/* tfm.c * * Copyright (C) 2006-2024 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ /* * Based on public domain TomsFastMath 0.10 by Tom St Denis, tomstdenis@iahu.ca, * http://math.libtomcrypt.com */ /** * Edited by Moises Guimaraes (moises@wolfssl.com) * to fit wolfSSL's needs. */ #ifdef HAVE_CONFIG_H #include #endif /* in case user set USE_FAST_MATH there */ #include #ifdef USE_FAST_MATH #ifdef NO_INLINE #include #else #define WOLFSSL_MISC_INCLUDED #include #endif #include #include #include /* will define asm MACROS or C ones */ #include /* common functions */ #ifdef WOLFSSL_ESPIDF #include #include #endif #if defined(WOLFSSL_ESP32_CRYPT_RSA_PRI) static const char* TAG = "TFM"; /* esp log breadcrumb */ #if !defined(NO_WOLFSSL_ESP32_CRYPT_RSA_PRI) /* Each individual math HW can be turned on or off. * Listed in order of complexity and historical difficulty. */ #define WOLFSSL_ESP32_CRYPT_RSA_PRI_MP_MUL #define WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD #define WOLFSSL_ESP32_CRYPT_RSA_PRI_MULMOD #endif #if defined(NO_WOLFSSL_ESP32_CRYPT_RSA_PRI_MP_MUL) #undef WOLFSSL_ESP32_CRYPT_RSA_PRI_MP_MUL #endif #if defined(NO_WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD) #undef WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD #endif #if defined(NO_WOLFSSL_ESP32_CRYPT_RSA_PRI_MULMOD) #undef WOLFSSL_ESP32_CRYPT_RSA_PRI_MULMOD #endif /* Note with HW there's a ESP_RSA_EXPT_XBITS setting * as for some small numbers, SW may be faster. * See ESP_LOGV messages for ESP_RSA_EXPT_XBITS values. */ #endif /* WOLFSSL_ESP32_CRYPT_RSA_PRI */ #if defined(FREESCALE_LTC_TFM) #include #endif #ifdef WOLFSSL_DEBUG_MATH #include #endif #if defined(WOLFSSL_HAVE_SP_RSA) || defined(WOLFSSL_HAVE_SP_DH) #ifdef __cplusplus extern "C" { #endif WOLFSSL_LOCAL int sp_ModExp_1024(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res); WOLFSSL_LOCAL int sp_ModExp_1536(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res); WOLFSSL_LOCAL int sp_ModExp_2048(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res); WOLFSSL_LOCAL int sp_ModExp_3072(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res); WOLFSSL_LOCAL int sp_ModExp_4096(mp_int* base, mp_int* exp, mp_int* mod, mp_int* res); #ifdef __cplusplus } /* extern "C" */ #endif #endif #if !defined(WOLFSSL_SP_MATH) && !defined(WOLFSSL_SP_MATH_ALL) /* math settings check */ word32 CheckRunTimeSettings(void) { return CTC_SETTINGS; } /* math settings size check */ word32 CheckRunTimeFastMath(void) { return FP_SIZE; } #endif /* Functions */ int fp_add(fp_int *a, fp_int *b, fp_int *c) { int sa, sb; int ret = FP_OKAY; /* get sign of both inputs */ sa = a->sign; sb = b->sign; /* handle two cases, not four */ if (sa == sb) { /* both positive or both negative */ /* add their magnitudes, copy the sign */ c->sign = sa; ret = s_fp_add (a, b, c); } else { /* one positive, the other negative */ /* subtract the one with the greater magnitude from */ /* the one of the lesser magnitude. The result gets */ /* the sign of the one with the greater magnitude. */ if (fp_cmp_mag (a, b) == FP_LT) { c->sign = sb; s_fp_sub (b, a, c); } else { c->sign = sa; s_fp_sub (a, b, c); } } return ret; } /* unsigned addition */ int s_fp_add(fp_int *a, fp_int *b, fp_int *c) { int x, y, oldused; fp_word t; y = MAX(a->used, b->used); oldused = MIN(c->used, FP_SIZE); /* help static analysis w/ largest size */ c->used = y; t = 0; #ifdef HONOR_MATH_USED_LENGTH for (x = 0; x < y; x++) { if ( (x < a->used) && (x < b->used) ) { /* x is less than both [a].used and [b].used, so we add both */ t += ((fp_word)a->dp[x]) + ((fp_word)b->dp[x]); } else { /* Here we honor the actual [a].used and [b].used values * and NOT assume that values beyond [used] are zero. */ if ((x >= a->used) && (x < b->used)) { /* x more than [a].used, [b] ok, so just add [b] */ t += /* ((fp_word)(0)) + */ ((fp_word)b->dp[x]); } else { if ((x < a->used) && (x >= b->used)) { /* x more than [b].used, [a] ok, so just add [a] */ t += ((fp_word)a->dp[x]) /* + (fp_word)(0) */; } else { /* we should never get here, as a.used cannot be greater * than b.used, while b.used is greater than a.used! */ /* t += 0 + 0 */ } } } c->dp[x] = (fp_digit)t; t >>= DIGIT_BIT; } #else /* the original code */ for (x = 0; x < y; x++) { t += ((fp_word)a->dp[x]) + ((fp_word)b->dp[x]); c->dp[x] = (fp_digit)t; t >>= DIGIT_BIT; } #endif /* HONOR_MATH_USED_LENGTH */ if (t != 0) { if (x == FP_SIZE) return FP_VAL; c->dp[c->used++] = (fp_digit)t; ++x; } c->used = x; /* zero any excess digits on the destination that we didn't write to */ for (; x < oldused; x++) { c->dp[x] = 0; } fp_clamp(c); return FP_OKAY; } /* c = a - b */ int fp_sub(fp_int *a, fp_int *b, fp_int *c) { int sa, sb; int ret = FP_OKAY; sa = a->sign; sb = b->sign; if (sa != sb) { /* subtract a negative from a positive, OR */ /* subtract a positive from a negative. */ /* In either case, ADD their magnitudes, */ /* and use the sign of the first number. */ c->sign = sa; ret = s_fp_add (a, b, c); } else { /* subtract a positive from a positive, OR */ /* subtract a negative from a negative. */ /* First, take the difference between their */ /* magnitudes, then... */ if (fp_cmp_mag (a, b) != FP_LT) { /* Copy the sign from the first */ c->sign = sa; /* The first has a larger or equal magnitude */ s_fp_sub (a, b, c); } else { /* The result has the *opposite* sign from */ /* the first number. */ c->sign = (sa == FP_ZPOS) ? FP_NEG : FP_ZPOS; /* The second has a larger magnitude */ s_fp_sub (b, a, c); } } return ret; } /* unsigned subtraction ||a|| >= ||b|| ALWAYS! */ void s_fp_sub(fp_int *a, fp_int *b, fp_int *c) { int x, oldbused, oldused; fp_word t; oldused = c->used; oldbused = b->used; c->used = a->used; t = 0; for (x = 0; x < oldbused; x++) { t = ((fp_word)a->dp[x]) - (((fp_word)b->dp[x]) + t); c->dp[x] = (fp_digit)t; t = (t >> DIGIT_BIT)&1; } for (; x < a->used; x++) { t = ((fp_word)a->dp[x]) - t; c->dp[x] = (fp_digit)t; t = (t >> DIGIT_BIT)&1; } /* zero any excess digits on the destination that we didn't write to */ for (; x < oldused; x++) { c->dp[x] = 0; } fp_clamp(c); } /* c = a * b */ int fp_mul(fp_int *A, fp_int *B, fp_int *C) { int ret = FP_OKAY; int y, yy, oldused; oldused = C->used; y = MAX(A->used, B->used); yy = MIN(A->used, B->used); /* fail if we are out of range */ if (y + yy >= FP_SIZE) { ret = FP_VAL; goto clean; } #if defined(WOLFSSL_ESP32_CRYPT_RSA_PRI_MP_MUL) if (esp_hw_validation_active()) { ESP_LOGV(TAG, "Skipping call to esp_mp_mul " "during active validation."); } else { ret = esp_mp_mul(A, B, C); /* HW accelerated multiply */ switch (ret) { case MP_OKAY: goto clean; /* success */ break; case WC_NO_ERR_TRACE(WC_HW_WAIT_E): /* MP_HW_BUSY math HW busy, fall back */ case MP_HW_FALLBACK: /* forced fallback from HW to SW */ case MP_HW_VALIDATION_ACTIVE: /* use SW to compare to HW */ /* fall back to software, below */ break; default: /* Once we've failed, exit without trying to continue. * We may have mangled operands: (e.g. Z = X * Z) * Future implementation may consider saving operands, * but errors should never occur. */ goto clean; /* error */ break; } } /* fall through to software calcs */ #endif /* WOLFSSL_ESP32_CRYPT_RSA_PRI_MP_MUL */ /* pick a comba (unrolled 4/8/16/32 x or rolled) based on the size of the largest input. We also want to avoid doing excess mults if the inputs are not close to the next power of two. That is, for example, if say y=17 then we would do (32-17)^2 = 225 unneeded multiplications */ #if defined(TFM_MUL3) && FP_SIZE >= 6 if (y <= 3) { ret = fp_mul_comba3(A,B,C); goto clean; } #endif #if defined(TFM_MUL4) && FP_SIZE >= 8 if (y == 4) { ret = fp_mul_comba4(A,B,C); goto clean; } #endif #if defined(TFM_MUL6) && FP_SIZE >= 12 if (y <= 6) { ret = fp_mul_comba6(A,B,C); goto clean; } #endif #if defined(TFM_MUL7) && FP_SIZE >= 14 if (y == 7) { ret = fp_mul_comba7(A,B,C); goto clean; } #endif #if defined(TFM_MUL8) && FP_SIZE >= 16 if (y == 8) { ret = fp_mul_comba8(A,B,C); goto clean; } #endif #if defined(TFM_MUL9) && FP_SIZE >= 18 if (y == 9) { ret = fp_mul_comba9(A,B,C); goto clean; } #endif #if defined(TFM_MUL12) && FP_SIZE >= 24 if (y <= 12) { ret = fp_mul_comba12(A,B,C); goto clean; } #endif #if defined(TFM_MUL17) && FP_SIZE >= 34 if (y <= 17) { ret = fp_mul_comba17(A,B,C); goto clean; } #endif #if defined(TFM_SMALL_SET) && FP_SIZE >= 32 if (y <= 16) { ret = fp_mul_comba_small(A,B,C); goto clean; } #endif #if defined(TFM_MUL20) && FP_SIZE >= 40 if (y <= 20) { ret = fp_mul_comba20(A,B,C); goto clean; } #endif #if defined(TFM_MUL24) && FP_SIZE >= 48 if (yy >= 16 && y <= 24) { ret = fp_mul_comba24(A,B,C); goto clean; } #endif #if defined(TFM_MUL28) && FP_SIZE >= 56 if (yy >= 20 && y <= 28) { ret = fp_mul_comba28(A,B,C); goto clean; } #endif #if defined(TFM_MUL32) && FP_SIZE >= 64 if (yy >= 24 && y <= 32) { ret = fp_mul_comba32(A,B,C); goto clean; } #endif #if defined(TFM_MUL48) && FP_SIZE >= 96 if (yy >= 40 && y <= 48) { ret = fp_mul_comba48(A,B,C); goto clean; } #endif #if defined(TFM_MUL64) && FP_SIZE >= 128 if (yy >= 56 && y <= 64) { ret = fp_mul_comba64(A,B,C); goto clean; } #endif ret = fp_mul_comba(A,B,C); clean: /* zero any excess digits on the destination that we didn't write to */ for (y = C->used; y >= 0 && y < oldused; y++) { C->dp[y] = 0; } return ret; } int fp_mul_2(fp_int * a, fp_int * b) { int x, oldused; /* Make sure value to double and result are in range. */ if ((a->used > (FP_SIZE-1)) || ((a->used == (FP_SIZE - 1)) && ((a->dp[FP_SIZE - 1] & ((fp_digit)1 << (DIGIT_BIT - 1))) != 0))) { return FP_VAL; } oldused = b->used; b->used = a->used; { fp_digit r, rr, *tmpa, *tmpb; /* alias for source */ tmpa = a->dp; /* alias for dest */ tmpb = b->dp; /* carry */ r = 0; for (x = 0; x < a->used; x++) { /* get what will be the *next* carry bit from the * MSB of the current digit */ rr = *tmpa >> ((fp_digit)(DIGIT_BIT - 1)); /* now shift up this digit, add in the carry [from the previous] */ *tmpb++ = ((*tmpa++ << ((fp_digit)1)) | r); /* copy the carry that would be from the source * digit into the next iteration */ r = rr; } /* new leading digit? */ if (r != 0) { /* add a MSB which is always 1 at this point */ *tmpb = 1; ++(b->used); } /* zero any excess digits on the destination that we didn't write to */ tmpb = b->dp + b->used; for (x = b->used; x < oldused; x++) { *tmpb++ = 0; } } b->sign = a->sign; return FP_OKAY; } /* c = a * b */ int fp_mul_d(fp_int *a, fp_digit b, fp_int *c) { fp_word w; int x, oldused; oldused = c->used; c->used = a->used; c->sign = a->sign; w = 0; for (x = 0; x < a->used; x++) { w = ((fp_word)a->dp[x]) * ((fp_word)b) + w; c->dp[x] = (fp_digit)w; w = w >> DIGIT_BIT; } if (w != 0) { if (a->used == FP_SIZE) return FP_VAL; c->dp[c->used++] = (fp_digit) w; ++x; } /* zero any excess digits on the destination that we didn't write to */ /* also checking FP_SIZE here for static analysis */ for (; x < oldused && x < FP_SIZE; x++) { c->dp[x] = 0; } fp_clamp(c); return FP_OKAY; } /* c = a * 2**d */ int fp_mul_2d(fp_int *a, int b, fp_int *c) { fp_digit carry, carrytmp, shift; int x; /* copy it */ fp_copy(a, c); /* handle whole digits */ if (b >= DIGIT_BIT) { int ret = fp_lshd(c, b/DIGIT_BIT); if (ret != FP_OKAY) return ret; } b %= DIGIT_BIT; /* shift the digits */ if (b != 0) { carry = 0; shift = DIGIT_BIT - b; for (x = 0; x < c->used; x++) { carrytmp = c->dp[x] >> shift; c->dp[x] = (c->dp[x] << b) + carry; carry = carrytmp; } /* store last carry if room */ if (carry && x < FP_SIZE) { c->dp[c->used++] = carry; } if (x == FP_SIZE) return FP_VAL; } fp_clamp(c); return FP_OKAY; } /* generic PxQ multiplier */ #if defined(HAVE_INTEL_MULX) WC_INLINE static int fp_mul_comba_mulx(fp_int *A, fp_int *B, fp_int *C) { int ix, iy, iz, pa; fp_int *dst; #ifndef WOLFSSL_SMALL_STACK fp_int tmp[1]; #else fp_int *tmp; #endif fp_digit carry; /* Variables used but not seen by cppcheck. */ (void)ix; (void)iy; (void)iz; #ifdef WOLFSSL_SMALL_STACK tmp = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (tmp == NULL) return FP_MEM; #endif /* get size of output and trim */ pa = A->used + B->used; if (pa >= FP_SIZE) { pa = FP_SIZE-1; } /* Always take branch to use tmp variable. This avoids a cache attack for * determining if C equals A */ if (1) { fp_init(tmp); dst = tmp; } TFM_INTEL_MUL_COMBA(A, B, carry, dst) ; dst->used = pa; dst->sign = A->sign ^ B->sign; fp_clamp(dst); fp_copy(dst, C); #ifdef WOLFSSL_SMALL_STACK XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } #endif /* C = (A * B) */ int fp_mul_comba(fp_int *A, fp_int *B, fp_int *C) { int ret = 0; int ix, iy, iz, tx, ty, pa; fp_digit c0, c1, c2, *tmpx, *tmpy; fp_int *dst; #ifndef WOLFSSL_SMALL_STACK fp_int tmp[1]; #else fp_int *tmp; #endif if (A->used + B->used >= FP_SIZE) return FP_VAL; IF_HAVE_INTEL_MULX(ret = fp_mul_comba_mulx(A, B, C), return ret) ; #ifdef WOLFSSL_SMALL_STACK tmp = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (tmp == NULL) return FP_MEM; #endif COMBA_START; COMBA_CLEAR; /* get size of output and trim */ pa = A->used + B->used; if (pa >= FP_SIZE) { pa = FP_SIZE-1; } /* Always take branch to use tmp variable. This avoids a cache attack for * determining if C equals A */ if (1) { fp_init(tmp); dst = tmp; } for (ix = 0; ix < pa; ix++) { /* get offsets into the two bignums */ ty = MIN(ix, (B->used > 0 ? B->used - 1 : 0)); tx = ix - ty; /* setup temp aliases */ tmpx = A->dp + tx; tmpy = B->dp + ty; /* this is the number of times the loop will iterate, essentially its while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(A->used-tx, ty+1); /* execute loop */ COMBA_FORWARD; for (iz = 0; iz < iy; ++iz) { fp_digit _tmpx = *tmpx++; fp_digit _tmpy = *tmpy--; MULADD(_tmpx, _tmpy); } /* store term */ COMBA_STORE(dst->dp[ix]); } COMBA_FINI; dst->used = pa; /* warning: WOLFSSL_SP_INT_NEGATIVE may disable negative numbers */ dst->sign = A->sign ^ B->sign; fp_clamp(dst); fp_copy(dst, C); /* Variables used but not seen by cppcheck. */ (void)c0; (void)c1; (void)c2; #ifdef WOLFSSL_SMALL_STACK XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } /* a/b => cb + d == a */ int fp_div(fp_int *a, fp_int *b, fp_int *c, fp_int *d) { int n, t, i, norm, neg; int ret; #ifndef WOLFSSL_SMALL_STACK fp_int q[1], x[1], y[1], t1[1], t2[1]; #else fp_int *q, *x, *y, *t1, *t2; #endif /* is divisor zero ? */ if (fp_iszero (b) == FP_YES) { return FP_VAL; } /* if a < b then q=0, r = a */ if (fp_cmp_mag (a, b) == FP_LT) { if (d != NULL) { fp_copy (a, d); } if (c != NULL) { fp_zero (c); } return FP_OKAY; } #ifdef WOLFSSL_SMALL_STACK /* 0 1 2 3 4 */ /* allocate 5 elements of fp_int for q, x, y, t1, t2 */ q = (fp_int*)XMALLOC(sizeof(fp_int) * 5, NULL, DYNAMIC_TYPE_BIGINT); if (q == NULL) { return FP_MEM; } x = &q[1]; y = &q[2]; t1 = &q[3]; t2 = &q[4]; #endif fp_init(q); /* qb + d = a, and b is an integer > 0, therefore q <= a */ q->used = a->used; fp_init(t1); fp_init(t2); /* Init a copy (y) of the input (b) and ** Init a copy (x) of the input (a) ** ** ALERT: Not calling fp_init_copy() as some compiler optimization settings ** such as -O2 will complain that (x) or (y) "may be used uninitialized". ** The fp_init() is here only to appease the compiler. */ fp_init(x); fp_copy(a, x); /* copy (src = a) to (dst = x) */ fp_init(y); fp_copy(b, y); /* copy (src = b) to (dst = y) */ /* fix the sign */ neg = (a->sign == b->sign) ? FP_ZPOS : FP_NEG; x->sign = y->sign = FP_ZPOS; /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ norm = fp_count_bits(y) % DIGIT_BIT; if (norm < (int)(DIGIT_BIT-1)) { norm = (DIGIT_BIT-1) - norm; ret = fp_mul_2d (x, norm, x); if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } ret = fp_mul_2d (y, norm, y); if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } } else { norm = 0; } /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ n = x->used - 1; t = y->used - 1; /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ ret = fp_lshd (y, n - t); /* y = y*b**{n-t} */ if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } while (fp_cmp (x, y) != FP_LT) { ++(q->dp[n - t]); ret = fp_sub (x, y, x); if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } } /* reset y by shifting it back down */ fp_rshd (y, n - t); /* step 3. for i from n down to (t + 1) */ for (i = n; i >= (t + 1); i--) { if (i > x->used) { continue; } /* step 3.1 if xi == yt then set q{i-t-1} to b-1, * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ if (x->dp[i] == y->dp[t]) { q->dp[i - t - 1] = (fp_digit) ((((fp_word)1) << DIGIT_BIT) - 1); } else { fp_word tmp; tmp = ((fp_word) x->dp[i]) << ((fp_word) DIGIT_BIT); tmp |= ((fp_word) x->dp[i - 1]); #ifdef WOLFSSL_LINUXKM /* Linux kernel macro for in-place 64 bit integer division. */ do_div(tmp, (fp_word)y->dp[t]); #else tmp /= ((fp_word)y->dp[t]); #endif q->dp[i - t - 1] = (fp_digit) (tmp); } /* while (q{i-t-1} * (yt * b + y{t-1})) > xi * b**2 + xi-1 * b + xi-2 do q{i-t-1} -= 1; */ q->dp[i - t - 1] = (q->dp[i - t - 1] + 1); do { q->dp[i - t - 1] = (q->dp[i - t - 1] - 1); /* find left hand */ fp_zero (t1); t1->dp[0] = (t - 1 < 0) ? 0 : y->dp[t - 1]; t1->dp[1] = y->dp[t]; t1->used = 2; ret = fp_mul_d (t1, q->dp[i - t - 1], t1); if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } /* find right hand */ t2->dp[0] = (i - 2 < 0) ? 0 : x->dp[i - 2]; t2->dp[1] = (i - 1 < 0) ? 0 : x->dp[i - 1]; t2->dp[2] = x->dp[i]; t2->used = 3; } while (fp_cmp_mag(t1, t2) == FP_GT); /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ ret = fp_mul_d (y, q->dp[i - t - 1], t1); if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } ret = fp_lshd (t1, i - t - 1); if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } ret = fp_sub (x, t1, x); if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ if (x->sign == FP_NEG) { fp_copy (y, t1); ret = fp_lshd (t1, i - t - 1); if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } ret = fp_add (x, t1, x); if (ret != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return ret; } q->dp[i - t - 1] = q->dp[i - t - 1] - 1; } } /* now q is the quotient and x is the remainder * [which we have to normalize] */ /* get sign before writing to c */ x->sign = x->used == 0 ? FP_ZPOS : a->sign; if (c != NULL) { fp_clamp (q); fp_copy (q, c); c->sign = neg; } if (d != NULL) { fp_div_2d (x, norm, x, NULL); /* zero any excess digits on the destination that we didn't write to */ for (i = b->used; i < x->used; i++) { x->dp[i] = 0; } fp_clamp(x); fp_copy (x, d); } #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } /* b = a/2 */ void fp_div_2(fp_int * a, fp_int * b) { int x, oldused; oldused = b->used; b->used = a->used; { fp_digit r, rr, *tmpa, *tmpb; /* source alias */ tmpa = a->dp + b->used - 1; /* dest alias */ tmpb = b->dp + b->used - 1; /* carry */ r = 0; for (x = b->used - 1; x >= 0; x--) { /* get the carry for the next iteration */ rr = *tmpa & 1; /* shift the current digit, add in carry and store */ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); /* forward carry to next iteration */ r = rr; } /* zero any excess digits on the destination that we didn't write to */ tmpb = b->dp + b->used; for (x = b->used; x < oldused; x++) { *tmpb++ = 0; } } b->sign = a->sign; fp_clamp (b); } /* c = a / 2 (mod b) - constant time (a < b and positive) */ int fp_div_2_mod_ct(fp_int *a, fp_int *b, fp_int *c) { fp_word w = 0; fp_digit mask; int i; mask = 0 - (a->dp[0] & 1); for (i = 0; i < b->used; i++) { fp_digit mask_a = 0 - (i < a->used); w += b->dp[i] & mask; w += a->dp[i] & mask_a; c->dp[i] = (fp_digit)w; w >>= DIGIT_BIT; } for (i = 0; i < b->used-1; i++) { c->dp[i] = (c->dp[i] >> 1) | (c->dp[i+1] << (DIGIT_BIT - 1)); } c->dp[i] = (c->dp[i] >> 1) | ((fp_digit)w << (DIGIT_BIT - 1)); c->used = i + 1; c->sign = FP_ZPOS; fp_clamp(c); return FP_OKAY; } /* c = a / 2**b */ void fp_div_2d(fp_int *a, int b, fp_int *c, fp_int *d) { int D; /* if the shift count is <= 0 then we do no work */ if (b <= 0) { fp_copy (a, c); if (d != NULL) { fp_zero (d); } return; } /* get the remainder before a is changed in calculating c */ if (a == c && d != NULL) { fp_mod_2d (a, b, d); } /* copy */ fp_copy(a, c); /* shift by as many digits in the bit count */ if (b >= (int)DIGIT_BIT) { fp_rshd (c, b / DIGIT_BIT); } /* shift any bit count < DIGIT_BIT */ D = (b % DIGIT_BIT); if (D != 0) { fp_rshb(c, D); } /* get the remainder if a is not changed in calculating c */ if (a != c && d != NULL) { fp_mod_2d (a, b, d); } fp_clamp (c); } /* c = a mod b, 0 <= c < b */ int fp_mod(fp_int *a, fp_int *b, fp_int *c) { #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif int err; #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif fp_init(t); err = fp_div(a, b, NULL, t); if (err == FP_OKAY) { if (!fp_iszero(t) && (t->sign != b->sign)) { err = fp_add(t, b, c); } else { fp_copy(t, c); } } #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* c = a mod 2**d */ void fp_mod_2d(fp_int *a, int b, fp_int *c) { unsigned int x; unsigned int bmax; /* zero if count less than or equal to zero */ if (b <= 0) { fp_zero(c); return; } /* get copy of input */ fp_copy(a, c); /* if 2**d is larger than we just return */ if (c->sign == FP_ZPOS && b >= (DIGIT_BIT * a->used)) { return; } bmax = ((unsigned int)b + DIGIT_BIT - 1) / DIGIT_BIT; /* If a is negative and bmax is greater than or equal to FP_SIZE, then the * result can't fit within c. Just return. */ if (c->sign == FP_NEG && bmax >= FP_SIZE) { return; } /* zero digits above the last digit of the modulus */ for (x = bmax; x < (unsigned int)c->used; x++) { c->dp[x] = 0; } if (c->sign == FP_NEG) { fp_digit carry = 0; /* negate value */ for (x = 0; x < (unsigned int)c->used; x++) { fp_digit next = c->dp[x] > 0; c->dp[x] = (fp_digit)0 - c->dp[x] - carry; carry |= next; } for (; x < bmax; x++) { c->dp[x] = (fp_digit)0 - carry; } c->used = (int)bmax; c->sign = FP_ZPOS; } /* clear the digit that is not completely outside/inside the modulus */ x = DIGIT_BIT - (b % DIGIT_BIT); if (x != DIGIT_BIT) { c->dp[bmax - 1] &= ~((fp_digit)0) >> x; } fp_clamp (c); } static int fp_invmod_slow (fp_int * a, fp_int * b, fp_int * c) { #ifndef WOLFSSL_SMALL_STACK fp_int x[1], y[1], u[1], v[1], A[1], B[1], C[1], D[1]; #else fp_int *x, *y, *u, *v, *A, *B, *C, *D; #endif int err; /* b cannot be negative */ if (b->sign == FP_NEG || fp_iszero(b) == FP_YES) { return FP_VAL; } if (fp_iszero(a) == FP_YES) { return FP_VAL; } #ifdef WOLFSSL_SMALL_STACK x = (fp_int*)XMALLOC(sizeof(fp_int) * 8, NULL, DYNAMIC_TYPE_BIGINT); if (x == NULL) { return FP_MEM; } y = &x[1]; u = &x[2]; v = &x[3]; A = &x[4]; B = &x[5]; C = &x[6]; D = &x[7]; #endif /* init temps */ fp_init(x); fp_init(y); fp_init(u); fp_init(v); fp_init(A); fp_init(B); fp_init(C); fp_init(D); /* x = a, y = b */ if ((err = fp_mod(a, b, x)) != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } fp_copy(b, y); if (fp_iszero(x) == FP_YES) { /* invmod doesn't exist for this a and b */ #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_VAL; } /* 2. [modified] if x,y are both even then return an error! */ if (fp_iseven(x) == FP_YES && fp_iseven(y) == FP_YES) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_VAL; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ fp_copy (x, u); fp_copy (y, v); fp_set (A, 1); fp_set (D, 1); top: /* 4. while u is even do */ while (fp_iseven (u) == FP_YES) { /* 4.1 u = u/2 */ fp_div_2 (u, u); /* 4.2 if A or B is odd then */ if (fp_isodd (A) == FP_YES || fp_isodd (B) == FP_YES) { /* A = (A+y)/2, B = (B-x)/2 */ err = fp_add (A, y, A); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_sub (B, x, B); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* A = A/2, B = B/2 */ fp_div_2 (A, A); fp_div_2 (B, B); } /* 5. while v is even do */ while (fp_iseven (v) == FP_YES) { /* 5.1 v = v/2 */ fp_div_2 (v, v); /* 5.2 if C or D is odd then */ if (fp_isodd (C) == FP_YES || fp_isodd (D) == FP_YES) { /* C = (C+y)/2, D = (D-x)/2 */ err = fp_add (C, y, C); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_sub (D, x, D); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* C = C/2, D = D/2 */ fp_div_2 (C, C); fp_div_2 (D, D); } /* 6. if u >= v then */ if (fp_cmp (u, v) != FP_LT) { /* u = u - v, A = A - C, B = B - D */ err = fp_sub (u, v, u); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_sub (A, C, A); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_sub (B, D, B); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } else { /* v - v - u, C = C - A, D = D - B */ err = fp_sub (v, u, v); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_sub (C, A, C); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_sub (D, B, D); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* if not zero goto step 4 */ if (fp_iszero (u) == FP_NO) goto top; /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (fp_cmp_d (v, 1) != FP_EQ) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_VAL; } /* if its too low */ while (fp_cmp_d(C, 0) == FP_LT) { err = fp_add(C, b, C); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* too big */ while (fp_cmp_mag(C, b) != FP_LT) { err = fp_sub(C, b, C); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* C is now the inverse */ fp_copy(C, c); #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } /* c = 1/a (mod b) for odd b only */ int fp_invmod(fp_int *a, fp_int *b, fp_int *c) { #ifndef WOLFSSL_SMALL_STACK fp_int x[1], y[1], u[1], v[1], B[1], D[1]; #else fp_int *x, *y, *u, *v, *B, *D; #endif int err; if (b->sign == FP_NEG || fp_iszero(b) == FP_YES) { return FP_VAL; } /* [modified] sanity check on "a" */ if (fp_iszero(a) == FP_YES) { return FP_VAL; /* can not divide by 0 here */ } /* 2. [modified] b must be odd */ if (fp_iseven(b) == FP_YES) { return fp_invmod_slow(a,b,c); } #ifdef WOLFSSL_SMALL_STACK x = (fp_int*)XMALLOC(sizeof(fp_int) * 6, NULL, DYNAMIC_TYPE_BIGINT); if (x == NULL) { return FP_MEM; } y = &x[1]; u = &x[2]; v = &x[3]; B = &x[4]; D = &x[5]; #endif /* init all our temps */ fp_init(x); fp_init(y); fp_init(u); fp_init(v); fp_init(B); fp_init(D); if (fp_iszero(a) == FP_YES) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_VAL; } /* x == modulus, y == value to invert */ fp_copy(b, x); /* we need y = |a| */ if ((err = mp_mod(a, b, y)) != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } if (fp_iszero(y) == FP_YES) { /* invmod doesn't exist for this a and b */ #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_VAL; } /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ fp_copy(x, u); fp_copy(y, v); fp_set (D, 1); top: /* 4. while u is even do */ while (fp_iseven (u) == FP_YES) { /* 4.1 u = u/2 */ fp_div_2 (u, u); /* 4.2 if B is odd then */ if (fp_isodd (B) == FP_YES) { err = fp_sub (B, x, B); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* B = B/2 */ fp_div_2 (B, B); } /* 5. while v is even do */ while (fp_iseven (v) == FP_YES) { /* 5.1 v = v/2 */ fp_div_2 (v, v); /* 5.2 if D is odd then */ if (fp_isodd (D) == FP_YES) { /* D = (D-x)/2 */ err = fp_sub (D, x, D); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* D = D/2 */ fp_div_2 (D, D); } /* 6. if u >= v then */ if (fp_cmp (u, v) != FP_LT) { /* u = u - v, B = B - D */ err = fp_sub (u, v, u); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_sub (B, D, B); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } else { /* v - v - u, D = D - B */ err = fp_sub (v, u, v); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_sub (D, B, D); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* if not zero goto step 4 */ if (fp_iszero (u) == FP_NO) { goto top; } /* now a = C, b = D, gcd == g*v */ /* if v != 1 then there is no inverse */ if (fp_cmp_d (v, 1) != FP_EQ) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_VAL; } /* b is now the inverse */ while (D->sign == FP_NEG) { err = fp_add (D, b, D); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } } /* too big */ while (fp_cmp_mag(D, b) != FP_LT) { err = fp_sub(D, b, D); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } fp_copy (D, c); #ifdef WOLFSSL_SMALL_STACK XFREE(x, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } #define CT_INV_MOD_PRE_CNT 8 /* modulus (b) must be greater than 2 and a prime */ int fp_invmod_mont_ct(fp_int *a, fp_int *b, fp_int *c, fp_digit mp) { int i, j, err = FP_OKAY; #ifndef WOLFSSL_SMALL_STACK fp_int t[1], e[1]; fp_int pre[CT_INV_MOD_PRE_CNT]; #else fp_int* t; fp_int* e; fp_int* pre; #endif if ((a->used * 2 > FP_SIZE) || (b->used * 2 > FP_SIZE)) { return FP_VAL; } #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int) * (2 + CT_INV_MOD_PRE_CNT), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; e = t + 1; pre = t + 2; #endif fp_init(t); fp_init(e); fp_init(&pre[0]); fp_copy(a, &pre[0]); for (i = 1; i < CT_INV_MOD_PRE_CNT; i++) { fp_init(&pre[i]); err |= fp_sqr(&pre[i-1], &pre[i]); err |= fp_montgomery_reduce(&pre[i], b, mp); err |= fp_mul(&pre[i], a, &pre[i]); err |= fp_montgomery_reduce(&pre[i], b, mp); } err |= fp_sub_d(b, 2, e); /* Highest bit is always set. */ j = 1; for (i = fp_count_bits(e)-2; i >= 0; i--) { if (!fp_is_bit_set(e, i) || j == CT_INV_MOD_PRE_CNT) break; j++; } fp_copy(&pre[j-1], t); j = 0; for (; i >= 0; i--) { int set = fp_is_bit_set(e, i); if ((j == CT_INV_MOD_PRE_CNT) || (!set && j > 0)) { err |= fp_mul(t, &pre[j-1], t); err |= fp_montgomery_reduce(t, b, mp); j = 0; } err |= fp_sqr(t, t); err |= fp_montgomery_reduce(t, b, mp); j += set; } if (j > 0) { err |= fp_mul(t, &pre[j-1], c); err |= fp_montgomery_reduce(c, b, mp); } else fp_copy(t, c); #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* d = a * b (mod c) */ int fp_mulmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d) { int err; #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif fp_init(t); err = fp_mul(a, b, t); if (err == FP_OKAY) { #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) if (d->size < FP_SIZE) { err = fp_mod(t, c, t); fp_copy(t, d); } else #endif { err = fp_mod(t, c, d); } } #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* d = a - b (mod c) */ int fp_submod(fp_int *a, fp_int *b, fp_int *c, fp_int *d) { int err; #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif fp_init(t); err = fp_sub(a, b, t); if (err == FP_OKAY) { #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) if (d->size < FP_SIZE) { err = fp_mod(t, c, t); fp_copy(t, d); } else #endif { err = fp_mod(t, c, d); } } #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* d = a + b (mod c) */ int fp_addmod(fp_int *a, fp_int *b, fp_int *c, fp_int *d) { int err; #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif fp_init(t); err = fp_add(a, b, t); if (err == FP_OKAY) { #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) if (d->size < FP_SIZE) { err = fp_mod(t, c, t); fp_copy(t, d); } else #endif { err = fp_mod(t, c, d); } } #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* d = a - b (mod c) - constant time (a < c and b < c and all positive) * c and d must not be the same pointers. */ int fp_submod_ct(fp_int *a, fp_int *b, fp_int *c, fp_int *d) { fp_sword w; fp_digit mask; int i; if (c->used + 1 > FP_SIZE) { return FP_VAL; } if (c == d) { return FP_VAL; } /* In constant time, subtract b from a putting result in d. */ w = 0; for (i = 0; i < c->used; i++) { w += a->dp[i]; w -= b->dp[i]; d->dp[i] = (fp_digit)w; w >>= DIGIT_BIT; } w += a->dp[i]; w -= b->dp[i]; w >>= DIGIT_BIT; /* When w is negative then we need to add modulus to make result positive. */ mask = (fp_digit)0 - (w < 0); /* Constant time, conditionally, add modulus to difference. */ w = 0; for (i = 0; i < c->used; i++) { w += d->dp[i]; w += c->dp[i] & mask; d->dp[i] = (fp_digit)w; w >>= DIGIT_BIT; } /* Result will always have digits equal to or less than those in modulus. */ d->used = i; d->sign = FP_ZPOS; fp_clamp(d); return FP_OKAY; } /* d = a + b (mod c) - constant time (a < c and b < c and all positive) * c and d must not be the same pointers. */ int fp_addmod_ct(fp_int *a, fp_int *b, fp_int *c, fp_int *d) { fp_word w; fp_sword s; fp_digit mask; int i; if (c == d) { return FP_VAL; } /* Add a to b into d. Do the subtract of modulus but don't store result. * When subtract result is negative, the overflow will be negative. * Only need to subtract mod when result is positive - overflow is positive. */ w = 0; s = 0; for (i = 0; i < c->used; i++) { w += a->dp[i]; w += b->dp[i]; d->dp[i] = (fp_digit)w; s += (fp_digit)w; s -= c->dp[i]; w >>= DIGIT_BIT; s >>= DIGIT_BIT; } s += (fp_digit)w; /* s will be positive when subtracting modulus is needed. */ mask = (fp_digit)0 - (s >= 0); /* Constant time, conditionally, subtract modulus from sum. */ w = 0; for (i = 0; i < c->used; i++) { w += c->dp[i] & mask; w = d->dp[i] - w; d->dp[i] = (fp_digit)w; w = (w >> DIGIT_BIT)&1; } /* Result will always have digits equal to or less than those in modulus. */ d->used = i; d->sign = FP_ZPOS; fp_clamp(d); return FP_OKAY; } #ifdef TFM_TIMING_RESISTANT #ifdef WC_RSA_NONBLOCK #ifdef WC_RSA_NONBLOCK_TIME /* User can override the check-time at build-time using the * FP_EXPTMOD_NB_CHECKTIME macro to define your own function */ #ifndef FP_EXPTMOD_NB_CHECKTIME /* instruction count for each type of operation */ /* array lookup is using TFM_EXPTMOD_NB_* states */ static const word32 exptModNbInst[TFM_EXPTMOD_NB_COUNT] = { #ifdef TFM_PPC32 #ifdef _DEBUG 11098, 8701, 3971, 178394, 858093, 1040, 822, 178056, 181574, 90883, 184339, 236813 #else 7050, 2554, 3187, 43178, 200422, 384, 275, 43024, 43550, 30450, 46270, 61376 #endif #elif defined(TFM_X86_64) #ifdef _DEBUG 954, 2377, 858, 19027, 90840, 287, 407, 20140, 7874, 11385, 8005, 6151 #else 765, 1007, 771, 5216, 34993, 248, 193, 4975, 4201, 3947, 4275, 3811 #endif #else /* software only fast math */ #ifdef _DEBUG 798, 2245, 802, 16657, 66920, 352, 186, 16997, 16145, 12789, 16742, 15006 #else 775, 1084, 783, 4692, 37510, 207, 183, 4374, 4392, 3097, 4442, 4079 #endif #endif }; static int fp_exptmod_nb_checktime(exptModNb_t* nb) { word32 totalInst; /* if no max time has been set then stop (do not block) */ if (nb->maxBlockInst == 0 || nb->state >= TFM_EXPTMOD_NB_COUNT) { return TFM_EXPTMOD_NB_STOP; } /* if instruction table not set then use maxBlockInst as simple counter */ if (exptModNbInst[nb->state] == 0) { if (++nb->totalInst < nb->maxBlockInst) return TFM_EXPTMOD_NB_CONTINUE; nb->totalInst = 0; /* reset counter */ return TFM_EXPTMOD_NB_STOP; } /* get total instruction count including next operation */ totalInst = nb->totalInst + exptModNbInst[nb->state]; /* if the next operation can completed within the maximum then continue */ if (totalInst <= nb->maxBlockInst) { return TFM_EXPTMOD_NB_CONTINUE; } return TFM_EXPTMOD_NB_STOP; } #define FP_EXPTMOD_NB_CHECKTIME(nb) fp_exptmod_nb_checktime((nb)) #endif /* !FP_EXPTMOD_NB_CHECKTIME */ #endif /* WC_RSA_NONBLOCK_TIME */ /* non-blocking version of timing resistant fp_exptmod function */ /* supports cache resistance */ int fp_exptmod_nb(exptModNb_t* nb, fp_int* G, fp_int* X, fp_int* P, fp_int* Y) { int err, ret = FP_WOULDBLOCK; if (nb == NULL) return FP_VAL; #ifdef WC_RSA_NONBLOCK_TIME nb->totalInst = 0; do { nb->totalInst += exptModNbInst[nb->state]; #endif switch (nb->state) { case TFM_EXPTMOD_NB_INIT: /* now setup montgomery */ if ((err = fp_montgomery_setup(P, &nb->mp)) != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } /* init ints */ fp_init(&nb->R[0]); fp_init(&nb->R[1]); #ifndef WC_NO_CACHE_RESISTANT fp_init(&nb->R[2]); #endif nb->state = TFM_EXPTMOD_NB_MONT; break; case TFM_EXPTMOD_NB_MONT: /* mod m -> R[0] */ err = fp_montgomery_calc_normalization(&nb->R[0], P); if (err != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } nb->state = TFM_EXPTMOD_NB_MONT_RED; break; case TFM_EXPTMOD_NB_MONT_RED: /* reduce G -> R[1] */ if (fp_cmp_mag(P, G) != FP_GT) { /* G > P so we reduce it first */ err = fp_mod(G, P, &nb->R[1]); if (err != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } } else { fp_copy(G, &nb->R[1]); } nb->state = TFM_EXPTMOD_NB_MONT_MUL; break; case TFM_EXPTMOD_NB_MONT_MUL: /* G (R[1]) * m (R[0]) */ err = fp_mul(&nb->R[1], &nb->R[0], &nb->R[1]); if (err != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } nb->state = TFM_EXPTMOD_NB_MONT_MOD; break; case TFM_EXPTMOD_NB_MONT_MOD: /* mod m */ err = fp_div(&nb->R[1], P, NULL, &nb->R[1]); if (err != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } nb->state = TFM_EXPTMOD_NB_MONT_MODCHK; break; case TFM_EXPTMOD_NB_MONT_MODCHK: /* m matches sign of (G * R mod m) */ if (nb->R[1].sign != P->sign) { err = fp_add(&nb->R[1], P, &nb->R[1]); if (err != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } } /* set initial mode and bit cnt */ nb->bitcnt = 1; nb->buf = 0; nb->digidx = X->used - 1; nb->state = TFM_EXPTMOD_NB_NEXT; break; case TFM_EXPTMOD_NB_NEXT: /* grab next digit as required */ if (--nb->bitcnt == 0) { /* if nb->digidx == -1 we are out of digits so break */ if (nb->digidx == -1) { nb->state = TFM_EXPTMOD_NB_RED; break; } /* read next digit and reset nb->bitcnt */ nb->buf = X->dp[nb->digidx--]; nb->bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ nb->y = (int)(nb->buf >> (DIGIT_BIT - 1)) & 1; nb->buf <<= (fp_digit)1; nb->state = TFM_EXPTMOD_NB_MUL; FALL_THROUGH; case TFM_EXPTMOD_NB_MUL: fp_mul(&nb->R[0], &nb->R[1], &nb->R[nb->y^1]); nb->state = TFM_EXPTMOD_NB_MUL_RED; break; case TFM_EXPTMOD_NB_MUL_RED: err = fp_montgomery_reduce(&nb->R[nb->y^1], P, nb->mp); if (err != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } nb->state = TFM_EXPTMOD_NB_SQR; break; case TFM_EXPTMOD_NB_SQR: #ifdef WC_NO_CACHE_RESISTANT err = fp_sqr(&nb->R[nb->y], &nb->R[nb->y]); #else fp_copy((fp_int*) ( ((wc_ptr_t)&nb->R[0] & wc_off_on_addr[nb->y^1]) + ((wc_ptr_t)&nb->R[1] & wc_off_on_addr[nb->y]) ), &nb->R[2]); err = fp_sqr(&nb->R[2], &nb->R[2]); #endif /* WC_NO_CACHE_RESISTANT */ if (err != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } nb->state = TFM_EXPTMOD_NB_SQR_RED; break; case TFM_EXPTMOD_NB_SQR_RED: #ifdef WC_NO_CACHE_RESISTANT err = fp_montgomery_reduce(&nb->R[nb->y], P, nb->mp); #else err = fp_montgomery_reduce(&nb->R[2], P, nb->mp); fp_copy(&nb->R[2], (fp_int*) ( ((wc_ptr_t)&nb->R[0] & wc_off_on_addr[nb->y^1]) + ((wc_ptr_t)&nb->R[1] & wc_off_on_addr[nb->y]) ) ); #endif /* WC_NO_CACHE_RESISTANT */ if (err != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } nb->state = TFM_EXPTMOD_NB_NEXT; break; case TFM_EXPTMOD_NB_RED: /* final reduce */ err = fp_montgomery_reduce(&nb->R[0], P, nb->mp); if (err != FP_OKAY) { nb->state = TFM_EXPTMOD_NB_INIT; return err; } fp_copy(&nb->R[0], Y); nb->state = TFM_EXPTMOD_NB_INIT; ret = FP_OKAY; break; } /* switch */ #ifdef WC_RSA_NONBLOCK_TIME /* determine if maximum blocking time has been reached */ } while (ret == FP_WOULDBLOCK && FP_EXPTMOD_NB_CHECKTIME(nb) == TFM_EXPTMOD_NB_CONTINUE); #endif return ret; } #endif /* WC_RSA_NONBLOCK */ #ifndef WC_PROTECT_ENCRYPTED_MEM /* timing resistant montgomery ladder based exptmod Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder", Cryptographic Hardware and Embedded Systems, CHES 2002 */ static int _fp_exptmod_ct(fp_int * G, fp_int * X, int digits, fp_int * P, fp_int * Y) { #ifndef WOLFSSL_SMALL_STACK #ifdef WC_NO_CACHE_RESISTANT fp_int R[2]; #else fp_int R[3]; /* need a temp for cache resistance */ #endif #else fp_int *R; #endif fp_digit buf, mp; int err, bitcnt, digidx, y; /* now setup montgomery */ if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) { return err; } #ifdef WOLFSSL_SMALL_STACK #ifndef WC_NO_CACHE_RESISTANT R = (fp_int*)XMALLOC(sizeof(fp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT); #else R = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT); #endif if (R == NULL) return FP_MEM; #endif fp_init(&R[0]); fp_init(&R[1]); #ifndef WC_NO_CACHE_RESISTANT fp_init(&R[2]); #endif /* now we need R mod m */ err = fp_montgomery_calc_normalization (&R[0], P); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* now set R[0][1] to G * R mod m */ if (fp_cmp_mag(P, G) != FP_GT) { /* G > P so we reduce it first */ err = fp_mod(G, P, &R[1]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } else { fp_copy(G, &R[1]); } err = fp_mulmod (&R[1], &R[0], P, &R[1]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* for j = t-1 downto 0 do r_!k = R0*R1; r_k = r_k^2 */ /* set initial mode and bit cnt */ bitcnt = 1; buf = 0; digidx = digits - 1; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (int)(buf >> (DIGIT_BIT - 1)) & 1; buf <<= (fp_digit)1; #ifdef WC_NO_CACHE_RESISTANT /* do ops */ err = fp_mul(&R[0], &R[1], &R[y^1]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce(&R[y^1], P, mp); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_sqr(&R[y], &R[y]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce(&R[y], P, mp); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } #else /* do ops */ err = fp_mul(&R[0], &R[1], &R[2]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce(&R[2], P, mp); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* instead of using R[y^1] for mul, which leaks key bit to cache monitor, * use R[2] as temp, make sure address calc is constant, keep * &R[0] and &R[1] in cache */ fp_copy(&R[2], (fp_int*) ( ((wc_ptr_t)&R[0] & wc_off_on_addr[y]) + ((wc_ptr_t)&R[1] & wc_off_on_addr[y^1]) ) ); /* instead of using R[y] for sqr, which leaks key bit to cache monitor, * use R[2] as temp, make sure address calc is constant, keep * &R[0] and &R[1] in cache */ fp_copy((fp_int*) ( ((wc_ptr_t)&R[0] & wc_off_on_addr[y^1]) + ((wc_ptr_t)&R[1] & wc_off_on_addr[y]) ), &R[2]); err = fp_sqr(&R[2], &R[2]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce(&R[2], P, mp); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } fp_copy(&R[2], (fp_int*) ( ((wc_ptr_t)&R[0] & wc_off_on_addr[y^1]) + ((wc_ptr_t)&R[1] & wc_off_on_addr[y]) ) ); #endif /* WC_NO_CACHE_RESISTANT */ } err = fp_montgomery_reduce(&R[0], P, mp); fp_copy(&R[0], Y); #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } #else /* Copy from a1 and a2 into r1 and r2 based on y in constant time. * When y is 1, r1 = a1 and r2 = a2. * When y is 0, r1 = a2 and r2 = a1. * Always copy size digits as that is the maximum size for a1 and a2. */ static void fp_copy_2_ct(fp_int* a1, fp_int* a2, fp_int* r1, fp_int* r2, int y, int size) { int i; /* Copy data - constant time. */ for (i = 0; i < size; i++) { r1->dp[i] = (a1->dp[i] & ((fp_digit)wc_off_on_addr[y ])) + (a2->dp[i] & ((fp_digit)wc_off_on_addr[y^1])); r2->dp[i] = (a1->dp[i] & ((fp_digit)wc_off_on_addr[y^1])) + (a2->dp[i] & ((fp_digit)wc_off_on_addr[y ])); } /* Copy used. */ r1->used = (a1->used & ((int)wc_off_on_addr[y ])) + (a2->used & ((int)wc_off_on_addr[y^1])); r2->used = (a1->used & ((int)wc_off_on_addr[y^1])) + (a2->used & ((int)wc_off_on_addr[y ])); /* Copy sign. */ r1->sign = (a1->sign & ((int)wc_off_on_addr[y ])) + (a2->sign & ((int)wc_off_on_addr[y^1])); r2->sign = (a1->sign & ((int)wc_off_on_addr[y^1])) + (a2->sign & ((int)wc_off_on_addr[y ])); } /* timing resistant montgomery ladder based exptmod Based on work by Marc Joye, Sung-Ming Yen, "The Montgomery Powering Ladder", Cryptographic Hardware and Embedded Systems, CHES 2002 */ static int _fp_exptmod_ct(fp_int * G, fp_int * X, int digits, fp_int * P, fp_int * Y) { #ifndef WOLFSSL_SMALL_STACK fp_int R[4]; /* need a temp for cache resistance */ #else fp_int *R; #endif fp_digit buf, mp; int err, bitcnt, digidx, y; /* now setup montgomery */ if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) { return err; } #ifdef WOLFSSL_SMALL_STACK R = (fp_int*)XMALLOC(sizeof(fp_int) * 4, NULL, DYNAMIC_TYPE_BIGINT); if (R == NULL) return FP_MEM; #endif fp_init(&R[0]); fp_init(&R[1]); fp_init(&R[2]); fp_init(&R[3]); /* now we need R mod m */ err = fp_montgomery_calc_normalization (&R[0], P); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* now set R[0][1] to G * R mod m */ if (fp_cmp_mag(P, G) != FP_GT) { /* G > P so we reduce it first */ err = fp_mod(G, P, &R[1]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } else { fp_copy(G, &R[1]); } err = fp_mulmod (&R[1], &R[0], P, &R[1]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* for j = t-1 downto 0 do r_!k = R0*R1; r_k = r_k^2 */ /* set initial mode and bit cnt */ bitcnt = 1; buf = 0; digidx = digits - 1; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (int)(buf >> (DIGIT_BIT - 1)) & 1; buf <<= (fp_digit)1; /* do ops */ err = fp_mul(&R[0], &R[1], &R[2]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce(&R[2], P, mp); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* instead of using R[y] for sqr, which leaks key bit to cache monitor, * use R[3] as temp, make sure address calc is constant, keep * &R[0] and &R[1] in cache */ fp_copy((fp_int*) ( ((wc_ptr_t)&R[0] & wc_off_on_addr[y^1]) + ((wc_ptr_t)&R[1] & wc_off_on_addr[y]) ), &R[3]); err = fp_sqr(&R[3], &R[3]); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce(&R[3], P, mp); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } fp_copy_2_ct(&R[2], &R[3], &R[0], &R[1], y, P->used); } err = fp_montgomery_reduce(&R[0], P, mp); fp_copy(&R[0], Y); #ifdef WOLFSSL_SMALL_STACK XFREE(R, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } #endif /* WC_PROTECT_ENCRYPTED_MEM */ #endif /* TFM_TIMING_RESISTANT */ /* y = g**x (mod b) * Some restrictions... x must be positive and < b */ static int _fp_exptmod_nct(fp_int * G, fp_int * X, fp_int * P, fp_int * Y) { fp_int *res; fp_digit buf, mp; int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; #ifndef WOLFSSL_NO_MALLOC fp_int *M; #else fp_int M[(1 << 6) + 1]; #endif /* find window size */ x = fp_count_bits (X); if (x <= 21) { winsize = 1; } else if (x <= 36) { winsize = 3; } else if (x <= 140) { winsize = 4; } else if (x <= 450) { winsize = 5; } else { winsize = 6; } /* now setup montgomery */ if ((err = fp_montgomery_setup (P, &mp)) != FP_OKAY) { return err; } #ifndef WOLFSSL_NO_MALLOC /* only allocate space for what's needed for window plus res */ M = (fp_int*)XMALLOC(sizeof(fp_int)*((1 << winsize) + 1), NULL, DYNAMIC_TYPE_BIGINT); if (M == NULL) { return FP_MEM; } #endif res = &M[(word32)(1 << winsize)]; /* init M array */ for(x = 0; x < (1 << winsize); x++) fp_init(&M[x]); /* setup result */ fp_init(res); /* create M table * * The M table contains powers of the input base, e.g. M[x] = G^x mod P * * The first half of the table is not computed though except for M[0] and M[1] */ /* now we need R mod m */ err = fp_montgomery_calc_normalization (res, P); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* now set M[1] to G * R mod m */ if (fp_cmp_mag(P, G) != FP_GT) { /* G > P so we reduce it first */ err = fp_mod(G, P, &M[1]); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } else { fp_copy(G, &M[1]); } err = fp_mulmod (&M[1], res, P, &M[1]); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* compute the value at M[1<<(winsize-1)] by * squaring M[1] (winsize-1) times */ fp_copy (&M[1], &M[(word32)(1 << (winsize - 1))]); for (x = 0; x < (winsize - 1); x++) { err = fp_sqr (&M[(word32)(1 << (winsize - 1))], &M[(word32)(1 << (winsize - 1))]); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce_ex(&M[(word32)(1 << (winsize - 1))], P, mp, 0); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* create upper table */ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { err = fp_mul(&M[x - 1], &M[1], &M[x]); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce_ex(&M[x], P, mp, 0); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* set initial mode and bit cnt */ mode = 0; bitcnt = (x % DIGIT_BIT) + 1; buf = 0; digidx = X->used - 1; bitcpy = 0; bitbuf = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (int)(buf >> (DIGIT_BIT - 1)) & 1; buf <<= (fp_digit)1; /* if the bit is zero and mode == 0 then we ignore it * These represent the leading zero bits before the first 1 bit * in the exponent. Technically this opt is not required but it * does lower the # of trivial squaring/reductions used */ if (mode == 0 && y == 0) { continue; } /* if the bit is zero and mode == 1 then we square */ if (mode == 1 && y == 0) { err = fp_sqr(res, res); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce_ex(res, P, mp, 0); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } continue; } /* else we add it to the window */ bitbuf |= (y << (winsize - ++bitcpy)); mode = 2; if (bitcpy == winsize) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < winsize; x++) { err = fp_sqr(res, res); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce_ex(res, P, mp, 0); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } /* then multiply */ err = fp_mul(res, &M[bitbuf], res); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce_ex(res, P, mp, 0); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* empty window and reset */ bitcpy = 0; bitbuf = 0; mode = 1; } } /* if bits remain then square/multiply */ if (mode == 2 && bitcpy > 0) { /* square then multiply if the bit is set */ for (x = 0; x < bitcpy; x++) { err = fp_sqr(res, res); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce_ex(res, P, mp, 0); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* get next bit of the window */ bitbuf <<= 1; if ((bitbuf & (1 << winsize)) != 0) { /* then multiply */ err = fp_mul(res, &M[1], res); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } err = fp_montgomery_reduce_ex(res, P, mp, 0); if (err != FP_OKAY) { #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } } } /* fixup result if Montgomery reduction is used * recall that any value in a Montgomery system is * actually multiplied by R mod n. So we have * to reduce one more time to cancel out the factor * of R. */ err = fp_montgomery_reduce_ex(res, P, mp, 0); /* swap res with Y */ fp_copy (res, Y); #ifndef WOLFSSL_NO_MALLOC XFREE(M, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } #ifdef TFM_TIMING_RESISTANT #if DIGIT_BIT <= 16 #define WINSIZE 2 #define WINMASK 0x3 #elif DIGIT_BIT <= 32 #define WINSIZE 3 #define WINMASK 0x7 #elif DIGIT_BIT <= 64 #define WINSIZE 4 #define WINMASK 0xf #elif DIGIT_BIT <= 128 #define WINSIZE 5 #define WINMASK 0x1f #endif /* y = 2**x (mod b) * Some restrictions... x must be positive and < b */ static int _fp_exptmod_base_2(fp_int * X, int digits, fp_int * P, fp_int * Y) { fp_digit buf, mp; int err, bitbuf, bitcpy, bitcnt, digidx, x, y; #ifdef WOLFSSL_SMALL_STACK fp_int *res; fp_int *tmp; #else fp_int res[1]; fp_int tmp[1]; #endif #ifdef WOLFSSL_SMALL_STACK res = (fp_int*)XMALLOC(2*sizeof(fp_int), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (res == NULL) { return FP_MEM; } tmp = &res[1]; #endif /* now setup montgomery */ if ((err = fp_montgomery_setup(P, &mp)) != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* setup result */ fp_init(res); fp_init(tmp); err = fp_mul_2d(P, 1 << WINSIZE, tmp); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* now we need R mod m */ err = fp_montgomery_calc_normalization(res, P); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Get the top bits left over after taking WINSIZE bits starting at the * least-significant. */ digidx = digits - 1; bitcpy = (digits * DIGIT_BIT) % WINSIZE; if (bitcpy > 0) { bitcnt = (int)DIGIT_BIT - bitcpy; buf = X->dp[digidx--]; bitbuf = (int)(buf >> bitcnt); /* Multiply montgomery representation of 1 by 2 ^ top */ err = fp_mul_2d(res, bitbuf, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } err = fp_add(res, tmp, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } err = fp_mod(res, P, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Move out bits used */ buf <<= bitcpy; bitcnt++; } else { bitcnt = 1; buf = 0; } /* empty window and reset */ bitbuf = 0; bitcpy = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (int)(buf >> (DIGIT_BIT - 1)) & 1; buf <<= (fp_digit)1; /* add bit to the window */ #ifndef WC_PROTECT_ENCRYPTED_MEM bitbuf |= (y << (WINSIZE - ++bitcpy)); #else /* Ensure value changes even when y is zero. */ bitbuf += (WINMASK + 1) + (y << (WINSIZE - ++bitcpy)); #endif if (bitcpy == WINSIZE) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < WINSIZE; x++) { err = fp_sqr(res, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } err = fp_montgomery_reduce(res, P, mp); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } } /* then multiply by 2^bitbuf */ #ifndef WC_PROTECT_ENCRYPTED_MEM err = fp_mul_2d(res, bitbuf, res); #else /* Get the window bits. */ err = fp_mul_2d(res, bitbuf & WINMASK, res); #endif if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Add in value to make mod operation take same time */ err = fp_add(res, tmp, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } err = fp_mod(res, P, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* empty window and reset */ bitcpy = 0; #ifndef WC_PROTECT_ENCRYPTED_MEM bitbuf = 0; #else /* Ensure value is new even when bottom bits are 0. */ bitbuf = (WINMASK + 1) + (bitbuf & ~WINMASK); #endif } } /* fixup result if Montgomery reduction is used * recall that any value in a Montgomery system is * actually multiplied by R mod n. So we have * to reduce one more time to cancel out the factor * of R. */ err = fp_montgomery_reduce(res, P, mp); /* swap res with Y */ fp_copy(res, Y); #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } #undef WINSIZE #else #if DIGIT_BIT < 16 #define WINSIZE 3 #elif DIGIT_BIT < 32 #define WINSIZE 4 #elif DIGIT_BIT < 64 #define WINSIZE 5 #elif DIGIT_BIT < 128 #define WINSIZE 6 #elif DIGIT_BIT == 128 #define WINSIZE 7 #endif /* y = 2**x (mod b) * Some restrictions... x must be positive and < b */ static int _fp_exptmod_base_2(fp_int * X, int digits, fp_int * P, fp_int * Y) { fp_digit buf, mp; int err, bitbuf, bitcpy, bitcnt, digidx, x, y; #ifdef WOLFSSL_SMALL_STACK fp_int *res; #else fp_int res[1]; #endif /* now setup montgomery */ if ((err = fp_montgomery_setup(P, &mp)) != FP_OKAY) { return err; } #ifdef WOLFSSL_SMALL_STACK res = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_TMP_BUFFER); if (res == NULL) { return FP_MEM; } #endif /* setup result */ fp_init(res); /* now we need R mod m */ err = fp_montgomery_calc_normalization(res, P); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Get the top bits left over after taking WINSIZE bits starting at the * least-significant. */ digidx = digits - 1; bitcpy = (digits * DIGIT_BIT) % WINSIZE; if (bitcpy > 0) { bitcnt = (int)DIGIT_BIT - bitcpy; buf = X->dp[digidx--]; bitbuf = (int)(buf >> bitcnt); /* Multiply montgomery representation of 1 by 2 ^ top */ err = fp_mul_2d(res, bitbuf, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } err = fp_mod(res, P, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* Move out bits used */ buf <<= bitcpy; bitcnt++; } else { bitcnt = 1; buf = 0; } /* empty window and reset */ bitbuf = 0; bitcpy = 0; for (;;) { /* grab next digit as required */ if (--bitcnt == 0) { /* if digidx == -1 we are out of digits so break */ if (digidx == -1) { break; } /* read next digit and reset bitcnt */ buf = X->dp[digidx--]; bitcnt = (int)DIGIT_BIT; } /* grab the next msb from the exponent */ y = (int)(buf >> (DIGIT_BIT - 1)) & 1; buf <<= (fp_digit)1; /* add bit to the window */ bitbuf |= (y << (WINSIZE - ++bitcpy)); if (bitcpy == WINSIZE) { /* ok window is filled so square as required and multiply */ /* square first */ for (x = 0; x < WINSIZE; x++) { err = fp_sqr(res, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } err = fp_montgomery_reduce(res, P, mp); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } } /* then multiply by 2^bitbuf */ err = fp_mul_2d(res, bitbuf, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } err = fp_mod(res, P, res); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } /* empty window and reset */ bitcpy = 0; bitbuf = 0; } } /* fixup result if Montgomery reduction is used * recall that any value in a Montgomery system is * actually multiplied by R mod n. So we have * to reduce one more time to cancel out the factor * of R. */ err = fp_montgomery_reduce(res, P, mp); /* swap res with Y */ fp_copy(res, Y); #ifdef WOLFSSL_SMALL_STACK XFREE(res, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } #undef WINSIZE #endif /* Y = (G * X) mod P */ int fp_exptmod(fp_int * G, fp_int * X, fp_int * P, fp_int * Y) { #if defined(WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD) int retHW = FP_OKAY; #endif /* handle modulus of zero and prevent overflows */ if (fp_iszero(P) || (P->used > (FP_SIZE/2))) { return FP_VAL; } if (fp_isone(P)) { fp_set(Y, 0); return FP_OKAY; } if (fp_iszero(X)) { fp_set(Y, 1); return FP_OKAY; } if (fp_iszero(G)) { fp_set(Y, 0); return FP_OKAY; } #if defined(WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD) if (esp_hw_validation_active()) { ESP_LOGV(TAG, "Skipping call to esp_mp_exptmod " "during active validation."); } else { /* HW accelerated exptmod */ retHW = esp_mp_exptmod(G, X, P, Y); switch (retHW) { case MP_OKAY: /* successfully computed in HW */ return retHW; break; case WC_NO_ERR_TRACE(WC_HW_WAIT_E): /* MP_HW_BUSY math HW busy, fall back */ case MP_HW_FALLBACK: /* forced fallback from HW to SW */ case WC_NO_ERR_TRACE(MP_HW_VALIDATION_ACTIVE): /* use SW to compare to HW */ /* use software calc */ break; default: /* Once we've failed, exit without trying to continue. * We may have mangled operands: (e.g. Z = X * Z) * Future implementation may consider saving operands, * but hard errors should never actually occur. */ return retHW; /* error */ break; } /* switch */ } /* if validation check */ /* fall through to software calcs */ #endif /* WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD */ if (X->sign == FP_NEG) { #ifndef POSITIVE_EXP_ONLY /* reduce stack if assume no negatives */ int err; #ifndef WOLFSSL_SMALL_STACK fp_int tmp[2]; #else fp_int *tmp; #endif #ifdef WOLFSSL_SMALL_STACK tmp = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT); if (tmp == NULL) return FP_MEM; #endif /* yes, copy G and invmod it */ fp_init_copy(&tmp[0], G); fp_init_copy(&tmp[1], P); tmp[1].sign = FP_ZPOS; err = fp_invmod(&tmp[0], &tmp[1], &tmp[0]); if (err == FP_OKAY) { fp_copy(X, &tmp[1]); tmp[1].sign = FP_ZPOS; #ifdef TFM_TIMING_RESISTANT err = _fp_exptmod_ct(&tmp[0], &tmp[1], tmp[1].used, P, Y); #else err = _fp_exptmod_nct(&tmp[0], &tmp[1], P, Y); #endif if ((err == 0) && (P->sign == FP_NEG)) { err = fp_add(Y, P, Y); } } #ifdef WOLFSSL_SMALL_STACK XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; #else return FP_VAL; #endif /* POSITIVE_EXP_ONLY check */ } else if (G->used == 1 && G->dp[0] == 2) { return _fp_exptmod_base_2(X, X->used, P, Y); } else { /* Positive exponent so just exptmod */ #ifdef TFM_TIMING_RESISTANT