve id. * @return -1 on error. */ int NIDToEccEnum(int nid) { int id; WOLFSSL_ENTER("NIDToEccEnum"); switch (nid) { case NID_X9_62_prime192v1: id = ECC_SECP192R1; break; case NID_X9_62_prime192v2: id = ECC_PRIME192V2; break; case NID_X9_62_prime192v3: id = ECC_PRIME192V3; break; case NID_X9_62_prime239v1: id = ECC_PRIME239V1; break; case NID_X9_62_prime239v2: id = ECC_PRIME239V2; break; case NID_X9_62_prime239v3: id = ECC_PRIME239V3; break; case NID_X9_62_prime256v1: id = ECC_SECP256R1; break; case NID_secp112r1: id = ECC_SECP112R1; break; case NID_secp112r2: id = ECC_SECP112R2; break; case NID_secp128r1: id = ECC_SECP128R1; break; case NID_secp128r2: id = ECC_SECP128R2; break; case NID_secp160r1: id = ECC_SECP160R1; break; case NID_secp160r2: id = ECC_SECP160R2; break; case NID_secp224r1: id = ECC_SECP224R1; break; case NID_secp384r1: id = ECC_SECP384R1; break; case NID_secp521r1: id = ECC_SECP521R1; break; case NID_secp160k1: id = ECC_SECP160K1; break; case NID_secp192k1: id = ECC_SECP192K1; break; case NID_secp224k1: id = ECC_SECP224K1; break; case NID_secp256k1: id = ECC_SECP256K1; break; case NID_brainpoolP160r1: id = ECC_BRAINPOOLP160R1; break; case NID_brainpoolP192r1: id = ECC_BRAINPOOLP192R1; break; case NID_brainpoolP224r1: id = ECC_BRAINPOOLP224R1; break; case NID_brainpoolP256r1: id = ECC_BRAINPOOLP256R1; break; case NID_brainpoolP320r1: id = ECC_BRAINPOOLP320R1; break; case NID_brainpoolP384r1: id = ECC_BRAINPOOLP384R1; break; case NID_brainpoolP512r1: id = ECC_BRAINPOOLP512R1; break; default: WOLFSSL_MSG("NID not found"); /* -1 on error. */ id = WOLFSSL_FATAL_ERROR; } return id; } /* Set the fields of the EC group based on numeric ID. * * @param [in, out] group EC group. * @param [in] nid Numeric ID of an EC curve. */ static void ec_group_set_nid(WOLFSSL_EC_GROUP* group, int nid) { int eccEnum; int realNid; /* Convert ecc_curve_id enum to NID. */ if ((realNid = EccEnumToNID(nid)) != -1) { /* ecc_curve_id enum passed in - have real NID value set. */ eccEnum = nid; } else { /* NID passed in is OpenSSL type. */ realNid = nid; /* Convert NID to ecc_curve_id enum. */ eccEnum = NIDToEccEnum(nid); } /* Set the numeric ID of the curve */ group->curve_nid = realNid; /* Initialize index to -1 (i.e. wolfCrypt doesn't support curve). */ group->curve_idx = -1; /* Find index and OID sum for curve if wolfCrypt supports it. */ if (eccEnum != -1) { int i; /* Find id and set the internal curve idx and OID sum. */ for (i = 0; ecc_sets[i].size != 0; i++) { if (ecc_sets[i].id == eccEnum) { /* Found id in wolfCrypt supported EC curves. */ group->curve_idx = i; group->curve_oid = (int)ecc_sets[i].oidSum; break; } } } } /* Create a new EC group with the numeric ID for an EC curve. * * @param [in] nid Numeric ID of an EC curve. * @return New, allocated EC group on success. * @return NULL on error. */ WOLFSSL_EC_GROUP* wolfSSL_EC_GROUP_new_by_curve_name(int nid) { int err = 0; WOLFSSL_EC_GROUP* group; WOLFSSL_ENTER("wolfSSL_EC_GROUP_new_by_curve_name"); /* Allocate EC group. */ group = (WOLFSSL_EC_GROUP*)XMALLOC(sizeof(WOLFSSL_EC_GROUP), NULL, DYNAMIC_TYPE_ECC); if (group == NULL) { WOLFSSL_MSG("wolfSSL_EC_GROUP_new_by_curve_name malloc failure"); err = 1; } if (!err) { /* Reset all fields. */ XMEMSET(group, 0, sizeof(WOLFSSL_EC_GROUP)); /* Set the fields of group based on the numeric ID. */ ec_group_set_nid(group, nid); } return group; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Dispose of the EC group. * * Cannot use group after this call. * * @param [in] group EC group to free. */ void wolfSSL_EC_GROUP_free(WOLFSSL_EC_GROUP *group) { WOLFSSL_ENTER("wolfSSL_EC_GROUP_free"); /* Dispose of EC group. */ XFREE(group, NULL, DYNAMIC_TYPE_ECC); } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA #ifndef NO_BIO /* Creates an EC group from the DER encoding. * * Only named curves supported. * * @param [out] group Reference to EC group object. * @param [in] in Buffer holding DER encoding of curve. * @param [in] inSz Length of data in buffer. * @return EC group on success. * @return NULL on error. */ static WOLFSSL_EC_GROUP* wolfssl_ec_group_d2i(WOLFSSL_EC_GROUP** group, const unsigned char** in_pp, long inSz) { int err = 0; WOLFSSL_EC_GROUP* ret = NULL; word32 idx = 0; word32 oid = 0; int id = 0; const unsigned char* in; if (in_pp == NULL || *in_pp == NULL) return NULL; in = *in_pp; /* Use the group passed in. */ if ((group != NULL) && (*group != NULL)) { ret = *group; } /* Only support named curves. */ if (in[0] != ASN_OBJECT_ID) { WOLFSSL_ERROR_MSG("Invalid or unsupported encoding"); err = 1; } /* Decode the OBJECT ID - expecting an EC curve OID. */ if ((!err) && (GetObjectId(in, &idx, &oid, oidCurveType, (word32)inSz) != 0)) { err = 1; } if (!err) { /* Get the internal ID for OID. */ id = wc_ecc_get_oid(oid, NULL, NULL); if (id < 0) { err = 1; } } if (!err) { /* Get the NID for the internal ID. */ int nid = EccEnumToNID(id); if (ret == NULL) { /* Create a new EC group with the numeric ID. */ ret = wolfSSL_EC_GROUP_new_by_curve_name(nid); if (ret == NULL) { err = 1; } } else { ec_group_set_nid(ret, nid); } } if ((!err) && (group != NULL)) { /* Return the EC group through reference. */ *group = ret; } if (err) { if ((ret != NULL) && (ret != *group)) { wolfSSL_EC_GROUP_free(ret); } ret = NULL; } else { *in_pp += idx; } return ret; } /* Creates a new EC group from the PEM encoding in the BIO. * * @param [in] bio BIO to read PEM encoding from. * @param [out] group Reference to EC group object. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM encrypted. * @return EC group on success. * @return NULL on error. */ WOLFSSL_EC_GROUP* wolfSSL_PEM_read_bio_ECPKParameters(WOLFSSL_BIO* bio, WOLFSSL_EC_GROUP** group, wc_pem_password_cb* cb, void* pass) { int err = 0; WOLFSSL_EC_GROUP* ret = NULL; DerBuffer* der = NULL; int keyFormat = 0; if (bio == NULL) { err = 1; } /* Read parameters from BIO and convert PEM to DER. */ if ((!err) && (pem_read_bio_key(bio, cb, pass, ECC_PARAM_TYPE, &keyFormat, &der) < 0)) { err = 1; } if (!err) { /* Create EC group from DER encoding. */ const byte** p = (const byte**)&der->buffer; ret = wolfssl_ec_group_d2i(group, p, der->length); if (ret == NULL) { WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_EC_GROUP"); } } /* Dispose of any allocated data. */ FreeDer(&der); return ret; } WOLFSSL_EC_GROUP *wolfSSL_d2i_ECPKParameters(WOLFSSL_EC_GROUP **out, const unsigned char **in, long len) { return wolfssl_ec_group_d2i(out, in, len); } #endif /* !NO_BIO */ #if defined(OPENSSL_ALL) && !defined(NO_CERTS) /* Copy an EC group. * * Only used by wolfSSL_EC_KEY_dup at this time. * * @param [in, out] dst Destination EC group. * @param [in] src Source EC group. * @return 0 on success. */ static int wolfssl_ec_group_copy(WOLFSSL_EC_GROUP* dst, const WOLFSSL_EC_GROUP* src) { /* Copy the fields. */ dst->curve_idx = src->curve_idx; dst->curve_nid = src->curve_nid; dst->curve_oid = src->curve_oid; return 0; } #endif /* OPENSSL_ALL && !NO_CERTS */ /* Copies ecc_key into new WOLFSSL_EC_GROUP object * * @param [in] src EC group to duplicate. * * @return EC group on success. * @return NULL on error. */ WOLFSSL_EC_GROUP* wolfSSL_EC_GROUP_dup(const WOLFSSL_EC_GROUP *src) { WOLFSSL_EC_GROUP* newGroup = NULL; if (src != NULL) { /* Create new group base on NID in original EC group. */ newGroup = wolfSSL_EC_GROUP_new_by_curve_name(src->curve_nid); } return newGroup; } /* Compare two EC groups. * * Return code compliant with OpenSSL. * * @param [in] a First EC group. * @param [in] b Second EC group. * @param [in] ctx Big number context to use when comparing fields. Unused. * * @return 0 if equal. * @return 1 if not equal. * @return -1 on error. */ int wolfSSL_EC_GROUP_cmp(const WOLFSSL_EC_GROUP *a, const WOLFSSL_EC_GROUP *b, WOLFSSL_BN_CTX *ctx) { int ret; /* No BN operations performed. */ (void)ctx; WOLFSSL_ENTER("wolfSSL_EC_GROUP_cmp"); /* Validate parameters. */ if ((a == NULL) || (b == NULL)) { WOLFSSL_MSG("wolfSSL_EC_GROUP_cmp Bad arguments"); /* Return error value. */ ret = WOLFSSL_FATAL_ERROR; } /* Compare NID and wolfSSL curve index. */ else { /* 0 when same, 1 when not. */ ret = ((a->curve_nid == b->curve_nid) && (a->curve_idx == b->curve_idx)) ? 0 : 1; } return ret; } #ifndef NO_WOLFSSL_STUB /* Set the ASN.1 flag that indicate encoding of curve. * * Stub function - flag not used elsewhere. * Always encoded as named curve. * * @param [in] group EC group to modify. * @param [in] flag ASN.1 flag to set. Valid values: * OPENSSL_EC_EXPLICIT_CURVE, OPENSSL_EC_NAMED_CURVE */ void wolfSSL_EC_GROUP_set_asn1_flag(WOLFSSL_EC_GROUP *group, int flag) { (void)group; (void)flag; WOLFSSL_ENTER("wolfSSL_EC_GROUP_set_asn1_flag"); WOLFSSL_STUB("EC_GROUP_set_asn1_flag"); } #endif /* Get the curve NID of the group. * * Return code compliant with OpenSSL. * * @param [in] group EC group. * @return Curve NID on success. * @return 0 on error. */ int wolfSSL_EC_GROUP_get_curve_name(const WOLFSSL_EC_GROUP *group) { int nid = 0; WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_curve_name"); if (group == NULL) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_curve_name Bad arguments"); } else { nid = group->curve_nid; } return nid; } /* Get the degree (curve size in bits) of the EC group. * * Return code compliant with OpenSSL. * * @return Degree of the curve on success. * @return 0 on error. */ int wolfSSL_EC_GROUP_get_degree(const WOLFSSL_EC_GROUP *group) { int degree = 0; WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_degree"); if (group == NULL) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_degree Bad arguments"); } else { switch (group->curve_nid) { case NID_secp112r1: case NID_secp112r2: degree = 112; break; case NID_secp128r1: case NID_secp128r2: degree = 128; break; case NID_secp160k1: case NID_secp160r1: case NID_secp160r2: case NID_brainpoolP160r1: degree = 160; break; case NID_secp192k1: case NID_brainpoolP192r1: case NID_X9_62_prime192v1: case NID_X9_62_prime192v2: case NID_X9_62_prime192v3: degree = 192; break; case NID_secp224k1: case NID_secp224r1: case NID_brainpoolP224r1: degree = 224; break; case NID_X9_62_prime239v1: case NID_X9_62_prime239v2: case NID_X9_62_prime239v3: degree = 239; break; case NID_secp256k1: case NID_brainpoolP256r1: case NID_X9_62_prime256v1: degree = 256; break; case NID_brainpoolP320r1: degree = 320; break; case NID_secp384r1: case NID_brainpoolP384r1: degree = 384; break; case NID_brainpoolP512r1: degree = 512; break; case NID_secp521r1: degree = 521; break; } } return degree; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) /* Get the length of the order in bits of the EC group. * * TODO: consider switch statement or calculating directly from hex string * array instead of using mp_int. * * @param [in] group EC group. * @return Length of order in bits on success. * @return 0 on error. */ int wolfSSL_EC_GROUP_order_bits(const WOLFSSL_EC_GROUP *group) { int ret = 0; #ifdef WOLFSSL_SMALL_STACK mp_int *order = NULL; #else mp_int order[1]; #endif /* Validate parameter. */ if ((group == NULL) || (group->curve_idx < 0)) { WOLFSSL_MSG("wolfSSL_EC_GROUP_order_bits NULL error"); ret = WOLFSSL_FATAL_ERROR; } #ifdef WOLFSSL_SMALL_STACK if (ret == 0) { /* Allocate memory for mp_int that will hold order value. */ order = (mp_int *)XMALLOC(sizeof(*order), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (order == NULL) { ret = WOLFSSL_FATAL_ERROR; } } #endif if (ret == 0) { /* Initialize mp_int. */ ret = mp_init(order); } if (ret == 0) { /* Read hex string of order from wolfCrypt array of curves. */ ret = mp_read_radix(order, ecc_sets[group->curve_idx].order, MP_RADIX_HEX); if (ret == 0) { /* Get bits of order. */ ret = mp_count_bits(order); } /* Clear and free mp_int. */ mp_clear(order); } #ifdef WOLFSSL_SMALL_STACK /* Deallocate order. */ XFREE(order, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif /* Convert error code to length of 0. */ if (ret < 0) { ret = 0; } return ret; } #endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */ #if defined(OPENSSL_EXTRA) /* Get the order of the group as a BN. * * Return code compliant with OpenSSL. * * @param [in] group EC group. * @param [in, out] order BN to hold order value. * @param [in] ctx Context to use for BN operations. Unused. * @return 1 on success. * @return 0 on error. */ int wolfSSL_EC_GROUP_get_order(const WOLFSSL_EC_GROUP *group, WOLFSSL_BIGNUM *order, WOLFSSL_BN_CTX *ctx) { int ret = 1; mp_int* mp = NULL; /* No BN operations performed - done with mp_int in BN. */ (void)ctx; /* Validate parameters. */ if ((group == NULL) || (order == NULL) || (order->internal == NULL)) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order NULL error"); ret = 0; } if (ret == 1) { mp = (mp_int*)order->internal; } /* Initialize */ if ((ret == 1) && (mp_init(mp) != MP_OKAY)) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_init failure"); ret = 0; } /* Read hex string of order from wolfCrypt array of curves. */ if ((ret == 1) && (mp_read_radix(mp, ecc_sets[group->curve_idx].order, MP_RADIX_HEX) != MP_OKAY)) { WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_read order failure"); /* Zero out any partial value but don't free. */ mp_zero(mp); ret = 0; } return ret; } #endif /* OPENSSL_EXTRA */ /* End EC_GROUP */ /* Start EC_POINT */ #if defined(OPENSSL_EXTRA) /* Set data of EC point into internal, wolfCrypt EC point object. * * EC_POINT Openssl -> WolfSSL * * @param [in, out] p EC point to update. * @return 1 on success. * @return -1 on failure. */ static int ec_point_internal_set(WOLFSSL_EC_POINT *p) { int ret = 1; WOLFSSL_ENTER("ec_point_internal_set"); /* Validate parameter. */ if ((p == NULL) || (p->internal == NULL)) { WOLFSSL_MSG("ECPoint NULL error"); ret = WOLFSSL_FATAL_ERROR; } else { /* Get internal point as a wolfCrypt EC point. */ ecc_point* point = (ecc_point*)p->internal; /* Set X ordinate if available. */ if ((p->X != NULL) && (wolfssl_bn_get_value(p->X, point->x) != 1)) { WOLFSSL_MSG("ecc point X error"); ret = WOLFSSL_FATAL_ERROR; } /* Set Y ordinate if available. */ if ((ret == 1) && (p->Y != NULL) && (wolfssl_bn_get_value(p->Y, point->y) != 1)) { WOLFSSL_MSG("ecc point Y error"); ret = WOLFSSL_FATAL_ERROR; } /* Set Z ordinate if available. */ if ((ret == 1) && (p->Z != NULL) && (wolfssl_bn_get_value(p->Z, point->z) != 1)) { WOLFSSL_MSG("ecc point Z error"); ret = WOLFSSL_FATAL_ERROR; } /* Internal values set when operations succeeded. */ p->inSet = (ret == 1); } return ret; } /* Set data of internal, wolfCrypt EC point object into EC point. * * EC_POINT WolfSSL -> OpenSSL * * @param [in, out] p EC point to update. * @return 1 on success. * @return -1 on failure. */ static int ec_point_external_set(WOLFSSL_EC_POINT *p) { int ret = 1; WOLFSSL_ENTER("ec_point_external_set"); /* Validate parameter. */ if ((p == NULL) || (p->internal == NULL)) { WOLFSSL_MSG("ECPoint NULL error"); ret = WOLFSSL_FATAL_ERROR; } else { /* Get internal point as a wolfCrypt EC point. */ ecc_point* point = (ecc_point*)p->internal; /* Set X ordinate. */ if (wolfssl_bn_set_value(&p->X, point->x) != 1) { WOLFSSL_MSG("ecc point X error"); ret = WOLFSSL_FATAL_ERROR; } /* Set Y ordinate. */ if ((ret == 1) && (wolfssl_bn_set_value(&p->Y, point->y) != 1)) { WOLFSSL_MSG("ecc point Y error"); ret = WOLFSSL_FATAL_ERROR; } /* Set Z ordinate. */ if ((ret == 1) && (wolfssl_bn_set_value(&p->Z, point->z) != 1)) { WOLFSSL_MSG("ecc point Z error"); ret = WOLFSSL_FATAL_ERROR; } /* External values set when operations succeeded. */ p->exSet = (ret == 1); } return ret; } /* Setup internals of EC point. * * Assumes point is not NULL. * * @param [in, out] point EC point to update. * @return 1 on success. * @return 0 on failure. */ static int ec_point_setup(const WOLFSSL_EC_POINT *point) { int ret = 1; /* Check if internal values need setting. */ if (!point->inSet) { WOLFSSL_MSG("No ECPoint internal set, do it"); /* Forcing to non-constant type to update internals. */ if (ec_point_internal_set((WOLFSSL_EC_POINT *)point) != 1) { WOLFSSL_MSG("ec_point_internal_set failed"); ret = 0; } } return ret; } /* Create a new EC point from the group. * * @param [in] group EC group. * @return EC point on success. * @return NULL on error. */ WOLFSSL_EC_POINT* wolfSSL_EC_POINT_new(const WOLFSSL_EC_GROUP* group) { int err = 0; WOLFSSL_EC_POINT* point = NULL; WOLFSSL_ENTER("wolfSSL_EC_POINT_new"); /* Validate parameter. */ if (group == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_new NULL error"); err = 1; } if (!err) { /* Allocate memory for new EC point. */ point = (WOLFSSL_EC_POINT*)XMALLOC(sizeof(WOLFSSL_EC_POINT), NULL, DYNAMIC_TYPE_ECC); if (point == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_new malloc ecc point failure"); err = 1; } } if (!err) { /* Clear fields of EC point. */ XMEMSET(point, 0, sizeof(WOLFSSL_EC_POINT)); /* Allocate internal EC point. */ point->internal = wc_ecc_new_point(); if (point->internal == NULL) { WOLFSSL_MSG("ecc_new_point failure"); err = 1; } } if (err) { XFREE(point, NULL, DYNAMIC_TYPE_ECC); point = NULL; } return point; } #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) /* Dispose of the EC point. * * Cannot use point after this call. * * @param [in, out] point EC point to free. */ void wolfSSL_EC_POINT_free(WOLFSSL_EC_POINT *point) { WOLFSSL_ENTER("wolfSSL_EC_POINT_free"); if (point != NULL) { if (point->internal != NULL) { wc_ecc_del_point((ecc_point*)point->internal); point->internal = NULL; } /* Free ordinates. */ wolfSSL_BN_free(point->X); wolfSSL_BN_free(point->Y); wolfSSL_BN_free(point->Z); /* Clear fields. */ point->X = NULL; point->Y = NULL; point->Z = NULL; point->inSet = 0; point->exSet = 0; /* Dispose of EC point. */ XFREE(point, NULL, DYNAMIC_TYPE_ECC); } } #endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */ #ifdef OPENSSL_EXTRA /* Clear and dispose of the EC point. * * Cannot use point after this call. * * @param [in, out] point EC point to free. */ void wolfSSL_EC_POINT_clear_free(WOLFSSL_EC_POINT *point) { WOLFSSL_ENTER("wolfSSL_EC_POINT_clear_free"); if (point != NULL) { if (point->internal != NULL) { /* Force internal point to be zeros. */ #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)) wc_ecc_forcezero_point((ecc_point*)point->internal); #else ecc_point* p = (ecc_point*)point->internal; mp_forcezero(p->x); mp_forcezero(p->y); mp_forcezero(p->z); #endif wc_ecc_del_point((ecc_point*)point->internal); point->internal = NULL; } /* Clear the ordinates before freeing. */ wolfSSL_BN_clear_free(point->X); wolfSSL_BN_clear_free(point->Y); wolfSSL_BN_clear_free(point->Z); /* Clear fields. */ point->X = NULL; point->Y = NULL; point->Z = NULL; point->inSet = 0; point->exSet = 0; /* Dispose of EC point. */ XFREE(point, NULL, DYNAMIC_TYPE_ECC); } } /* Print out the internals of EC point in debug and when logging callback set. * * Not an OpenSSL API. * * TODO: Use WOLFSSL_MSG_EX()? * * @param [in] msg Message to prepend. * @param [in] point EC point to print. */ void wolfSSL_EC_POINT_dump(const char *msg, const WOLFSSL_EC_POINT *point) { #if defined(DEBUG_WOLFSSL) char *num; WOLFSSL_ENTER("wolfSSL_EC_POINT_dump"); /* Only print when debugging on. */ if (WOLFSSL_IS_DEBUG_ON()) { if (point == NULL) { /* No point passed in so just put out "NULL". */ WOLFSSL_MSG_EX("%s = NULL\n", msg); } else { /* Put out message and status of internal/external data set. */ WOLFSSL_MSG_EX("%s:\n\tinSet=%d, exSet=%d\n", msg, point->inSet, point->exSet); /* Get x-ordinate as a hex string and print. */ num = wolfSSL_BN_bn2hex(point->X); WOLFSSL_MSG_EX("\tX = %s\n", num); XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL); /* Get x-ordinate as a hex string and print. */ num = wolfSSL_BN_bn2hex(point->Y); WOLFSSL_MSG_EX("\tY = %s\n", num); XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL); /* Get z-ordinate as a hex string and print. */ num = wolfSSL_BN_bn2hex(point->Z); WOLFSSL_MSG_EX("\tZ = %s\n", num); XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL); } } #else (void)msg; (void)point; #endif } /* Convert EC point to hex string that as either uncompressed or compressed. * * ECC point compression types were not included in selftest ecc.h * * @param [in] group EC group for point. * @param [in] point EC point to encode. * @param [in] form Format of encoding. Valid values: * POINT_CONVERSION_UNCOMPRESSED, POINT_CONVERSION_COMPRESSED * @param [in] ctx Context to use for BN operations. Unused. * @return Allocated hex string on success. * @return NULL on error. */ char* wolfSSL_EC_POINT_point2hex(const WOLFSSL_EC_GROUP* group, const WOLFSSL_EC_POINT* point, int form, WOLFSSL_BN_CTX* ctx) { static const char* hexDigit = "0123456789ABCDEF"; char* hex = NULL; int i; int sz = 0; int len = 0; int err = 0; /* No BN operations performed. */ (void)ctx; /* Validate parameters. */ if ((group == NULL) || (point == NULL)) { err = 1; } /* Get curve id expects a positive index. */ if ((!err) && (group->curve_idx < 0)) { err = 1; } if (!err) { /* Get curve id to look up ordinate size. */ int id = wc_ecc_get_curve_id(group->curve_idx); /* Get size of ordinate. */ if ((sz = wc_ecc_get_curve_size_from_id(id)) < 0) { err = 1; } } if (!err) { /* [] */ len = sz + 1; if (form == POINT_CONVERSION_UNCOMPRESSED) { /* Include y ordinate when uncompressed. */ len += sz; } /* Hex string: allocate 2 bytes to represent each byte plus 1 for '\0'. */ hex = (char*)XMALLOC((size_t)(2 * len + 1), NULL, DYNAMIC_TYPE_ECC); if (hex == NULL) { err = 1; } } if (!err) { /* Make bytes all zeros to allow for ordinate values less than max size. */ XMEMSET(hex, 0, (size_t)(2 * len + 1)); /* Calculate offset as leading zeros not encoded. */ i = sz - mp_unsigned_bin_size((mp_int*)point->X->internal) + 1; /* Put in x-ordinate after format byte. */ if (mp_to_unsigned_bin((mp_int*)point->X->internal, (byte*)(hex + i)) < 0) { err = 1; } } if (!err) { if (form == POINT_CONVERSION_COMPRESSED) { /* Compressed format byte value dependent on whether y-ordinate is * odd. */ hex[0] = mp_isodd((mp_int*)point->Y->internal) ? ECC_POINT_COMP_ODD : ECC_POINT_COMP_EVEN; /* No y-ordinate. */ } else { /* Put in uncompressed format byte. */ hex[0] = ECC_POINT_UNCOMP; /* Calculate offset as leading zeros not encoded. */ i = 1 + 2 * sz - mp_unsigned_bin_size((mp_int*)point->Y->internal); /* Put in y-ordinate after x-ordinate. */ if (mp_to_unsigned_bin((mp_int*)point->Y->internal, (byte*)(hex + i)) < 0) { err = 1; } } } if (!err) { /* Convert binary encoding to hex string. */ /* Start at end so as not to overwrite. */ for (i = len-1; i >= 0; i--) { /* Get byte value and store has hex string. */ byte b = (byte)hex[i]; hex[i * 2 + 1] = hexDigit[b & 0xf]; hex[i * 2 ] = hexDigit[b >> 4]; } /* Memset put trailing zero or '\0' on end of string. */ } if (err && (hex != NULL)) { /* Dispose of allocated data not being returned. */ XFREE(hex, NULL, DYNAMIC_TYPE_ECC); hex = NULL; } /* Return hex string encoding. */ return hex; } static size_t hex_to_bytes(const char *hex, unsigned char *output, size_t sz) { word32 i; for (i = 0; i < sz; i++) { signed char ch1, ch2; ch1 = HexCharToByte(hex[i * 2]); ch2 = HexCharToByte(hex[i * 2 + 1]); if ((ch1 < 0) || (ch2 < 0)) { WOLFSSL_MSG("hex_to_bytes: syntax error"); return 0; } output[i] = (unsigned char)((ch1 << 4) + ch2); } return sz; } WOLFSSL_EC_POINT* wolfSSL_EC_POINT_hex2point(const EC_GROUP *group, const char *hex, WOLFSSL_EC_POINT*p, WOLFSSL_BN_CTX *ctx) { /* for uncompressed mode */ size_t str_sz; BIGNUM *Gx = NULL; BIGNUM *Gy = NULL; char strGx[MAX_ECC_BYTES * 2 + 1]; /* for compressed mode */ int key_sz; byte *octGx = (byte *)strGx; /* octGx[MAX_ECC_BYTES] */ int p_alloc = 0; int ret; WOLFSSL_ENTER("wolfSSL_EC_POINT_hex2point"); if (group == NULL || hex == NULL || ctx == NULL) return NULL; if (p == NULL) { if ((p = wolfSSL_EC_POINT_new(group)) == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_new"); goto err; } p_alloc = 1; } key_sz = (wolfSSL_EC_GROUP_get_degree(group) + 7) / 8; if (hex[0] == '0' && hex[1] == '4') { /* uncompressed mode */ str_sz = key_sz * 2; XMEMSET(strGx, 0x0, str_sz + 1); XMEMCPY(strGx, hex + 2, str_sz); if (wolfSSL_BN_hex2bn(&Gx, strGx) == 0) goto err; if (wolfSSL_BN_hex2bn(&Gy, hex + 2 + str_sz) == 0) goto err; ret = wolfSSL_EC_POINT_set_affine_coordinates_GFp (group, p, Gx, Gy, ctx); if (ret != WOLFSSL_SUCCESS) { WOLFSSL_MSG("wolfSSL_EC_POINT_set_affine_coordinates_GFp"); goto err; } } else if (hex[0] == '0' && (hex[1] == '2' || hex[1] == '3')) { size_t sz = XSTRLEN(hex + 2) / 2; /* compressed mode */ octGx[0] = ECC_POINT_COMP_ODD; if (hex_to_bytes(hex + 2, octGx + 1, sz) != sz) { goto err; } if (wolfSSL_ECPoint_d2i(octGx, key_sz + 1, group, p) != WOLFSSL_SUCCESS) { goto err; } } else goto err; wolfSSL_BN_free(Gx); wolfSSL_BN_free(Gy); return p; err: wolfSSL_BN_free(Gx); wolfSSL_BN_free(Gy); if (p_alloc) { EC_POINT_free(p); } return NULL; } /* Encode the EC point as an uncompressed point in DER. * * Return code compliant with OpenSSL. * Not OpenSSL API. * * @param [in] group EC group point belongs to. * @param [in] point EC point to encode. * @param [out] out Buffer to encode into. May be NULL. * @param [in, out] len On in, length of buffer in bytes. * On out, length of encoding in bytes. * @return 1 on success. * @return 0 on error. */ int wolfSSL_ECPoint_i2d(const WOLFSSL_EC_GROUP *group, const WOLFSSL_EC_POINT *point, unsigned char *out, unsigned int *len) { int res = 1; WOLFSSL_ENTER("wolfSSL_ECPoint_i2d"); /* Validate parameters. */ if ((group == NULL) || (point == NULL) || (len == NULL)) { WOLFSSL_MSG("wolfSSL_ECPoint_i2d NULL error"); res = 0; } /* Ensure points internals are set up. */ if ((res == 1) && (ec_point_setup(point) != 1)) { res = 0; } /* Dump the point if encoding. */ if ((res == 1) && (out != NULL)) { wolfSSL_EC_POINT_dump("i2d p", point); } if (res == 1) { /* DER encode point in uncompressed format. */ int ret = wc_ecc_export_point_der(group->curve_idx, (ecc_point*)point->internal, out, len); /* Check return. When out is NULL, return will be length only error. */ if ((ret != MP_OKAY) && ((out != NULL) || (ret != WC_NO_ERR_TRACE(LENGTH_ONLY_E)))) { WOLFSSL_MSG("wolfSSL_ECPoint_i2d wc_ecc_export_point_der failed"); res = 0; } } return res; } /* Decode the uncompressed point in DER into EC point. * * Return code compliant with OpenSSL. * Not OpenSSL API. * * @param [in] in Buffer containing DER encoded point. * @param [in] len Length of data in bytes. * @param [in] group EC group associated with point. * @param [in, out] point EC point to set data into. * @return 1 on success. * @return 0 on error. */ int wolfSSL_ECPoint_d2i(const unsigned char *in, unsigned int len, const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *point) { int ret = 1; WOLFSSL_BIGNUM* x = NULL; WOLFSSL_BIGNUM* y = NULL; WOLFSSL_ENTER("wolfSSL_ECPoint_d2i"); /* Validate parameters. */ if ((in == NULL) || (group == NULL) || (point == NULL) || (point->internal == NULL)) { WOLFSSL_MSG("wolfSSL_ECPoint_d2i NULL error"); ret = 0; } if (ret == 1) { #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)) /* Import point into internal EC point. */ if (wc_ecc_import_point_der_ex(in, len, group->curve_idx, (ecc_point*)point->internal, 0) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_import_point_der_ex failed"); ret = 0; } #else /* ECC_POINT_UNCOMP is not defined CAVP self test so use magic number */ if (in[0] == 0x04) { /* Import point into internal EC point. */ if (wc_ecc_import_point_der((unsigned char *)in, len, group->curve_idx, (ecc_point*)point->internal) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_import_point_der failed"); ret = 0; } } else { WOLFSSL_MSG("Only uncompressed points supported with " "HAVE_SELFTEST"); ret = 0; } #endif } if (ret == 1) point->inSet = 1; /* Set new external point. */ if (ret == 1 && ec_point_external_set(point) != 1) { WOLFSSL_MSG("ec_point_external_set failed"); ret = 0; } if (ret == 1 && !wolfSSL_BN_is_one(point->Z)) { #if !defined(WOLFSSL_SP_MATH) && !defined(WOLF_CRYPTO_CB_ONLY_ECC) x = wolfSSL_BN_new(); y = wolfSSL_BN_new(); if (x == NULL || y == NULL) ret = 0; if (ret == 1 && wolfSSL_EC_POINT_get_affine_coordinates_GFp(group, point, x, y, NULL) != 1) { WOLFSSL_MSG("wolfSSL_EC_POINT_get_affine_coordinates_GFp failed"); ret = 0; } /* wolfSSL_EC_POINT_set_affine_coordinates_GFp check that the point is * on the curve. */ if (ret == 1 && wolfSSL_EC_POINT_set_affine_coordinates_GFp(group, point, x, y, NULL) != 1) { WOLFSSL_MSG("wolfSSL_EC_POINT_set_affine_coordinates_GFp failed"); ret = 0; } #else WOLFSSL_MSG("Importing non-affine point. This may cause issues in math " "operations later on."); #endif } if (ret == 1) { /* Dump new point. */ wolfSSL_EC_POINT_dump("d2i p", point); } wolfSSL_BN_free(x); wolfSSL_BN_free(y); return ret; } /* Encode point as octet string. * * HYBRID not supported. * * @param [in] group EC group that point belongs to. * @param [in] point EC point to encode. * @param [in] form Format of encoding. Valid values: * POINT_CONVERSION_UNCOMPRESSED,POINT_CONVERSION_COMPRESSED * @param [out] buf Buffer to write encoding into. * @param [in] len Length of buffer. * @param [in] ctx Context to use for BN operations. Unused. * @return Length of encoded data on success. * @return 0 on error. */ size_t wolfSSL_EC_POINT_point2oct(const WOLFSSL_EC_GROUP *group, const WOLFSSL_EC_POINT *point, int form, byte *buf, size_t len, WOLFSSL_BN_CTX *ctx) { int err = 0; word32 enc_len = (word32)len; #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)) int compressed = ((form == POINT_CONVERSION_COMPRESSED) ? 1 : 0); #endif /* !HAVE_SELFTEST */ WOLFSSL_ENTER("wolfSSL_EC_POINT_point2oct"); /* No BN operations performed. */ (void)ctx; /* Validate parameters. */ if ((group == NULL) || (point == NULL)) { err = 1; } /* Ensure points internals are set up. */ if ((!err) && (ec_point_setup(point) != 1)) { err = 1; } /* Special case when point is infinity. */ if ((!err) && wolfSSL_EC_POINT_is_at_infinity(group, point)) { /* Encoding is a single octet: 0x00. */ enc_len = 1; if (buf != NULL) { /* Check whether buffer has space. */ if (len < 1) { ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL); err = 1; } else { /* Put in encoding of infinity. */ buf[0] = 0x00; } } } /* Not infinity. */ else if (!err) { /* Validate format. */ if (form != POINT_CONVERSION_UNCOMPRESSED #ifndef HAVE_SELFTEST && form != POINT_CONVERSION_COMPRESSED #endif /* !HAVE_SELFTEST */ ) { WOLFSSL_MSG("Unsupported point form"); err = 1; } if (!err) { int ret; #if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)) /* Encode as compressed or uncompressed. */ ret = wc_ecc_export_point_der_ex(group->curve_idx, (ecc_point*)point->internal, buf, &enc_len, compressed); #else /* Encode uncompressed point in DER format. */ ret = wc_ecc_export_point_der(group->curve_idx, (ecc_point*)point->internal, buf, &enc_len); #endif /* !HAVE_SELFTEST */ /* Check return. When buf is NULL, return will be length only * error. */ if (ret != ((buf != NULL) ? MP_OKAY : WC_NO_ERR_TRACE(LENGTH_ONLY_E))) { err = 1; } } } #if defined(DEBUG_WOLFSSL) if (!err) { wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_point2oct point", point); WOLFSSL_MSG("\twolfSSL_EC_POINT_point2oct output:"); WOLFSSL_BUFFER(buf, enc_len); } #endif /* On error, return encoding length of 0. */ if (err) { enc_len = 0; } return (size_t)enc_len; } /* Convert octet string to EC point. * * @param [in] group EC group. * @param [in, out] point EC point to set data into. * @param [in] buf Buffer holding octet string. * @param [in] len Length of data in buffer in bytes. * @param [in] ctx Context to use for BN operations. Unused. */ int wolfSSL_EC_POINT_oct2point(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *point, const unsigned char *buf, size_t len, WOLFSSL_BN_CTX *ctx) { int ret; WOLFSSL_ENTER("wolfSSL_EC_POINT_oct2point"); /* No BN operations performed. */ (void)ctx; /* Validate parameters. */ if ((group == NULL) || (point == NULL)) { ret = 0; } else { /* Decode DER encoding into EC point. */ ret = wolfSSL_ECPoint_d2i((unsigned char*)buf, (unsigned int)len, group, point); } return ret; } /* Convert an EC point to a single BN. * * @param [in] group EC group. * @param [in] point EC point. * @param [in] form Format of encoding. Valid values: * POINT_CONVERSION_UNCOMPRESSED, * POINT_CONVERSION_COMPRESSED. * @param [in, out] bn BN to hold point value. * When NULL a new BN is allocated otherwise this is * returned on success. * @param [in] ctx Context to use for BN operations. Unused. * @return BN object with point as a value on success. * @return NULL on error. */ WOLFSSL_BIGNUM *wolfSSL_EC_POINT_point2bn(const WOLFSSL_EC_GROUP* group, const WOLFSSL_EC_POINT* point, int form, WOLFSSL_BIGNUM* bn, WOLFSSL_BN_CTX* ctx) { int err = 0; size_t len = 0; byte *buf = NULL; WOLFSSL_BIGNUM *ret = NULL; WOLFSSL_ENTER("wolfSSL_EC_POINT_oct2point"); /* Validate parameters. */ if ((group == NULL) || (point == NULL)) { err = 1; } /* Calculate length of octet encoding. */ if ((!err) && ((len = wolfSSL_EC_POINT_point2oct(group, point, form, NULL, 0, ctx)) == 0)) { err = 1; } /* Allocate buffer to hold octet encoding. */ if ((!err) && ((buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER)) == NULL)) { WOLFSSL_MSG("malloc failed"); err = 1; } /* Encode EC point as an octet string. */ if ((!err) && (wolfSSL_EC_POINT_point2oct(group, point, form, buf, len, ctx) != len)) { err = 1; } /* Load BN with octet string data. */ if (!err) { ret = wolfSSL_BN_bin2bn(buf, (int)len, bn); } /* Dispose of any allocated data. */ XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); return ret; } #if defined(USE_ECC_B_PARAM) && !defined(HAVE_SELFTEST) && \ (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)) /* Check if EC point is on the the curve defined by the EC group. * * @param [in] group EC group defining curve. * @param [in] point EC point to check. * @param [in] ctx Context to use for BN operations. Unused. * @return 1 when point is on curve. * @return 0 when point is not on curve or error. */ int wolfSSL_EC_POINT_is_on_curve(const WOLFSSL_EC_GROUP *group, const WOLFSSL_EC_POINT *point, WOLFSSL_BN_CTX *ctx) { int err = 0; WOLFSSL_ENTER("wolfSSL_EC_POINT_is_on_curve"); /* No BN operations performed. */ (void)ctx; /* Validate parameters. */ if ((group == NULL) || (point == NULL)) { WOLFSSL_MSG("Invalid arguments"); err = 1; } /* Ensure internal EC point set. */ if ((!err) && (!point->inSet) && ec_point_internal_set( (WOLFSSL_EC_POINT*)point) != 1) { WOLFSSL_MSG("ec_point_internal_set error"); err = 1; } /* Check point is on curve from group. */ if ((!err) && (wc_ecc_point_is_on_curve((ecc_point*)point->internal, group->curve_idx) != MP_OKAY)) { err = 1; } /* Return boolean of on curve. No error means on curve. */ return !err; } #endif /* USE_ECC_B_PARAM && !HAVE_SELFTEST && !(FIPS_VERSION <= 2) */ #if !defined(WOLFSSL_SP_MATH) && !defined(WOLF_CRYPTO_CB_ONLY_ECC) /* Convert Jacobian ordinates to affine. * * @param [in] group EC group. * @param [in] point EC point to get coordinates from. * @return 1 on success. * @return 0 on error. */ int ec_point_convert_to_affine(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *point) { int err = 0; mp_digit mp = 0; #ifdef WOLFSSL_SMALL_STACK mp_int* modulus; #else mp_int modulus[1]; #endif #ifdef WOLFSSL_SMALL_STACK /* Allocate memory for curve's prime modulus. */ modulus = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (modulus == NULL) { err = 1; } #endif /* Initialize the MP integer. */ if ((!err) && (mp_init(modulus) != MP_OKAY)) { WOLFSSL_MSG("mp_init failed"); err = 1; } if (!err) { /* Get the modulus from the hex string in the EC curve set. */ if (mp_read_radix(modulus, ecc_sets[group->curve_idx].prime, MP_RADIX_HEX) != MP_OKAY) { WOLFSSL_MSG("mp_read_radix failed"); err = 1; } /* Get Montgomery multiplier for the modulus as ordinates in * Montgomery form. */ if ((!err) && (mp_montgomery_setup(modulus, &mp) != MP_OKAY)) { WOLFSSL_MSG("mp_montgomery_setup failed"); err = 1; } /* Map internal EC point from Jacobian to affine. */ if ((!err) && (ecc_map((ecc_point*)point->internal, modulus, mp) != MP_OKAY)) { WOLFSSL_MSG("ecc_map failed"); err = 1; } /* Set new ordinates into external EC point. */ if ((!err) && (ec_point_external_set((WOLFSSL_EC_POINT *)point) != 1)) { WOLFSSL_MSG("ec_point_external_set failed"); err = 1; } point->exSet = !err; mp_clear(modulus); } #ifdef WOLFSSL_SMALL_STACK XFREE(modulus, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* Get the affine coordinates of the EC point on a Prime curve. * * When z-ordinate is not one then coordinates are Jacobian and need to be * converted to affine before storing in BNs. * * Return code compliant with OpenSSL. * * TODO: OpenSSL doesn't change point when Jacobian. Do the same? * * @param [in] group EC group. * @param [in] point EC point to get coordinates from. * @param [in, out] x BN to hold x-ordinate. * @param [in, out] y BN to hold y-ordinate. * @param [in] ctx Context to use for BN operations. Unused. * @return 1 on success. * @return 0 on error. */ int wolfSSL_EC_POINT_get_affine_coordinates_GFp(const WOLFSSL_EC_GROUP* group, const WOLFSSL_EC_POINT* point, WOLFSSL_BIGNUM* x, WOLFSSL_BIGNUM* y, WOLFSSL_BN_CTX* ctx) { int ret = 1; /* BN operations don't need context. */ (void)ctx; WOLFSSL_ENTER("wolfSSL_EC_POINT_get_affine_coordinates_GFp"); /* Validate parameters. */ if ((group == NULL) || (point == NULL) || (point->internal == NULL) || (x == NULL) || (y == NULL)) { WOLFSSL_MSG("wolfSSL_EC_POINT_get_affine_coordinates_GFp NULL error"); ret = 0; } /* Don't return point at infinity. */ if ((ret == 1) && wolfSSL_EC_POINT_is_at_infinity(group, point)) { ret = 0; } /* Ensure internal EC point has values of external EC point. */ if ((ret == 1) && (ec_point_setup(point) != 1)) { ret = 0; } /* Check whether ordinates are in Jacobian form. */ if ((ret == 1) && (!wolfSSL_BN_is_one(point->Z))) { /* Convert from Jacobian to affine. */ if (ec_point_convert_to_affine(group, (WOLFSSL_EC_POINT*)point) == 1) { ret = 0; } } /* Copy the externally set x and y ordinates. */ if ((ret == 1) && (BN_copy(x, point->X) == NULL)) { ret = 0; } if ((ret == 1) && (BN_copy(y, point->Y) == NULL)) { ret = 0; } return ret; } #endif /* !WOLFSSL_SP_MATH && !WOLF_CRYPTO_CB_ONLY_ECC */ /* Sets the affine coordinates that belong on a prime curve. * * @param [in] group EC group. * @param [in, out] point EC point to set coordinates into. * @param [in] x BN holding x-ordinate. * @param [in] y BN holding y-ordinate. * @param [in] ctx Context to use for BN operations. Unused. * @return 1 on success. * @return 0 on error. */ int wolfSSL_EC_POINT_set_affine_coordinates_GFp(const WOLFSSL_EC_GROUP* group, WOLFSSL_EC_POINT* point, const WOLFSSL_BIGNUM* x, const WOLFSSL_BIGNUM* y, WOLFSSL_BN_CTX* ctx) { int ret = 1; /* BN operations don't need context. */ (void)ctx; WOLFSSL_ENTER("wolfSSL_EC_POINT_set_affine_coordinates_GFp"); /* Validate parameters. */ if ((group == NULL) || (point == NULL) || (point->internal == NULL) || (x == NULL) || (y == NULL)) { WOLFSSL_MSG("wolfSSL_EC_POINT_set_affine_coordinates_GFp NULL error"); ret = 0; } /* Ensure we have a object for x-ordinate. */ if ((ret == 1) && (point->X == NULL) && ((point->X = wolfSSL_BN_new()) == NULL)) { WOLFSSL_MSG("wolfSSL_BN_new failed"); ret = 0; } /* Ensure we have a object for y-ordinate. */ if ((ret == 1) && (point->Y == NULL) && ((point->Y = wolfSSL_BN_new()) == NULL)) { WOLFSSL_MSG("wolfSSL_BN_new failed"); ret = 0; } /* Ensure we have a object for z-ordinate. */ if ((ret == 1) && (point->Z == NULL) && ((point->Z = wolfSSL_BN_new()) == NULL)) { WOLFSSL_MSG("wolfSSL_BN_new failed"); ret = 0; } /* Copy the x-ordinate. */ if ((ret == 1) && ((wolfSSL_BN_copy(point->X, x)) == NULL)) { WOLFSSL_MSG("wolfSSL_BN_copy failed"); ret = 0; } /* Copy the y-ordinate. */ if ((ret == 1) && ((wolfSSL_BN_copy(point->Y, y)) == NULL)) { WOLFSSL_MSG("wolfSSL_BN_copy failed"); ret = 0; } /* z-ordinate is one for affine coordinates. */ if ((ret == 1) && ((wolfSSL_BN_one(point->Z)) == 0)) { WOLFSSL_MSG("wolfSSL_BN_one failed"); ret = 0; } /* Copy the new point data to internal object. */ if ((ret == 1) && (ec_point_internal_set((WOLFSSL_EC_POINT *)point) != 1)) { WOLFSSL_MSG("ec_point_internal_set failed"); ret = 0; } #if defined(USE_ECC_B_PARAM) && !defined(HAVE_SELFTEST) && \ (!defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0)) /* Check that the point is valid. */ if ((ret == 1) && (wolfSSL_EC_POINT_is_on_curve(group, (WOLFSSL_EC_POINT *)point, ctx) != 1)) { WOLFSSL_MSG("EC_POINT_is_on_curve failed"); ret = 0; } #endif return ret; } #if !defined(WOLFSSL_ATECC508A) && !defined(WOLFSSL_ATECC608A) && \ !defined(HAVE_SELFTEST) && !defined(WOLFSSL_SP_MATH) && \ !defined(WOLF_CRYPTO_CB_ONLY_ECC) /* Add two points on the same together. * * @param [in] curveIdx Index of curve in ecc_set. * @param [out] r Result point. * @param [in] p1 First point to add. * @param [in] p2 Second point to add. * @return 1 on success. * @return 0 on error. */ static int wolfssl_ec_point_add(int curveIdx, ecc_point* r, ecc_point* p1, ecc_point* p2) { int ret = 1; #ifdef WOLFSSL_SMALL_STACK mp_int* a = NULL; mp_int* prime = NULL; mp_int* mu = NULL; #else mp_int a[1]; mp_int prime[1]; mp_int mu[1]; #endif mp_digit mp = 0; ecc_point* montP1 = NULL; ecc_point* montP2 = NULL; #ifdef WOLFSSL_SMALL_STACK if (ret == 1) { /* Allocate memory for curve parameter: a. */ a = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (a == NULL) { WOLFSSL_MSG("Failed to allocate memory for mp_int a"); ret = 0; } } if (ret == 1) { /* Allocate memory for curve parameter: prime. */ prime = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (prime == NULL) { WOLFSSL_MSG("Failed to allocate memory for mp_int prime"); ret = 0; } } if (ret == 1) { /* Allocate memory for mu (Montgomery normalizer). */ mu = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (mu == NULL) { WOLFSSL_MSG("Failed to allocate memory for mp_int mu"); ret = 0; } } if (ret == 1) { /* Zero out all MP int data in case initialization fails. */ XMEMSET(a, 0, sizeof(mp_int)); XMEMSET(prime, 0, sizeof(mp_int)); XMEMSET(mu, 0, sizeof(mp_int)); } #endif /* Initialize the MP ints. */ if ((ret == 1) && (mp_init_multi(prime, a, mu, NULL, NULL, NULL) != MP_OKAY)) { WOLFSSL_MSG("mp_init_multi error"); ret = 0; } /* Read the curve parameter: a. */ if ((ret == 1) && (mp_read_radix(a, ecc_sets[curveIdx].Af, MP_RADIX_HEX) != MP_OKAY)) { WOLFSSL_MSG("mp_read_radix a error"); ret = 0; } /* Read the curve parameter: prime. */ if ((ret == 1) && (mp_read_radix(prime, ecc_sets[curveIdx].prime, MP_RADIX_HEX) != MP_OKAY)) { WOLFSSL_MSG("mp_read_radix prime error"); ret = 0; } /* Calculate the Montgomery product. */ if ((ret == 1) && (mp_montgomery_setup(prime, &mp) != MP_OKAY)) { WOLFSSL_MSG("mp_montgomery_setup nqm error"); ret = 0; } /* TODO: use the heap filed of one of the points? */ /* Allocate new points to hold the Montgomery form values. */ if ((ret == 1) && (((montP1 = wc_ecc_new_point_h(NULL)) == NULL) || ((montP2 = wc_ecc_new_point_h(NULL)) == NULL))) { WOLFSSL_MSG("wc_ecc_new_point_h nqm error"); ret = 0; } /* Calculate the Montgomery normalizer. */ if ((ret == 1) && (mp_montgomery_calc_normalization(mu, prime) != MP_OKAY)) { WOLFSSL_MSG("mp_montgomery_calc_normalization error"); ret = 0; } /* Convert to Montgomery form. */ if ((ret == 1) && (mp_cmp_d(mu, 1) == MP_EQ)) { /* Copy the points if the normalizer is 1. */ if ((wc_ecc_copy_point(p1, montP1) != MP_OKAY) || (wc_ecc_copy_point(p2, montP2) != MP_OKAY)) { WOLFSSL_MSG("wc_ecc_copy_point error"); ret = 0; } } else if (ret == 1) { /* Multiply each ordinate by the Montgomery normalizer. */ if ((mp_mulmod(p1->x, mu, prime, montP1->x) != MP_OKAY) || (mp_mulmod(p1->y, mu, prime, montP1->y) != MP_OKAY) || (mp_mulmod(p1->z, mu, prime, montP1->z) != MP_OKAY)) { WOLFSSL_MSG("mp_mulmod error"); ret = 0; } /* Multiply each ordinate by the Montgomery normalizer. */ if ((mp_mulmod(p2->x, mu, prime, montP2->x) != MP_OKAY) || (mp_mulmod(p2->y, mu, prime, montP2->y) != MP_OKAY) || (mp_mulmod(p2->z, mu, prime, montP2->z) != MP_OKAY)) { WOLFSSL_MSG("mp_mulmod error"); ret = 0; } } /* Perform point addition with internal EC point objects - Jacobian form * result. */ if ((ret == 1) && (ecc_projective_add_point(montP1, montP2, r, a, prime, mp) != MP_OKAY)) { WOLFSSL_MSG("ecc_projective_add_point error"); ret = 0; } /* Map point back to affine coordinates. Converts from Montogomery form. */ if ((ret == 1) && (ecc_map(r, prime, mp) != MP_OKAY)) { WOLFSSL_MSG("ecc_map error"); ret = 0; } /* Dispose of allocated memory. */ mp_clear(a); mp_clear(prime); mp_clear(mu); wc_ecc_del_point_h(montP1, NULL); wc_ecc_del_point_h(montP2, NULL); #ifdef WOLFSSL_SMALL_STACK XFREE(a, NULL, DYNAMIC_TYPE_BIGINT); XFREE(prime, NULL, DYNAMIC_TYPE_BIGINT); XFREE(mu, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } /* Add two points on the same curve together. * * @param [in] group EC group. * @param [out] r EC point that is result of point addition. * @param [in] p1 First EC point to add. * @param [in] p2 Second EC point to add. * @param [in] ctx Context to use for BN operations. Unused. * @return 