/* main.c * * Copyright (C) 2006-2022 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ /* Example for main.c with STM32Cube/wolfssl_example.c */ #if 0 /* EXAMPLE main.c */ /* Includes ------------------------------------------------------------------*/ #include "wolfssl_example.h" #include "wolfssl/wolfcrypt/settings.h" /* Private variables ---------------------------------------------------------*/ CRYP_HandleTypeDef hcryp; __ALIGN_BEGIN static const uint32_t pKeyCRYP[6] __ALIGN_END = { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000000}; HASH_HandleTypeDef hhash; RNG_HandleTypeDef hrng; RTC_HandleTypeDef hrtc; UART_HandleTypeDef huart4; /* Definitions for defaultTask */ #ifndef SINGLE_THREADED #ifdef CMSIS_OS2_H_ osThreadId_t defaultTaskHandle; const osThreadAttr_t wolfCryptDemo_attributes = { .name = "wolfCryptDemo", .priority = (osPriority_t) osPriorityNormal, .stack_size = WOLF_EXAMPLES_STACK }; #else osThreadId defaultTaskHandle; #endif #endif /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_CRYP_Init(void); static void MX_HASH_Init(void); static void MX_RNG_Init(void); static void MX_UART4_Init(void); static void MX_RTC_Init(void); /* Retargets the C library printf function to the USART. */ #include #ifdef __GNUC__ int __io_putchar(int ch) #else int fputc(int ch, FILE *f) #endif { HAL_UART_Transmit(&HAL_CONSOLE_UART, (uint8_t *)&ch, 1, 0xFFFF); return ch; } #ifdef __GNUC__ int _write(int file,char *ptr, int len) { int DataIdx; for (DataIdx= 0; DataIdx< len; DataIdx++) { __io_putchar(*ptr++); } return len; } #endif int main(void) { /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* Turn off buffers, so I/O occurs immediately */ setvbuf(stdin, NULL, _IONBF, 0); setvbuf(stdout, NULL, _IONBF, 0); setvbuf(stderr, NULL, _IONBF, 0); /* Configure the system clock */ SystemClock_Config(); /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_CRYP_Init(); MX_HASH_Init(); MX_RNG_Init(); MX_UART4_Init(); MX_RTC_Init(); MX_SPI1_Init(); MX_UART4_Init(); #ifdef SINGLE_THREADED wolfCryptDemo(NULL); #else /* Init scheduler */ osKernelInitialize(); /* Create the thread(s) */ /* definition and creation of defaultTask */ #ifdef CMSIS_OS2_H_ defaultTaskHandle = osThreadNew(wolfCryptDemo, NULL, &wolfCryptDemo_attributes); #else osThreadDef(defaultTask, wolfCryptDemo, osPriorityNormal, 0, WOLF_EXAMPLES_STACK); defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL); #endif /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ while (1) {} #endif /* SINGLE_THREADED */ } /** System Clock Configuration */ static void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.LSIState = RCC_LSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 160; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_RTC; PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSI; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK) { Error_Handler(); } } /** * @brief CRYP Initialization Function * @param None * @retval None */ static void MX_CRYP_Init(void) { hcryp.Instance = CRYP; hcryp.Init.DataType = CRYP_DATATYPE_32B; hcryp.Init.pKey = (uint32_t *)pKeyCRYP; hcryp.Init.Algorithm = CRYP_TDES_ECB; hcryp.Init.DataWidthUnit = CRYP_DATAWIDTHUNIT_WORD; if (HAL_CRYP_Init(&hcryp) != HAL_OK) { Error_Handler(); } } /** * @brief HASH Initialization Function * @param None * @retval None */ static void MX_HASH_Init(void) { hhash.Init.DataType = HASH_DATATYPE_32B; if (HAL_HASH_Init(&hhash) != HAL_OK) { Error_Handler(); } } /** * @brief RNG Initialization Function * @param None * @retval None */ static void MX_RNG_Init(void) { hrng.Instance = RNG; if (HAL_RNG_Init(&hrng) != HAL_OK) { Error_Handler(); } } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { RTC_TimeTypeDef sTime = {0}; RTC_DateTypeDef sDate = {0}; /* Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; hrtc.Init.SynchPrediv = 255; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* Initialize RTC and set the Time and Date */ sTime.Hours = 0x0; sTime.Minutes = 0x0; sTime.Seconds = 0x0; sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sTime.StoreOperation = RTC_STOREOPERATION_RESET; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } sDate.WeekDay = RTC_WEEKDAY_MONDAY; sDate.Month = RTC_MONTH_JANUARY; sDate.Date = 0x1; sDate.Year = 0x0; if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK) { Error_Handler(); } } /** * @brief UART4 Initialization Function * @param None * @retval None */ static void MX_UART4_Init(void) { huart4.Instance = UART4; huart4.Init.BaudRate = 115200; huart4.Init.WordLength = UART_WORDLENGTH_8B; huart4.Init.StopBits = UART_STOPBITS_1; huart4.Init.Parity = UART_PARITY_NONE; huart4.Init.Mode = UART_MODE_TX_RX; huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart4.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart4) != HAL_OK) { Error_Handler(); } } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM1 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if (htim->Instance == TIM1) { HAL_IncTick(); } } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* User can add his own implementation to report the HAL error return state */ while(1) { } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ } #endif /* USE_FULL_ASSERT */ #if 0 /* Working _sbrk example for .ld based libC malloc/free */ /* Replace this with one in Core/Src/sysmem.c */ /* Symbols defined in the linker script */ extern uint8_t _end; extern uint8_t _estack; extern uint32_t _Min_Stack_Size; void* _sbrk(ptrdiff_t incr) { static uint8_t* __sbrk_heap_end = NULL; const uint32_t stack_limit = (uint32_t)&_estack - (uint32_t)&_Min_Stack_Size; const uint8_t* max_heap = (uint8_t *)stack_limit; uint8_t* prev_heap_end; /* Initialize heap end at first call */ if (__sbrk_heap_end == NULL) { __sbrk_heap_end = &_end; } /* Protect heap from growing into the reserved MSP stack */ if (__sbrk_heap_end + incr > max_heap) { errno = ENOMEM; return (void *)-1; } prev_heap_end = __sbrk_heap_end; __sbrk_heap_end += incr; return (void*)prev_heap_end; } #endif #endif /* EXAMPLE main.c */