return _fp_exptmod_ct(G, X, X->used, P, Y); #else return _fp_exptmod_nct(G, X, P, Y); #endif } } int fp_exptmod_ex(fp_int * G, fp_int * X, int digits, fp_int * P, fp_int * Y) { #if defined(WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD) int retHW = FP_OKAY; #endif /* handle modulus of zero and prevent overflows */ if (fp_iszero(P) || (P->used > (FP_SIZE/2))) { return FP_VAL; } if (fp_isone(P)) { fp_set(Y, 0); return FP_OKAY; } if (fp_iszero(X)) { fp_set(Y, 1); return FP_OKAY; } if (fp_iszero(G)) { fp_set(Y, 0); return FP_OKAY; } #if defined(WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD) retHW = esp_mp_exptmod(G, X, P, Y); switch (retHW) { case MP_OKAY: /* successfully computed in HW */ return retHW; break; case WC_NO_ERR_TRACE(WC_HW_WAIT_E): /* MP_HW_BUSY math HW busy, fall back */ case MP_HW_FALLBACK: /* forced fallback from HW to SW */ case MP_HW_VALIDATION_ACTIVE: /* use SW to compare to HW */ /* use software calc */ break; default: /* Once we've failed, exit without trying to continue. * We may have mangled operands: (e.g. Z = X * Z) * Future implementation may consider saving operands, * but hard errors should never actually occur. */ return retHW; break; } /* HW result switch */ /* falling through to SW: */ #endif /* WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD */ if (X->sign == FP_NEG) { #ifndef POSITIVE_EXP_ONLY /* reduce stack if assume no negatives */ int err; #ifndef WOLFSSL_SMALL_STACK fp_int tmp[2]; #else fp_int *tmp; #endif #ifdef WOLFSSL_SMALL_STACK tmp = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) return FP_MEM; #endif /* yes, copy G and invmod it */ fp_init_copy(&tmp[0], G); fp_init_copy(&tmp[1], P); tmp[1].sign = FP_ZPOS; err = fp_invmod(&tmp[0], &tmp[1], &tmp[0]); if (err == FP_OKAY) { X->sign = FP_ZPOS; #ifdef TFM_TIMING_RESISTANT err = _fp_exptmod_ct(&tmp[0], X, digits, P, Y); #else err = _fp_exptmod_nct(&tmp[0], X, P, Y); (void)digits; #endif if (X != Y) { X->sign = FP_NEG; } if ((err == 0) && (P->sign == FP_NEG)) { err = fp_add(Y, P, Y); } } #ifdef WOLFSSL_SMALL_STACK XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; #else return FP_VAL; #endif } else { /* Positive exponent so just exptmod */ #ifdef TFM_TIMING_RESISTANT return _fp_exptmod_ct(G, X, digits, P, Y); #else return _fp_exptmod_nct(G, X, P, Y); #endif } } int fp_exptmod_nct(fp_int * G, fp_int * X, fp_int * P, fp_int * Y) { #if defined(WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD) int retHW = FP_OKAY; #endif /* handle modulus of zero and prevent overflows */ if (fp_iszero(P) || (P->used > (FP_SIZE/2))) { return FP_VAL; } if (fp_isone(P)) { fp_set(Y, 0); return FP_OKAY; } if (fp_iszero(X)) { fp_set(Y, 1); return FP_OKAY; } if (fp_iszero(G)) { fp_set(Y, 0); return FP_OKAY; } #if defined(WOLFSSL_ESP32_CRYPT_RSA_PRI_EXPTMOD) retHW = esp_mp_exptmod(G, X, P, Y); switch (retHW) { case MP_OKAY: /* successfully computed in HW */ return retHW; break; case WC_NO_ERR_TRACE(WC_HW_WAIT_E): /* MP_HW_BUSY math HW busy, fall back */ case MP_HW_FALLBACK: /* forced fallback from HW to SW */ case MP_HW_VALIDATION_ACTIVE: /* use SW to compare to HW */ /* use software calc */ break; default: /* Once we've failed, exit without trying to continue. * We may have mangled operands: (e.g. Z = X * Z) * Future implementation may consider saving operands, * but hard errors should never actually occur. */ return retHW; break; } /* falling through to SW: */ #endif if (X->sign == FP_NEG) { #ifndef POSITIVE_EXP_ONLY /* reduce stack if assume no negatives */ int err; #ifndef WOLFSSL_SMALL_STACK fp_int tmp[2]; #else fp_int *tmp; #endif #ifdef WOLFSSL_SMALL_STACK tmp = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) return FP_MEM; #endif /* yes, copy G and invmod it */ fp_init_copy(&tmp[0], G); fp_init_copy(&tmp[1], P); tmp[1].sign = FP_ZPOS; err = fp_invmod(&tmp[0], &tmp[1], &tmp[0]); if (err == FP_OKAY) { X->sign = FP_ZPOS; err = _fp_exptmod_nct(&tmp[0], X, P, Y); if (X != Y) { X->sign = FP_NEG; } if ((err == 0) && (P->sign == FP_NEG)) { err = fp_add(Y, P, Y); } } #ifdef WOLFSSL_SMALL_STACK XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; #else return FP_VAL; #endif } else { /* Positive exponent so just exptmod */ return _fp_exptmod_nct(G, X, P, Y); } } /* computes a = 2**b */ void fp_2expt(fp_int *a, int b) { int z; /* zero a as per default */ fp_zero (a); if (b < 0) { return; } z = b / DIGIT_BIT; if (z >= FP_SIZE) { return; } /* set the used count of where the bit will go */ a->used = z + 1; /* put the single bit in its place */ a->dp[z] = ((fp_digit)1) << (b % DIGIT_BIT); } /* b = a*a */ int fp_sqr(fp_int *A, fp_int *B) { int err; int y, oldused; oldused = B->used; y = A->used; /* error if we're out of range */ if (y + y >= FP_SIZE) { err = FP_VAL; goto clean; } #if defined(WOLFSSL_ESP32_CRYPT_RSA_PRI_MP_MUL) if (esp_hw_validation_active()) { ESP_LOGV(TAG, "Skipping call to esp_mp_mul " "during active validation."); } else { err = esp_mp_mul(A, A, B); /* HW accelerated multiply */ switch (err) { case MP_OKAY: goto clean; /* success */ break; case WC_NO_ERR_TRACE(WC_HW_WAIT_E): /* MP_HW_BUSY math HW busy, fall back */ case MP_HW_FALLBACK: /* forced fallback from HW to SW */ case MP_HW_VALIDATION_ACTIVE: /* use SW to compare to HW */ /* fall back to software, below */ break; default: /* Once we've failed, exit without trying to continue. * We may have mangled operands: (e.g. Z = X * Z) * Future implementation may consider saving operands, * but errors should never occur. */ goto clean; /* error */ break; } } /* fall through to software calcs */ #endif /* WOLFSSL_ESP32_CRYPT_RSA_PRI_MP_MUL */ #if defined(TFM_SQR3) && FP_SIZE >= 6 if (y <= 3) { err = fp_sqr_comba3(A,B); goto clean; } #endif #if defined(TFM_SQR4) && FP_SIZE >= 8 if (y == 4) { err = fp_sqr_comba4(A,B); goto clean; } #endif #if defined(TFM_SQR6) && FP_SIZE >= 12 if (y <= 6) { err = fp_sqr_comba6(A,B); goto clean; } #endif #if defined(TFM_SQR7) && FP_SIZE >= 14 if (y == 7) { err = fp_sqr_comba7(A,B); goto clean; } #endif #if defined(TFM_SQR8) && FP_SIZE >= 16 if (y == 8) { err = fp_sqr_comba8(A,B); goto clean; } #endif #if defined(TFM_SQR9) && FP_SIZE >= 18 if (y == 9) { err = fp_sqr_comba9(A,B); goto clean; } #endif #if defined(TFM_SQR12) && FP_SIZE >= 24 if (y <= 12) { err = fp_sqr_comba12(A,B); goto clean; } #endif #if defined(TFM_SQR17) && FP_SIZE >= 34 if (y <= 17) { err = fp_sqr_comba17(A,B); goto clean; } #endif #if defined(TFM_SMALL_SET) if (y <= 16) { err = fp_sqr_comba_small(A,B); goto clean; } #endif #if defined(TFM_SQR20) && FP_SIZE >= 40 if (y <= 20) { err = fp_sqr_comba20(A,B); goto clean; } #endif #if defined(TFM_SQR24) && FP_SIZE >= 48 if (y <= 24) { err = fp_sqr_comba24(A,B); goto clean; } #endif #if defined(TFM_SQR28) && FP_SIZE >= 56 if (y <= 28) { err = fp_sqr_comba28(A,B); goto clean; } #endif #if defined(TFM_SQR32) && FP_SIZE >= 64 if (y <= 32) { err = fp_sqr_comba32(A,B); goto clean; } #endif #if defined(TFM_SQR48) && FP_SIZE >= 96 if (y <= 48) { err = fp_sqr_comba48(A,B); goto clean; } #endif #if defined(TFM_SQR64) && FP_SIZE >= 128 if (y <= 64) { err = fp_sqr_comba64(A,B); goto clean; } #endif err = fp_sqr_comba(A, B); clean: /* zero any excess digits on the destination that we didn't write to */ for (y = B->used; y >= 0 && y < oldused; y++) { B->dp[y] = 0; } return err; } /* generic comba squarer */ int fp_sqr_comba(fp_int *A, fp_int *B) { int pa, ix, iz; fp_digit c0, c1, c2; #ifdef TFM_ISO fp_word tt = 0; #endif fp_int *dst; #ifndef WOLFSSL_SMALL_STACK fp_int tmp[1]; #else fp_int *tmp; #endif #ifdef WOLFSSL_SMALL_STACK tmp = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (tmp == NULL) return FP_MEM; #endif /* get size of output and trim */ pa = A->used + A->used; if (pa >= FP_SIZE) { pa = FP_SIZE-1; } /* number of output digits to produce */ COMBA_START; COMBA_CLEAR; if (A == B) { fp_init(tmp); dst = tmp; } else { fp_zero(B); dst = B; } for (ix = 0; ix < pa; ix++) { int tx, ty, iy; fp_digit *tmpy, *tmpx; /* get offsets into the two bignums */ ty = MIN(A->used-1, ix); tx = ix - ty; /* setup temp aliases */ tmpx = A->dp + tx; tmpy = A->dp + ty; /* this is the number of times the loop will iterate, while (tx++ < a->used && ty-- >= 0) { ... } */ iy = MIN(A->used-tx, ty+1); /* now for squaring tx can never equal ty * we halve the distance since they approach * at a rate of 2x and we have to round because * odd cases need to be executed */ iy = MIN(iy, (ty-tx+1)>>1); /* forward carries */ COMBA_FORWARD; /* execute loop */ for (iz = 0; iz < iy; iz++) { SQRADD2(*tmpx++, *tmpy--); } /* even columns have the square term in them */ if ((ix&1) == 0) { /* TAO change COMBA_ADD back to SQRADD */ SQRADD(A->dp[ix>>1], A->dp[ix>>1]); } /* store it */ COMBA_STORE(dst->dp[ix]); } COMBA_FINI; /* setup dest */ dst->used = pa; fp_clamp (dst); if (dst != B) { fp_copy(dst, B); } /* Variables used but not seen by cppcheck. */ (void)c0; (void)c1; (void)c2; #ifdef TFM_ISO (void)tt; #endif #ifdef WOLFSSL_SMALL_STACK XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } int fp_cmp(fp_int *a, fp_int *b) { if (a->sign == FP_NEG && b->sign == FP_ZPOS) { return FP_LT; } else if (a->sign == FP_ZPOS && b->sign == FP_NEG) { return FP_GT; } else { /* compare digits */ if (a->sign == FP_NEG) { /* if negative compare opposite direction */ return fp_cmp_mag(b, a); } else { return fp_cmp_mag(a, b); } } } /* compare against a single digit */ int fp_cmp_d(fp_int *a, fp_digit b) { /* special case for zero*/ if (a->used == 0 && b == 0) return FP_EQ; /* compare based on sign */ if ((b && a->used == 0) || a->sign == FP_NEG) { return FP_LT; } /* compare based on magnitude */ if (a->used > 1) { return FP_GT; } /* compare the only digit of a to b */ if (a->dp[0] > b) { return FP_GT; } else if (a->dp[0] < b) { return FP_LT; } else { return FP_EQ; } } int fp_cmp_mag(fp_int *a, fp_int *b) { int x; if (a->used > b->used) { return FP_GT; } else if (a->used < b->used) { return FP_LT; } else { for (x = a->used - 1; x >= 0; x--) { if (a->dp[x] > b->dp[x]) { return FP_GT; } else if (a->dp[x] < b->dp[x]) { return FP_LT; } } } return FP_EQ; } /* sets up the montgomery reduction */ int fp_montgomery_setup(fp_int *a, fp_digit *rho) { fp_digit x, b; /* fast inversion mod 2**k * * Based on the fact that * * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) * => 2*X*A - X*X*A*A = 1 * => 2*(1) - (1) = 1 */ b = a->dp[0]; if ((b & 1) == 0) { return FP_VAL; } x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ x *= 2 - b * x; /* here x*a==1 mod 2**8 */ x *= 2 - b * x; /* here x*a==1 mod 2**16 */ x *= 2 - b * x; /* here x*a==1 mod 2**32 */ #ifdef FP_64BIT x *= 2 - b * x; /* here x*a==1 mod 2**64 */ #endif /* rho = -1/m mod b */ *rho = (fp_digit) (((fp_word) 1 << ((fp_word) DIGIT_BIT)) - ((fp_word)x)); return FP_OKAY; } /* computes a = B**n mod b without division or multiplication useful for * normalizing numbers in a Montgomery system. */ int fp_montgomery_calc_normalization(fp_int *a, fp_int *b) { int x, bits; /* how many bits of last digit does b use */ bits = fp_count_bits (b) % DIGIT_BIT; if (!bits) bits = DIGIT_BIT; /* compute A = B^(n-1) * 2^(bits-1) */ if (b->used > 1) { fp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1); } else { fp_set(a, 1); bits = 1; } /* now compute C = A * B mod b */ for (x = bits - 1; x < (int)DIGIT_BIT; x++) { int err = fp_mul_2 (a, a); if (err != FP_OKAY) { return err; } if (fp_cmp_mag (a, b) != FP_LT) { s_fp_sub (a, b, a); } } return FP_OKAY; } #ifdef TFM_SMALL_MONT_SET #include "fp_mont_small.i" #endif #ifdef HAVE_INTEL_MULX static WC_INLINE void innermul8_mulx(fp_digit *c_mulx, fp_digit *cy_mulx, fp_digit *tmpm, fp_digit mu) { fp_digit cy = *cy_mulx ; INNERMUL8_MULX ; *cy_mulx = cy ; } /* computes x/R == x (mod N) via Montgomery Reduction */ static int fp_montgomery_reduce_mulx(fp_int *a, fp_int *m, fp_digit mp, int ct) { #ifndef WOLFSSL_SMALL_STACK fp_digit c[FP_SIZE+1]; #else fp_digit *c; #endif fp_digit *_c, *tmpm, mu = 0; int oldused, x, y, pa; /* bail if too large */ if (m->used > (FP_SIZE/2)) { (void)mu; /* shut up compiler */ return FP_VAL; } #ifdef TFM_SMALL_MONT_SET if (m->used <= 16) { return fp_montgomery_reduce_small(a, m, mp); } #endif #ifdef WOLFSSL_SMALL_STACK /* only allocate space for what's needed for window plus res */ c = (fp_digit*)XMALLOC(sizeof(fp_digit)*(FP_SIZE + 1), NULL, DYNAMIC_TYPE_BIGINT); if (c == NULL) { return FP_MEM; } #endif /* now zero the buff */ XMEMSET(c, 0, sizeof(fp_digit)*(FP_SIZE + 1)); pa = m->used; /* copy the input */ #ifdef TFM_TIMING_RESISTANT if (a->used <= m->used) { oldused = m->used; } else { oldused = m->used * 2; } #else oldused = a->used; #endif for (x = 0; x < oldused; x++) { c[x] = a->dp[x]; } MONT_START; for (x = 0; x < pa; x++) { fp_digit cy = 0; /* get Mu for this round */ LOOP_START; _c = c + x; tmpm = m->dp; y = 0; for (; y < (pa & ~7); y += 8) { innermul8_mulx(_c, &cy, tmpm, mu) ; _c += 8; tmpm += 8; } for (; y < pa; y++) { INNERMUL; ++_c; } LOOP_END; while (cy) { PROPCARRY; ++_c; } } /* now copy out */ _c = c + pa; tmpm = a->dp; for (x = 0; x < pa+1; x++) { *tmpm++ = *_c++; } /* zero any excess digits on the destination that we didn't write to */ for (; x < oldused; x++) { *tmpm++ = 0; } MONT_FINI; a->used = pa+1; fp_clamp(a); #ifndef WOLFSSL_MONT_RED_CT /* if A >= m then A = A - m */ if (fp_cmp_mag (a, m) != FP_LT) { s_fp_sub (a, m, a); } (void)ct; #else if (ct) { fp_submod_ct(a, m, m, a); } else if (fp_cmp_mag (a, m) != FP_LT) { s_fp_sub (a, m, a); } #endif #ifdef WOLFSSL_SMALL_STACK XFREE(c, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } #endif /* computes x/R == x (mod N) via Montgomery Reduction */ int fp_montgomery_reduce_ex(fp_int *a, fp_int *m, fp_digit mp, int ct) { #ifndef WOLFSSL_SMALL_STACK fp_digit c[FP_SIZE+1]; #else fp_digit *c; #endif fp_digit *_c, *tmpm, mu = 0; int oldused, x, y, pa, err = 0; IF_HAVE_INTEL_MULX(err=fp_montgomery_reduce_mulx(a, m, mp, ct), return err) ; (void)err; /* bail if too large */ if (m->used > (FP_SIZE/2)) { (void)mu; /* shut up compiler */ return FP_VAL; } #ifdef TFM_SMALL_MONT_SET if (m->used <= 16) { return fp_montgomery_reduce_small(a, m, mp); } #endif #ifdef WOLFSSL_SMALL_STACK /* only allocate space for what's needed for window plus res */ c = (fp_digit*)XMALLOC(sizeof(fp_digit)*(FP_SIZE + 1), NULL, DYNAMIC_TYPE_BIGINT); if (c == NULL) { return FP_MEM; } #endif /* now zero the buff */ XMEMSET(c, 0, sizeof(fp_digit)*(FP_SIZE + 1)); pa = m->used; /* copy the input */ #ifdef TFM_TIMING_RESISTANT if (a->used <= m->used) { oldused = m->used; } else { oldused = m->used * 2; } #else