1 on success. * @return 0 on error. */ int wolfSSL_EC_POINT_add(const WOLFSSL_EC_GROUP* group, WOLFSSL_EC_POINT* r, const WOLFSSL_EC_POINT* p1, const WOLFSSL_EC_POINT* p2, WOLFSSL_BN_CTX* ctx) { int ret = 1; /* No BN operations performed. */ (void)ctx; /* Validate parameters. */ if ((group == NULL) || (r == NULL) || (p1 == NULL) || (p2 == NULL)) { WOLFSSL_MSG("wolfSSL_EC_POINT_add error"); ret = 0; } /* Ensure the internal objects of the EC points are setup. */ if ((ret == 1) && ((ec_point_setup(r) != 1) || (ec_point_setup(p1) != 1) || (ec_point_setup(p2) != 1))) { WOLFSSL_MSG("ec_point_setup error"); ret = 0; } #ifdef DEBUG_WOLFSSL if (ret == 1) { int nid = wolfSSL_EC_GROUP_get_curve_name(group); const char* curve = wolfSSL_OBJ_nid2ln(nid); const char* nistName = wolfSSL_EC_curve_nid2nist(nid); wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_add p1", p1); wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_add p2", p2); if (curve != NULL) WOLFSSL_MSG_EX("curve name: %s", curve); if (nistName != NULL) WOLFSSL_MSG_EX("nist curve name: %s", nistName); } #endif if (ret == 1) { /* Add points using wolfCrypt objects. */ ret = wolfssl_ec_point_add(group->curve_idx, (ecc_point*)r->internal, (ecc_point*)p1->internal, (ecc_point*)p2->internal); } /* Copy internal EC point values out to external EC point. */ if ((ret == 1) && (ec_point_external_set(r) != 1)) { WOLFSSL_MSG("ec_point_external_set error"); ret = 0; } #ifdef DEBUG_WOLFSSL if (ret == 1) { wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_add result", r); } #endif return ret; } /* Sum the scalar multiplications of the base point and n, and q and m. * * r = base point * n + q * m * * @param [out] r EC point that is result of operation. * @param [in] b Base point of curve. * @param [in] n Scalar to multiply by base point. * @param [in] q EC point to be scalar multiplied. * @param [in] m Scalar to multiply q by. * @param [in] a Parameter A of curve. * @param [in] prime Prime (modulus) of curve. * @return 1 on success. * @return 0 on error. */ static int ec_mul2add(ecc_point* r, ecc_point* b, mp_int* n, ecc_point* q, mp_int* m, mp_int* a, mp_int* prime) { int ret = 1; #if defined(ECC_SHAMIR) && !defined(WOLFSSL_KCAPI_ECC) if (ecc_mul2add(b, n, q, m, r, a, prime, NULL) != MP_OKAY) { WOLFSSL_MSG("ecc_mul2add error"); ret = 0; } #else ecc_point* tmp = NULL; mp_digit mp = 0; /* Calculate Montgomery product. */ if (mp_montgomery_setup(prime, &mp) != MP_OKAY) { WOLFSSL_MSG("mp_montgomery_setup nqm error"); ret = 0; } /* Create temporary point to hold: q * m */ if ((ret == 1) && ((tmp = wc_ecc_new_point()) == NULL)) { WOLFSSL_MSG("wolfSSL_EC_POINT_new nqm error"); ret = 0; } /* r = base point * n */ if ((ret == 1) && (wc_ecc_mulmod(n, b, r, a, prime, 0) != MP_OKAY)) { WOLFSSL_MSG("wc_ecc_mulmod nqm error"); ret = 0; } /* tmp = q * m */ if ((ret == 1) && (wc_ecc_mulmod(m, q, tmp, a, prime, 0) != MP_OKAY)) { WOLFSSL_MSG("wc_ecc_mulmod nqm error"); ret = 0; } /* r = r + tmp */ if ((ret == 1) && (ecc_projective_add_point(tmp, r, r, a, prime, mp) != MP_OKAY)) { WOLFSSL_MSG("wc_ecc_mulmod nqm error"); ret = 0; } /* Map point back to affine coordinates. Converts from Montogomery * form. */ if ((ret == 1) && (ecc_map(r, prime, mp) != MP_OKAY)) { WOLFSSL_MSG("ecc_map nqm error"); ret = 0; } /* Dispose of allocated temporary point. */ wc_ecc_del_point(tmp); #endif return ret; } /* Sum the scalar multiplications of the base point and n, and q and m. * * r = base point * n + q * m * * @param [in] curveIdx Index of curve in ecc_set. * @param [out] r EC point that is result of operation. * @param [in] n Scalar to multiply by base point. May be NULL. * @param [in] q EC point to be scalar multiplied. May be NULL. * @param [in] m Scalar to multiply q by. May be NULL. * @return 1 on success. * @return 0 on error. */ static int wolfssl_ec_point_mul(int curveIdx, ecc_point* r, mp_int* n, ecc_point* q, mp_int* m) { int ret = 1; #ifdef WOLFSSL_SMALL_STACK mp_int* a = NULL; mp_int* prime = NULL; #else mp_int a[1], prime[1]; #endif #ifdef WOLFSSL_SMALL_STACK /* Allocate MP integer for curve parameter: a. */ a = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (a == NULL) { ret = 0; } if (ret == 1) { /* Allocate MP integer for curve parameter: prime. */ prime = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (prime == NULL) { ret = 0; } } #endif /* Initialize the MP ints. */ if ((ret == 1) && (mp_init_multi(prime, a, NULL, NULL, NULL, NULL) != MP_OKAY)) { WOLFSSL_MSG("mp_init_multi error"); ret = 0; } /* Read the curve parameter: prime. */ if ((ret == 1) && (mp_read_radix(prime, ecc_sets[curveIdx].prime, MP_RADIX_HEX) != MP_OKAY)) { WOLFSSL_MSG("mp_read_radix prime error"); ret = 0; } /* Read the curve parameter: a. */ if ((ret == 1) && (mp_read_radix(a, ecc_sets[curveIdx].Af, MP_RADIX_HEX) != MP_OKAY)) { WOLFSSL_MSG("mp_read_radix a error"); ret = 0; } if ((ret == 1) && (n != NULL)) { /* Get generator - base point. */ #if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0) if ((ret == 1) && (wc_ecc_get_generator(r, curveIdx) != MP_OKAY)) { WOLFSSL_MSG("wc_ecc_get_generator error"); ret = 0; } #else /* wc_ecc_get_generator is not defined in the FIPS v2 module. */ /* Read generator (base point) x-ordinate. */ if ((ret == 1) && (mp_read_radix(r->x, ecc_sets[curveIdx].Gx, MP_RADIX_HEX) != MP_OKAY)) { WOLFSSL_MSG("mp_read_radix Gx error"); ret = 0; } /* Read generator (base point) y-ordinate. */ if ((ret == 1) && (mp_read_radix(r->y, ecc_sets[curveIdx].Gy, MP_RADIX_HEX) != MP_OKAY)) { WOLFSSL_MSG("mp_read_radix Gy error"); ret = 0; } /* z-ordinate is one as point is affine. */ if ((ret == 1) && (mp_set(r->z, 1) != MP_OKAY)) { WOLFSSL_MSG("mp_set Gz error"); ret = 0; } #endif /* NOPT_FIPS_VERSION == 2 */ } if ((ret == 1) && (n != NULL) && (q != NULL) && (m != NULL)) { /* r = base point * n + q * m */ ret = ec_mul2add(r, r, n, q, m, a, prime); } /* Not all values present, see if we are only doing base point * n. */ else if ((ret == 1) && (n != NULL)) { /* r = base point * n */ if (wc_ecc_mulmod(n, r, r, a, prime, 1) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_mulmod gn error"); ret = 0; } } /* Not all values present, see if we are only doing q * m. */ else if ((ret == 1) && (q != NULL) && (m != NULL)) { /* r = q * m */ if (wc_ecc_mulmod(m, q, r, a, prime, 1) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_mulmod qm error"); ret = 0; } } /* No values to use. */ else if (ret == 1) { /* Set result to infinity as no values passed in. */ mp_zero(r->x); mp_zero(r->y); mp_zero(r->z); } mp_clear(a); mp_clear(prime); #ifdef WOLFSSL_SMALL_STACK XFREE(a, NULL, DYNAMIC_TYPE_BIGINT); XFREE(prime, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } /* Sum the scalar multiplications of the base point and n, and q and m. * * r = base point * n + q * m * * Return code compliant with OpenSSL. * * @param [in] group EC group. * @param [out] r EC point that is result of operation. * @param [in] n Scalar to multiply by base point. May be NULL. * @param [in] q EC point to be scalar multiplied. May be NULL. * @param [in] m Scalar to multiply q by. May be NULL. * @param [in] ctx Context to use for BN operations. Unused. * @return 1 on success. * @return 0 on error. */ int wolfSSL_EC_POINT_mul(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *r, const WOLFSSL_BIGNUM *n, const WOLFSSL_EC_POINT *q, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx) { int ret = 1; /* No BN operations performed. */ (void)ctx; WOLFSSL_ENTER("wolfSSL_EC_POINT_mul"); /* Validate parameters. */ if ((group == NULL) || (r == NULL)) { WOLFSSL_MSG("wolfSSL_EC_POINT_mul NULL error"); ret = 0; } /* Ensure the internal representation of the EC point q is setup. */ if ((ret == 1) && (q != NULL) && (ec_point_setup(q) != 1)) { WOLFSSL_MSG("ec_point_setup error"); ret = 0; } #ifdef DEBUG_WOLFSSL if (ret == 1) { int nid = wolfSSL_EC_GROUP_get_curve_name(group); const char* curve = wolfSSL_OBJ_nid2ln(nid); const char* nistName = wolfSSL_EC_curve_nid2nist(nid); char* num; wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_mul input q", q); num = wolfSSL_BN_bn2hex(n); WOLFSSL_MSG_EX("\tn = %s", num); XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL); num = wolfSSL_BN_bn2hex(m); WOLFSSL_MSG_EX("\tm = %s", num); XFREE(num, NULL, DYNAMIC_TYPE_OPENSSL); if (curve != NULL) WOLFSSL_MSG_EX("curve name: %s", curve); if (nistName != NULL) WOLFSSL_MSG_EX("nist curve name: %s", nistName); } #endif if (ret == 1) { mp_int* ni = (n != NULL) ? (mp_int*)n->internal : NULL; ecc_point* qi = (q != NULL) ? (ecc_point*)q->internal : NULL; mp_int* mi = (m != NULL) ? (mp_int*)m->internal : NULL; /* Perform multiplication with wolfCrypt objects. */ ret = wolfssl_ec_point_mul(group->curve_idx, (ecc_point*)r->internal, ni, qi, mi); } /* Only on success is the internal point guaranteed to be set. */ if (r != NULL) { r->inSet = (ret == 1); } /* Copy internal EC point values out to external EC point. */ if ((ret == 1) && (ec_point_external_set(r) != 1)) { WOLFSSL_MSG("ec_point_external_set error"); ret = 0; } #ifdef DEBUG_WOLFSSL if (ret == 1) { wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_mul result", r); } #endif return ret; } #endif /* !WOLFSSL_ATECC508A && !WOLFSSL_ATECC608A && !HAVE_SELFTEST && * !WOLFSSL_SP_MATH */ /* Invert the point on the curve. * (x, y) -> (x, -y) = (x, (prime - y) % prime) * * @param [in] curveIdx Index of curve in ecc_set. * @param [in, out] point EC point to invert. * @return 1 on success. * @return 0 on error. */ static int wolfssl_ec_point_invert(int curveIdx, ecc_point* point) { int ret = 1; #ifdef WOLFSSL_SMALL_STACK mp_int* prime = NULL; #else mp_int prime[1]; #endif #ifdef WOLFSSL_SMALL_STACK /* Allocate memory for an MP int to hold the prime of the curve. */ prime = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT); if (prime == NULL) { ret = 0; } #endif /* Initialize MP int. */ if ((ret == 1) && (mp_init(prime) != MP_OKAY)) { WOLFSSL_MSG("mp_init_multi error"); ret = 0; } /* Read the curve parameter: prime. */ if ((ret == 1) && (mp_read_radix(prime, ecc_sets[curveIdx].prime, MP_RADIX_HEX) != MP_OKAY)) { WOLFSSL_MSG("mp_read_radix prime error"); ret = 0; } /* y = (prime - y) mod prime. */ if ((ret == 1) && (!mp_iszero(point->y)) && (mp_sub(prime, point->y, point->y) != MP_OKAY)) { WOLFSSL_MSG("mp_sub error"); ret = 0; } /* Dispose of memory associated with MP. */ mp_free(prime); #ifdef WOLFSSL_SMALL_STACK /* Dispose of dynamically allocated temporaries. */ XFREE(prime, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } /* Invert the point on the curve. * (x, y) -> (x, -y) = (x, (prime - y) % prime) * * @param [in] group EC group. * @param [in, out] point EC point to invert. * @param [in] ctx Context to use for BN operations. Unused. * @return 1 on success. * @return 0 on error. */ int wolfSSL_EC_POINT_invert(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *point, WOLFSSL_BN_CTX *ctx) { int ret = 1; /* No BN operations performed. */ (void)ctx; WOLFSSL_ENTER("wolfSSL_EC_POINT_invert"); /* Validate parameters. */ if ((group == NULL) || (point == NULL) || (point->internal == NULL)) { ret = 0; } /* Ensure internal representation of point is setup. */ if ((ret == 1) && (ec_point_setup(point) != 1)) { ret = 0; } #ifdef DEBUG_WOLFSSL if (ret == 1) { int nid = wolfSSL_EC_GROUP_get_curve_name(group); const char* curve = wolfSSL_OBJ_nid2ln(nid); const char* nistName = wolfSSL_EC_curve_nid2nist(nid); wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_invert input", point); if (curve != NULL) WOLFSSL_MSG_EX("curve name: %s", curve); if (nistName != NULL) WOLFSSL_MSG_EX("nist curve name: %s", nistName); } #endif if (ret == 1 && !wolfSSL_BN_is_one(point->Z)) { #if !defined(WOLFSSL_SP_MATH) && !defined(WOLF_CRYPTO_CB_ONLY_ECC) if (ec_point_convert_to_affine(group, point) != 0) ret = 0; #else WOLFSSL_MSG("wolfSSL_EC_POINT_invert called on non-affine point"); ret = 0; #endif } if (ret == 1) { /* Perform inversion using wolfCrypt objects. */ ret = wolfssl_ec_point_invert(group->curve_idx, (ecc_point*)point->internal); } /* Set the external EC point representation based on internal. */ if ((ret == 1) && (ec_point_external_set(point) != 1)) { WOLFSSL_MSG("ec_point_external_set error"); ret = 0; } #ifdef DEBUG_WOLFSSL if (ret == 1) { wolfSSL_EC_POINT_dump("wolfSSL_EC_POINT_invert result", point); } #endif return ret; } #ifdef WOLFSSL_EC_POINT_CMP_JACOBIAN /* Compare two points on a the same curve. * * (Ax, Ay, Az) => (Ax / (Az ^ 2), Ay / (Az ^ 3)) * (Bx, By, Bz) => (Bx / (Bz ^ 2), By / (Bz ^ 3)) * When equal: * (Ax / (Az ^ 2), Ay / (Az ^ 3)) = (Bx / (Bz ^ 2), By / (Bz ^ 3)) * => (Ax * (Bz ^ 2), Ay * (Bz ^ 3)) = (Bx * (Az ^ 2), By * (Az ^ 3)) * * @param [in] group EC group. * @param [in] a EC point to compare. * @param [in] b EC point to compare. * @return 0 when equal. * @return 1 when different. * @return -1 on error. */ static int ec_point_cmp_jacobian(const WOLFSSL_EC_GROUP* group, const WOLFSSL_EC_POINT *a, const WOLFSSL_EC_POINT *b, WOLFSSL_BN_CTX *ctx) { int ret = 0; BIGNUM* at = BN_new(); BIGNUM* bt = BN_new(); BIGNUM* az = BN_new(); BIGNUM* bz = BN_new(); BIGNUM* mod = BN_new(); /* Check that the big numbers were allocated. */ if ((at == NULL) || (bt == NULL) || (az == NULL) || (bz == NULL) || (mod == NULL)) { ret = WOLFSSL_FATAL_ERROR; } /* Get the modulus for the curve. */ if ((ret == 0) && (BN_hex2bn(&mod, ecc_sets[group->curve_idx].prime) != 1)) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { /* bt = Bx * (Az ^ 2). When Az is one then just copy. */ if (BN_is_one(a->Z)) { if (BN_copy(bt, b->X) == NULL) { ret = WOLFSSL_FATAL_ERROR; } } /* az = Az ^ 2 */ else if ((BN_mod_mul(az, a->Z, a->Z, mod, ctx) != 1)) { ret = WOLFSSL_FATAL_ERROR; } /* bt = Bx * az = Bx * (Az ^ 2) */ else if (BN_mod_mul(bt, b->X, az, mod, ctx) != 1) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* at = Ax * (Bz ^ 2). When Bz is one then just copy. */ if (BN_is_one(b->Z)) { if (BN_copy(at, a->X) == NULL) { ret = WOLFSSL_FATAL_ERROR; } } /* bz = Bz ^ 2 */ else if (BN_mod_mul(bz, b->Z, b->Z, mod, ctx) != 1) { ret = WOLFSSL_FATAL_ERROR; } /* at = Ax * bz = Ax * (Bz ^ 2) */ else if (BN_mod_mul(at, a->X, bz, mod, ctx) != 1) { ret = WOLFSSL_FATAL_ERROR; } } /* Compare x-ordinates. */ if ((ret == 0) && (BN_cmp(at, bt) != 0)) { ret = 1; } if (ret == 0) { /* bt = By * (Az ^ 3). When Az is one then just copy. */ if (BN_is_one(a->Z)) { if (BN_copy(bt, b->Y) == NULL) { ret = WOLFSSL_FATAL_ERROR; } } /* az = az * Az = Az ^ 3 */ else if ((BN_mod_mul(az, az, a->Z, mod, ctx) != 1)) { ret = WOLFSSL_FATAL_ERROR; } /* bt = By * az = By * (Az ^ 3) */ else if (BN_mod_mul(bt, b->Y, az, mod, ctx) != 1) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* at = Ay * (Bz ^ 3). When Bz is one then just copy. */ if (BN_is_one(b->Z)) { if (BN_copy(at, a->Y) == NULL) { ret = WOLFSSL_FATAL_ERROR; } } /* bz = bz * Bz = Bz ^ 3 */ else if (BN_mod_mul(bz, bz, b->Z, mod, ctx) != 1) { ret = WOLFSSL_FATAL_ERROR; } /* at = Ay * bz = Ay * (Bz ^ 3) */ else if (BN_mod_mul(at, a->Y, bz, mod, ctx) != 1) { ret = WOLFSSL_FATAL_ERROR; } } /* Compare y-ordinates. */ if ((ret == 0) && (BN_cmp(at, bt) != 0)) { ret = 1; } BN_free(mod); BN_free(bz); BN_free(az); BN_free(bt); BN_free(at); return ret; } #endif /* Compare two points on a the same curve. * * Return code compliant with OpenSSL. * * @param [in] group EC group. * @param [in] a EC point to compare. * @param [in] b EC point to compare. * @param [in] ctx Context to use for BN operations. Unused. * @return 0 when equal. * @return 1 when different. * @return -1 on error. */ int wolfSSL_EC_POINT_cmp(const WOLFSSL_EC_GROUP *group, const WOLFSSL_EC_POINT *a, const WOLFSSL_EC_POINT *b, WOLFSSL_BN_CTX *ctx) { int ret = 0; WOLFSSL_ENTER("wolfSSL_EC_POINT_cmp"); /* Validate parameters. */ if ((group == NULL) || (a == NULL) || (a->internal == NULL) || (b == NULL) || (b->internal == NULL)) { WOLFSSL_MSG("wolfSSL_EC_POINT_cmp Bad arguments"); ret = WOLFSSL_FATAL_ERROR; } if (ret != -1) { #ifdef WOLFSSL_EC_POINT_CMP_JACOBIAN /* If same Z ordinate then no need to convert to affine. */ if (BN_cmp(a->Z, b->Z) == 0) { /* Compare */ ret = ((BN_cmp(a->X, b->X) != 0) || (BN_cmp(a->Y, b->Y) != 0)); } else { ret = ec_point_cmp_jacobian(group, a, b, ctx); } #else /* No BN operations performed. */ (void)ctx; ret = (wc_ecc_cmp_point((ecc_point*)a->internal, (ecc_point*)b->internal) != MP_EQ); #endif } return ret; } /* Copy EC point. * * @param [out] dest EC point to copy into. * @param [in] src EC point to copy. * @return 1 on success. * @return 0 on error. */ int wolfSSL_EC_POINT_copy(WOLFSSL_EC_POINT *dest, const WOLFSSL_EC_POINT *src) { int ret = 1; WOLFSSL_ENTER("wolfSSL_EC_POINT_copy"); /* Validate parameters. */ if ((dest == NULL) || (src == NULL)) { ret = 0; } /* Ensure internal EC point of src is setup. */ if ((ret == 1) && (ec_point_setup(src) != 1)) { ret = 0; } /* Copy internal EC points. */ if ((ret == 1) && (wc_ecc_copy_point((ecc_point*)src->internal, (ecc_point*)dest->internal) != MP_OKAY)) { ret = 0; } if (ret == 1) { /* Destinatation internal point is set. */ dest->inSet = 1; /* Set the external EC point of dest based on internal. */ if (ec_point_external_set(dest) != 1) { ret = 0; } } return ret; } /* Checks whether point is at infinity. * * Return code compliant with OpenSSL. * * @param [in] group EC group. * @param [in] point EC point to check. * @return 1 when at infinity. * @return 0 when not at infinity. */ int wolfSSL_EC_POINT_is_at_infinity(const WOLFSSL_EC_GROUP *group, const WOLFSSL_EC_POINT *point) { int ret = 1; WOLFSSL_ENTER("wolfSSL_EC_POINT_is_at_infinity"); /* Validate parameters. */ if ((group == NULL) || (point == NULL) || (point->internal == NULL)) { WOLFSSL_MSG("wolfSSL_EC_POINT_is_at_infinity NULL error"); ret = 0; } /* Ensure internal EC point is setup. */ if ((ret == 1) && (ec_point_setup(point) != 1)) { ret = 0; } if (ret == 1) { #ifndef WOLF_CRYPTO_CB_ONLY_ECC /* Check for infinity. */ ret = wc_ecc_point_is_at_infinity((ecc_point*)point->internal); if (ret < 0) { WOLFSSL_MSG("ecc_point_is_at_infinity failure"); /* Error return is 0 by OpenSSL. */ ret = 0; } #else WOLFSSL_MSG("ecc_point_is_at_infinitiy compiled out"); ret = 0; #endif } return ret; } #endif /* OPENSSL_EXTRA */ /* End EC_POINT */ /* Start EC_KEY */ #ifdef OPENSSL_EXTRA /* * EC key constructor/deconstructor APIs */ /* Allocate a new EC key. * * Not OpenSSL API. * * @param [in] heap Heap hint for dynamic memory allocation. * @param [in] devId Device identifier value. * @return New, allocated EC key on success. * @return NULL on error. */ WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new_ex(void* heap, int devId) { WOLFSSL_EC_KEY *key = NULL; int err = 0; WOLFSSL_ENTER("wolfSSL_EC_KEY_new"); /* Allocate memory for EC key. */ key = (WOLFSSL_EC_KEY*)XMALLOC(sizeof(WOLFSSL_EC_KEY), heap, DYNAMIC_TYPE_ECC); if (key == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_KEY failure"); err = 1; } if (!err) { /* Reset all fields to 0. */ XMEMSET(key, 0, sizeof(WOLFSSL_EC_KEY)); /* Cache heap hint. */ key->heap = heap; /* Initialize fields to defaults. */ key->form = POINT_CONVERSION_UNCOMPRESSED; /* Initialize reference count. */ wolfSSL_RefInit(&key->ref, &err); #ifdef WOLFSSL_REFCNT_ERROR_RETURN } if (!err) { #endif /* Allocate memory for internal EC key representation. */ key->internal = (ecc_key*)XMALLOC(sizeof(ecc_key), heap, DYNAMIC_TYPE_ECC); if (key->internal == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc ecc key failure"); err = 1; } } if (!err) { /* Initialize wolfCrypt EC key. */ if (wc_ecc_init_ex((ecc_key*)key->internal, heap, devId) != 0) { WOLFSSL_MSG("wolfSSL_EC_KEY_new init ecc key failure"); err = 1; } } if (!err) { /* Group unknown at creation */ key->group = wolfSSL_EC_GROUP_new_by_curve_name(NID_undef); if (key->group == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_GROUP failure"); err = 1; } } if (!err) { /* Allocate a point as public key. */ key->pub_key = wolfSSL_EC_POINT_new(key->group); if (key->pub_key == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_new failure"); err = 1; } } if (!err) { /* Allocate a BN as private key. */ key->priv_key = wolfSSL_BN_new(); if (key->priv_key == NULL) { WOLFSSL_MSG("wolfSSL_BN_new failure"); err = 1; } } if (err) { /* Dispose of EC key on error. */ wolfSSL_EC_KEY_free(key); key = NULL; } /* Return new EC key object. */ return key; } /* Allocate a new EC key. * * @return New, allocated EC key on success. * @return NULL on error. */ WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new(void) { return wolfSSL_EC_KEY_new_ex(NULL, INVALID_DEVID); } /* Create new EC key with the group having the specified numeric ID. * * @param [in] nid Numeric ID. * @return New, allocated EC key on success. * @return NULL on error. */ WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new_by_curve_name(int nid) { WOLFSSL_EC_KEY *key; int err = 0; WOLFSSL_ENTER("wolfSSL_EC_KEY_new_by_curve_name"); /* Allocate empty, EC key. */ key = wolfSSL_EC_KEY_new(); if (key == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new failure"); err = 1; } if (!err) { /* Set group to be nid. */ ec_group_set_nid(key->group, nid); if (key->group->curve_idx == -1) { wolfSSL_EC_KEY_free(key); key = NULL; } } /* Return the new EC key object. */ return key; } /* Dispose of the EC key and allocated data. * * Cannot use key after this call. * * @param [in] key EC key to free. */ void wolfSSL_EC_KEY_free(WOLFSSL_EC_KEY *key) { int doFree = 0; int err; (void)err; WOLFSSL_ENTER("wolfSSL_EC_KEY_free"); if (key != NULL) { void* heap = key->heap; /* Decrement reference count. */ wolfSSL_RefDec(&key->ref, &doFree, &err); if (doFree) { /* Dispose of allocated reference counting data. */ wolfSSL_RefFree(&key->ref); /* Dispose of private key. */ wolfSSL_BN_free(key->priv_key); wolfSSL_EC_POINT_free(key->pub_key); wolfSSL_EC_GROUP_free(key->group); if (key->internal != NULL) { /* Dispose of wolfCrypt representation of EC key. */ wc_ecc_free((ecc_key*)key->internal); XFREE(key->internal, heap, DYNAMIC_TYPE_ECC); } /* Set back to NULLs for safety. */ ForceZero(key, sizeof(*key)); /* Dispose of the memory associated with the EC key. */ XFREE(key, heap, DYNAMIC_TYPE_ECC); (void)heap; } } } /* Increments ref count of EC key. * * @param [in, out] key EC key. * @return 1 on success * @return 0 on error */ int wolfSSL_EC_KEY_up_ref(WOLFSSL_EC_KEY* key) { int err = 1; if (key != NULL) { wolfSSL_RefInc(&key->ref, &err); } return !err; } #ifndef NO_CERTS #if defined(OPENSSL_ALL) /* Copy the internal, wolfCrypt EC key. * * @param [in, out] dst Destination wolfCrypt EC key. * @param [in] src Source wolfCrypt EC key. * @return 0 on success. * @return Negative on error. */ static int wolfssl_ec_key_int_copy(ecc_key* dst, const ecc_key* src) { int ret; /* Copy public key. */ #if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0) ret = wc_ecc_copy_point(&src->pubkey, &dst->pubkey); #else ret = wc_ecc_copy_point((ecc_point*)&src->pubkey, &dst->pubkey); #endif if (ret != MP_OKAY) { WOLFSSL_MSG("wc_ecc_copy_point error"); } if (ret == 0) { /* Copy private key. */ ret = mp_copy(wc_ecc_key_get_priv((ecc_key*)src), wc_ecc_key_get_priv(dst)); if (ret != MP_OKAY) { WOLFSSL_MSG("mp_copy error"); } } if (ret == 0) { /* Copy domain parameters. */ if (src->dp) { ret = wc_ecc_set_curve(dst, 0, src->dp->id); if (ret != 0) { WOLFSSL_MSG("wc_ecc_set_curve error"); } } } if (ret == 0) { /* Copy the other components. */ dst->type = src->type; dst->idx = src->idx; dst->state = src->state; dst->flags = src->flags; } return ret; } /* Copies ecc_key into new WOLFSSL_EC_KEY object * * Copies the internal representation as well. * * @param [in] src EC key to duplicate. * * @return EC key on success. * @return NULL on error. */ WOLFSSL_EC_KEY *wolfSSL_EC_KEY_dup(const WOLFSSL_EC_KEY *src) { int err = 0; WOLFSSL_EC_KEY* newKey = NULL; WOLFSSL_ENTER("wolfSSL_EC_KEY_dup"); /* Validate EC key. */ if ((src == NULL) || (src->internal == NULL) || (src->group == NULL) || (src->pub_key == NULL) || (src->priv_key == NULL)) { WOLFSSL_MSG("src NULL error"); err = 1; } if (!err) { /* Create a new, empty key. */ newKey = wolfSSL_EC_KEY_new(); if (newKey == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_new error"); err = 1; } } if (!err) { /* Copy internal EC key. */ if (wolfssl_ec_key_int_copy((ecc_key*)newKey->internal, (ecc_key*)src->internal) != 0) { WOLFSSL_MSG("Copying internal EC key error"); err = 1; } } if (!err) { /* Internal key set. */ newKey->inSet = 1; /* Copy group */ err = wolfssl_ec_group_copy(newKey->group, src->group); } /* Copy public key. */ if ((!err) && (wolfSSL_EC_POINT_copy(newKey->pub_key, src->pub_key) != 1)) { WOLFSSL_MSG("Copying EC public key error"); err = 1; } if (!err) { /* Set header size of private key in PKCS#8 format.