oldused = a->used; #endif for (x = 0; x < oldused; x++) { c[x] = a->dp[x]; } MONT_START; for (x = 0; x < pa; x++) { fp_digit cy = 0; /* get Mu for this round */ LOOP_START; _c = c + x; tmpm = m->dp; y = 0; #if defined(INNERMUL8) for (; y < (pa & ~7); y += 8) { INNERMUL8 ; _c += 8; tmpm += 8; } #endif for (; y < pa; y++) { INNERMUL; ++_c; } LOOP_END; while (cy) { /* //NOLINT(bugprone-infinite-loop) */ /* PROPCARRY is an asm macro */ PROPCARRY; ++_c; } } /* now copy out */ _c = c + pa; tmpm = a->dp; for (x = 0; x < pa+1; x++) { *tmpm++ = *_c++; } /* zero any excess digits on the destination that we didn't write to */ for (; x < oldused; x++) { *tmpm++ = 0; } MONT_FINI; a->used = pa+1; fp_clamp(a); #ifndef WOLFSSL_MONT_RED_CT /* if A >= m then A = A - m */ if (fp_cmp_mag (a, m) != FP_LT) { s_fp_sub (a, m, a); } (void)ct; #else if (ct) { fp_submod_ct(a, m, m, a); } else if (fp_cmp_mag (a, m) != FP_LT) { s_fp_sub (a, m, a); } #endif #ifdef WOLFSSL_SMALL_STACK XFREE(c, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } int fp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp) { return fp_montgomery_reduce_ex(a, m, mp, 1); } int fp_read_unsigned_bin(fp_int *a, const unsigned char *b, int c) { #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) const word32 maxC = (a->size * sizeof(fp_digit)); #else const word32 maxC = (FP_SIZE * sizeof(fp_digit)); #endif /* zero the int */ fp_zero (a); if (c < 0) { return FP_VAL; } if (c == 0) { return FP_OKAY; } /* if input b excess max, then truncate */ if ((word32)c > maxC) { int excess = (c - maxC); c -= excess; b += excess; } /* Not both endian simultaneously */ #if defined(LITTLE_ENDIAN_ORDER) && defined(BIG_ENDIAN_ORDER) #error Both LITTLE_ENDIAN_ORDER and BIG_ENDIAN_ORDER defined. #endif #if (defined(LITTLE_ENDIAN_ORDER) || defined(BIG_ENDIAN_ORDER)) && \ (defined(FP_32BIT) || defined(FP_64BIT)) #ifdef FP_32BIT /* If we know the endianness of this architecture, and we're using 32-bit fp_digits, we can optimize this */ { unsigned char *pd = (unsigned char *)a->dp; a->used = (c + sizeof(fp_digit) - 1)/sizeof(fp_digit); #ifdef BIG_ENDIAN_ORDER { /* Use Duff's device to unroll the loop. */ int idx = (c - 1) & ~3; switch (c % 4) { case 0: do { pd[idx+0] = *b++; FALL_THROUGH; case 3: pd[idx+1] = *b++; FALL_THROUGH; case 2: pd[idx+2] = *b++; FALL_THROUGH; case 1: pd[idx+3] = *b++; idx -= 4; } while ((c -= 4) > 0); } } #else /* read the bytes in one at a time. */ for (c -= 1; c >= 0; c -= 1) { pd[c] = *b++; } #endif } #elif defined(FP_64BIT) /* If we know the endianness of this architecture, and we're using 64-bit fp_digits, we can optimize this */ { unsigned char *pd = (unsigned char *)a->dp; a->used = (c + sizeof(fp_digit) - 1)/sizeof(fp_digit); #ifdef BIG_ENDIAN_ORDER { /* Use Duff's device to unroll the loop. */ int idx = (c - 1) & ~7; switch (c % 8) { case 0: do { pd[idx+0] = *b++; FALL_THROUGH; case 7: pd[idx+1] = *b++; FALL_THROUGH; case 6: pd[idx+2] = *b++; FALL_THROUGH; case 5: pd[idx+3] = *b++; FALL_THROUGH; case 4: pd[idx+4] = *b++; FALL_THROUGH; case 3: pd[idx+5] = *b++; FALL_THROUGH; case 2: pd[idx+6] = *b++; FALL_THROUGH; case 1: pd[idx+7] = *b++; idx -= 8; } while ((c -= 8) > 0); } } #else /* read the bytes in one at a time. */ for (c -= 1; c >= 0; c -= 1) { pd[c] = *b++; } #endif } #endif #else /* read the bytes in one at a time - unknown number of bits in digit */ for (; c > 0; c--) { int err = fp_mul_2d (a, 8, a); if (err != FP_OKAY) { return err; } a->dp[0] |= *b++; if (a->used == 0) { a->used = 1; } } #endif fp_clamp (a); return FP_OKAY; } int fp_to_unsigned_bin_at_pos(int x, fp_int *t, unsigned char *b) { #if DIGIT_BIT == 64 || DIGIT_BIT == 32 int i; int j = 0; fp_digit n; for (i = 0; i < t->used-1; ) { b[x++] = (unsigned char)(t->dp[i] >> j); j += 8; i += j == DIGIT_BIT; j &= DIGIT_BIT - 1; } n = t->dp[i]; while (n != 0) { b[x++] = (unsigned char)n; n >>= 8; } return x; #else while (fp_iszero (t) == FP_NO) { b[x++] = (unsigned char) (t->dp[0] & 255); fp_div_2d (t, 8, t, NULL); } return x; #endif } int fp_to_unsigned_bin(fp_int *a, unsigned char *b) { int x; #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif fp_init_copy(t, a); x = fp_to_unsigned_bin_at_pos(0, t, b); mp_reverse (b, x); #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } int fp_to_unsigned_bin_len(fp_int *a, unsigned char *b, int c) { #if DIGIT_BIT == 64 || DIGIT_BIT == 32 || DIGIT_BIT == 16 int i = 0; int j = 0; int x; for (x=c-1; x >= 0 && i < a->used; x--) { b[x] = (unsigned char)(a->dp[i] >> j); j += 8; i += j == DIGIT_BIT; j &= DIGIT_BIT - 1; } for (; x >= 0; x--) { b[x] = 0; } if (i < a->used - 1) { return FP_VAL; } if ((i == a->used - 1) && ((a->dp[i] >> j) != 0)) { return FP_VAL; } return FP_OKAY; #else int x; #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif fp_init_copy(t, a); for (x = 0; x < c; x++) { b[x] = (unsigned char) (t->dp[0] & 255); fp_div_2d (t, 8, t, NULL); } mp_reverse (b, x); #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif if (!fp_iszero(t)) { return FP_VAL; } return FP_OKAY; #endif } int fp_unsigned_bin_size(const fp_int *a) { int size = fp_count_bits (a); return (size / 8 + ((size & 7) != 0 ? 1 : 0)); } void fp_set(fp_int *a, fp_digit b) { fp_zero(a); a->dp[0] = b; a->used = a->dp[0] ? 1 : 0; } #ifndef MP_SET_CHUNK_BITS #define MP_SET_CHUNK_BITS 4 #endif int fp_set_int(fp_int *a, unsigned long b) { /* use direct fp_set if b is less than fp_digit max * If input max value of b down shift by 1 less than full range * fp_digit, then condition is always true. */ #if ((ULONG_MAX >> (DIGIT_BIT-1)) > 0) int x; if (b < FP_DIGIT_MAX) { fp_set (a, (fp_digit)b); return FP_OKAY; } fp_zero (a); /* set chunk bits at a time */ for (x = 0; x < (int)(sizeof(b) * 8) / MP_SET_CHUNK_BITS; x++) { int err = fp_mul_2d (a, MP_SET_CHUNK_BITS, a); if (err != FP_OKAY) return err; /* OR in the top bits of the source */ a->dp[0] |= (b >> ((sizeof(b) * 8) - MP_SET_CHUNK_BITS)) & ((1 << MP_SET_CHUNK_BITS) - 1); /* shift the source up to the next chunk bits */ b <<= MP_SET_CHUNK_BITS; /* ensure that digits are not clamped off */ a->used += 1; } /* clamp digits */ fp_clamp(a); #else fp_set (a, (fp_digit)b); #endif return FP_OKAY; } /* check if a bit is set */ int fp_is_bit_set (fp_int *a, fp_digit b) { fp_digit i; if (b > FP_MAX_BITS) return FP_VAL; i = b/DIGIT_BIT; if ((fp_digit)a->used < i) return 0; return (int)((a->dp[i] >> b%DIGIT_BIT) & (fp_digit)1); } /* set the b bit of a */ int fp_set_bit (fp_int * a, fp_digit b) { fp_digit i; if (b > FP_MAX_BITS) return FP_VAL; i = b/DIGIT_BIT; /* set the used count of where the bit will go if required */ if (a->used < (int)(i+1)) a->used = (int)(i+1); /* put the single bit in its place */ a->dp[i] |= ((fp_digit)1) << (b % DIGIT_BIT); return MP_OKAY; } int fp_count_bits (const fp_int * a) { int r; fp_digit q; /* shortcut */ if (a->used == 0) { return 0; } /* get number of digits and add that */ r = (a->used - 1) * DIGIT_BIT; /* take the last digit and count the bits in it */ q = a->dp[a->used - 1]; while (q > ((fp_digit) 0)) { ++r; q >>= ((fp_digit) 1); } return r; } int fp_leading_bit(fp_int *a) { int bit = 0; if (a->used != 0) { fp_digit q = a->dp[a->used - 1]; int qSz = sizeof(fp_digit); while (qSz > 0) { if ((unsigned char)q != 0) bit = (q & 0x80) != 0; q >>= 8; qSz--; } } return bit; } int fp_lshd(fp_int *a, int x) { int y; if (a->used + x > FP_SIZE) return FP_VAL; y = a->used + x - 1; /* store new size */ a->used = y + 1; /* move digits */ for (; y >= x; y--) { a->dp[y] = a->dp[y-x]; } /* zero lower digits */ for (; y >= 0; y--) { a->dp[y] = 0; } /* clamp digits */ fp_clamp(a); return FP_OKAY; } /* right shift by bit count */ void fp_rshb(fp_int *c, int x) { fp_digit *tmpc, mask, shift; fp_digit r, rr; fp_digit D = x; /* shifting by a negative number not supported, and shifting by * zero changes nothing. */ if (x <= 0) return; /* shift digits first if needed */ if (x >= DIGIT_BIT) { fp_rshd(c, x / DIGIT_BIT); /* recalculate number of bits to shift */ D = x % DIGIT_BIT; /* check if any more shifting needed */ if (D == 0) return; } /* zero shifted is always zero */ if (fp_iszero(c)) return; /* mask */ mask = (((fp_digit)1) << D) - 1; /* shift for lsb */ shift = DIGIT_BIT - D; /* alias */ tmpc = c->dp + (c->used - 1); /* carry */ r = 0; for (x = c->used - 1; x >= 0; x--) { /* get the lower bits of this word in a temp */ rr = *tmpc & mask; /* shift the current word and mix in the carry bits from previous word */ *tmpc = (*tmpc >> D) | (r << shift); --tmpc; /* set the carry to the carry bits of the current word found above */ r = rr; } /* clamp digits */ fp_clamp(c); } void fp_rshd(fp_int *a, int x) { int y; /* too many digits just zero and return */ if (x >= a->used) { fp_zero(a); return; } /* shift */ for (y = 0; y < a->used - x; y++) { a->dp[y] = a->dp[y+x]; } /* zero rest */ for (; y < a->used; y++) { a->dp[y] = 0; } /* decrement count */ a->used -= x; fp_clamp(a); } /* c = a - b */ int fp_sub_d(fp_int *a, fp_digit b, fp_int *c) { #ifndef WOLFSSL_SMALL_STACK fp_int tmp[1]; #else fp_int *tmp; #endif int err = FP_OKAY; #ifdef WOLFSSL_SMALL_STACK tmp = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (tmp == NULL) return FP_MEM; #endif fp_init(tmp); fp_set(tmp, b); #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) if (c->size < FP_SIZE) { err = fp_sub(a, tmp, tmp); fp_copy(tmp, c); } else #endif { err = fp_sub(a, tmp, c); } #ifdef WOLFSSL_SMALL_STACK XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* wolfSSL callers from normal lib */ /* init a new mp_int */ int mp_init (mp_int * a) { if (a) fp_init(a); return MP_OKAY; } void fp_init(fp_int *a) { #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) a->size = FP_SIZE; #endif #ifdef HAVE_WOLF_BIGINT wc_bigint_init(&a->raw); #endif fp_zero(a); } void fp_zero(fp_int *a) { int size; a->used = 0; a->sign = FP_ZPOS; #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) size = a->size; #else size = FP_SIZE; #endif XMEMSET(a->dp, 0, size * sizeof(fp_digit)); } void fp_clear(fp_int *a) { int size; a->used = 0; a->sign = FP_ZPOS; #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) size = a->size; #else size = FP_SIZE; #endif XMEMSET(a->dp, 0, size * sizeof(fp_digit)); fp_free(a); } void fp_forcezero (mp_int * a) { int size; if (a == NULL) return; a->used = 0; a->sign = FP_ZPOS; #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) size = a->size; #else size = FP_SIZE; #endif ForceZero(a->dp, size * sizeof(fp_digit)); #ifdef HAVE_WOLF_BIGINT wc_bigint_zero(&a->raw); #endif fp_free(a); } void mp_forcezero (mp_int * a) { fp_forcezero(a); } void fp_free(fp_int* a) { #ifdef HAVE_WOLF_BIGINT wc_bigint_free(&a->raw); #else (void)a; #endif } /* clear one (frees) */ void mp_clear (mp_int * a) { if (a == NULL) return; fp_clear(a); } void mp_free(mp_int* a) { fp_free(a); } /* handle up to 6 inits */ int mp_init_multi(mp_int* a, mp_int* b, mp_int* c, mp_int* d, mp_int* e, mp_int* f) { if (a) fp_init(a); if (b) fp_init(b); if (c) fp_init(c); if (d) fp_init(d); if (e) fp_init(e); if (f) fp_init(f); return MP_OKAY; } /* high level addition (handles signs) */ int mp_add (mp_int * a, mp_int * b, mp_int * c) { return fp_add(a, b, c); } /* high level subtraction (handles signs) */ int mp_sub (mp_int * a, mp_int * b, mp_int * c) { return fp_sub(a, b, c); } /* high level multiplication (handles sign) */ #if defined(FREESCALE_LTC_TFM) int wolfcrypt_mp_mul(mp_int * a, mp_int * b, mp_int * c) #else int mp_mul (mp_int * a, mp_int * b, mp_int * c) #endif { return fp_mul(a, b, c); } int mp_mul_d (mp_int * a, mp_digit b, mp_int * c) { return fp_mul_d(a, b, c); } /* d = a * b (mod c) */ #if defined(FREESCALE_LTC_TFM) int wolfcrypt_mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) #else int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) #endif { int ret = MP_OKAY; #ifdef WOLFSSL_ESP32_CRYPT_RSA_PRI_MULMOD ret = esp_mp_mulmod(a, b, c, d); switch (ret) { case MP_OKAY: /* successfully computed in HW */ break; case WC_NO_ERR_TRACE(WC_HW_WAIT_E): /* MP_HW_BUSY math HW busy, fall back */ case MP_HW_FALLBACK: /* forced fallback from HW to SW */ case MP_HW_VALIDATION_ACTIVE: /* use SW to compare to HW */ /* use software calc */ ret = fp_mulmod(a, b, c, d); break; default: /* Once we've failed, exit without trying to continue. * We may have mangled operands: (e.g. Z = X * Z) * Future implementation may consider saving operands, * but hard errors should never actually occur. */ break; } #else /* no HW */ ret = fp_mulmod(a, b, c, d); #endif /* WOLFSSL_ESP32_CRYPT_RSA_PRI_MULMOD */ return ret; } /* d = a - b (mod c) */ int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { return fp_submod(a, b, c, d); } /* d = a + b (mod c) */ int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { return fp_addmod(a, b, c, d); } /* d = a - b (mod c) - constant time (a < c and b < c) */ int mp_submod_ct(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { return fp_submod_ct(a, b, c, d); } /* d = a + b (mod c) - constant time (a < c and b < c) */ int mp_addmod_ct(mp_int *a, mp_int *b, mp_int *c, mp_int *d) { return fp_addmod_ct(a, b, c, d); } /* c = a mod b, 0 <= c < b */ #if defined(FREESCALE_LTC_TFM) int wolfcrypt_mp_mod (mp_int * a, mp_int * b, mp_int * c) #else int mp_mod (mp_int * a, mp_int * b, mp_int * c) #endif { return fp_mod (a, b, c); } /* hac 14.61, pp608 */ #if defined(FREESCALE_LTC_TFM) int wolfcrypt_mp_invmod (mp_int * a, mp_int * b, mp_int * c) #else int mp_invmod (mp_int * a, mp_int * b, mp_int * c) #endif { return fp_invmod(a, b, c); } /* hac 14.61, pp608 */ int mp_invmod_mont_ct (mp_int * a, mp_int * b, mp_int * c, mp_digit mp) { return fp_invmod_mont_ct(a, b, c, mp); } /* this is a shell function that calls either the normal or Montgomery * exptmod functions. Originally the call to the montgomery code was * embedded in the normal function but that wasted a lot of stack space * for nothing (since 99% of the time the Montgomery code would be called) */ #if defined(FREESCALE_LTC_TFM) int wolfcrypt_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) #else int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) #endif { return fp_exptmod(G, X, P, Y); } int mp_exptmod_ex (mp_int * G, mp_int * X, int digits, mp_int * P, mp_int * Y) { return fp_exptmod_ex(G, X, digits, P, Y); } #if defined(FREESCALE_LTC_TFM) int wolfcrypt_mp_exptmod_nct (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) #else int mp_exptmod_nct (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) #endif { return fp_exptmod_nct(G, X, P, Y); } /* compare two ints (signed)*/ int mp_cmp (mp_int * a, mp_int * b) { return fp_cmp(a, b); } /* compare a digit */ int mp_cmp_d(mp_int * a, mp_digit b) { return fp_cmp_d(a, b); } /* get the size for an unsigned equivalent */ int mp_unsigned_bin_size (const mp_int * a) { return fp_unsigned_bin_size(a); } int mp_to_unsigned_bin_at_pos(int x, fp_int *t, unsigned char *b) { return fp_to_unsigned_bin_at_pos(x, t, b); } /* store in unsigned [big endian] format */ int mp_to_unsigned_bin (mp_int * a, unsigned char *b) { return fp_to_unsigned_bin(a,b); } int mp_to_unsigned_bin_len(mp_int * a, unsigned char *b, int c) { return fp_to_unsigned_bin_len(a, b, c); } /* reads a unsigned char array, assumes the msb is stored first [big endian] */ int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) { return fp_read_unsigned_bin(a, b, c); } int mp_sub_d(fp_int *a, fp_digit b, fp_int *c) { return fp_sub_d(a, b, c); } int mp_mul_2d(fp_int *a, int b, fp_int *c) { return fp_mul_2d(a, b, c); } int mp_2expt(fp_int* a, int b) { fp_2expt(a, b); return MP_OKAY; } int mp_div(fp_int * a, fp_int * b, fp_int * c, fp_int * d) { return fp_div(a, b, c, d); } int mp_div_2d(fp_int* a, int b, fp_int* c, fp_int* d) { fp_div_2d(a, b, c, d); return MP_OKAY; } int mp_mod_2d(fp_int* a, int b, fp_int* c) { fp_mod_2d(a, b, c); return MP_OKAY; } /* copy (src = a) to (dst = b) */ void fp_copy(const fp_int *a, fp_int *b) { /* if source and destination are different */ if (a != b) { #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) /* verify a will fit in b */ if (b->size >= a->used) { int x, oldused; oldused = b->used; b->used = a->used; b->sign = a->sign; XMEMCPY(b->dp, a->dp, a->used * sizeof(fp_digit)); /* zero any excess digits on the destination that we didn't write to */ for (x = b->used; x >= 0 && x < oldused; x++) { b->dp[x] = 0; } } else { /* TODO: Handle error case */ } #else /* all dp's are same size, so do straight copy */ b->used = a->used; b->sign = a->sign; XMEMCPY(b->dp, a->dp, FP_SIZE * sizeof(fp_digit)); #endif } } int mp_init_copy(fp_int * a, fp_int * b) { fp_init_copy(a, b); return MP_OKAY; } /* Copy (dst = a) from (src = b) */ void fp_init_copy(fp_int *a, fp_int* b) { if (a != b) { fp_init(a); /* Note reversed parameter order! */ fp_copy(b, a); /* copy (src = b) to (dst = a) */ } } /* fast math wrappers */ int mp_copy(const fp_int* a, fp_int* b) { fp_copy(a, b); return MP_OKAY; } int mp_isodd(const mp_int* a) { return fp_isodd(a); } int mp_iszero(const mp_int* a) { return fp_iszero(a); } int mp_count_bits (const mp_int* a) { return fp_count_bits(a); } int mp_leading_bit (mp_int* a) { return fp_leading_bit(a); } void mp_rshb (mp_int* a, int x) { fp_rshb(a, x); } void mp_rshd (mp_int* a, int x) { fp_rshd(a, x); } int mp_set_int(mp_int *a, unsigned long b) { return fp_set_int(a, b); } int mp_is_bit_set (mp_int *a, mp_digit b) { return fp_is_bit_set(a, b); } int mp_set_bit(mp_int *a, mp_digit b) { return fp_set_bit(a, b); } #if defined(WOLFSSL_KEY_GEN) || defined (HAVE_ECC) || !defined(NO_DH) || \ !defined(NO_DSA) || !defined(NO_RSA) /* c = a * a (mod b) */ int fp_sqrmod(fp_int *a, fp_int *b, fp_int *c) { int err; #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif fp_init(t); err = fp_sqr(a, t); if (err == FP_OKAY) { #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) if (c->size < FP_SIZE) { err = fp_mod(t, b, t); fp_copy(t, c); } else #endif { err = fp_mod(t, b, c); } } #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* fast math conversion */ int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c) { return fp_sqrmod(a, b, c); } /* fast math conversion */ int mp_montgomery_calc_normalization(mp_int *a, mp_int *b) { return fp_montgomery_calc_normalization(a, b); } #endif /* WOLFSSL_KEY_GEN || HAVE_ECC */ static int fp_cond_swap_ct_ex(mp_int* a, mp_int* b, int c, int m, mp_int* t) { int i; mp_digit mask = (mp_digit)0 - m; t->used = (a->used ^ b->used) & mask; for (i = 0; i < c; i++) { t->dp[i] = (a->dp[i] ^ b->dp[i]) & mask; } a->used ^= t->used; for (i = 0; i < c; i++) { a->dp[i] ^= t->dp[i]; } b->used ^= t->used; for (i = 0; i < c; i++) { b->dp[i] ^= t->dp[i]; } return FP_OKAY; } static int fp_cond_swap_ct(mp_int* a, mp_int* b, int c, int m) { #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int* t; #endif #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif fp_cond_swap_ct_ex(a, b, c, m, t); #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } #if defined(WC_MP_TO_RADIX) || !defined(NO_DH) || !defined(NO_DSA) || \ !defined(NO_RSA) #ifdef WOLFSSL_KEY_GEN /* swap the elements of two integers, for cases where you can't simply swap the * mp_int pointers around */ static int fp_exch (fp_int * a, fp_int * b) { #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif *t = *a; *a = *b; *b = *t; #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } #endif static const int lnz[16] = { 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; /* Counts the number of lsbs which are zero before the first zero bit */ int fp_cnt_lsb(fp_int *a) { int x; fp_digit q, qq; /* easy out */ if (fp_iszero(a) == FP_YES) { return 0; } /* scan lower digits until non-zero */ for (x = 0; x < a->used && a->dp[x] == 0; x++) {} q = a->dp[x]; x *= DIGIT_BIT; /* now scan this digit until a 1 is found */ if ((q & 1) == 0) { do { qq = q & 15; x += lnz[qq]; q >>= 4; } while (qq == 0); } return x; } static int s_is_power_of_two(fp_digit b, int *p) { int x; /* fast return if no power of two */ if ((b==0) || (b & (b-1))) { return FP_NO; } for (x = 0; x < DIGIT_BIT; x++) { if (b == (((fp_digit)1)< cb + d == a */ static int fp_div_d(fp_int *a, fp_digit b, fp_int *c, fp_digit *d) { #ifndef WOLFSSL_SMALL_STACK fp_int q[1]; #else fp_int *q; #endif fp_word w; fp_digit t; int ix; /* cannot divide by zero */ if (b == 0) { return FP_VAL; } /* quick outs */ if (b == 1 || fp_iszero(a) == FP_YES) { if (d != NULL) { *d = 0; } if (c != NULL) { fp_copy(a, c); } return FP_OKAY; } /* power of two ? */ if (s_is_power_of_two(b, &ix) == FP_YES) { if (d != NULL) { *d = a->dp[0] & ((((fp_digit)1)<used = a->used; q->sign = a->sign; } w = 0; for (ix = a->used - 1; ix >= 0; ix--) { w = (w << ((fp_word)DIGIT_BIT)) | ((fp_word)a->dp[ix]); if (w >= b) { #ifdef WOLFSSL_LINUXKM t = (fp_digit)w; /* Linux kernel macro for in-place 64 bit integer division. */ do_div(t, b); #else t = (fp_digit)(w / b); #endif w -= ((fp_word)t) * ((fp_word)b); } else { t = 0; } if (c != NULL) q->dp[ix] = (fp_digit)t; } if (d != NULL) { *d = (fp_digit)w; } if (c != NULL) { fp_clamp(q); fp_copy(q, c); } #ifdef WOLFSSL_SMALL_STACK XFREE(q, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } /* c = a mod b, 0 <= c < b */ static int fp_mod_d(fp_int *a, fp_digit b, fp_digit *c) { return fp_div_d(a, b, NULL, c); } int mp_mod_d(fp_int *a, fp_digit b, fp_digit *c) { return fp_mod_d(a, b, c); } #endif /* WC_MP_TO_RADIX || !NO_DH || !NO_DSA || !NO_RSA */ #if !defined(NO_DH) || !defined(NO_DSA) || !defined(NO_RSA) || \ defined(WOLFSSL_KEY_GEN) static int fp_isprime_ex(fp_int *a, int t, int* result); #if defined(FREESCALE_LTC_TFM) int wolfcrypt_mp_prime_is_prime(mp_int* a, int t, int* result) #else int mp_prime_is_prime(mp_int* a, int t, int* result) #endif { return fp_isprime_ex(a, t, result); } /* Miller-Rabin test of "a" to the base of "b" as described in * HAC pp. 139 Algorithm 4.24 * * Sets result to 0 if definitely composite or 1 if probably prime. * Randomly the chance of error is no more than 1/4 and often * very much lower. */ static int fp_prime_miller_rabin_ex(fp_int * a, fp_int * b, int *result, fp_int *n1, fp_int *y, fp_int *r) { int s, j; int err; /* default */ *result = FP_NO; /* ensure b > 1 */ if (fp_cmp_d(b, 1) != FP_GT) { return FP_OKAY; } /* get n1 = a - 1 */ fp_copy(a, n1); err = fp_sub_d(n1, 1, n1); if (err != FP_OKAY) { return err; } /* set 2**s * r = n1 */ fp_copy(n1, r); /* count the number of least significant bits * which are zero */ s = fp_cnt_lsb(r); /* now divide n - 1 by 2**s */ fp_div_2d (r, s, r, NULL); /* compute y = b**r mod a */ fp_zero(y); #if (defined(WOLFSSL_HAVE_SP_RSA) && !defined(WOLFSSL_RSA_PUBLIC_ONLY)) || \ defined(WOLFSSL_HAVE_SP_DH) #ifndef WOLFSSL_SP_NO_2048 if (fp_count_bits(a) == 1024 && fp_isodd(a)) err = sp_ModExp_1024(b, r, a, y); else if (fp_count_bits(a) == 2048 && fp_isodd(a)) err = sp_ModExp_2048(b, r, a, y); else #endif #ifndef WOLFSSL_SP_NO_3072 if (fp_count_bits(a) == 1536 && fp_isodd(a)) err = sp_ModExp_1536(b, r, a, y); else if (fp_count_bits(a) == 3072 && fp_isodd(a)) err = sp_ModExp_3072(b, r, a, y); else #endif #ifdef WOLFSSL_SP_4096 if (fp_count_bits(a) == 4096 && fp_isodd(a)) err = sp_ModExp_4096(b, r, a, y); else #endif #endif err = fp_exptmod(b, r, a, y); if (err != FP_OKAY) { return err; } /* if y != 1 and y != n1 do */ if (fp_cmp_d (y, 1) != FP_EQ && fp_cmp (y, n1) != FP_EQ) { j = 1; /* while j <= s-1 and y != n1 */ while ((j <= (s - 1)) && fp_cmp (y, n1) != FP_EQ) { err = fp_sqrmod (y, a, y); if (err != FP_OKAY) return err; /* if y == 1 then composite */ if (fp_cmp_d (y, 1) == FP_EQ) { return FP_OKAY; } ++j; } /* if y != n1 then composite */ if (fp_cmp (y, n1) != FP_EQ) { return FP_OKAY; } } /* probably prime now */ *result = FP_YES; return FP_OKAY; } static int fp_prime_miller_rabin(fp_int * a, fp_int * b, int *result) { int err; #ifndef WOLFSSL_SMALL_STACK fp_int n1[1], y[1], r[1]; #else fp_int *n1, *y, *r; #endif #ifdef WOLFSSL_SMALL_STACK n1 = (fp_int*)XMALLOC(sizeof(fp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT); if (n1 == NULL) { return FP_MEM; } y = &n1[1]; r = &n1[2]; #endif fp_init(n1); fp_init(y); fp_init(r); err = fp_prime_miller_rabin_ex(a, b, result, n1, y, r); fp_clear(n1); fp_clear(y); fp_clear(r); #ifdef WOLFSSL_SMALL_STACK XFREE(n1, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* a few primes */ static const fp_digit primes[FP_PRIME_SIZE] = { 0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013, 0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035, 0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059, 0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F, 0x0083, 0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD, 0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF, 0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107, 0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137, 0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167, 0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199, 0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9, 0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7, 0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239, 0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265, 0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293, 0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF, 0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301, 0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B, 0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371, 0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD, 0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5, 0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419, 0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449, 0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B, 0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7, 0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503, 0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529, 0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F, 0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3, 0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7, 0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623, 0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653 }; int fp_isprime_ex(fp_int *a, int t, int* result) { #ifndef WOLFSSL_SMALL_STACK fp_int b[1]; #else fp_int *b; #endif fp_digit d; int r, res; int err; if (t <= 0 || t > FP_PRIME_SIZE) { *result = FP_NO; return FP_VAL; } if (fp_isone(a)) { *result = FP_NO; return FP_OKAY; } /* check against primes table */ for (r = 0; r < FP_PRIME_SIZE; r++) { if (fp_cmp_d(a, primes[r]) == FP_EQ) { *result = FP_YES; return FP_OKAY; } } /* do trial division */ for (r = 0; r < FP_PRIME_SIZE; r++) { res = fp_mod_d(a, primes[r], &d); if (res != MP_OKAY || d == 0) { *result = FP_NO; return res; } } #ifdef WOLFSSL_SMALL_STACK b = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (b == NULL) return FP_MEM; #endif /* now do 't' miller rabins */ fp_init(b); for (r = 0; r < t; r++) { fp_set(b, primes[r]); err = fp_prime_miller_rabin(a, b, &res); if ((err != FP_OKAY) || (res == FP_NO)) { *result = res; #ifdef WOLFSSL_SMALL_STACK XFREE(b, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } } *result = FP_YES; #ifdef WOLFSSL_SMALL_STACK XFREE(b, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } #if defined(FREESCALE_LTC_TFM) int wolfcrypt_mp_prime_is_prime_ex(mp_int* a, int t, int* result, WC_RNG* rng) #else int mp_prime_is_prime_ex(mp_int* a, int t, int* result, WC_RNG* rng) #endif { int ret = FP_YES; fp_digit d; int i; if (a == NULL || result == NULL || rng == NULL) return FP_VAL; if (a->sign == FP_NEG) return FP_VAL; if (t <= 0 || t > FP_PRIME_SIZE) return FP_VAL; if (fp_isone(a)) { *result = FP_NO; return FP_OKAY; } /* check against primes table */ for (i = 0; i < FP_PRIME_SIZE; i++) { if (fp_cmp_d(a, primes[i]) == FP_EQ) { *result = FP_YES; return FP_OKAY; } } /* do trial division */ for (i = 0; i < FP_PRIME_SIZE; i++) { if (fp_mod_d(a, primes[i], &d) == MP_OKAY) { if (d == 0) { *result = FP_NO; return FP_OKAY; } } else return FP_VAL; } #ifndef WC_NO_RNG /* now do a miller rabin with up to t random numbers, this should * give a (1/4)^t chance of a false prime. */ { #ifndef WOLFSSL_SMALL_STACK fp_int b[1], c[1], n1[1], y[1], r[1]; byte base[FP_MAX_PRIME_SIZE]; #else fp_int *b, *c, *n1, *y, *r; byte* base; #endif word32 baseSz; word32 bitSz; int err; bitSz = fp_count_bits(a); /* The base size is the number of bits / 8. One is added if the number * of bits isn't an even 8. */ baseSz = (bitSz / 8) + ((bitSz % 8) ? 