*/ newKey->pkcs8HeaderSz = src->pkcs8HeaderSz; /* Copy private key. */ if (wolfSSL_BN_copy(newKey->priv_key, src->priv_key) == NULL) { WOLFSSL_MSG("Copying EC private key error"); err = 1; } } if (err) { /* Dispose of EC key on error. */ wolfSSL_EC_KEY_free(newKey); newKey = NULL; } /* Return the new EC key. */ return newKey; } #endif /* OPENSSL_ALL */ #endif /* !NO_CERTS */ /* * EC key to/from bin/octet APIs */ /* Create an EC key from the octet encoded public key. * * Behaviour checked against OpenSSL. * * @param [out] key Reference to EC key. Must pass in a valid object with * group set. * @param [in, out] in On in, reference to buffer that contains data. * On out, reference to buffer after public key data. * @param [in] len Length of data in the buffer. Must be length of the * encoded public key. * @return Allocated EC key on success. * @return NULL on error. */ WOLFSSL_EC_KEY *wolfSSL_o2i_ECPublicKey(WOLFSSL_EC_KEY **key, const unsigned char **in, long len) { int err = 0; WOLFSSL_EC_KEY* ret = NULL; WOLFSSL_ENTER("wolfSSL_o2i_ECPublicKey"); /* Validate parameters: EC group needed to perform import. */ if ((key == NULL) || (*key == NULL) || ((*key)->group == NULL) || (in == NULL) || (*in == NULL) || (len <= 0)) { WOLFSSL_MSG("wolfSSL_o2i_ECPublicKey Bad arguments"); err = 1; } if (!err) { /* Return the EC key object passed in. */ ret = *key; /* Import point into public key field. */ if (wolfSSL_EC_POINT_oct2point(ret->group, ret->pub_key, *in, (size_t)len, NULL) != 1) { WOLFSSL_MSG("wolfSSL_EC_POINT_oct2point error"); ret = NULL; err = 1; } } if (!err) { /* Assumed length passed in is all the data. */ *in += len; } return ret; } /* Puts the encoded public key into out. * * Passing in NULL for out returns length only. * Passing in NULL for *out has buffer allocated, encoded into and passed back. * Passing non-NULL for *out has it encoded into and pointer moved past. * * @param [in] key EC key to encode. * @param [in, out] out Reference to buffer to encode into. May be NULL or * point to NULL. * @return Length of encoding in bytes on success. * @return 0 on error. */ int wolfSSL_i2o_ECPublicKey(const WOLFSSL_EC_KEY *key, unsigned char **out) { int ret = 1; size_t len = 0; int form = POINT_CONVERSION_UNCOMPRESSED; WOLFSSL_ENTER("wolfSSL_i2o_ECPublicKey"); /* Validate parameters. */ if (key == NULL) { WOLFSSL_MSG("wolfSSL_i2o_ECPublicKey Bad arguments"); ret = 0; } /* Ensure the external key data is set from the internal EC key. */ if ((ret == 1) && (!key->exSet) && (SetECKeyExternal((WOLFSSL_EC_KEY*) key) != 1)) { WOLFSSL_MSG("SetECKeyExternal failure"); ret = 0; } if (ret == 1) { #ifdef HAVE_COMP_KEY /* Default to compressed form if not set */ form = (key->form != POINT_CONVERSION_UNCOMPRESSED) ? POINT_CONVERSION_UNCOMPRESSED : POINT_CONVERSION_COMPRESSED; #endif /* Calculate length of point encoding. */ len = wolfSSL_EC_POINT_point2oct(key->group, key->pub_key, form, NULL, 0, NULL); } /* Encode if length calculated and pointer supplied to update. */ if ((ret == 1) && (len != 0) && (out != NULL)) { unsigned char *tmp = NULL; /* Allocate buffer for encoding if no buffer supplied. */ if (*out == NULL) { tmp = (unsigned char*)XMALLOC(len, NULL, DYNAMIC_TYPE_OPENSSL); if (tmp == NULL) { WOLFSSL_MSG("malloc failed"); ret = 0; } } else { /* Get buffer to encode into. */ tmp = *out; } /* Encode public key into buffer. */ if ((ret == 1) && (wolfSSL_EC_POINT_point2oct(key->group, key->pub_key, form, tmp, len, NULL) == 0)) { ret = 0; } if (ret == 1) { /* Return buffer if allocated. */ if (*out == NULL) { *out = tmp; } else { /* Step over encoded data if not allocated. */ *out += len; } } else if (*out == NULL) { /* Dispose of allocated buffer. */ XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL); } } if (ret == 1) { /* Return length on success. */ ret = (int)len; } return ret; } #ifdef HAVE_ECC_KEY_IMPORT /* Create a EC key from the DER encoded private key. * * @param [out] key Reference to EC key. * @param [in, out] in On in, reference to buffer that contains DER data. * On out, reference to buffer after private key data. * @param [in] long Length of data in the buffer. May be larger than the * length of the encoded private key. * @return Allocated EC key on success. * @return NULL on error. */ WOLFSSL_EC_KEY* wolfSSL_d2i_ECPrivateKey(WOLFSSL_EC_KEY** key, const unsigned char** in, long len) { int err = 0; word32 idx = 0; WOLFSSL_EC_KEY* ret = NULL; WOLFSSL_ENTER("wolfSSL_d2i_ECPrivateKey"); /* Validate parameters. */ if ((in == NULL) || (*in == NULL) || (len <= 0)) { WOLFSSL_MSG("wolfSSL_d2i_ECPrivateKey Bad arguments"); err = 1; } /* Create a new, empty EC key. */ if ((!err) && ((ret = wolfSSL_EC_KEY_new()) == NULL)) { WOLFSSL_MSG("wolfSSL_EC_KEY_new error"); err = 1; } /* Decode the private key DER data into internal EC key. */ if ((!err) && (wc_EccPrivateKeyDecode(*in, &idx, (ecc_key*)ret->internal, (word32)len) != 0)) { WOLFSSL_MSG("wc_EccPrivateKeyDecode error"); err = 1; } if (!err) { /* Internal EC key setup. */ ret->inSet = 1; /* Set the EC key from the internal values. */ if (SetECKeyExternal(ret) != 1) { WOLFSSL_MSG("SetECKeyExternal error"); err = 1; } } if (!err) { /* Move buffer on to next byte after data used. */ *in += idx; if (key) { /* Return new EC key through reference. */ *key = ret; } } if (err && (ret != NULL)) { /* Dispose of allocated EC key. */ wolfSSL_EC_KEY_free(ret); ret = NULL; } return ret; } #endif /* HAVE_ECC_KEY_IMPORT */ /* Enecode the private key of the EC key into the buffer as DER. * * @param [in] key EC key to encode. * @param [in, out] out On in, reference to buffer to place DER encoding into. * On out, reference to buffer adter the encoding. * May be NULL. * @return Length of DER encoding on success. * @return 0 on error. */ int wolfSSL_i2d_ECPrivateKey(const WOLFSSL_EC_KEY *key, unsigned char **out) { int err = 0; word32 len = 0; WOLFSSL_ENTER("wolfSSL_i2d_ECPrivateKey"); /* Validate parameters. */ if (key == NULL) { WOLFSSL_MSG("wolfSSL_i2d_ECPrivateKey Bad arguments"); err = 1; } /* Update the internal EC key if not set. */ if ((!err) && (!key->inSet) && (SetECKeyInternal((WOLFSSL_EC_KEY*)key) != 1)) { WOLFSSL_MSG("SetECKeyInternal error"); err = 1; } /* Calculate the length of the private key DER encoding using internal EC * key. */ if ((!err) && ((int)(len = (word32)wc_EccKeyDerSize((ecc_key*)key->internal, 0)) <= 0)) { WOLFSSL_MSG("wc_EccKeyDerSize error"); err = 1; } /* Only return length when out is NULL. */ if ((!err) && (out != NULL)) { unsigned char* buf = NULL; /* Must have a buffer to encode into. */ if (*out == NULL) { /* Allocate a new buffer of appropriate length. */ buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { /* Error and return 0. */ err = 1; len = 0; } else { /* Return the allocated buffer. */ *out = buf; } } /* Encode the internal EC key as a private key in DER format. */ if ((!err) && wc_EccPrivateKeyToDer((ecc_key*)key->internal, *out, len) < 0) { WOLFSSL_MSG("wc_EccPrivateKeyToDer error"); err = 1; } else if (buf != *out) { /* Move the reference to byte past encoded private key. */ *out += len; } /* Dispose of any allocated buffer on error. */ if (err && (*out == buf)) { XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER); *out = NULL; } } return (int)len; } /* Load private key into EC key from DER encoding. * * Not an OpenSSL compatibility API. * * @param [in, out] key EC key to put private key values into. * @param [in] derBuf Buffer holding DER encoding. * @param [in] derSz Size of DER encoding in bytes. * @return 1 on success. * @return -1 on error. */ int wolfSSL_EC_KEY_LoadDer(WOLFSSL_EC_KEY* key, const unsigned char* derBuf, int derSz) { return wolfSSL_EC_KEY_LoadDer_ex(key, derBuf, derSz, WOLFSSL_EC_KEY_LOAD_PRIVATE); } /* Load private/public key into EC key from DER encoding. * * Not an OpenSSL compatibility API. * * @param [in, out] key EC key to put private/public key values into. * @param [in] derBuf Buffer holding DER encoding. * @param [in] derSz Size of DER encoding in bytes. * @param [in] opt Key type option. Valid values: * WOLFSSL_EC_KEY_LOAD_PRIVATE, * WOLFSSL_EC_KEY_LOAD_PUBLIC. * @return 1 on success. * @return -1 on error. */ int wolfSSL_EC_KEY_LoadDer_ex(WOLFSSL_EC_KEY* key, const unsigned char* derBuf, int derSz, int opt) { int res = 1; int ret; word32 idx = 0; word32 algId; WOLFSSL_ENTER("wolfSSL_EC_KEY_LoadDer"); /* Validate parameters. */ if ((key == NULL) || (key->internal == NULL) || (derBuf == NULL) || (derSz <= 0)) { WOLFSSL_MSG("Bad function arguments"); res = WOLFSSL_FATAL_ERROR; } if ((res == 1) && (opt != WOLFSSL_EC_KEY_LOAD_PRIVATE) && (opt != WOLFSSL_EC_KEY_LOAD_PUBLIC)) { res = WOLFSSL_FATAL_ERROR; } if (res == 1) { /* Assume no PKCS#8 header. */ key->pkcs8HeaderSz = 0; /* Check if input buffer has PKCS8 header. In the case that it does not * have a PKCS8 header then do not error out. */ if ((ret = ToTraditionalInline_ex((const byte*)derBuf, &idx, (word32)derSz, &algId)) > 0) { WOLFSSL_MSG("Found PKCS8 header"); key->pkcs8HeaderSz = (word16)idx; res = 1; } /* Error out on parsing error. */ else if (ret != WC_NO_ERR_TRACE(ASN_PARSE_E)) { WOLFSSL_MSG("Unexpected error with trying to remove PKCS8 header"); res = WOLFSSL_FATAL_ERROR; } } if (res == 1) { /* Load into internal EC key based on key type option. */ if (opt == WOLFSSL_EC_KEY_LOAD_PRIVATE) { ret = wc_EccPrivateKeyDecode(derBuf, &idx, (ecc_key*)key->internal, (word32)derSz); } else { ret = wc_EccPublicKeyDecode(derBuf, &idx, (ecc_key*)key->internal, (word32)derSz); if (ret < 0) { ecc_key *tmp = (ecc_key*)XMALLOC(sizeof(ecc_key), ((ecc_key*)key->internal)->heap, DYNAMIC_TYPE_ECC); if (tmp == NULL) { ret = WOLFSSL_FATAL_ERROR; } else { /* We now try again as x.963 [point type][x][opt y]. */ ret = wc_ecc_init_ex(tmp, ((ecc_key*)key->internal)->heap, INVALID_DEVID); if (ret == 0) { ret = wc_ecc_import_x963(derBuf, (word32)derSz, tmp); if (ret == 0) { /* Take ownership of new key - set tmp to the old * key which will then be freed below. */ ecc_key *old = (ecc_key *)key->internal; key->internal = tmp; tmp = old; idx = (word32)derSz; } wc_ecc_free(tmp); } XFREE(tmp, ((ecc_key*)key->internal)->heap, DYNAMIC_TYPE_ECC); } } } if (ret < 0) { /* Error returned from wolfSSL. */ if (opt == WOLFSSL_EC_KEY_LOAD_PRIVATE) { WOLFSSL_MSG("wc_EccPrivateKeyDecode failed"); } else { WOLFSSL_MSG("wc_EccPublicKeyDecode failed"); } res = WOLFSSL_FATAL_ERROR; } /* Internal key updated - update whether it is a valid key. */ key->inSet = (res == 1); } /* Set the external EC key based on value in internal. */ if ((res == 1) && (SetECKeyExternal(key) != 1)) { WOLFSSL_MSG("SetECKeyExternal failed"); res = WOLFSSL_FATAL_ERROR; } return res; } #ifndef NO_BIO WOLFSSL_EC_KEY *wolfSSL_d2i_EC_PUBKEY_bio(WOLFSSL_BIO *bio, WOLFSSL_EC_KEY **out) { char* data = NULL; int dataSz = 0; int memAlloced = 0; WOLFSSL_EC_KEY* ec = NULL; int err = 0; WOLFSSL_ENTER("wolfSSL_d2i_EC_PUBKEY_bio"); if (bio == NULL) return NULL; if (err == 0 && wolfssl_read_bio(bio, &data, &dataSz, &memAlloced) != 0) { WOLFSSL_ERROR_MSG("wolfssl_read_bio failed"); err = 1; } if (err == 0 && (ec = wolfSSL_EC_KEY_new()) == NULL) { WOLFSSL_ERROR_MSG("wolfSSL_EC_KEY_new failed"); err = 1; } /* Load the EC key with the public key from the DER encoding. */ if (err == 0 && wolfSSL_EC_KEY_LoadDer_ex(ec, (const unsigned char*)data, dataSz, WOLFSSL_EC_KEY_LOAD_PUBLIC) != 1) { WOLFSSL_ERROR_MSG("wolfSSL_EC_KEY_LoadDer_ex failed"); err = 1; } if (memAlloced) XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (err) { /* on error */ wolfSSL_EC_KEY_free(ec); ec = NULL; } else { /* on success */ if (out != NULL) *out = ec; } return ec; } #endif /* !NO_BIO */ /* * EC key PEM APIs */ #ifdef HAVE_ECC_KEY_EXPORT #if defined(WOLFSSL_KEY_GEN) && (!defined(NO_FILESYSTEM) || !defined(NO_BIO)) /* Encode the EC public key as DER. * * @param [in] key EC key to encode. * @param [out] der Pointer through which buffer is returned. * @param [in] heap Heap hint. * @return Size of encoding on success. * @return 0 on error. */ static int wolfssl_ec_key_to_pubkey_der(WOLFSSL_EC_KEY* key, unsigned char** der, void* heap) { int sz; unsigned char* buf = NULL; (void)heap; /* Calculate encoded size to allocate. */ sz = wc_EccPublicKeyDerSize((ecc_key*)key->internal, 1); if (sz <= 0) { WOLFSSL_MSG("wc_EccPublicKeyDerSize failed"); sz = 0; } if (sz > 0) { /* Allocate memory to hold encoding. */ buf = (byte*)XMALLOC((size_t)sz, heap, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { WOLFSSL_MSG("malloc failed"); sz = 0; } } if (sz > 0) { /* Encode public key to DER using wolfSSL. */ sz = wc_EccPublicKeyToDer((ecc_key*)key->internal, buf, (word32)sz, 1); if (sz < 0) { WOLFSSL_MSG("wc_EccPublicKeyToDer failed"); sz = 0; } } /* Return buffer on success. */ if (sz > 0) { *der = buf; } else { /* Dispose of any dynamically allocated data not returned. */ XFREE(buf, heap, DYNAMIC_TYPE_TMP_BUFFER); } return sz; } #endif #if !defined(NO_FILESYSTEM) && defined(WOLFSSL_KEY_GEN) /* * Return code compliant with OpenSSL. * * @param [in] fp File pointer to write PEM encoding to. * @param [in] key EC key to encode and write. * @return 1 on success. * @return 0 on error. */ int wolfSSL_PEM_write_EC_PUBKEY(XFILE fp, WOLFSSL_EC_KEY* key) { int ret = 1; unsigned char* derBuf = NULL; int derSz = 0; WOLFSSL_ENTER("wolfSSL_PEM_write_EC_PUBKEY"); /* Validate parameters. */ if ((fp == XBADFILE) || (key == NULL)) { WOLFSSL_MSG("Bad argument."); return 0; } /* Encode public key in EC key as DER. */ derSz = wolfssl_ec_key_to_pubkey_der(key, &derBuf, key->heap); if (derSz == 0) { ret = 0; } /* Write out to file the PEM encoding of the DER. */ if ((ret == 1) && (der_write_to_file_as_pem(derBuf, derSz, fp, ECC_PUBLICKEY_TYPE, key->heap) != 1)) { ret = 0; } /* Dispose of any dynamically allocated data. */ XFREE(derBuf, key->heap, DYNAMIC_TYPE_TMP_BUFFER); WOLFSSL_LEAVE("wolfSSL_PEM_write_EC_PUBKEY", ret); return ret; } #endif #endif #ifndef NO_BIO /* Read a PEM encoded EC public key from a BIO. * * @param [in] bio BIO to read EC public key from. * @param [out] out Pointer to return EC key object through. May be NULL. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM * encrypted. * @return New EC key object on success. * @return NULL on error. */ WOLFSSL_EC_KEY* wolfSSL_PEM_read_bio_EC_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY** out, wc_pem_password_cb* cb, void *pass) { int err = 0; WOLFSSL_EC_KEY* ec = NULL; DerBuffer* der = NULL; int keyFormat = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_EC_PUBKEY"); /* Validate parameters. */ if (bio == NULL) { err = 1; } if (!err) { /* Create an empty EC key. */ ec = wolfSSL_EC_KEY_new(); if (ec == NULL) { err = 1; } } /* Read a PEM key in to a new DER buffer. */ if ((!err) && (pem_read_bio_key(bio, cb, pass, ECC_PUBLICKEY_TYPE, &keyFormat, &der) <= 0)) { err = 1; } /* Load the EC key with the public key from the DER encoding. */ if ((!err) && (wolfSSL_EC_KEY_LoadDer_ex(ec, der->buffer, (int)der->length, WOLFSSL_EC_KEY_LOAD_PUBLIC) != 1)) { WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_EC_KEY"); err = 1; } /* Dispose of dynamically allocated data not needed anymore. */ FreeDer(&der); if (err) { wolfSSL_EC_KEY_free(ec); ec = NULL; } /* Return EC key through out if required. */ if ((out != NULL) && (ec != NULL)) { *out = ec; } return ec; } /* Read a PEM encoded EC private key from a BIO. * * @param [in] bio BIO to read EC private key from. * @param [out] out Pointer to return EC key object through. May be NULL. * @param [in] cb Password callback when PEM encrypted. * @param [in] pass NUL terminated string for passphrase when PEM * encrypted. * @return New EC key object on success. * @return NULL on error. */ WOLFSSL_EC_KEY* wolfSSL_PEM_read_bio_ECPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY** out, wc_pem_password_cb* cb, void *pass) { int err = 0; WOLFSSL_EC_KEY* ec = NULL; DerBuffer* der = NULL; int keyFormat = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_ECPrivateKey"); /* Validate parameters. */ if (bio == NULL) { err = 1; } if (!err) { /* Create an empty EC key. */ ec = wolfSSL_EC_KEY_new(); if (ec == NULL) { err = 1; } } /* Read a PEM key in to a new DER buffer. * To check ENC EC PRIVATE KEY, it uses PRIVATEKEY_TYPE to call * pem_read_bio_key(), and then check key format if it is EC. */ if ((!err) && (pem_read_bio_key(bio, cb, pass, PRIVATEKEY_TYPE, &keyFormat, &der) <= 0)) { err = 1; } if (keyFormat != ECDSAk) { WOLFSSL_ERROR_MSG("Error not EC key format"); err = 1; } /* Load the EC key with the private key from the DER encoding. */ if ((!err) && (wolfSSL_EC_KEY_LoadDer_ex(ec, der->buffer, (int)der->length, WOLFSSL_EC_KEY_LOAD_PRIVATE) != 1)) { WOLFSSL_ERROR_MSG("Error loading DER buffer into WOLFSSL_EC_KEY"); err = 1; } /* Dispose of dynamically allocated data not needed anymore. */ FreeDer(&der); if (err) { wolfSSL_EC_KEY_free(ec); ec = NULL; } /* Return EC key through out if required. */ if ((out != NULL) && (ec != NULL)) { *out = ec; } return ec; } #endif /* !NO_BIO */ #if defined(WOLFSSL_KEY_GEN) && defined(HAVE_ECC_KEY_EXPORT) #ifndef NO_BIO /* Write out the EC public key as PEM to the BIO. * * @param [in] bio BIO to write PEM encoding to. * @param [in] ec EC public key to encode. * @return 1 on success. * @return 0 on error. */ int wolfSSL_PEM_write_bio_EC_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY* ec) { int ret = 1; unsigned char* derBuf = NULL; int derSz = 0; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_EC_PUBKEY"); /* Validate parameters. */ if ((bio == NULL) || (ec == NULL)) { WOLFSSL_MSG("Bad Function Arguments"); return 0; } /* Encode public key in EC key as DER. */ derSz = wolfssl_ec_key_to_pubkey_der(ec, &derBuf, ec->heap); if (derSz == 0) { ret = 0; } /* Write out to BIO the PEM encoding of the EC public key. */ if ((ret == 1) && (der_write_to_bio_as_pem(derBuf, derSz, bio, ECC_PUBLICKEY_TYPE) != 1)) { ret = 0; } /* Dispose of any dynamically allocated data. */ XFREE(derBuf, ec->heap, DYNAMIC_TYPE_TMP_BUFFER); return ret; } /* Write out the EC private key as PEM to the BIO. * * Return code compliant with OpenSSL. * * @param [in] bio BIO to write PEM encoding to. * @param [in] ec EC private key to encode. * @param [in] cipher Cipher to use when PEM encrypted. May be NULL. * @param [in] passwd Password string when PEM encrypted. May be NULL. * @param [in] passwdSz Length of password string when PEM encrypted. * @param [in] cb Password callback when PEM encrypted. Unused. * @param [in] pass NUL terminated string for passphrase when PEM * encrypted. Unused. * @return 1 on success. * @return 0 on error. */ int wolfSSL_PEM_write_bio_ECPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY* ec, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, wc_pem_password_cb* cb, void* arg) { int ret = 1; unsigned char* pem = NULL; int pLen = 0; (void)cb; (void)arg; /* Validate parameters. */ if ((bio == NULL) || (ec == NULL)) { ret = 0; } /* Write EC private key to PEM. */ if ((ret == 1) && (wolfSSL_PEM_write_mem_ECPrivateKey(ec, cipher, passwd, passwdSz, &pem, &pLen) != 1)) { ret = 0; } /* Write PEM to BIO. */ if ((ret == 1) && (wolfSSL_BIO_write(bio, pem, pLen) != pLen)) { WOLFSSL_ERROR_MSG("EC private key BIO write failed"); ret = 0; } XFREE(pem, NULL, DYNAMIC_TYPE_KEY); return ret; } #endif /* !NO_BIO */ /* Encode the EC private key as PEM into buffer. * * Return code compliant with OpenSSL. * Not an OpenSSL API. * * @param [in] ec EC private key to encode. * @param [in] cipher Cipher to use when PEM encrypted. May be NULL. * @param [in] passwd Password string when PEM encrypted. May be NULL. * @param [in] passwdSz Length of password string when PEM encrypted. * @param [out] pem Newly allocated buffer holding PEM encoding. * @param [out] pLen Length of PEM encoding in bytes. * @return 1 on success. * @return 0 on error. */ int wolfSSL_PEM_write_mem_ECPrivateKey(WOLFSSL_EC_KEY* ec, const EVP_CIPHER* cipher, unsigned char* passwd, int passwdSz, unsigned char **pem, int *pLen) { #if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM) int ret = 1; byte* derBuf = NULL; word32 der_max_len = 0; int derSz = 0; WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey"); /* Validate parameters. */ if ((pem == NULL) || (pLen == NULL) || (ec == NULL) || (ec->internal == NULL)) { WOLFSSL_MSG("Bad function arguments"); ret = 0; } /* Ensure internal EC key is set from external. */ if ((ret == 1) && (ec->inSet == 0)) { WOLFSSL_MSG("No ECC internal set, do it"); if (SetECKeyInternal(ec) != 1) { WOLFSSL_MSG("SetECKeyInternal failed"); ret = 0; } } if (ret == 1) { /* Calculate maximum size of DER encoding. * 4 > size of pub, priv + ASN.1 additional information */ der_max_len = 4 * (word32)wc_ecc_size((ecc_key*)ec->internal) + AES_BLOCK_SIZE; /* Allocate buffer big enough to hold encoding. */ derBuf = (byte*)XMALLOC((size_t)der_max_len, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (derBuf == NULL) { WOLFSSL_MSG("malloc failed"); ret = 0; } } if (ret == 1) { /* Encode EC private key as DER. */ derSz = wc_EccKeyToDer((ecc_key*)ec->internal, derBuf, der_max_len); if (derSz < 0) { WOLFSSL_MSG("wc_EccKeyToDer failed"); XFREE(derBuf, NULL, DYNAMIC_TYPE_DER); ret = 0; } } /* Convert DER to PEM - possibly encrypting. */ if ((ret == 1) && (der_to_enc_pem_alloc(derBuf, derSz, cipher, passwd, passwdSz, ECC_PRIVATEKEY_TYPE, NULL, pem, pLen) != 1)) { WOLFSSL_ERROR_MSG("der_to_enc_pem_alloc failed"); ret = 0; } return ret; #else (void)ec; (void)cipher; (void)passwd; (void)passwdSz; (void)pem; (void)pLen; return 0; #endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */ } #ifndef NO_FILESYSTEM /* Write out the EC private key as PEM to file. * * Return code compliant with OpenSSL. * * @param [in] fp File pointer to write PEM encoding to. * @param [in] ec EC private key to encode. * @param [in] cipher Cipher to use when PEM encrypted. May be NULL. * @param [in] passwd Password string when PEM encrypted. May be NULL. * @param [in] passwdSz Length of password string when PEM encrypted. * @param [in] cb Password callback when PEM encrypted. Unused. * @param [in] pass NUL terminated string for passphrase when PEM * encrypted. Unused. * @return 1 on success. * @return 0 on error. */ int wolfSSL_PEM_write_ECPrivateKey(XFILE fp, WOLFSSL_EC_KEY *ec, const EVP_CIPHER *cipher, unsigned char *passwd, int passwdSz, wc_pem_password_cb *cb, void *pass) { int ret = 1; byte *pem = NULL; int pLen = 0; (void)cb; (void)pass; WOLFSSL_MSG("wolfSSL_PEM_write_ECPrivateKey"); /* Validate parameters. */ if ((fp == XBADFILE) || (ec == NULL) || (ec->internal == NULL)) { WOLFSSL_MSG("Bad function arguments"); ret = 0; } /* Write EC private key to PEM. */ if ((ret == 1) && (wolfSSL_PEM_write_mem_ECPrivateKey(ec, cipher, passwd, passwdSz, &pem, &pLen) != 1)) { WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey failed"); ret = 0; } /* Write out to file the PEM encoding of the EC private key. */ if ((ret == 1) && ((int)XFWRITE(pem, 1, (size_t)pLen, fp) != pLen)) { WOLFSSL_MSG("ECC private key file write failed"); ret = 0; } /* Dispose of any dynamically allocated data. */ XFREE(pem, NULL, DYNAMIC_TYPE_KEY); return ret; } #endif /* NO_FILESYSTEM */ #endif /* WOLFSSL_KEY_GEN && HAVE_ECC_KEY_EXPORT */ /* * EC key print APIs */ #ifndef NO_CERTS #if defined(XFPRINTF) && !defined(NO_FILESYSTEM) && \ !defined(NO_STDIO_FILESYSTEM) /* Print the EC key to a file pointer as text. * * @param [in] fp File pointer. * @param [in] key EC key to print. * @param [in] indent Number of spaces to place before each line printed. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_EC_KEY_print_fp(XFILE fp, WOLFSSL_EC_KEY* key, int indent) { int ret = 1; int bits = 0; int priv = 0; WOLFSSL_ENTER("wolfSSL_EC_KEY_print_fp"); /* Validate parameters. */ if ((fp == XBADFILE) || (key == NULL) || (key->group == NULL) || (indent < 0)) { ret = 0; } if (ret == 1) { /* Get EC groups order size in bits. */ bits = wolfSSL_EC_GROUP_order_bits(key->group); if (bits <= 0) { WOLFSSL_MSG("Failed to get group order bits."); ret = 0; } } if (ret == 1) { const char* keyType; /* Determine whether this is a private or public key. */ if ((key->priv_key != NULL) && (!wolfSSL_BN_is_zero(key->priv_key))) { keyType = "Private-Key"; priv = 1; } else { keyType = "Public-Key"; } /* Print key header. */ if (XFPRINTF(fp, "%*s%s: (%d bit)\n", indent, "", keyType, bits) < 0) { ret = 0; } } if ((ret == 1) && priv) { /* Print the private key BN. */ ret = pk_bn_field_print_fp(fp, indent, "priv", key->priv_key); } /* Check for public key data in EC key. */ if ((ret == 1) && (key->pub_key != NULL) && (key->pub_key->exSet)) { /* Get the public key point as one BN. */ WOLFSSL_BIGNUM* pubBn = wolfSSL_EC_POINT_point2bn(key->group, key->pub_key, POINT_CONVERSION_UNCOMPRESSED, NULL, NULL); if (pubBn == NULL) { WOLFSSL_MSG("wolfSSL_EC_POINT_point2bn failed."); ret = 0; } else { /* Print the public key in a BN. */ ret = pk_bn_field_print_fp(fp, indent, "pub", pubBn); wolfSSL_BN_free(pubBn); } } if (ret == 1) { /* Get the NID of the group. */ int nid = wolfSSL_EC_GROUP_get_curve_name(key->group); if (nid > 0) { /* Convert the NID into a long name and NIST name. */ const char* curve = wolfSSL_OBJ_nid2ln(nid); const char* nistName = wolfSSL_EC_curve_nid2nist(nid); /* Print OID name if known. */ if ((curve != NULL) && (XFPRINTF(fp, "%*sASN1 OID: %s\n", indent, "", curve) < 0)) { ret = 0; } /* Print NIST curve name if known. */ if ((nistName != NULL) && (XFPRINTF(fp, "%*sNIST CURVE: %s\n", indent, "", nistName) < 0)) { ret = 0; } } } WOLFSSL_LEAVE("wolfSSL_EC_KEY_print_fp", ret); return ret; } #endif /* XFPRINTF && !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM */ #endif /* !NO_CERTS */ /* * EC_KEY get/set/test APIs */ /* Set data of internal, wolfCrypt EC key object into EC key. * * EC_KEY wolfSSL -> OpenSSL * * @param [in, out] p EC key to update. * @return 1 on success. * @return -1 on failure. */ int SetECKeyExternal(WOLFSSL_EC_KEY* eckey) { int ret = 1; WOLFSSL_ENTER("SetECKeyExternal"); /* Validate parameter. */ if ((eckey == NULL) || (eckey->internal == NULL)) { WOLFSSL_MSG("ec key NULL error"); ret = WOLFSSL_FATAL_ERROR; } else { ecc_key* key = (ecc_key*)eckey->internal; /* Set group (OID, nid and idx) from wolfCrypt EC key. */ eckey->group->curve_oid = (int)key->dp->oidSum; eckey->group->curve_nid = EccEnumToNID(key->dp->id); eckey->group->curve_idx = key->idx; if (eckey->pub_key->internal != NULL) { /* Copy internal public point from internal key's public point. */ if (wc_ecc_copy_point(&key->pubkey, (ecc_point*)eckey->pub_key->internal) != MP_OKAY) { WOLFSSL_MSG("SetECKeyExternal ecc_copy_point failed"); ret = WOLFSSL_FATAL_ERROR; } /* Set external public key from internal wolfCrypt, public key. */ if ((ret == 1) && (ec_point_external_set(eckey->pub_key) != 1)) { WOLFSSL_MSG("SetECKeyExternal ec_point_external_set failed"); ret = WOLFSSL_FATAL_ERROR; } } /* set the external privkey */ if ((ret == 1) && (key->type == ECC_PRIVATEKEY) && (wolfssl_bn_set_value(&eckey->priv_key, wc_ecc_key_get_priv(key)) != 1)) { WOLFSSL_MSG("ec priv key error"); ret = WOLFSSL_FATAL_ERROR; } /* External values set when operations succeeded. */ eckey->exSet = (ret == 1); } return ret; } /* Set data of EC key into internal, wolfCrypt EC key object. * * EC_KEY Openssl -> WolfSSL * * @param [in, out] p EC key to update. * @return 1 on success. * @return -1 on failure. */ int SetECKeyInternal(WOLFSSL_EC_KEY* eckey) { int ret = 1; WOLFSSL_ENTER("SetECKeyInternal"); /* Validate parameter. */ if ((eckey == NULL) || (eckey->internal == NULL) || (eckey->group == NULL)) { WOLFSSL_MSG("ec key NULL error"); ret = WOLFSSL_FATAL_ERROR; } else { ecc_key* key = (ecc_key*)eckey->internal; int pubSet = 0; /* Validate group. */ if ((eckey->group->curve_idx < 0) || (wc_ecc_is_valid_idx(eckey->group->curve_idx) == 0)) { WOLFSSL_MSG("invalid curve idx"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 1) { /* Set group (idx of curve and corresponding domain parameters). */ key->idx = eckey->group->curve_idx; key->dp = &ecc_sets[key->idx]; pubSet = (eckey->pub_key != NULL); } /* Set public key (point). */ if ((ret == 1) && pubSet) { if (ec_point_internal_set(eckey->pub_key) != 1) { WOLFSSL_MSG("ec key pub error"); ret = WOLFSSL_FATAL_ERROR; } /* Copy public point to key. */ if ((ret == 1) && (wc_ecc_copy_point( (ecc_point*)eckey->pub_key->internal, &key->pubkey) != MP_OKAY)) { WOLFSSL_MSG("wc_ecc_copy_point error"); ret = WOLFSSL_FATAL_ERROR; } if (ret == 1) { /* Set that the internal key is a public key */ key->type = ECC_PUBLICKEY; } } /* set privkey */ if ((ret == 1) && (eckey->priv_key != NULL)) { if (wolfssl_bn_get_value(eckey->priv_key, wc_ecc_key_get_priv(key)) != 1) { WOLFSSL_MSG("ec key priv error"); ret = WOLFSSL_FATAL_ERROR; } /* private key */ if ((ret == 1) && (!mp_iszero(wc_ecc_key_get_priv(key)))) { if (pubSet) { key->type = ECC_PRIVATEKEY; } else { key->type = ECC_PRIVATEKEY_ONLY; } } } /* Internal values set when operations succeeded. */ eckey->inSet = (ret == 1); } return ret; } /* Get point conversion format of EC key. * * @param [in] key EC key. * @return Point conversion format on success. * @return -1 on error. */ point_conversion_form_t wolfSSL_EC_KEY_get_conv_form(const WOLFSSL_EC_KEY* key) { if (key == NULL) return WOLFSSL_FATAL_ERROR; return key->form; } /* Set point conversion format into EC key. * * @param [in, out] key EC key to set format into. * @param [in] form Point conversion format. Valid values: * POINT_CONVERSION_UNCOMPRESSED, * POINT_CONVERSION_COMPRESSED (when HAVE_COMP_KEY) */ void wolfSSL_EC_KEY_set_conv_form(WOLFSSL_EC_KEY *key, int form) { if (key == NULL) { WOLFSSL_MSG("Key passed in NULL"); } else if (form == POINT_CONVERSION_UNCOMPRESSED #ifdef HAVE_COMP_KEY || form == POINT_CONVERSION_COMPRESSED #endif ) { key->form = (unsigned char)form; } else { WOLFSSL_MSG("Incorrect form or HAVE_COMP_KEY not compiled in"); } } /* Get the EC group object that is in EC key. * * @param [in] key EC key. * @return EC group object on success. * @return NULL when key is NULL. */ const WOLFSSL_EC_GROUP *wolfSSL_EC_KEY_get0_group(const WOLFSSL_EC_KEY *key) { WOLFSSL_EC_GROUP* group = NULL; WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_group"); if (key != NULL) { group = key->group; } return group; } /* Set the group in WOLFSSL_EC_KEY * * @param [in, out] key EC key to update. * @param [in] group EC group to copy. * @return 1 on success * @return 0 on failure. */ int wolfSSL_EC_KEY_set_group(WOLFSSL_EC_KEY *key, WOLFSSL_EC_GROUP *group) { int ret = 1; WOLFSSL_ENTER("wolfSSL_EC_KEY_set_group"); /* Validate parameters. */ if ((key == NULL) || (group == NULL)) { ret = 0; } if (ret == 1) { /* Dispose of the current group. */ if (key->group != NULL) { wolfSSL_EC_GROUP_free(key->group); } /* Duplicate the passed in group into EC key. */ key->group = wolfSSL_EC_GROUP_dup(group); if (key->group == NULL) { ret = 0; } } return ret; } /* Get the BN object that is the private key in the EC key. * * @param [in] key EC key. * @return BN object on success. * @return NULL when key is NULL or private key is not set. */ WOLFSSL_BIGNUM *wolfSSL_EC_KEY_get0_private_key(const WOLFSSL_EC_KEY *key) { WOLFSSL_BIGNUM* priv_key = NULL; WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_private_key"); /* Validate parameter. */ if (key == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_get0_private_key Bad arguments"); } /* Only return private key if it is not 0. */ else if (!wolfSSL_BN_is_zero(key->priv_key)) { priv_key = key->priv_key; } return priv_key; } /* Sets the private key value into EC key. * * Return code compliant with OpenSSL. * * @param [in, out] key EC key to set. * @param [in] priv_key Private key value in a BN. * @return 1 on success * @return 0 on failure. */ int wolfSSL_EC_KEY_set_private_key(WOLFSSL_EC_KEY *key, const WOLFSSL_BIGNUM *priv_key) { int ret = 1; WOLFSSL_ENTER("wolfSSL_EC_KEY_set_private_key"); /* Validate parameters. */ if ((key == NULL) || (priv_key == NULL)) { WOLFSSL_MSG("Bad arguments"); ret = 0; } /* Check for obvious invalid values. */ if (wolfSSL_BN_is_negative(priv_key) || wolfSSL_BN_is_zero(priv_key) || wolfSSL_BN_is_one(priv_key)) { WOLFSSL_MSG("Invalid private key value"); ret = 0; } if (ret == 1) { /* Free key if previously set. */ if (key->priv_key != NULL) { wolfSSL_BN_free(key->priv_key); } /* Duplicate the BN passed in. */ key->priv_key = wolfSSL_BN_dup(priv_key); if (key->priv_key == NULL) { WOLFSSL_MSG("key ecc priv key NULL"); ret = 0; } } /* Set the external values into internal EC key. */ if ((ret == 1) && (SetECKeyInternal(key) != 1)) { WOLFSSL_MSG("SetECKeyInternal failed"); /* Dispose of new private key on error. */ wolfSSL_BN_free(key->priv_key); key->priv_key = NULL; ret = 0; } return ret; } /* Get the public key EC point object that is in EC key. * * @param [in] key EC key. * @return EC point object that is the public key on success. * @return NULL when key is NULL. */ WOLFSSL_EC_POINT* wolfSSL_EC_KEY_get0_public_key(const WOLFSSL_EC_KEY *key) { WOLFSSL_EC_POINT* pub_key = NULL; WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_public_key"); if (key != NULL) { pub_key = key->pub_key; } return pub_key; } /* * Return code compliant with OpenSSL. * * @param [in, out] key EC key. * @param [in] pub Public key as an EC point. * @return 1 on success * @return 0 on failure. */ int wolfSSL_EC_KEY_set_public_key(WOLFSSL_EC_KEY *key, const WOLFSSL_EC_POINT *pub) { int ret = 1; ecc_point *pub_p = NULL; ecc_point *key_p = NULL; WOLFSSL_ENTER("wolfSSL_EC_KEY_set_public_key"); /* Validate parameters. */ if ((key == NULL) || (key->internal == NULL) || (pub == NULL) || (pub->internal == NULL)) { WOLFSSL_MSG("wolfSSL_EC_KEY_set_public_key Bad arguments"); ret = 0; } /* Ensure the internal EC key is set. */ if ((ret == 1) && (key->inSet == 0) && (SetECKeyInternal(key) != 1)) { WOLFSSL_MSG("SetECKeyInternal failed"); ret = 0; } /* Ensure the internal EC point of pub is setup. */ if ((ret == 1) && (ec_point_setup(pub) != 1)) { ret = 0; } if (ret == 1) { /* Get the internal point of pub and the public key in key. */ pub_p = (ecc_point*)pub->internal; key_p = (ecc_point*)key->pub_key->internal; /* Create new point if required. */ if (key_p == NULL) { key_p = wc_ecc_new_point(); key->pub_key->internal = (void*)key_p; } /* Check point available. */ if (key_p == NULL) { WOLFSSL_MSG("key ecc point NULL"); ret = 0; } } /* Copy the internal pub point into internal key point. */ if ((ret == 1) && (wc_ecc_copy_point(pub_p, key_p) != MP_OKAY)) { WOLFSSL_MSG("ecc_copy_point failure"); ret = 0; } /* Copy the internal point data into external. */ if ((ret == 1) && (ec_point_external_set(key->pub_key) != 1)) { WOLFSSL_MSG("SetECKeyInternal failed"); ret = 0; } /* Copy the internal key into external. */ if ((ret == 1) && (SetECKeyInternal(key) != 1)) { WOLFSSL_MSG("SetECKeyInternal failed"); ret = 0; } if (ret == 1) { /* Dump out the point and the key's public key for debug. */ wolfSSL_EC_POINT_dump("pub", pub); wolfSSL_EC_POINT_dump("key->pub_key", key->pub_key); } return ret; } #ifndef NO_WOLFSSL_STUB /* Set the ASN.1 encoding flag against the EC key. * * No implementation as only named curves supported for encoding. * * @param [in, out] key EC key. * @param [in] flag ASN.1 flag to set. Valid values: * OPENSSL_EC_EXPLICIT_CURVE, OPENSSL_EC_NAMED_CURVE */ void wolfSSL_EC_KEY_set_asn1_flag(WOLFSSL_EC_KEY *key, int asn1_flag) { (void)key; (void)asn1_flag; WOLFSSL_ENTER("wolfSSL_EC_KEY_set_asn1_flag"); WOLFSSL_STUB("EC_KEY_set_asn1_flag"); } #endif /* * EC key generate key APIs */ /* Generate an EC key. * * Uses the internal curve index set in the EC key or the default. * * @param [in, out] key EC key. * @return 1 on success * @return 0 on failure. */ int wolfSSL_EC_KEY_generate_key(WOLFSSL_EC_KEY *key) { int res = 1; int initTmpRng = 0; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif WOLFSSL_ENTER("wolfSSL_EC_KEY_generate_key"); /* Validate parameters. */ if ((key == NULL) || (key->internal == NULL) || (key->group == NULL)) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key Bad arguments"); res = 0; } if (res == 1) { /* Check if we know which internal curve index to use. */ if (key->group->curve_idx < 0) { /* Generate key using the default curve. */ #if FIPS_VERSION3_GE(6,0,0) key->group->curve_idx = ECC_SECP256R1; /* FIPS default to 256 */ #else key->group->curve_idx = ECC_CURVE_DEF; #endif } /* Create a random number generator. */ rng = wolfssl_make_rng(tmpRng, &initTmpRng); if (rng == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key failed to make RNG"); res = 0; } } if (res == 1) { /* NIDToEccEnum returns -1 for invalid NID so if key->group->curve_nid * is 0 then pass ECC_CURVE_DEF as arg */ int eccEnum = key->group->curve_nid ? #if FIPS_VERSION3_GE(6,0,0) NIDToEccEnum(key->group->curve_nid) : ECC_SECP256R1; #else NIDToEccEnum(key->group->curve_nid) : ECC_CURVE_DEF; #endif /* Get the internal EC key. */ ecc_key* ecKey = (ecc_key*)key->internal; /* Make the key using internal API. */ int ret = 0; #if FIPS_VERSION3_GE(6,0,0) /* In the case of FIPS only allow key generation with approved curves */ if (eccEnum != ECC_SECP256R1 && eccEnum != ECC_SECP224R1 && eccEnum != ECC_SECP384R1 && eccEnum != ECC_SECP521R1) { WOLFSSL_MSG("Unsupported curve selected in FIPS mode"); res = 0; } if (res == 1) { #endif ret = wc_ecc_make_key_ex(rng, 0, ecKey, eccEnum); #if FIPS_VERSION3_GE(6,0,0) } #endif #if defined(WOLFSSL_ASYNC_CRYPT) /* Wait on asynchronouse operation. */ ret = wc_AsyncWait(ret, &ecKey->asyncDev, WC_ASYNC_FLAG_NONE); #endif if (ret != 0) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key wc_ecc_make_key failed"); res = 0; } } /* Dispose of local random number generator if initialized. */ if (initTmpRng) { wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif } /* Set the external key from new internal key values. */ if ((res == 1) && (SetECKeyExternal(key) != 1)) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key SetECKeyExternal failed"); res = 0; } return res; } /* * EC key check key APIs */ /* Check that the EC key is valid. * * @param [in] key EC key. * @return 1 on valid. * @return 0 on invalid or error. */ int wolfSSL_EC_KEY_check_key(const WOLFSSL_EC_KEY *key) { int ret = 1; WOLFSSL_ENTER("wolfSSL_EC_KEY_check_key"); /* Validate parameter. */ if ((key == NULL) || (key->internal == NULL)) { WOLFSSL_MSG("Bad parameter"); ret = 0; } /* Set the external EC key values into internal if not already. */ if ((ret == 1) && (key->inSet == 0) && (SetECKeyInternal( (WOLFSSL_EC_KEY*)key) != 1)) { WOLFSSL_MSG("SetECKeyInternal failed"); ret = 0; } if (ret == 1) { /* Have internal EC implementation check key. */ ret = wc_ecc_check_key((ecc_key*)key->internal) == 0; } return ret; } /* End EC_KEY */ #if !defined(HAVE_FIPS) || FIPS_VERSION_GT(2,0) /* Get the supported, built-in EC curves * * @param [in, out] curves Pre-allocated list to put supported curves into. * @param [in] len Maximum number of items to place in list. * @return Number of built-in EC curves when curves is NULL or len is 0. * @return Number of items placed in list otherwise. */ size_t wolfSSL_EC_get_builtin_curves(WOLFSSL_EC_BUILTIN_CURVE *curves, size_t len) { size_t i; size_t cnt; #ifdef HAVE_SELFTEST /* Defined in ecc.h when available. */ size_t ecc_sets_count; /* Count the pre-defined curves since global not available. */ for (i = 0; ecc_sets[i].size != 0 && ecc_sets[i].name != NULL; i++) { /* Do nothing. */ } ecc_sets_count = i; #endif /* Assume we are going to return total count. */ cnt = ecc_sets_count; /* Check we have a list that can hold data. */ if ((curves != NULL) && (len != 0)) { /* Limit count to length of list. */ if (cnt > len) { cnt = len; } /* Put in built-in EC curve nid and short name. */ for (i = 0; i < cnt; i++) { curves[i].nid = EccEnumToNID(ecc_sets[i].id); curves[i].comment = wolfSSL_OBJ_nid2sn(curves[i].nid); } } return cnt; } #endif /* !HAVE_FIPS || FIPS_VERSION_GT(2,0) */ /* Start ECDSA_SIG */ /* Allocate a new ECDSA signature object. * * @return New, allocated ECDSA signature object on success. * @return NULL on error. */ WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_SIG_new(void) { int err = 0; WOLFSSL_ECDSA_SIG *sig; WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_new"); /* Allocate memory for ECDSA signature object. */ sig = (WOLFSSL_ECDSA_SIG*)XMALLOC(sizeof(WOLFSSL_ECDSA_SIG), NULL, DYNAMIC_TYPE_ECC); if (sig == NULL) { WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA signature failure"); err = 1; } if (!err) { /* Set s to NULL in case of error. */ sig->s = NULL; /* Allocate BN into r. */ sig->r = wolfSSL_BN_new(); if (sig->r == NULL) { WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA r failure"); err = 1; } } if (!err) { /* Allocate BN into s. */ sig->s = wolfSSL_BN_new(); if (sig->s == NULL) { WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA s failure"); err = 1; } } if (err && (sig != NULL)) { /* Dispose of allocated memory. */ wolfSSL_ECDSA_SIG_free(sig); sig = NULL; } return sig; } /* Dispose of ECDSA signature object. * * Cannot use object after this call. * * @param [in] sig ECDSA signature object to free. */ void wolfSSL_ECDSA_SIG_free(WOLFSSL_ECDSA_SIG *sig) { WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_free"); if (sig != NULL) { /* Dispose of BNs allocated for r and s. */ wolfSSL_BN_free(sig->r); wolfSSL_BN_free(sig->s); /* Dispose of memory associated with ECDSA signature object. */ XFREE(sig, NULL, DYNAMIC_TYPE_ECC); } } /* Create an ECDSA signature from the DER encoding. * * @param [in, out] sig Reference to ECDSA signature object. May be NULL. * @param [in, out] pp On in, reference to buffer containing DER encoding. * On out, reference to buffer after signature data. * @param [in] len Length of the data in the buffer. May be more than * the length of the signature. * @return ECDSA signature object on success. * @return NULL on error. */ WOLFSSL_ECDSA_SIG* wolfSSL_d2i_ECDSA_SIG(WOLFSSL_ECDSA_SIG** sig, const unsigned char** pp, long len) { int err = 0; /* ECDSA signature object to return. */ WOLFSSL_ECDSA_SIG *s = NULL; /* Validate parameter. */ if (pp == NULL) { err = 1; } if (!err) { if (sig != NULL) { /* Use the ECDSA signature object passed in. */ s = *sig; } if (s == NULL) { /* No ECDSA signature object passed in - create a new one. */ s = wolfSSL_ECDSA_SIG_new(); if (s == NULL) { err = 1; } } } if (!err) { /* DecodeECC_DSA_Sig calls mp_init, so free these. */ mp_free((mp_int*)s->r->internal); mp_free((mp_int*)s->s->internal); /* Decode the signature into internal r and s fields. */ if (DecodeECC_DSA_Sig(*pp, (word32)len, (mp_int*)s->r->internal, (mp_int*)s->s->internal) != MP_OKAY) { err = 1; } } if (!err) { /* Move pointer passed signature data successfully decoded. */ *pp += wolfssl_der_length(*pp, (int)len); if (sig != NULL) { /* Update reference to ECDSA signature object. */ *sig = s; } } /* Dispose of newly allocated object on error. */ if (err) { if ((s != NULL) && ((sig == NULL) || (*sig != s))) { wolfSSL_ECDSA_SIG_free(s); } /* Return NULL for object on error. */ s = NULL; } return s; } /* Encode the ECDSA signature as DER. * * @param [in] sig ECDSA signature object. * @param [in, out] pp On in, reference to buffer in which to place encoding. * On out, reference to buffer after encoding. * May be NULL or point to NULL in which case no encoding * is done. * @return Length of encoding on success. * @return 0 on error. */ int wolfSSL_i2d_ECDSA_SIG(const WOLFSSL_ECDSA_SIG *sig, unsigned char **pp) { word32 len = 0; int update_p = 1; /* Validate parameter. */ if (sig != NULL) { /* ASN.1: SEQ + INT + INT * ASN.1 Integer must be a positive value - prepend zero if number has * top bit set. */ /* Get total length of r including any prepended zero. */ word32 rLen = (word32)(mp_leading_bit((mp_int*)sig->r->internal) + mp_unsigned_bin_size((mp_int*)sig->r->internal)); /* Get total length of s including any prepended zero. */ word32 sLen = (word32)(mp_leading_bit((mp_int*)sig->s->internal) + mp_unsigned_bin_size((mp_int*)sig->s->internal)); /* Calculate length of data in sequence. */ len = (word32)1 + ASN_LEN_SIZE(rLen) + rLen + (word32)1 + ASN_LEN_SIZE(sLen) + sLen; /* Add in the length of the SEQUENCE. */ len += (word32)1 + ASN_LEN_SIZE(len); #ifdef WOLFSSL_I2D_ECDSA_SIG_ALLOC if ((pp != NULL) && (*pp == NULL)) { *pp = (unsigned char *)XMALLOC(len, NULL, DYNAMIC_TYPE_OPENSSL); if (*pp != NULL) { WOLFSSL_MSG("malloc error"); return 0; } update_p = 0; } #endif /* Encode only if there is a buffer to encode into. */ if ((pp != NULL) && (*pp != NULL)) { /* Encode using the internal representations of r and s. */ if (StoreECC_DSA_Sig(*pp, &len, (mp_int*)sig->r->internal, (mp_int*)sig->s->internal) != MP_OKAY) { /* No bytes encoded. */ len = 0; } else if (update_p) { /* Update pointer to after encoding. */ *pp += len; } } } return (int)len; } /* Get the pointer to the fields of the ECDSA signature. * * r and s untouched when sig is NULL. * * @param [in] sig ECDSA signature object. * @param [out] r R field of ECDSA signature as a BN. May be NULL. * @param [out] s S field of ECDSA signature as a BN. May be NULL. */ void wolfSSL_ECDSA_SIG_get0(const WOLFSSL_ECDSA_SIG* sig, const WOLFSSL_BIGNUM** r, const WOLFSSL_BIGNUM** s) { /* Validate parameter. */ if (sig != NULL) { /* Return the r BN when pointer to return through. */ if (r != NULL) { *r = sig->r; } /* Return the s BN when pointer to return through. */ if (s != NULL) { *s = sig->s; } } } /* Set the pointers to the fields of the ECDSA signature. * * @param [in, out] sig ECDSA signature object to update. * @param [in] r R field of ECDSA signature as a BN. * @param [in] s S field of ECDSA signature as a BN. * @return 1 on success. * @return 0 on error. */ int wolfSSL_ECDSA_SIG_set0(WOLFSSL_ECDSA_SIG* sig, WOLFSSL_BIGNUM* r, WOLFSSL_BIGNUM* s) { int ret = 1; /* Validate parameters. */ if ((sig == NULL) || (r == NULL) || (s == NULL)) { ret = 0; } if (ret == 1) { /* Dispose of old BN objects. */ wolfSSL_BN_free(sig->r); wolfSSL_BN_free(sig->s); /* Assign new BN objects. */ sig->r = r; sig->s = s; } return ret; } /* End ECDSA_SIG */ /* Start ECDSA */ /* Calculate maximum size of the DER encoded ECDSA signature for the curve. * * @param [in] key EC key. * @return Size of DER encoded signature on success. * @return 0 on error. */ int wolfSSL_ECDSA_size(const WOLFSSL_EC_KEY *key) { int err = 0; int len = 0; const EC_GROUP *group = NULL; int bits = 0; /* Validate parameter. */ if (key == NULL) { err = 1; } /* Get group from key to get order bits. */ if ((!err) && ((group = wolfSSL_EC_KEY_get0_group(key)) == NULL)) { err = 1; } /* Get order bits of group. */ if ((!err) && ((bits = wolfSSL_EC_GROUP_order_bits(group)) == 0)) { /* Group is not set. */ err = 1; } if (!err) { /* r and s are mod order. */ int bytes = (bits + 7) / 8; /* Bytes needed to hold bits. */ len = SIG_HEADER_SZ + /* 2*ASN_TAG + 2*LEN(ENUM) */ ECC_MAX_PAD_SZ + /* possible leading zeroes in r and s */ bytes + bytes; /* max r and s in bytes */ } return len; } /* Create ECDSA signature by signing digest with key. * * @param [in] dgst Digest to sign. * @param [in] dLen Length of digest in bytes. * @param [in] key EC key to sign with. * @return ECDSA signature object on success. * @return NULL on error. */ WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_do_sign(const unsigned char *dgst, int dLen, WOLFSSL_EC_KEY *key) { int err = 0; WOLFSSL_ECDSA_SIG *sig = NULL; #ifdef WOLFSSL_SMALL_STACK byte* out = NULL; #else byte out[ECC_BUFSIZE]; #endif unsigned int outLen = ECC_BUFSIZE; WOLFSSL_ENTER("wolfSSL_ECDSA_do_sign"); /* Validate parameters. */ if ((dgst == NULL) || (key == NULL) || (key->internal == NULL)) { WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Bad arguments"); err = 1; } /* Ensure internal EC key is set from external. */ if ((!err) && (key->inSet == 0)) { WOLFSSL_MSG("wolfSSL_ECDSA_do_sign No EC key internal set, do it"); if (SetECKeyInternal(key) != 1) { WOLFSSL_MSG("wolfSSL_ECDSA_do_sign SetECKeyInternal failed"); err = 1; } } #ifdef WOLFSSL_SMALL_STACK if (!err) { /* Allocate buffer to hold encoded signature. */ out = (byte*)XMALLOC(outLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (out == NULL) { err = 1; } } #endif /* Sign the digest with the key to create encoded ECDSA signature. */ if ((!err) && (wolfSSL_ECDSA_sign(0, dgst, dLen, out, &outLen, key) != 1)) { err = 1; } if (!err) { const byte* p = out; /* Decode the ECDSA signature into a new object. */ sig = wolfSSL_d2i_ECDSA_SIG(NULL, &p, outLen); } #ifdef WOLFSSL_SMALL_STACK /* Dispose of any temporary dynamically allocated data. */ XFREE(out, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return sig; } /* Verify ECDSA signature in the object using digest and key. * * Return code compliant with OpenSSL. * * @param [in] dgst Digest to verify. * @param [in] dLen Length of the digest in bytes. * @param [in] sig ECDSA signature object. * @param [in] key EC key containing public key. * @return 1 when signature is valid. * @return 0 when signature is invalid. * @return -1 on error. */ int wolfSSL_ECDSA_do_verify(const unsigned char *dgst, int dLen, const WOLFSSL_ECDSA_SIG *sig, WOLFSSL_EC_KEY *key) { int ret = 1; int verified = 0; #ifdef WOLF_CRYPTO_CB_ONLY_ECC byte signature[ECC_MAX_SIG_SIZE]; int signatureLen; byte* p = signature; #endif WOLFSSL_ENTER("wolfSSL_ECDSA_do_verify"); /* Validate parameters. */ if ((dgst == NULL) || (sig == NULL) || (key == NULL) || (key->internal == NULL)) { WOLFSSL_MSG("wolfSSL_ECDSA_do_verify Bad arguments"); ret = WOLFSSL_FATAL_ERROR; } /* Ensure internal EC key is set from external. */ if ((ret == 1) && (key->inSet == 0)) { WOLFSSL_MSG("No EC key internal set, do it"); if (SetECKeyInternal(key) != 1) { WOLFSSL_MSG("SetECKeyInternal failed"); ret = WOLFSSL_FATAL_ERROR; } } if (ret == 1) { #ifndef WOLF_CRYPTO_CB_ONLY_ECC /* Verify hash using digest, r and s as MP ints and internal EC key. */ if (wc_ecc_verify_hash_ex((mp_int*)sig->r->internal, (mp_int*)sig->s->internal, dgst, (word32)dLen, &verified, (ecc_key *)key->internal) != MP_OKAY) { WOLFSSL_MSG("wc_ecc_verify_hash failed"); ret = WOLFSSL_FATAL_ERROR; } else if (verified == 0) { WOLFSSL_MSG("wc_ecc_verify_hash incorrect signature detected"); ret = 0; } #else signatureLen = i2d_ECDSA_SIG(sig, &p); if (signatureLen > 0) { /* verify hash. expects to call wc_CryptoCb_EccVerify internally */ ret = wc_ecc_verify_hash(signature, signatureLen, dgst, (word32)dLen, &verified, (ecc_key*)key->internal); if (ret != MP_OKAY) { WOLFSSL_MSG("wc_ecc_verify_hash failed"); ret = WOLFSSL_FATAL_ERROR; } else if (verified == 0) { WOLFSSL_MSG("wc_ecc_verify_hash incorrect signature detected"); ret = 0; } } #endif /* WOLF_CRYPTO_CB_ONLY_ECC */ } return ret; } /* Sign the digest with the key to produce a DER encode signature. * * @param [in] type Digest algorithm used to create digest. Unused. * @param [in] digest Digest of the message to sign. * @param [in] digestSz Size of the digest in bytes. * @param [out] sig Buffer to hold signature. * @param [in, out] sigSz On in, size of buffer in bytes. * On out, size of signatre in bytes. * @param [in] key EC key containing private key. * @return 1 on success. * @return 0 on error. */ int wolfSSL_ECDSA_sign(int type, const unsigned char *digest, int digestSz, unsigned char *sig, unsigned int *sigSz, WOLFSSL_EC_KEY *key) { int ret = 1; WC_RNG* rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG* tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif int initTmpRng = 0; WOLFSSL_ENTER("wolfSSL_ECDSA_sign"); /* Digest algorithm not used in DER encoding. */ (void)type; /* Validate parameters. */ if (key == NULL) { ret = 0; } if (ret == 1) { /* Make an RNG - create local or get global. */ rng = wolfssl_make_rng(tmpRng, &initTmpRng); if (rng == NULL) { ret = 0; } } /* Sign the digest with the key using the RNG and put signature into buffer * update sigSz to be actual length. */ if ((ret == 1) && (wc_ecc_sign_hash(digest, (word32)digestSz, sig, sigSz, rng, (ecc_key*)key->internal) != 0)) { ret = 0; } if (initTmpRng) { wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif } return ret; } /* Verify the signature with the digest and key. * * @param [in] type Digest algorithm used to create digest. Unused. * @param [in] digest Digest of the message to verify. * @param [in] digestSz Size of the digest in bytes. * @param [in] sig Buffer holding signature. * @param [in] sigSz Size of signature data in bytes. * @param [in] key EC key containing public key. * @return 1 when signature is valid. * @return 0 when signature is invalid or error. */ int wolfSSL_ECDSA_verify(int type, const unsigned char *digest, int digestSz, const unsigned char *sig, int sigSz, WOLFSSL_EC_KEY *key) { int ret = 1; int verify = 0; WOLFSSL_ENTER("wolfSSL_ECDSA_verify"); /* Digest algorithm not used in DER encoding. */ (void)type; /* Validate parameters. */ if (key == NULL) { ret = 0; } /* Verify signature using digest and key. */ if ((ret == 1) && (wc_ecc_verify_hash(sig, (word32)sigSz, digest, (word32)digestSz, &verify, (ecc_key*)key->internal) != 0)) { ret = 0; } /* When no error, verification may still have failed - check now. */ if ((ret == 1) && (verify != 1)) { WOLFSSL_MSG("wolfSSL_ECDSA_verify failed"); ret = 0; } return ret; } /* End ECDSA */ /* Start ECDH */ #ifndef WOLF_CRYPTO_CB_ONLY_ECC /* Compute the shared secret (key) using ECDH. * * KDF not supported. * * Return code compliant with OpenSSL. * * @param [out] out Buffer to hold key. * @param [in] outLen Length of buffer in bytes. * @param [in] pubKey Public key as an EC point. * @param [in] privKey EC key holding a private key. * @param [in] kdf Key derivation function to apply to secret. * @return Length of computed key on success * @return 0 on error. */ int wolfSSL_ECDH_compute_key(void *out, size_t outLen, const WOLFSSL_EC_POINT *pubKey, WOLFSSL_EC_KEY *privKey, void *(*kdf) (const void *in, size_t inlen, void *out, size_t *outLen)) { int err = 0; word32 len = 0; ecc_key* key = NULL; #if defined(ECC_TIMING_RESISTANT) && !defined(HAVE_SELFTEST) && \ (!defined(HAVE_FIPS) || FIPS_VERSION_GE(5,0)) int setGlobalRNG = 0; #endif /* TODO: support using the KDF. */ (void)kdf; WOLFSSL_ENTER("wolfSSL_ECDH_compute_key"); /* Validate parameters. */ if ((out == NULL) || (pubKey == NULL) || (pubKey->internal == NULL) || (privKey == NULL) || (privKey->internal == NULL)) { WOLFSSL_MSG("Bad function arguments"); err = 1; } /* Ensure internal EC key is set from external. */ if ((!err) && (privKey->inSet == 0)) { WOLFSSL_MSG("No EC key internal set, do it"); if (SetECKeyInternal(privKey) != 1) { WOLFSSL_MSG("SetECKeyInternal failed"); err = 1; } } if (!err) { int ret; /* Get the internal key. */ key = (ecc_key*)privKey->internal; /* Set length into variable of type suitable for wolfSSL API. */ len = (word32)outLen; #if defined(ECC_TIMING_RESISTANT) && !defined(HAVE_SELFTEST) && \ (!defined(HAVE_FIPS) || FIPS_VERSION_GE(5,0)) /* An RNG is needed. */ if (key->rng == NULL) { key->rng = wolfssl_make_global_rng(); /* RNG set and needs to be unset. */ setGlobalRNG = 1; } #endif PRIVATE_KEY_UNLOCK(); /* Create secret using wolfSSL. */ ret = wc_ecc_shared_secret_ex(key, (ecc_point*)pubKey->internal, (byte *)out, &len); PRIVATE_KEY_LOCK(); if (ret != MP_OKAY) { WOLFSSL_MSG("wc_ecc_shared_secret failed"); err = 1; } } #if defined(ECC_TIMING_RESISTANT) && !defined(HAVE_SELFTEST) && \ (!defined(HAVE_FIPS) || FIPS_VERSION_GE(5,0)) /* Remove global from key. */ if (setGlobalRNG) { key->rng = NULL; } #endif if (err) { /* Make returned value zero. */ len = 0; } return (int)len; } #endif /* WOLF_CRYPTO_CB_ONLY_ECC */ /* End ECDH */ #ifndef NO_WOLFSSL_STUB const WOLFSSL_EC_KEY_METHOD *wolfSSL_EC_KEY_OpenSSL(void) { WOLFSSL_STUB("wolfSSL_EC_KEY_OpenSSL"); return NULL; } WOLFSSL_EC_KEY_METHOD *wolfSSL_EC_KEY_METHOD_new( const WOLFSSL_EC_KEY_METHOD *meth) { WOLFSSL_STUB("wolfSSL_EC_KEY_METHOD_new"); (void)meth; return NULL; } void wolfSSL_EC_KEY_METHOD_free(WOLFSSL_EC_KEY_METHOD *meth) { WOLFSSL_STUB("wolfSSL_EC_KEY_METHOD_free"); (void)meth; } void wolfSSL_EC_KEY_METHOD_set_init(WOLFSSL_EC_KEY_METHOD *meth, void* a1, void* a2, void* a3, void* a4, void* a5, void* a6) { WOLFSSL_STUB("wolfSSL_EC_KEY_METHOD_set_init"); (void)meth; (void)a1; (void)a2; (void)a3; (void)a4; (void)a5; (void)a6; } void wolfSSL_EC_KEY_METHOD_set_sign(WOLFSSL_EC_KEY_METHOD *meth, void* a1, void* a2, void* a3) { WOLFSSL_STUB("wolfSSL_EC_KEY_METHOD_set_sign"); (void)meth; (void)a1; (void)a2; (void)a3; } const WOLFSSL_EC_KEY_METHOD *wolfSSL_EC_KEY_get_method( const WOLFSSL_EC_KEY *key) { WOLFSSL_STUB("wolfSSL_EC_KEY_get_method"); (void)key; return NULL; } int wolfSSL_EC_KEY_set_method(WOLFSSL_EC_KEY *key, const WOLFSSL_EC_KEY_METHOD *meth) { WOLFSSL_STUB("wolfSSL_EC_KEY_set_method"); (void)key; (void)meth; return 0; } #endif /* !NO_WOLFSSL_STUB */ #endif /* OPENSSL_EXTRA */ #endif /* HAVE_ECC */ /******************************************************************************* * END OF EC API ******************************************************************************/ /******************************************************************************* * START OF EC25519 API ******************************************************************************/ #if defined(OPENSSL_EXTRA) && defined(HAVE_CURVE25519) /* Generate an EC25519 key pair. * * Output keys are in little endian format. * * @param [out] priv EC25519 private key data. * @param [in, out] privSz On in, the size of priv in bytes. * On out, the length of the private key data in bytes. * @param [out] pub EC25519 public key data. * @param [in, out] pubSz On in, the size of pub in bytes. * On out, the length of the public key data in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_EC25519_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #ifdef WOLFSSL_KEY_GEN int res = 1; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif curve25519_key key; WOLFSSL_ENTER("wolfSSL_EC25519_generate_key"); /* Validate parameters. */ if ((priv == NULL) || (privSz == NULL) || (*privSz < CURVE25519_KEYSIZE) || (pub == NULL) || (pubSz == NULL) || (*pubSz < CURVE25519_KEYSIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } if (res) { /* Create a random number generator. */ rng = wolfssl_make_rng(tmpRng, &initTmpRng); if (rng == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key failed to make RNG"); res = 0; } } /* Initialize a Curve25519 key. */ if (res && (wc_curve25519_init(&key) != 0)) { WOLFSSL_MSG("wc_curve25519_init failed"); res = 0; } if (res) { /* Make a Curve25519 key pair. */ int ret = wc_curve25519_make_key(rng, CURVE25519_KEYSIZE, &key); if (ret != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_make_key failed"); res = 0; } if (res) { /* Export Curve25519 key pair to buffers. */ ret = wc_curve25519_export_key_raw_ex(&key, priv, privSz, pub, pubSz, EC25519_LITTLE_ENDIAN); if (ret != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_export_key_raw_ex failed"); res = 0; } } /* Dispose of key. */ wc_curve25519_free(&key); } if (initTmpRng) { wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif } return res; #else WOLFSSL_MSG("No Key Gen built in"); (void)priv; (void)privSz; (void)pub; (void)pubSz; return 0; #endif /* WOLFSSL_KEY_GEN */ } /* Compute a shared secret from private and public EC25519 keys. * * Input and output keys are in little endian format * * @param [out] shared Shared secret buffer. * @param [in, out] sharedSz On in, the size of shared in bytes. * On out, the length of the secret in bytes. * @param [in] priv EC25519 private key data. * @param [in] privSz Length of the private key data in bytes. * @param [in] pub EC25519 public key data. * @param [in] pubSz Length of the public key data in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_EC25519_shared_key(unsigned char *shared, unsigned int *sharedSz, const unsigned char *priv, unsigned int privSz, const unsigned char *pub, unsigned int pubSz) { #ifdef WOLFSSL_KEY_GEN int res = 1; curve25519_key privkey; curve25519_key pubkey; WOLFSSL_ENTER("wolfSSL_EC25519_shared_key"); /* Validate parameters. */ if ((shared == NULL) || (sharedSz == NULL) || (*sharedSz < CURVE25519_KEYSIZE) || (priv == NULL) || (privSz < CURVE25519_KEYSIZE) || (pub == NULL) || (pubSz < CURVE25519_KEYSIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } /* Initialize private key object. */ if (res && (wc_curve25519_init(&privkey) != 0)) { WOLFSSL_MSG("wc_curve25519_init privkey failed"); res = 0; } if (res) { /* Initialize public key object. */ if (wc_curve25519_init(&pubkey) != MP_OKAY) { WOLFSSL_MSG("wc_curve25519_init pubkey failed"); res = 0; } if (res) { /* Import our private key. */ int ret = wc_curve25519_import_private_ex(priv, privSz, &privkey, EC25519_LITTLE_ENDIAN); if (ret != 0) { WOLFSSL_MSG("wc_curve25519_import_private_ex failed"); res = 0; } if (res) { /* Import peer's public key. */ ret = wc_curve25519_import_public_ex(pub, pubSz, &pubkey, EC25519_LITTLE_ENDIAN); if (ret != 0) { WOLFSSL_MSG("wc_curve25519_import_public_ex failed"); res = 0; } } if (res) { /* Compute shared secret. */ ret = wc_curve25519_shared_secret_ex(&privkey, &pubkey, shared, sharedSz, EC25519_LITTLE_ENDIAN); if (ret != 0) { WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed"); res = 0; } } wc_curve25519_free(&pubkey); } wc_curve25519_free(&privkey); } return res; #else WOLFSSL_MSG("No Key Gen built in"); (void)shared; (void)sharedSz; (void)priv; (void)privSz; (void)pub; (void)pubSz; return 0; #endif /* WOLFSSL_KEY_GEN */ } #endif /* OPENSSL_EXTRA && HAVE_CURVE25519 */ /******************************************************************************* * END OF EC25519 API ******************************************************************************/ /******************************************************************************* * START OF ED25519 API ******************************************************************************/ #if defined(OPENSSL_EXTRA) && defined(HAVE_ED25519) /* Generate an ED25519 key pair. * * Output keys are in little endian format. * * @param [out] priv ED25519 private key data. * @param [in, out] privSz On in, the size of priv in bytes. * On out, the length of the private key data in bytes. * @param [out] pub ED25519 public key data. * @param [in, out] pubSz On in, the size of pub in bytes. * On out, the length of the public key data in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_ED25519_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #if defined(WOLFSSL_KEY_GEN) && defined(HAVE_ED25519_KEY_EXPORT) int res = 1; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif ed25519_key key; WOLFSSL_ENTER("wolfSSL_ED25519_generate_key"); /* Validate parameters. */ if ((priv == NULL) || (privSz == NULL) || (*privSz < ED25519_PRV_KEY_SIZE) || (pub == NULL) || (pubSz == NULL) || (*pubSz < ED25519_PUB_KEY_SIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } if (res) { /* Create a random number generator. */ rng = wolfssl_make_rng(tmpRng, &initTmpRng); if (rng == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key failed to make RNG"); res = 0; } } /* Initialize an Ed25519 key. */ if (res && (wc_ed25519_init(&key) != 0)) { WOLFSSL_MSG("wc_ed25519_init failed"); res = 0; } if (res) { /* Make an Ed25519 key pair. */ int ret = wc_ed25519_make_key(rng, ED25519_KEY_SIZE, &key); if (ret != 0) { WOLFSSL_MSG("wc_ed25519_make_key failed"); res = 0; } if (res) { /* Export Curve25519 key pair to buffers. */ ret = wc_ed25519_export_key(&key, priv, privSz, pub, pubSz); if (ret != 0) { WOLFSSL_MSG("wc_ed25519_export_key failed"); res = 0; } } wc_ed25519_free(&key); } if (initTmpRng) { wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif } return res; #else #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); #else WOLFSSL_MSG("No ED25519 key export built in"); #endif (void)priv; (void)privSz; (void)pub; (void)pubSz; return 0; #endif /* WOLFSSL_KEY_GEN && HAVE_ED25519_KEY_EXPORT */ } /* Sign a message with Ed25519 using the private key. * * Input and output keys are in little endian format. * Priv is a buffer containing private and public part of key. * * @param [in] msg Message to be signed. * @param [in] msgSz Length of message in bytes. * @param [in] priv ED25519 private key data. * @param [in] privSz Length in bytes of private key data. * @param [out] sig Signature buffer. * @param [in, out] sigSz On in, the length of the signature buffer in bytes. * On out, the length of the signature in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_ED25519_sign(const unsigned char *msg, unsigned int msgSz, const unsigned char *priv, unsigned int privSz, unsigned char *sig, unsigned int *sigSz) { #if defined(HAVE_ED25519_SIGN) && defined(WOLFSSL_KEY_GEN) && \ defined(HAVE_ED25519_KEY_IMPORT) ed25519_key key; int res = 1; WOLFSSL_ENTER("wolfSSL_ED25519_sign"); /* Validate parameters. */ if ((priv == NULL) || (privSz != ED25519_PRV_KEY_SIZE) || (msg == NULL) || (sig == NULL) || (sigSz == NULL) || (*sigSz < ED25519_SIG_SIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } /* Initialize Ed25519 key. */ if (res && (wc_ed25519_init(&key) != 0)) { WOLFSSL_MSG("wc_curve25519_init failed"); res = 0; } if (res) { /* Import private and public key. */ int ret = wc_ed25519_import_private_key(priv, privSz / 2, priv + (privSz / 2), ED25519_PUB_KEY_SIZE, &key); if (ret != 