1 : 0); bitSz %= 8; #ifndef WOLFSSL_SMALL_STACK if (baseSz > sizeof(base)) return FP_MEM; #else base = (byte*)XMALLOC(baseSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (base == NULL) return FP_MEM; b = (fp_int*)XMALLOC(sizeof(fp_int) * 5, NULL, DYNAMIC_TYPE_BIGINT); if (b == NULL) { XFREE(base, NULL, DYNAMIC_TYPE_TMP_BUFFER); return FP_MEM; } c = &b[1]; n1 = &b[2]; y= &b[3]; r = &b[4]; #endif fp_init(b); fp_init(c); fp_init(n1); fp_init(y); fp_init(r); err = fp_sub_d(a, 2, c); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(b, NULL, DYNAMIC_TYPE_BIGINT); XFREE(base, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } while (t > 0) { if ((err = wc_RNG_GenerateBlock(rng, base, baseSz)) != 0) { #ifdef WOLFSSL_SMALL_STACK XFREE(b, NULL, DYNAMIC_TYPE_BIGINT); XFREE(base, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } if (bitSz != 0) base[0] &= (1 << bitSz) - 1; err = fp_read_unsigned_bin(b, base, baseSz); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(b, NULL, DYNAMIC_TYPE_BIGINT); XFREE(base, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } if (fp_cmp_d(b, 2) != FP_GT || fp_cmp(b, c) != FP_LT) { continue; } err = fp_prime_miller_rabin_ex(a, b, &ret, n1, y, r); if (err != FP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(b, NULL, DYNAMIC_TYPE_BIGINT); XFREE(base, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif return err; } if (ret == FP_NO) break; fp_zero(b); t--; } fp_clear(n1); fp_clear(y); fp_clear(r); fp_clear(b); fp_clear(c); #ifdef WOLFSSL_SMALL_STACK XFREE(b, NULL, DYNAMIC_TYPE_BIGINT); XFREE(base, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif } #else (void)t; #endif /* !WC_NO_RNG */ *result = ret; return FP_OKAY; } #endif /* !NO_RSA || !NO_DSA || !NO_DH || WOLFSSL_KEY_GEN */ int mp_cond_swap_ct_ex(mp_int* a, mp_int* b, int c, int m, mp_int* t) { return fp_cond_swap_ct_ex(a, b, c, m, t); } int mp_cond_swap_ct(mp_int* a, mp_int* b, int c, int m) { return fp_cond_swap_ct(a, b, c, m); } #ifdef WOLFSSL_KEY_GEN static int fp_gcd(fp_int *a, fp_int *b, fp_int *c); static int fp_lcm(fp_int *a, fp_int *b, fp_int *c); static int fp_randprime(fp_int* a, int len, WC_RNG* rng, void* heap); int mp_gcd(fp_int *a, fp_int *b, fp_int *c) { return fp_gcd(a, b, c); } int mp_lcm(fp_int *a, fp_int *b, fp_int *c) { return fp_lcm(a, b, c); } int mp_rand_prime(mp_int* a, int len, WC_RNG* rng, void* heap) { int err; err = fp_randprime(a, len, rng, heap); switch(err) { case WC_NO_ERR_TRACE(MP_VAL): return MP_VAL; case WC_NO_ERR_TRACE(MP_MEM): return MP_MEM; default: break; } return MP_OKAY; } int mp_exch (mp_int * a, mp_int * b) { return fp_exch(a, b); } int fp_randprime(fp_int* a, int len, WC_RNG* rng, void* heap) { static const int USE_BBS = 1; int err, type; int isPrime = FP_YES; /* Assume the candidate is probably prime and then test until * it is proven composite. */ byte* buf; (void)heap; /* get type */ if (len < 0) { type = USE_BBS; len = -len; } else { type = 0; } /* allow sizes between 2 and 512 bytes for a prime size */ if (len < 2 || len > 512) { return FP_VAL; } /* allocate buffer to work with */ buf = (byte*)XMALLOC(len, heap, DYNAMIC_TYPE_TMP_BUFFER); if (buf == NULL) { return FP_MEM; } XMEMSET(buf, 0, len); do { #ifdef SHOW_GEN printf("."); fflush(stdout); #endif /* generate value */ err = wc_RNG_GenerateBlock(rng, buf, len); if (err != 0) { XFREE(buf, heap, DYNAMIC_TYPE_TMP_BUFFER); return FP_VAL; } /* munge bits */ buf[0] |= 0x80 | 0x40; buf[len-1] |= 0x01 | ((type & USE_BBS) ? 0x02 : 0x00); /* load value */ err = fp_read_unsigned_bin(a, buf, len); if (err != 0) { XFREE(buf, heap, DYNAMIC_TYPE_TMP_BUFFER); return err; } /* test */ /* Running Miller-Rabin up to 3 times gives us a 2^{-80} chance * of a 1024-bit candidate being a false positive, when it is our * prime candidate. (Note 4.49 of Handbook of Applied Cryptography.) * Using 8 because we've always used 8 */ mp_prime_is_prime_ex(a, 8, &isPrime, rng); } while (isPrime == FP_NO); XMEMSET(buf, 0, len); XFREE(buf, heap, DYNAMIC_TYPE_TMP_BUFFER); return FP_OKAY; } /* c = [a, b] */ int fp_lcm(fp_int *a, fp_int *b, fp_int *c) { int err; #ifndef WOLFSSL_SMALL_STACK fp_int t[2]; #else fp_int *t; #endif /* LCM of 0 and any number is undefined as 0 is not in the set of values * being used. */ if (fp_iszero(a) == FP_YES || fp_iszero(b) == FP_YES) { return FP_VAL; } #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int) * 2, NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) { return FP_MEM; } #endif fp_init(&t[0]); fp_init(&t[1]); err = fp_gcd(a, b, &t[0]); if (err == FP_OKAY) { if (fp_cmp_mag(a, b) == FP_GT) { err = fp_div(a, &t[0], &t[1], NULL); if (err == FP_OKAY) err = fp_mul(b, &t[1], c); } else { err = fp_div(b, &t[0], &t[1], NULL); if (err == FP_OKAY) err = fp_mul(a, &t[1], c); } } #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* c = (a, b) */ int fp_gcd(fp_int *a, fp_int *b, fp_int *c) { #ifndef WOLFSSL_SMALL_STACK fp_int u[1], v[1], r[1]; #else fp_int *u, *v, *r; #endif /* GCD of 0 and 0 is undefined as all integers divide 0. */ if (fp_iszero(a) == FP_YES && fp_iszero(b) == FP_YES) { return FP_VAL; } /* either zero than gcd is the largest */ if (fp_iszero (a) == FP_YES && fp_iszero (b) == FP_NO) { fp_abs (b, c); return FP_OKAY; } if (fp_iszero (a) == FP_NO && fp_iszero (b) == FP_YES) { fp_abs (a, c); return FP_OKAY; } /* optimized. At this point if a == 0 then * b must equal zero too */ if (fp_iszero (a) == FP_YES) { fp_zero(c); return FP_OKAY; } #ifdef WOLFSSL_SMALL_STACK u = (fp_int*)XMALLOC(sizeof(fp_int) * 3, NULL, DYNAMIC_TYPE_BIGINT); if (u == NULL) { return FP_MEM; } v = &u[1]; r = &u[2]; #endif /* sort inputs */ if (fp_cmp_mag(a, b) != FP_LT) { fp_init_copy(u, a); fp_init_copy(v, b); } else { fp_init_copy(u, b); fp_init_copy(v, a); } u->sign = FP_ZPOS; v->sign = FP_ZPOS; fp_init(r); while (fp_iszero(v) == FP_NO) { int err = fp_mod(u, v, r); if (err != MP_OKAY) { #ifdef WOLFSSL_SMALL_STACK XFREE(u, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } fp_copy(v, u); fp_copy(r, v); } fp_copy(u, c); #ifdef WOLFSSL_SMALL_STACK XFREE(u, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } #endif /* WOLFSSL_KEY_GEN */ #if defined(HAVE_ECC) || !defined(NO_PWDBASED) || defined(OPENSSL_EXTRA) || \ defined(WC_RSA_BLINDING) || !defined(NO_DSA) || \ (!defined(NO_RSA) && !defined(NO_RSA_BOUNDS_CHECK)) /* c = a + b */ int fp_add_d(fp_int *a, fp_digit b, fp_int *c) { #ifndef WOLFSSL_SMALL_STACK fp_int tmp[1]; #else fp_int* tmp; #endif int err; #ifdef WOLFSSL_SMALL_STACK tmp = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (tmp == NULL) return FP_MEM; #endif fp_init(tmp); fp_set(tmp, b); err = fp_add(a, tmp, c); #ifdef WOLFSSL_SMALL_STACK XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT); #endif return err; } /* external compatibility */ int mp_add_d(fp_int *a, fp_digit b, fp_int *c) { return fp_add_d(a, b, c); } #endif /* HAVE_ECC || !NO_PWDBASED || OPENSSL_EXTRA || WC_RSA_BLINDING || !NO_DSA || (!NO_RSA && !NO_RSA_BOUNDS_CHECK) */ #if !defined(NO_DSA) || defined(HAVE_ECC) || defined(WOLFSSL_KEY_GEN) || \ defined(HAVE_COMP_KEY) || defined(WOLFSSL_DEBUG_MATH) || \ defined(DEBUG_WOLFSSL) || defined(OPENSSL_EXTRA) || defined(WC_MP_TO_RADIX) /* chars used in radix conversions */ static wcchar fp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz+/"; #endif #if defined(OPENSSL_EXTRA) || !defined(NO_DSA) || defined(HAVE_ECC) #if DIGIT_BIT == 64 || DIGIT_BIT == 32 static int fp_read_radix_16(fp_int *a, const char *str) { int i, j, k, neg; int ch; /* Skip whitespace at end of line */ int eol_done = 0; /* if the leading digit is a * minus set the sign to negative. */ if (*str == '-') { ++str; neg = FP_NEG; } else { neg = FP_ZPOS; } j = 0; k = 0; for (i = (int)(XSTRLEN(str) - 1); i >= 0; i--) { ch = (int)HexCharToByte(str[i]); if (ch < 0) { if (!eol_done && CharIsWhiteSpace(str[i])) continue; return FP_VAL; } eol_done = 1; k += j == DIGIT_BIT; j &= DIGIT_BIT - 1; if (k >= FP_SIZE) return FP_VAL; a->dp[k] |= ((fp_digit)ch) << j; j += 4; } a->used = k + 1; fp_clamp(a); /* set the sign only if a != 0 */ if (fp_iszero(a) != FP_YES) { a->sign = neg; } return FP_OKAY; } #endif static int fp_read_radix(fp_int *a, const char *str, int radix) { int y, neg; char ch; /* set the integer to the default of zero */ fp_zero (a); #if DIGIT_BIT == 64 || DIGIT_BIT == 32 if (radix == 16) return fp_read_radix_16(a, str); #endif /* make sure the radix is ok */ if (radix < 2 || radix > 64) { return FP_VAL; } /* if the leading digit is a * minus set the sign to negative. */ if (*str == '-') { ++str; neg = FP_NEG; } else { neg = FP_ZPOS; } /* process each digit of the string */ while (*str) { /* if the radix <= 36 the conversion is case insensitive * this allows numbers like 1AB and 1ab to represent the same value * [e.g. in hex] */ ch = (char)((radix <= 36) ? XTOUPPER((unsigned char)*str) : *str); for (y = 0; y < 64; y++) { if (ch == fp_s_rmap[y]) { break; } } if (y >= radix) { /* Check if whitespace at end of line */ while (CharIsWhiteSpace(*str)) ++str; if (*str) return FP_VAL; else break; } /* if the char was found in the map * and is less than the given radix add it * to the number, otherwise exit the loop. */ if (y < radix) { int ret = fp_mul_d (a, (fp_digit) radix, a); if (ret != FP_OKAY) return ret; ret = fp_add_d (a, (fp_digit) y, a); if (ret != FP_OKAY) return ret; } else { break; } ++str; } /* set the sign only if a != 0 */ if (fp_iszero(a) != FP_YES) { a->sign = neg; } return FP_OKAY; } /* fast math conversion */ int mp_read_radix(mp_int *a, const char *str, int radix) { return fp_read_radix(a, str, radix); } #endif /* !defined(NO_DSA) || defined(HAVE_ECC) */ #if defined(HAVE_ECC) || (!defined(NO_RSA) && defined(WC_RSA_BLINDING)) int mp_montgomery_reduce(fp_int *a, fp_int *m, fp_digit mp) { return fp_montgomery_reduce(a, m, mp); } int mp_montgomery_reduce_ex(fp_int *a, fp_int *m, fp_digit mp, int ct) { return fp_montgomery_reduce_ex(a, m, mp, ct); } /* fast math conversion */ int mp_montgomery_setup(fp_int *a, fp_digit *rho) { return fp_montgomery_setup(a, rho); } #endif /* HAVE_ECC || (!NO_RSA && WC_RSA_BLINDING) */ /* fast math conversion */ int mp_sqr(fp_int *A, fp_int *B) { return fp_sqr(A, B); } #ifdef HAVE_ECC /* fast math conversion */ int mp_div_2(fp_int * a, fp_int * b) { fp_div_2(a, b); return MP_OKAY; } /* c = a / 2 (mod b) - constant time (a < b and positive) */ int mp_div_2_mod_ct(mp_int *a, mp_int *b, mp_int *c) { return fp_div_2_mod_ct(a, b, c); } #ifdef HAVE_COMP_KEY int mp_cnt_lsb(fp_int* a) { return fp_cnt_lsb(a); } #endif /* HAVE_COMP_KEY */ #endif /* HAVE_ECC */ #if defined(HAVE_ECC) || !defined(NO_RSA) || !defined(NO_DSA) || \ defined(WOLFSSL_KEY_GEN) /* fast math conversion */ int mp_set(fp_int *a, fp_digit b) { fp_set(a,b); return MP_OKAY; } #endif #ifdef WC_MP_TO_RADIX /* returns size of ASCII representation */ int mp_radix_size (mp_int *a, int radix, int *size) { int res, digs; fp_digit d; #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif *size = 0; /* special case for binary */ if (radix == 2) { *size = fp_count_bits(a); if (*size == 0) *size = 1; *size += (a->sign == FP_NEG ? 1 : 0) + 1; /* "-" sign + null term */ return FP_OKAY; } /* make sure the radix is in range */ if (radix < 2 || radix > 64) { return FP_VAL; } if (fp_iszero(a) == MP_YES) { #ifndef WC_DISABLE_RADIX_ZERO_PAD if (radix == 16) *size = 3; else #endif *size = 2; return FP_OKAY; } /* digs is the digit count */ digs = 0; #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif /* Init a copy (t) of the input (a) ** ** ALERT: Not calling fp_init_copy() as some compiler optimization settings ** such as -O2 will complain that (t) "may be used uninitialized" ** The fp_init() is here only to appease the compiler. */ fp_init(t); fp_copy(a, t); /* copy (src = a) to (dst = t)*/ /* force temp to positive */ t->sign = FP_ZPOS; /* fetch out all of the digits */ while (fp_iszero (t) == FP_NO) { if ((res = fp_div_d (t, (mp_digit) radix, t, &d)) != FP_OKAY) { fp_zero (t); #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return res; } ++digs; } fp_zero (t); #ifndef WC_DISABLE_RADIX_ZERO_PAD /* For hexadecimal output, add zero padding when number of digits is odd */ if ((digs & 1) && (radix == 16)) { ++digs; } #endif /* if it's negative add one for the sign */ if (a->sign == FP_NEG) { ++digs; } /* return digs + 1, the 1 is for the NULL byte that would be required. */ *size = digs + 1; #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } /* stores a bignum as a ASCII string in a given radix (2..64) */ int mp_toradix (mp_int *a, char *str, int radix) { int res, digs; fp_digit d; char *_s = str; #ifndef WOLFSSL_SMALL_STACK fp_int t[1]; #else fp_int *t; #endif /* check range of the radix */ if (radix < 2 || radix > 64) { return FP_VAL; } /* quick out if its zero */ if (fp_iszero(a) == FP_YES) { #ifndef WC_DISABLE_RADIX_ZERO_PAD if (radix == 16) *str++ = '0'; #endif *str++ = '0'; *str = '\0'; return FP_OKAY; } #ifdef WOLFSSL_SMALL_STACK t = (fp_int*)XMALLOC(sizeof(fp_int), NULL, DYNAMIC_TYPE_BIGINT); if (t == NULL) return FP_MEM; #endif /* Init a copy (t) of the input (a) ** ** ALERT: Not calling fp_init_copy() as some compiler optimization settings ** such as -O2 will complain that (t) "may be used uninitialized" ** The fp_init() is here only to appease the compiler. */ fp_init(t); fp_copy(a, t); /* copy (src = a) to (dst = t) */ /* if it is negative output a - */ if (t->sign == FP_NEG) { ++_s; *str++ = '-'; t->sign = FP_ZPOS; } digs = 0; while (fp_iszero (t) == FP_NO) { if ((res = fp_div_d (t, (fp_digit) radix, t, &d)) != FP_OKAY) { fp_zero (t); #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return res; } *str++ = fp_s_rmap[d]; ++digs; } #ifndef WC_DISABLE_RADIX_ZERO_PAD /* For hexadecimal output, add zero padding when number of digits is odd */ if ((digs & 1) && (radix == 16)) { *str++ = fp_s_rmap[0]; ++digs; } #endif /* reverse the digits of the string. In this case _s points * to the first digit [excluding the sign] of the number] */ mp_reverse ((unsigned char *)_s, digs); /* append a NULL so the string is properly terminated */ *str = '\0'; fp_zero (t); #ifdef WOLFSSL_SMALL_STACK XFREE(t, NULL, DYNAMIC_TYPE_BIGINT); #endif return FP_OKAY; } #ifdef WOLFSSL_DEBUG_MATH void mp_dump(const char* desc, mp_int* a, byte verbose) { char buffer[FP_SIZE * sizeof(fp_digit) * 2]; int size; #if defined(ALT_ECC_SIZE) || defined(HAVE_WOLF_BIGINT) size = a->size; #else size = FP_SIZE; #endif printf("%s: ptr=%p, used=%d, sign=%d, size=%d, fpd=%d\n", desc, a, a->used, a->sign, size, (int)sizeof(fp_digit)); mp_tohex(a, buffer); printf(" %s\n ", buffer); if (verbose) { int i; for(i=0; idp) + i)); } printf("\n"); } } #endif /* WOLFSSL_DEBUG_MATH */ #endif /* WC_MP_TO_RADIX */ int mp_abs(mp_int* a, mp_int* b) { fp_abs(a, b); return FP_OKAY; } int mp_lshd (mp_int * a, int b) { return fp_lshd(a, b); } #ifdef WOLFSSL_CHECK_MEM_ZERO void mp_memzero_add(const char* name, mp_int* a) { wc_MemZero_Add(name, a->dp, sizeof(a->dp)); } void mp_memzero_check(mp_int* a) { wc_MemZero_Check(a->dp, sizeof(a->dp)); } #endif /* WOLFSSL_CHECK_MEM_ZERO */ #endif /* USE_FAST_MATH */