0) { WOLFSSL_MSG("wc_ed25519_import_private failed"); res = 0; } if (res) { /* Sign message with Ed25519. */ ret = wc_ed25519_sign_msg(msg, msgSz, sig, sigSz, &key); if (ret != 0) { WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed"); res = 0; } } wc_ed25519_free(&key); } return res; #else #if !defined(HAVE_ED25519_SIGN) WOLFSSL_MSG("No ED25519 sign built in"); #elif !defined(WOLFSSL_KEY_GEN) WOLFSSL_MSG("No Key Gen built in"); #elif !defined(HAVE_ED25519_KEY_IMPORT) WOLFSSL_MSG("No ED25519 Key import built in"); #endif (void)msg; (void)msgSz; (void)priv; (void)privSz; (void)sig; (void)sigSz; return 0; #endif /* HAVE_ED25519_SIGN && WOLFSSL_KEY_GEN && HAVE_ED25519_KEY_IMPORT */ } /* Verify a message with Ed25519 using the public key. * * Input keys are in little endian format. * * @param [in] msg Message to be verified. * @param [in] msgSz Length of message in bytes. * @param [in] pub ED25519 public key data. * @param [in] privSz Length in bytes of public key data. * @param [in] sig Signature buffer. * @param [in] sigSz Length of the signature in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_ED25519_verify(const unsigned char *msg, unsigned int msgSz, const unsigned char *pub, unsigned int pubSz, const unsigned char *sig, unsigned int sigSz) { #if defined(HAVE_ED25519_VERIFY) && defined(WOLFSSL_KEY_GEN) && \ defined(HAVE_ED25519_KEY_IMPORT) ed25519_key key; int res = 1; WOLFSSL_ENTER("wolfSSL_ED25519_verify"); /* Validate parameters. */ if ((pub == NULL) || (pubSz != ED25519_PUB_KEY_SIZE) || (msg == NULL) || (sig == NULL) || (sigSz != ED25519_SIG_SIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } /* Initialize Ed25519 key. */ if (res && (wc_ed25519_init(&key) != 0)) { WOLFSSL_MSG("wc_curve25519_init failed"); res = 0; } if (res) { /* Import public key. */ int ret = wc_ed25519_import_public(pub, pubSz, &key); if (ret != 0) { WOLFSSL_MSG("wc_ed25519_import_public failed"); res = 0; } if (res) { int check = 0; /* Verify signature with message and public key. */ ret = wc_ed25519_verify_msg((byte*)sig, sigSz, msg, msgSz, &check, &key); /* Check for errors in verification process. */ if (ret != 0) { WOLFSSL_MSG("wc_ed25519_verify_msg failed"); res = 0; } /* Check signature is valid. */ else if (!check) { WOLFSSL_MSG("wc_ed25519_verify_msg failed (signature invalid)"); res = 0; } } wc_ed25519_free(&key); } return res; #else #if !defined(HAVE_ED25519_VERIFY) WOLFSSL_MSG("No ED25519 verify built in"); #elif !defined(WOLFSSL_KEY_GEN) WOLFSSL_MSG("No Key Gen built in"); #elif !defined(HAVE_ED25519_KEY_IMPORT) WOLFSSL_MSG("No ED25519 Key import built in"); #endif (void)msg; (void)msgSz; (void)pub; (void)pubSz; (void)sig; (void)sigSz; return 0; #endif /* HAVE_ED25519_VERIFY && WOLFSSL_KEY_GEN && HAVE_ED25519_KEY_IMPORT */ } #endif /* OPENSSL_EXTRA && HAVE_ED25519 */ /******************************************************************************* * END OF ED25519 API ******************************************************************************/ /******************************************************************************* * START OF EC448 API ******************************************************************************/ #if defined(OPENSSL_EXTRA) && defined(HAVE_CURVE448) /* Generate an EC448 key pair. * * Output keys are in little endian format. * * @param [out] priv EC448 private key data. * @param [in, out] privSz On in, the size of priv in bytes. * On out, the length of the private key data in bytes. * @param [out] pub EC448 public key data. * @param [in, out] pubSz On in, the size of pub in bytes. * On out, the length of the public key data in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_EC448_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #ifdef WOLFSSL_KEY_GEN int res = 1; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif curve448_key key; WOLFSSL_ENTER("wolfSSL_EC448_generate_key"); /* Validate parameters. */ if ((priv == NULL) || (privSz == NULL) || (*privSz < CURVE448_KEY_SIZE) || (pub == NULL) || (pubSz == NULL) || (*pubSz < CURVE448_KEY_SIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } if (res) { /* Create a random number generator. */ rng = wolfssl_make_rng(tmpRng, &initTmpRng); if (rng == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key failed to make RNG"); res = 0; } } /* Initialize a Curve448 key. */ if (res && (wc_curve448_init(&key) != 0)) { WOLFSSL_MSG("wc_curve448_init failed"); res = 0; } if (res) { /* Make a Curve448 key pair. */ int ret = wc_curve448_make_key(rng, CURVE448_KEY_SIZE, &key); if (ret != 0) { WOLFSSL_MSG("wc_curve448_make_key failed"); res = 0; } if (res) { /* Export Curve448 key pair to buffers. */ ret = wc_curve448_export_key_raw_ex(&key, priv, privSz, pub, pubSz, EC448_LITTLE_ENDIAN); if (ret != 0) { WOLFSSL_MSG("wc_curve448_export_key_raw_ex failed"); res = 0; } } /* Dispose of key. */ wc_curve448_free(&key); } if (initTmpRng) { wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif } return res; #else WOLFSSL_MSG("No Key Gen built in"); (void)priv; (void)privSz; (void)pub; (void)pubSz; return 0; #endif /* WOLFSSL_KEY_GEN */ } /* Compute a shared secret from private and public EC448 keys. * * Input and output keys are in little endian format * * @param [out] shared Shared secret buffer. * @param [in, out] sharedSz On in, the size of shared in bytes. * On out, the length of the secret in bytes. * @param [in] priv EC448 private key data. * @param [in] privSz Length of the private key data in bytes. * @param [in] pub EC448 public key data. * @param [in] pubSz Length of the public key data in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_EC448_shared_key(unsigned char *shared, unsigned int *sharedSz, const unsigned char *priv, unsigned int privSz, const unsigned char *pub, unsigned int pubSz) { #ifdef WOLFSSL_KEY_GEN int res = 1; curve448_key privkey; curve448_key pubkey; WOLFSSL_ENTER("wolfSSL_EC448_shared_key"); /* Validate parameters. */ if ((shared == NULL) || (sharedSz == NULL) || (*sharedSz < CURVE448_KEY_SIZE) || (priv == NULL) || (privSz < CURVE448_KEY_SIZE) || (pub == NULL) || (pubSz < CURVE448_KEY_SIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } /* Initialize private key object. */ if (res && (wc_curve448_init(&privkey) != 0)) { WOLFSSL_MSG("wc_curve448_init privkey failed"); res = 0; } if (res) { /* Initialize public key object. */ if (wc_curve448_init(&pubkey) != MP_OKAY) { WOLFSSL_MSG("wc_curve448_init pubkey failed"); res = 0; } if (res) { /* Import our private key. */ int ret = wc_curve448_import_private_ex(priv, privSz, &privkey, EC448_LITTLE_ENDIAN); if (ret != 0) { WOLFSSL_MSG("wc_curve448_import_private_ex failed"); res = 0; } if (res) { /* Import peer's public key. */ ret = wc_curve448_import_public_ex(pub, pubSz, &pubkey, EC448_LITTLE_ENDIAN); if (ret != 0) { WOLFSSL_MSG("wc_curve448_import_public_ex failed"); res = 0; } } if (res) { /* Compute shared secret. */ ret = wc_curve448_shared_secret_ex(&privkey, &pubkey, shared, sharedSz, EC448_LITTLE_ENDIAN); if (ret != 0) { WOLFSSL_MSG("wc_curve448_shared_secret_ex failed"); res = 0; } } wc_curve448_free(&pubkey); } wc_curve448_free(&privkey); } return res; #else WOLFSSL_MSG("No Key Gen built in"); (void)shared; (void)sharedSz; (void)priv; (void)privSz; (void)pub; (void)pubSz; return 0; #endif /* WOLFSSL_KEY_GEN */ } #endif /* OPENSSL_EXTRA && HAVE_CURVE448 */ /******************************************************************************* * END OF EC448 API ******************************************************************************/ /******************************************************************************* * START OF ED448 API ******************************************************************************/ #if defined(OPENSSL_EXTRA) && defined(HAVE_ED448) /* Generate an ED448 key pair. * * Output keys are in little endian format. * * @param [out] priv ED448 private key data. * @param [in, out] privSz On in, the size of priv in bytes. * On out, the length of the private key data in bytes. * @param [out] pub ED448 public key data. * @param [in, out] pubSz On in, the size of pub in bytes. * On out, the length of the public key data in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_ED448_generate_key(unsigned char *priv, unsigned int *privSz, unsigned char *pub, unsigned int *pubSz) { #if defined(WOLFSSL_KEY_GEN) && defined(HAVE_ED448_KEY_EXPORT) int res = 1; int initTmpRng = 0; WC_RNG *rng = NULL; #ifdef WOLFSSL_SMALL_STACK WC_RNG *tmpRng = NULL; #else WC_RNG tmpRng[1]; #endif ed448_key key; WOLFSSL_ENTER("wolfSSL_ED448_generate_key"); /* Validate parameters. */ if ((priv == NULL) || (privSz == NULL) || (*privSz < ED448_PRV_KEY_SIZE) || (pub == NULL) || (pubSz == NULL) || (*pubSz < ED448_PUB_KEY_SIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } if (res) { /* Create a random number generator. */ rng = wolfssl_make_rng(tmpRng, &initTmpRng); if (rng == NULL) { WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key failed to make RNG"); res = 0; } } /* Initialize an Ed448 key. */ if (res && (wc_ed448_init(&key) != 0)) { WOLFSSL_MSG("wc_ed448_init failed"); res = 0; } if (res) { /* Make an Ed448 key pair. */ int ret = wc_ed448_make_key(rng, ED448_KEY_SIZE, &key); if (ret != 0) { WOLFSSL_MSG("wc_ed448_make_key failed"); res = 0; } if (res) { /* Export Curve448 key pair to buffers. */ ret = wc_ed448_export_key(&key, priv, privSz, pub, pubSz); if (ret != 0) { WOLFSSL_MSG("wc_ed448_export_key failed"); res = 0; } } wc_ed448_free(&key); } if (initTmpRng) { wc_FreeRng(rng); #ifdef WOLFSSL_SMALL_STACK XFREE(rng, NULL, DYNAMIC_TYPE_RNG); #endif } return res; #else #ifndef WOLFSSL_KEY_GEN WOLFSSL_MSG("No Key Gen built in"); #else WOLFSSL_MSG("No ED448 key export built in"); #endif (void)priv; (void)privSz; (void)pub; (void)pubSz; return 0; #endif /* WOLFSSL_KEY_GEN && HAVE_ED448_KEY_EXPORT */ } /* Sign a message with Ed448 using the private key. * * Input and output keys are in little endian format. * Priv is a buffer containing private and public part of key. * * @param [in] msg Message to be signed. * @param [in] msgSz Length of message in bytes. * @param [in] priv ED448 private key data. * @param [in] privSz Length in bytes of private key data. * @param [out] sig Signature buffer. * @param [in, out] sigSz On in, the length of the signature buffer in bytes. * On out, the length of the signature in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_ED448_sign(const unsigned char *msg, unsigned int msgSz, const unsigned char *priv, unsigned int privSz, unsigned char *sig, unsigned int *sigSz) { #if defined(HAVE_ED448_SIGN) && defined(WOLFSSL_KEY_GEN) && \ defined(HAVE_ED448_KEY_IMPORT) ed448_key key; int res = 1; WOLFSSL_ENTER("wolfSSL_ED448_sign"); /* Validate parameters. */ if ((priv == NULL) || (privSz != ED448_PRV_KEY_SIZE) || (msg == NULL) || (sig == NULL) || (sigSz == NULL) || (*sigSz < ED448_SIG_SIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } /* Initialize Ed448 key. */ if (res && (wc_ed448_init(&key) != 0)) { WOLFSSL_MSG("wc_curve448_init failed"); res = 0; } if (res) { /* Import private and public key. */ int ret = wc_ed448_import_private_key(priv, privSz / 2, priv + (privSz / 2), ED448_PUB_KEY_SIZE, &key); if (ret != 0) { WOLFSSL_MSG("wc_ed448_import_private failed"); res = 0; } if (res) { /* Sign message with Ed448 - no context. */ ret = wc_ed448_sign_msg(msg, msgSz, sig, sigSz, &key, NULL, 0); if (ret != 0) { WOLFSSL_MSG("wc_curve448_shared_secret_ex failed"); res = 0; } } wc_ed448_free(&key); } return res; #else #if !defined(HAVE_ED448_SIGN) WOLFSSL_MSG("No ED448 sign built in"); #elif !defined(WOLFSSL_KEY_GEN) WOLFSSL_MSG("No Key Gen built in"); #elif !defined(HAVE_ED448_KEY_IMPORT) WOLFSSL_MSG("No ED448 Key import built in"); #endif (void)msg; (void)msgSz; (void)priv; (void)privSz; (void)sig; (void)sigSz; return 0; #endif /* HAVE_ED448_SIGN && WOLFSSL_KEY_GEN && HAVE_ED448_KEY_IMPORT */ } /* Verify a message with Ed448 using the public key. * * Input keys are in little endian format. * * @param [in] msg Message to be verified. * @param [in] msgSz Length of message in bytes. * @param [in] pub ED448 public key data. * @param [in] privSz Length in bytes of public key data. * @param [in] sig Signature buffer. * @param [in] sigSz Length of the signature in bytes. * @return 1 on success * @return 0 on failure. */ int wolfSSL_ED448_verify(const unsigned char *msg, unsigned int msgSz, const unsigned char *pub, unsigned int pubSz, const unsigned char *sig, unsigned int sigSz) { #if defined(HAVE_ED448_VERIFY) && defined(WOLFSSL_KEY_GEN) && \ defined(HAVE_ED448_KEY_IMPORT) ed448_key key; int res = 1; WOLFSSL_ENTER("wolfSSL_ED448_verify"); /* Validate parameters. */ if ((pub == NULL) || (pubSz != ED448_PUB_KEY_SIZE) || (msg == NULL) || (sig == NULL) || (sigSz != ED448_SIG_SIZE)) { WOLFSSL_MSG("Bad arguments"); res = 0; } /* Initialize Ed448 key. */ if (res && (wc_ed448_init(&key) != 0)) { WOLFSSL_MSG("wc_curve448_init failed"); res = 0; } if (res) { /* Import public key. */ int ret = wc_ed448_import_public(pub, pubSz, &key); if (ret != 0) { WOLFSSL_MSG("wc_ed448_import_public failed"); res = 0; } if (res) { int check = 0; /* Verify signature with message and public key - no context. */ ret = wc_ed448_verify_msg((byte*)sig, sigSz, msg, msgSz, &check, &key, NULL, 0); /* Check for errors in verification process. */ if (ret != 0) { WOLFSSL_MSG("wc_ed448_verify_msg failed"); res = 0; } /* Check signature is valid. */ else if (!check) { WOLFSSL_MSG("wc_ed448_verify_msg failed (signature invalid)"); res = 0; } } wc_ed448_free(&key); } return res; #else #if !defined(HAVE_ED448_VERIFY) WOLFSSL_MSG("No ED448 verify built in"); #elif !defined(WOLFSSL_KEY_GEN) WOLFSSL_MSG("No Key Gen built in"); #elif !defined(HAVE_ED448_KEY_IMPORT) WOLFSSL_MSG("No ED448 Key import built in"); #endif (void)msg; (void)msgSz; (void)pub; (void)pubSz; (void)sig; (void)sigSz; return 0; #endif /* HAVE_ED448_VERIFY && WOLFSSL_KEY_GEN && HAVE_ED448_KEY_IMPORT */ } #endif /* OPENSSL_EXTRA && HAVE_ED448 */ /******************************************************************************* * END OF ED448 API ******************************************************************************/ /******************************************************************************* * START OF GENERIC PUBLIC KEY PEM APIs ******************************************************************************/ #ifdef OPENSSL_EXTRA /* Sets default callback password for PEM. * * @param [out] buf Buffer to hold password. * @param [in] num Number of characters in buffer. * @param [in] rwFlag Read/write flag. Ignored. * @param [in] userData User data - assumed to be default password. * @return Password size on success. * @return 0 on failure. */ int wolfSSL_PEM_def_callback(char* buf, int num, int rwFlag, void* userData) { int sz = 0; WOLFSSL_ENTER("wolfSSL_PEM_def_callback"); (void)rwFlag; /* We assume that the user passes a default password as userdata */ if ((buf != NULL) && (userData != NULL)) { sz = (int)XSTRLEN((const char*)userData); sz = (int)min((word32)sz, (word32)num); XMEMCPY(buf, userData, sz); } else { WOLFSSL_MSG("Error, default password cannot be created."); } return sz; } #ifndef NO_BIO /* Writes a public key to a WOLFSSL_BIO encoded in PEM format. * * @param [in] bio BIO to write to. * @param [in] key Public key to write in PEM format. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_write_bio_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key) { int ret = 0; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_PUBKEY"); if ((bio != NULL) && (key != NULL)) { switch (key->type) { #if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) case EVP_PKEY_RSA: ret = wolfSSL_PEM_write_bio_RSA_PUBKEY(bio, key->rsa); break; #endif /* WOLFSSL_KEY_GEN && !NO_RSA */ #if !defined(NO_DSA) && !defined(HAVE_SELFTEST) && \ (defined(WOLFSSL_KEY_GEN) || defined(WOLFSSL_CERT_GEN)) case EVP_PKEY_DSA: ret = wolfSSL_PEM_write_bio_DSA_PUBKEY(bio, key->dsa); break; #endif /* !NO_DSA && !HAVE_SELFTEST && (WOLFSSL_KEY_GEN || WOLFSSL_CERT_GEN) */ #if defined(HAVE_ECC) && defined(HAVE_ECC_KEY_EXPORT) && \ defined(WOLFSSL_KEY_GEN) case EVP_PKEY_EC: ret = wolfSSL_PEM_write_bio_EC_PUBKEY(bio, key->ecc); break; #endif /* HAVE_ECC && HAVE_ECC_KEY_EXPORT */ #if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL)) case EVP_PKEY_DH: /* DH public key not supported. */ WOLFSSL_MSG("Writing DH PUBKEY not supported!"); break; #endif /* !NO_DH && (WOLFSSL_QT || OPENSSL_ALL) */ default: /* Key type not supported. */ WOLFSSL_MSG("Unknown Key type!"); break; } } return ret; } /* Writes a private key to a WOLFSSL_BIO encoded in PEM format. * * @param [in] bio BIO to write to. * @param [in] key Public key to write in PEM format. * @param [in] cipher Encryption cipher to use. * @param [in] passwd Password to use when encrypting. * @param [in] len Length of password. * @param [in] cb Password callback. * @param [in] arg Password callback argument. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_write_bio_PrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key, const WOLFSSL_EVP_CIPHER* cipher, unsigned char* passwd, int len, wc_pem_password_cb* cb, void* arg) { int ret = 1; WOLFSSL_ENTER("wolfSSL_PEM_write_bio_PrivateKey"); (void)cipher; (void)passwd; (void)len; (void)cb; (void)arg; /* Validate parameters. */ if ((bio == NULL) || (key == NULL)) { WOLFSSL_MSG("Bad Function Arguments"); ret = 0; } if (ret == 1) { #ifdef WOLFSSL_KEY_GEN switch (key->type) { #ifndef NO_RSA case EVP_PKEY_RSA: /* Write using RSA specific API. */ ret = wolfSSL_PEM_write_bio_RSAPrivateKey(bio, key->rsa, cipher, passwd, len, cb, arg); break; #endif #ifndef NO_DSA case EVP_PKEY_DSA: /* Write using DSA specific API. */ ret = wolfSSL_PEM_write_bio_DSAPrivateKey(bio, key->dsa, cipher, passwd, len, cb, arg); break; #endif #ifdef HAVE_ECC case EVP_PKEY_EC: #if defined(HAVE_ECC_KEY_EXPORT) /* Write using EC specific API. */ ret = wolfSSL_PEM_write_bio_ECPrivateKey(bio, key->ecc, cipher, passwd, len, cb, arg); #else ret = der_write_to_bio_as_pem((byte*)key->pkey.ptr, key->pkey_sz, bio, EC_PRIVATEKEY_TYPE); #endif break; #endif #ifndef NO_DH case EVP_PKEY_DH: /* Write using generic API with DH type. */ ret = der_write_to_bio_as_pem((byte*)key->pkey.ptr, key->pkey_sz, bio, DH_PRIVATEKEY_TYPE); break; #endif default: WOLFSSL_MSG("Unknown Key type!"); ret = 0; break; } #else int type = 0; switch (key->type) { #ifndef NO_DSA case EVP_PKEY_DSA: type = DSA_PRIVATEKEY_TYPE; break; #endif #ifdef HAVE_ECC case EVP_PKEY_EC: type = ECC_PRIVATEKEY_TYPE; break; #endif #ifndef NO_DH case EVP_PKEY_DH: type = DH_PRIVATEKEY_TYPE; break; #endif #ifndef NO_RSA case EVP_PKEY_RSA: type = PRIVATEKEY_TYPE; break; #endif default: ret = 0; break; } if (ret == 1) { /* Write using generic API with generic type. */ ret = der_write_to_bio_as_pem((byte*)key->pkey.ptr, key->pkey_sz, bio, type); } #endif } return ret; } #endif /* !NO_BIO */ #ifndef NO_BIO /* Create a private key object from the data in the BIO. * * @param [in] bio BIO to read from. * @param [in, out] key Public key object. Object used if passed in. * @param [in] cb Password callback. * @param [in] arg Password callback argument. * @return A WOLFSSL_EVP_PKEY object on success. * @return NULL on failure. */ WOLFSSL_EVP_PKEY* wolfSSL_PEM_read_bio_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY **key, wc_pem_password_cb *cb, void *arg) { int err = 0; WOLFSSL_EVP_PKEY* pkey = NULL; DerBuffer* der = NULL; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_PUBKEY"); if (bio == NULL) { err = 1; } /* Read the PEM public key from the BIO and convert to DER. */ if ((!err) && (pem_read_bio_key(bio, cb, arg, PUBLICKEY_TYPE, NULL, &der) < 0)) { err = 1; } if (!err) { const unsigned char* ptr = der->buffer; /* Use key passed in if set. */ if ((key != NULL) && (*key != NULL)) { pkey = *key; } /* Convert DER data to a public key object. */ if (wolfSSL_d2i_PUBKEY(&pkey, &ptr, der->length) == NULL) { WOLFSSL_MSG("Error loading DER buffer into WOLFSSL_EVP_PKEY"); pkey = NULL; err = 1; } } /* Return the key if possible. */ if ((!err) && (key != NULL) && (pkey != NULL)) { *key = pkey; } /* Dispose of the DER encoding. */ FreeDer(&der); WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_PUBKEY", 0); return pkey; } /* Create a private key object from the data in the BIO. * * @param [in] bio BIO to read from. * @param [in, out] key Private key object. Object used if passed in. * @param [in] cb Password callback. * @param [in] arg Password callback argument. * @return A WOLFSSL_EVP_PKEY object on success. * @return NULL on failure. */ WOLFSSL_EVP_PKEY* wolfSSL_PEM_read_bio_PrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY** key, wc_pem_password_cb* cb, void* arg) { int err = 0; WOLFSSL_EVP_PKEY* pkey = NULL; DerBuffer* der = NULL; int keyFormat = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_bio_PrivateKey"); /* Validate parameters. */ if (bio == NULL) { err = 1; } /* Read the PEM private key from the BIO and convert to DER. */ if ((!err) && (pem_read_bio_key(bio, cb, arg, PRIVATEKEY_TYPE, &keyFormat, &der) < 0)) { err = 1; } if (!err) { const unsigned char* ptr = der->buffer; int type; /* Set key type based on format returned. */ switch (keyFormat) { /* No key format set - default to RSA. */ case 0: case RSAk: type = EVP_PKEY_RSA; break; case DSAk: type = EVP_PKEY_DSA; break; case ECDSAk: type = EVP_PKEY_EC; break; case DHk: type = EVP_PKEY_DH; break; default: type = WOLFSSL_FATAL_ERROR; break; } /* Use key passed in if set. */ if ((key != NULL) && (*key != NULL)) { pkey = *key; } /* Convert DER data to a private key object. */ if (wolfSSL_d2i_PrivateKey(type, &pkey, &ptr, der->length) == NULL) { WOLFSSL_MSG("Error loading DER buffer into WOLFSSL_EVP_PKEY"); pkey = NULL; err = 1; } } /* Return the key if possible. */ if ((!err) && (key != NULL) && (pkey != NULL)) { *key = pkey; } /* Dispose of the DER encoding. */ FreeDer(&der); WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_PrivateKey", err); return pkey; } #endif /* !NO_BIO */ #if !defined(NO_FILESYSTEM) /* Create a private key object from the data in a file. * * @param [in] fp File pointer. * @param [in, out] key Public key object. Object used if passed in. * @param [in] cb Password callback. * @param [in] arg Password callback argument. * @return A WOLFSSL_EVP_PKEY object on success. * @return NULL on failure. */ WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_PUBKEY(XFILE fp, WOLFSSL_EVP_PKEY **key, wc_pem_password_cb *cb, void *arg) { int err = 0; WOLFSSL_EVP_PKEY* pkey = NULL; DerBuffer* der = NULL; WOLFSSL_ENTER("wolfSSL_PEM_read_PUBKEY"); /* Validate parameters. */ if (fp == XBADFILE) { err = 1; } /* Read the PEM public key from the file and convert to DER. */ if ((!err) && ((pem_read_file_key(fp, cb, arg, PUBLICKEY_TYPE, NULL, &der) < 0) || (der == NULL))) { err = 1; } if (!err) { const unsigned char* ptr = der->buffer; /* Use key passed in if set. */ if ((key != NULL) && (*key != NULL)) { pkey = *key; } /* Convert DER data to a public key object. */ if (wolfSSL_d2i_PUBKEY(&pkey, &ptr, der->length) == NULL) { WOLFSSL_MSG("Error loading DER buffer into WOLFSSL_EVP_PKEY"); pkey = NULL; err = 1; } } /* Return the key if possible. */ if ((!err) && (key != NULL) && (pkey != NULL)) { *key = pkey; } /* Dispose of the DER encoding. */ FreeDer(&der); WOLFSSL_LEAVE("wolfSSL_PEM_read_PUBKEY", 0); return pkey; } #ifndef NO_CERTS /* Create a private key object from the data in a file. * * @param [in] fp File pointer. * @param [in, out] key Private key object. Object used if passed in. * @param [in] cb Password callback. * @param [in] arg Password callback argument. * @return A WOLFSSL_EVP_PKEY object on success. * @return NULL on failure. */ WOLFSSL_EVP_PKEY* wolfSSL_PEM_read_PrivateKey(XFILE fp, WOLFSSL_EVP_PKEY **key, wc_pem_password_cb *cb, void *arg) { int err = 0; WOLFSSL_EVP_PKEY* pkey = NULL; DerBuffer* der = NULL; int keyFormat = 0; WOLFSSL_ENTER("wolfSSL_PEM_read_PrivateKey"); /* Validate parameters. */ if (fp == XBADFILE) { err = 1; } /* Read the PEM private key from the file and convert to DER. */ if ((!err) && (pem_read_file_key(fp, cb, arg, PRIVATEKEY_TYPE, &keyFormat, &der)) < 0) { err = 1; } if (!err) { const unsigned char* ptr = der->buffer; int type; /* Set key type based on format returned. */ switch (keyFormat) { /* No key format set - default to RSA. */ case 0: case RSAk: type = EVP_PKEY_RSA; break; case DSAk: type = EVP_PKEY_DSA; break; case ECDSAk: type = EVP_PKEY_EC; break; case DHk: type = EVP_PKEY_DH; break; default: type = WOLFSSL_FATAL_ERROR; break; } /* Use key passed in if set. */ if ((key != NULL) && (*key != NULL)) { pkey = *key; } /* Convert DER data to a private key object. */ if (wolfSSL_d2i_PrivateKey(type, &pkey, &ptr, der->length) == NULL) { WOLFSSL_MSG("Error loading DER buffer into WOLFSSL_EVP_PKEY"); pkey = NULL; err = 1; } } /* Return the key if possible. */ if ((!err) && (key != NULL) && (pkey != NULL)) { *key = pkey; } /* Dispose of the DER encoding. */ FreeDer(&der); WOLFSSL_LEAVE("wolfSSL_PEM_read_PrivateKey", 0); return pkey; } #endif /* !NO_CERTS */ #endif /* !NO_FILESYSTEM */ #ifndef NO_CERTS #if !defined(NO_BIO) || !defined(NO_FILESYSTEM) #define PEM_BEGIN "-----BEGIN " #define PEM_BEGIN_SZ 11 #define PEM_END "-----END " #define PEM_END_SZ 9 #define PEM_HDR_FIN "-----" #define PEM_HDR_FIN_SZ 5 #define PEM_HDR_FIN_EOL_NEWLINE "-----\n" #define PEM_HDR_FIN_EOL_NULL_TERM "-----\0" #define PEM_HDR_FIN_EOL_SZ 6 /* Find strings and return middle offsets. * * Find first string in pem as a prefix and then locate second string as a * postfix. * len returning with 0 indicates not found. * * @param [in] pem PEM data. * @param [in] pemLen Length of PEM data. * @param [in] idx Current index. * @param [in] prefix First string to find. * @param [in] postfix Second string to find after first. * @param [out] start Start index of data between strings. * @param [out] len Length of data between strings. */ static void pem_find_pattern(char* pem, int pemLen, int idx, const char* prefix, const char* postfix, int* start, int* len) { int prefixLen = (int)XSTRLEN(prefix); int postfixLen = (int)XSTRLEN(postfix); *start = *len = 0; /* Find prefix part. */ for (; idx < pemLen - prefixLen; idx++) { if ((pem[idx] == prefix[0]) && (XMEMCMP(pem + idx, prefix, prefixLen) == 0)) { idx += prefixLen; *start = idx; break; } } /* Find postfix part. */ for (; idx < pemLen - postfixLen; idx++) { if ((pem[idx] == postfix[0]) && (XMEMCMP(pem + idx, postfix, postfixLen) == 0)) { *len = idx - *start; break; } } } /* Parse out content type name, any encryption headers and DER encoding. * * @param [in] pem PEM data. * @param [in] pemLen Length of PEM data. * @param [out] name Name of content type. * @param [out] header Encryption headers. * @param [out] data DER encoding from PEM. * @param [out] len Length of DER data. * @return 0 on success. * @return MEMORY_E when dynamic memory allocation fails. * @return ASN_NO_PEM_HEADER when no header found or different names found. */ static int pem_read_data(char* pem, int pemLen, char **name, char **header, unsigned char **data, long *len) { int ret = 0; int start; int nameLen; int startHdr = 0; int hdrLen = 0; int startEnd = 0; int endLen; *name = NULL; *header = NULL; /* Find header. */ pem_find_pattern(pem, pemLen, 0, PEM_BEGIN, PEM_HDR_FIN, &start, &nameLen); /* Allocate memory for header name. */ *name = (char*)XMALLOC(nameLen + 1, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (*name == NULL) { ret = MEMORY_E; } if (ret == 0) { /* Put in header name. */ (*name)[nameLen] = '\0'; if (nameLen == 0) { ret = ASN_NO_PEM_HEADER; } else { XMEMCPY(*name, pem + start, nameLen); } } if (ret == 0) { /* Find encryption headers after header. */ start += nameLen + PEM_HDR_FIN_SZ; pem_find_pattern(pem, pemLen, start, "\n", "\n\n", &startHdr, &hdrLen); if (hdrLen > 0) { /* Include first of two '\n' characters. */ hdrLen++; } /* Allocate memory for encryption header string. */ *header = (char*)XMALLOC(hdrLen + 1, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (*header == NULL) { ret = MEMORY_E; } } if (ret == 0) { /* Put in encryption header string. */ (*header)[hdrLen] = '\0'; if (hdrLen > 0) { XMEMCPY(*header, pem + startHdr, hdrLen); start = startHdr + hdrLen + 1; } /* Find footer. */ pem_find_pattern(pem, pemLen, start, PEM_END, PEM_HDR_FIN, &startEnd, &endLen); /* Validate header name and footer name are the same. */ if ((endLen != nameLen) || (XMEMCMP(*name, pem + startEnd, nameLen) != 0)) { ret = ASN_NO_PEM_HEADER; } } if (ret == 0) { unsigned char* der = (unsigned char*)pem; word32 derLen; /* Convert PEM body to DER. */ derLen = (word32)(startEnd - PEM_END_SZ - start); ret = Base64_Decode(der + start, derLen, der, &derLen); if (ret == 0) { /* Return the DER data. */ *data = der; *len = derLen; } } return ret; } /* Encode the DER data in PEM format into a newly allocated buffer. * * @param [in] name Header/footer name. * @param [in] header Encryption header. * @param [in] data DER data. * @param [in] len Length of DER data. * @param [out] pemOut PEM encoded data. * @param [out] pemOutLen Length of PEM encoded data. * @return 0 on success. * @return MEMORY_E when dynamic memory allocation fails. */ static int pem_write_data(const char *name, const char *header, const unsigned char *data, long len, char** pemOut, word32* pemOutLen) { int ret = 0; int nameLen; int headerLen; char* pem = NULL; word32 pemLen; word32 derLen = (word32)len; byte* p; nameLen = (int)XSTRLEN(name); headerLen = (int)XSTRLEN(header); /* DER encode for PEM. */ pemLen = (derLen + 2) / 3 * 4; pemLen += (pemLen + 63) / 64; /* Header */ pemLen += PEM_BEGIN_SZ + nameLen + PEM_HDR_FIN_EOL_SZ; if (headerLen > 0) { /* Encryption lines plus extra carriage return. */ pemLen += headerLen + 1; } /* Trailer */ pemLen += PEM_END_SZ + nameLen + PEM_HDR_FIN_EOL_SZ; pem = (char*)XMALLOC(pemLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (pem == NULL) { ret = MEMORY_E; } p = (byte*)pem; if (ret == 0) { /* Add header. */ XMEMCPY(p, PEM_BEGIN, PEM_BEGIN_SZ); p += PEM_BEGIN_SZ; XMEMCPY(p, name, nameLen); p += nameLen; XMEMCPY(p, PEM_HDR_FIN_EOL_NEWLINE, PEM_HDR_FIN_EOL_SZ); p += PEM_HDR_FIN_EOL_SZ; if (headerLen > 0) { /* Add encryption header. */ XMEMCPY(p, header, headerLen); p += headerLen; /* Blank line after a header and before body. */ *(p++) = '\n'; } /* Add DER data as PEM. */ pemLen -= (word32)((size_t)p - (size_t)pem); ret = Base64_Encode(data, derLen, p, &pemLen); } if (ret == 0) { p += pemLen; /* Add trailer. */ XMEMCPY(p, PEM_END, PEM_END_SZ); p += PEM_END_SZ; XMEMCPY(p, name, nameLen); p += nameLen; XMEMCPY(p, PEM_HDR_FIN_EOL_NEWLINE, PEM_HDR_FIN_EOL_SZ); p += PEM_HDR_FIN_EOL_SZ; /* Return buffer and length of data. */ *pemOut = pem; *pemOutLen = (word32)((size_t)p - (size_t)pem); } return ret; } #endif /* !NO_BIO || !NO_FILESYSTEM */ #ifndef NO_BIO /* Read PEM encoded data from a BIO. * * Reads the entire contents in. * * @param [in] bio BIO to read from. * @param [out] name Name of content type. * @param [out] header Encryption headers. * @param [out] data DER encoding from PEM. * @param [out] len Length of DER data. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_read_bio(WOLFSSL_BIO* bio, char **name, char **header, unsigned char **data, long *len) { int res = 1; char* pem = NULL; int pemLen = 0; int memAlloced = 1; /* Validate parameters. */ if ((bio == NULL) || (name == NULL) || (header == NULL) || (data == NULL) || (len == NULL)) { res = 0; } /* Load all the data from the BIO. */ if ((res == 1) && (wolfssl_read_bio(bio, &pem, &pemLen, &memAlloced) != 0)) { res = 0; } if ((res == 1) && (!memAlloced)) { /* Need to return allocated memory - make sure it is allocated. */ char* p = (char*)XMALLOC(pemLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (p == NULL) { res = 0; } else { /* Copy the data into new buffer. */ XMEMCPY(p, pem, pemLen); pem = p; } } /* Read the PEM data. */ if ((res == 1) && (pem_read_data(pem, pemLen, name, header, data, len) != 0)) { /* Dispose of any allocated memory. */ XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(*name, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(*header, NULL, DYNAMIC_TYPE_TMP_BUFFER); *name = NULL; *header = NULL; res = 0; } return res; } /* Encode the DER data in PEM format into a BIO. * * @param [in] bio BIO to write to. * @param [in] name Header/footer name. * @param [in] header Encryption header. * @param [in] data DER data. * @param [in] len Length of DER data. * @return 0 on failure. */ int wolfSSL_PEM_write_bio(WOLFSSL_BIO* bio, const char *name, const char *header, const unsigned char *data, long len) { int err = 0; char* pem = NULL; word32 pemLen = 0; /* Validate parameters. */ if ((bio == NULL) || (name == NULL) || (header == NULL) || (data == NULL)) { err = BAD_FUNC_ARG; } /* Encode into a buffer. */ if (!err) { err = pem_write_data(name, header, data, len, &pem, &pemLen); } /* Write PEM into BIO. */ if ((!err) && (wolfSSL_BIO_write(bio, pem, (int)pemLen) != (int)pemLen)) { err = IO_FAILED_E; } XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); return (!err) ? pemLen : 0; } #endif /* !NO_BIO */ #if !defined(NO_FILESYSTEM) /* Read PEM encoded data from a file. * * Reads the entire contents in. * * @param [in] bio BIO to read from. * @param [out] name Name of content type. * @param [out] header Encryption headers. * @param [out] data DER encoding from PEM. * @param [out] len Length of DER data. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_read(XFILE fp, char **name, char **header, unsigned char **data, long *len) { int res = 1; char* pem = NULL; int pemLen = 0; /* Validate parameters. */ if ((fp == XBADFILE) || (name == NULL) || (header == NULL) || (data == NULL) || (len == NULL)) { res = 0; } /* Load all the data from the file. */ if ((res == 1) && (wolfssl_read_file(fp, &pem, &pemLen) != 0)) { res = 0; } /* Read the PEM data. */ if ((res == 1) && (pem_read_data(pem, pemLen, name, header, data, len) != 0)) { /* Dispose of any allocated memory. */ XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(*name, NULL, DYNAMIC_TYPE_TMP_BUFFER); XFREE(*header, NULL, DYNAMIC_TYPE_TMP_BUFFER); *name = NULL; *header = NULL; res = 0; } return res; } /* Encode the DER data in PEM format into a file. * * @param [in] fp File pointer to write to. * @param [in] name Header/footer name. * @param [in] header Encryption header. * @param [in] data DER data. * @param [in] len Length of DER data. * @return 0 on success. * @return MEMORY_E when dynamic memory allocation fails. */ int wolfSSL_PEM_write(XFILE fp, const char *name, const char *header, const unsigned char *data, long len) { int err = 0; char* pem = NULL; word32 pemLen = 0; /* Validate parameters. */ if ((fp == XBADFILE) || (name == NULL) || (header == NULL) || (data == NULL)) { err = 1; } /* Encode into a buffer. */ if ((!err) && (pem_write_data(name, header, data, len, &pem, &pemLen) != 0)) { pemLen = 0; err = 1; } /* Write PEM to a file. */ if ((!err) && (XFWRITE(pem, 1, pemLen, fp) != pemLen)) { pemLen = 0; } XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); return (int)pemLen; } #endif /* Get EVP cipher info from encryption header string. * * @param [in] header Encryption header. * @param [out] cipher EVP Cipher info. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_get_EVP_CIPHER_INFO(const char* header, EncryptedInfo* cipher) { int res = 1; /* Validate parameters. */ if ((header == NULL) || (cipher == NULL)) { res = 0; } if (res == 1) { XMEMSET(cipher, 0, sizeof(*cipher)); if (wc_EncryptedInfoParse(cipher, &header, XSTRLEN(header)) != 0) { res = 0; } } return res; } /* Apply cipher to DER data. * * @param [in] cipher EVP cipher info. * @param [in, out] data On in, encrypted DER data. * On out, unencrypted DER data. * @param [in, out] len On in, length of encrypted DER data. * On out, length of unencrypted DER data. * @param [in] cb Password callback. * @param [in] ctx Context for password callback. * @return 1 on success. * @return 0 on failure. */ int wolfSSL_PEM_do_header(EncryptedInfo* cipher, unsigned char* data, long* len, wc_pem_password_cb* cb, void* ctx) { int ret = 1; char password[NAME_SZ]; int passwordSz = 0; /* Validate parameters. */ if ((cipher == NULL) || (data == NULL) || (len == NULL) || (cb == NULL)) { ret = 0; } if (ret == 1) { /* Get password and length. */ passwordSz = cb(password, sizeof(password), PEM_PASS_READ, ctx); if (passwordSz < 0) { ret = 0; } } if (ret == 1) { /* Decrypt the data using password and MD5. */ if (wc_BufferKeyDecrypt(cipher, data, (word32)*len, (byte*)password, passwordSz, WC_MD5) != 0) { ret = WOLFSSL_FAILURE; } } if (passwordSz > 0) { /* Ensure password is erased from memory. */ ForceZero(password, (word32)passwordSz); } return ret; } #endif /* !NO_CERTS */ #endif /* OPENSSL_EXTRA */ #ifdef OPENSSL_ALL #if !defined(NO_PWDBASED) && defined(HAVE_PKCS8) #if !defined(NO_BIO) || (!defined(NO_FILESYSTEM) && \ !defined(NO_STDIO_FILESYSTEM)) /* Encrypt the key into a buffer using PKCS$8 and a password. * * @param [in] pkey Private key to encrypt. * @param [in] enc EVP cipher. * @param [in] passwd Password to encrypt with. * @param [in] passwdSz Number of bytes in password. * @param [in] key Buffer to hold encrypted key. * @param [in, out] keySz On in, size of buffer in bytes. * On out, size of encrypted key in bytes. * @return 0 on success. * @return BAD_FUNC_ARG when EVP cipher not supported. */ static int pem_pkcs8_encrypt(WOLFSSL_EVP_PKEY* pkey, const WOLFSSL_EVP_CIPHER* enc, char* passwd, int passwdSz, byte* key, word32* keySz) { int ret; WC_RNG rng; /* Initialize a new random number generator. */ ret = wc_InitRng(&rng); if (ret == 0) { int encAlgId = 0; /* Convert EVP cipher to a support encryption id. */ #ifndef NO_DES3 if (enc == EVP_DES_CBC) { encAlgId = DESb; } else if (enc == EVP_DES_EDE3_CBC) { encAlgId = DES3b; } else #endif #if !defined(NO_AES) && defined(HAVE_AES_CBC) #ifdef WOLFSSL_AES_128 if (enc == EVP_AES_128_CBC) { encAlgId = AES128CBCb; } else #endif #ifdef WOLFSSL_AES_256 if (enc == EVP_AES_256_CBC) { encAlgId = AES256CBCb; } else #endif #endif { ret = BAD_FUNC_ARG; } if (ret == 0) { /* Encrypt private into buffer. */ ret = TraditionalEnc((byte*)pkey->pkey.ptr, pkey->pkey_sz, key, keySz, passwd, passwdSz, PKCS5, PBES2, encAlgId, NULL, 0, WC_PKCS12_ITT_DEFAULT, &rng, NULL); if (ret > 0) { *keySz = (word32)ret; } } /* Dispose of random number generator. */ wc_FreeRng(&rng); } return ret; } /* Encode private key in PKCS#8 format. * * @param [in] pkey Private key. * @param [out] key Buffer to hold encoding. * @param [in, out] keySz On in, size of buffer in bytes. * @param On out, size of encoded key in bytes. * @return 0 on success. */ static int pem_pkcs8_encode(WOLFSSL_EVP_PKEY* pkey, byte* key, word32* keySz) { int ret = 0; int algId; const byte* curveOid; word32 oidSz; /* Get the details of the private key. */ #ifdef HAVE_ECC if (pkey->type == EVP_PKEY_EC) { /* ECC private and get curve OID information. */ algId = ECDSAk; ret = wc_ecc_get_oid(pkey->ecc->group->curve_oid, &curveOid, &oidSz); } else #endif if (pkey->type == EVP_PKEY_RSA) { /* RSA private has no curve information. */ algId = RSAk; curveOid = NULL; oidSz = 0; } else { ret = NOT_COMPILED_IN; } if (ret >= 0) { /* Encode private key in PKCS#8 format. */ ret = wc_CreatePKCS8Key(key, keySz, (byte*)pkey->pkey.ptr, pkey->pkey_sz, algId, curveOid, oidSz); } return ret; } /* Write PEM encoded, PKCS#8 formatted private key to BIO. * * @param [out] pem Buffer holding PEM encoding. * @param [out] pemSz Size of data in buffer in bytes. * @param [in] pkey Private key to write. * @param [in] enc Encryption information to use. May be NULL. * @param [in] passwd Password to use when encrypting. May be NULL. * @param [in] passwdSz Size of password in bytes. * @param [in] cb Password callback. Used when passwd is NULL. May be * NULL. * @param [in] ctx Context for password callback. * @return Length of PEM encoding on success. * @return 0 on failure. */ static int pem_write_mem_pkcs8privatekey(byte** pem, int* pemSz, WOLFSSL_EVP_PKEY* pkey, const WOLFSSL_EVP_CIPHER* enc, char* passwd, int passwdSz, wc_pem_password_cb* cb, void* ctx) { int res = 1; int ret = 0; char password[NAME_SZ]; byte* key = NULL; word32 keySz; int type = PKCS8_PRIVATEKEY_TYPE; /* Validate parameters. */ if (pkey == NULL) { res = 0; } if (res == 1) { /* Guestimate key size and PEM size. */ if (pem_pkcs8_encode(pkey, NULL, &keySz) != WC_NO_ERR_TRACE(LENGTH_ONLY_E)) { res = 0; } } if (res == 1) { if (enc != NULL) { /* Add on enough for extra DER data when encrypting. */ keySz += 128; } /* PEM encoding size from DER size. */ *pemSz = (int)(keySz + 2) / 3 * 4; *pemSz += (*pemSz + 63) / 64; /* Header and footer. */ if (enc != NULL) { /* Name is: 'ENCRYPTED PRIVATE KEY'. */ *pemSz += 74; } else { /* Name is: 'PRIVATE KEY'. */ *pemSz += 54; } /* Allocate enough memory to hold PEM encoded encrypted key. */ *pem = (byte*)XMALLOC((size_t)*pemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (*pem == NULL) { res = 0; } else { /* Use end of PEM buffer for key data. */ key = *pem + *pemSz - keySz; } } if ((res == 1) && (enc != NULL)) { /* Set type for PEM. */ type = PKCS8_ENC_PRIVATEKEY_TYPE; if (passwd == NULL) { /* Get the password by using callback. */ passwdSz = cb(password, sizeof(password), 1, ctx); if (passwdSz < 0) { res = 0; } passwd = password; } if (res == 1) { /* Encrypt the private key. */ ret = pem_pkcs8_encrypt(pkey, enc, passwd, passwdSz, key, &keySz); if (ret <= 0) { res = 0; } } /* Zeroize the password from memory. */ if ((password == passwd) && (passwdSz > 0)) { ForceZero(password, (word32)passwdSz); } } else if ((res == 1) && (enc == NULL)) { /* Set type for PEM. */ type = PKCS8_PRIVATEKEY_TYPE; /* Encode private key in PKCS#8 format. */ ret = pem_pkcs8_encode(pkey, key, &keySz); if (ret < 0) { res = 0; } } if (res == 1) { /* Encode PKCS#8 formatted key to PEM. */ ret = wc_DerToPemEx(key, keySz, *pem, (word32)*pemSz, NULL, type); if (ret < 0) { res = 0; } else { *pemSz = ret; } } /* Return appropriate return code. */ return (res == 0) ? 0 : ret; } #endif /* !NO_BIO || (!NO_FILESYSTEM && !NO_STDIO_FILESYSTEM) */ #ifndef NO_BIO /* Write PEM encoded, PKCS#8 formatted private key to BIO. * * TODO: OpenSSL returns 1 and 0 only. * * @param [in] bio BIO to write to. * @param [in] pkey Private key to write. * @param [in] enc Encryption information to use. May be NULL. * @param [in] passwd Password to use when encrypting. May be NULL. * @param [in] passwdSz Size of password in bytes. * @param [in] cb Password callback. Used when passwd is NULL. May be * NULL. * @param [in] ctx Context for password callback. * @return Length of PEM encoding on success. * @return 0 on failure. */ int wolfSSL_PEM_write_bio_PKCS8PrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* pkey, const WOLFSSL_EVP_CIPHER* enc, char* passwd, int passwdSz, wc_pem_password_cb* cb, void* ctx) { byte* pem = NULL; int pemSz = 0; int res = 1; /* Validate parameters. */ if (bio == NULL) { res = 0; } if (res == 1) { /* Write private key to memory. */ res = pem_write_mem_pkcs8privatekey(&pem, &pemSz, pkey, enc, passwd, passwdSz, cb, ctx); } /* Write encoded key to BIO. */ if ((res >= 1) && (wolfSSL_BIO_write(bio, pem, pemSz) != pemSz)) { res = 0; } /* Dispose of dynamically allocated memory (pem and key). */ XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); return res; } #endif /* !NO_BIO */ #if !defined(NO_FILESYSTEM) && !defined(NO_STDIO_FILESYSTEM) /* Write PEM encoded, PKCS#8 formatted private key to BIO. * * TODO: OpenSSL returns 1 and 0 only. * * @param [in] f File pointer. * @param [in] pkey Private key to write. * @param [in] enc Encryption information to use. May be NULL. * @param [in] passwd Password to use when encrypting. May be NULL. * @param [in] passwdSz Size of password in bytes. * @param [in] cb Password callback. Used when passwd is NULL. May be * NULL. * @param [in] ctx Context for password callback. * @return Length of PEM encoding on success. * @return 0 on failure. */ int wolfSSL_PEM_write_PKCS8PrivateKey(XFILE f, WOLFSSL_EVP_PKEY* pkey, const WOLFSSL_EVP_CIPHER* enc, char* passwd, int passwdSz, wc_pem_password_cb* cb, void* ctx) { byte* pem = NULL; int pemSz = 0; int res = 1; /* Validate parameters. */ if (f == XBADFILE) { res = 0; } if (res == 1) { /* Write private key to memory. */ res = pem_write_mem_pkcs8privatekey(&pem, &pemSz, pkey, enc, passwd, passwdSz, cb, ctx); } /* Write encoded key to file. */ if ((res >= 1) && (XFWRITE(pem, 1, (size_t)pemSz, f) != (size_t)pemSz)) { res = 0; } /* Dispose of dynamically allocated memory (pem and key). */ XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER); return res; } #endif /* !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM */ #endif /* !NO_PWDBASED && HAVE_PKCS8 */ #endif /* OPENSSL_ALL */ /******************************************************************************* * END OF GENERIC PUBLIC KEY PEM APIs ******************************************************************************/ #endif /* !WOLFSSL_PK_INCLUDED */