/* api.c API unit tests * * Copyright (C) 2006-2017 wolfSSL Inc. * * This file is part of wolfSSL. * * wolfSSL is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * wolfSSL is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA */ /*----------------------------------------------------------------------------* | Includes *----------------------------------------------------------------------------*/ #ifdef HAVE_CONFIG_H #include #endif #include #ifndef FOURK_BUF #define FOURK_BUF 4096 #endif #ifndef TWOK_BUF #define TWOK_BUF 2048 #endif #ifndef ONEK_BUF #define ONEK_BUF 1024 #endif #if defined(WOLFSSL_STATIC_MEMORY) #include #endif /* WOLFSSL_STATIC_MEMORY */ #ifndef HEAP_HINT #define HEAP_HINT NULL #endif /* WOLFSSL_STAIC_MEMORY */ #ifdef WOLFSSL_ASNC_CRYPT #include #endif #ifdef HAVE_ECC #include /* wc_ecc_fp_free */ #ifndef ECC_ASN963_MAX_BUF_SZ #define ECC_ASN963_MAX_BUF_SZ 133 #endif #ifndef ECC_PRIV_KEY_BUF #define ECC_PRIV_KEY_BUF 66 /* For non user defined curves. */ #endif #ifdef HAVE_ALL_CURVES /* ecc key sizes: 14, 16, 20, 24, 28, 30, 32, 40, 48, 64*/ #ifndef KEY14 #define KEY14 14 #endif #if !defined(KEY16) #define KEY16 16 #endif #if !defined(KEY20) #define KEY20 20 #endif #if !defined(KEY24) #define KEY24 24 #endif #if !defined(KEY28) #define KEY28 28 #endif #if !defined(KEY30) #define KEY30 30 #endif #if !defined(KEY32) #define KEY32 32 #endif #if !defined(KEY40) #define KEY40 40 #endif #if !defined(KEY48) #define KEY48 48 #endif #if !defined(KEY64) #define KEY64 64 #endif #else /* ecc key sizes: 14, 16, 20, 24, 28, 30, 32, 40, 48, 64*/ #ifndef KEY14 #define KEY14 32 #endif #if !defined(KEY16) #define KEY16 32 #endif #if !defined(KEY20) #define KEY20 32 #endif #if !defined(KEY24) #define KEY24 32 #endif #if !defined(KEY28) #define KEY28 32 #endif #if !defined(KEY30) #define KEY30 32 #endif #if !defined(KEY32) #define KEY32 32 #endif #if !defined(KEY40) #define KEY40 32 #endif #if !defined(KEY48) #define KEY48 32 #endif #if !defined(KEY64) #define KEY64 32 #endif #endif #if !defined(HAVE_COMP_KEY) #if !defined(NOCOMP) #define NOCOMP 0 #endif #else #if !defined(COMP) #define COMP 1 #endif #endif #if !defined(DER_SZ) #define DER_SZ (keySz * 2 + 1) #endif #endif #ifndef NO_ASN #include #endif #include #include #include /* compatibility layer */ #include #include #include "examples/server/server.h" /* for testing compatibility layer callbacks */ #ifndef NO_MD5 #include #endif #ifndef NO_SHA #include #endif #ifndef NO_SHA256 #include #endif #ifdef WOLFSSL_SHA512 #include #endif #ifdef WOLFSSL_SHA384 #include #endif #ifdef WOLFSSL_SHA3 #include #ifndef HEAP_HINT #define HEAP_HINT NULL #endif #endif #ifndef NO_AES #include #ifdef HAVE_AES_DECRYPT #include #endif #endif #ifdef WOLFSSL_RIPEMD #include #endif #ifdef HAVE_IDEA #include #endif #ifndef NO_DES3 #include #include #endif #ifndef NO_HMAC #include #endif #ifdef HAVE_CHACHA #include #endif #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) #include #endif #ifdef HAVE_CAMELLIA #include #endif #ifndef NO_RABBIT #include #endif #ifndef NO_RC4 #include #endif #ifndef NO_RSA #include #include #define FOURK_BUF 4096 #define GEN_BUF 294 #ifndef USER_CRYPTO_ERROR #define USER_CRYPTO_ERROR -101 /* error returned by IPP lib. */ #endif #endif #ifdef HAVE_AESCCM #include #endif #ifdef HAVE_HC128 #include #endif #ifdef HAVE_PKCS7 #include #include #endif #if defined(WOLFSSL_SHA3) || defined(HAVE_PKCS7) static int devId = INVALID_DEVID; #endif #ifndef NO_DSA #include #ifndef ONEK_BUF #define ONEK_BUF 1024 #endif #ifndef TWOK_BUF #define TWOK_BUF 2048 #endif #ifndef FOURK_BUF #define FOURK_BUF 4096 #endif #ifndef DSA_SIG_SIZE #define DSA_SIG_SIZE 40 #endif #ifndef MAX_DSA_PARAM_SIZE #define MAX_DSA_PARAM_SIZE 256 #endif #endif #ifdef WOLFSSL_CMAC #include #endif #ifdef HAVE_ED25519 #include #endif #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) #include #ifndef NO_ASN /* for ASN_COMMON_NAME DN_tags enum */ #include #endif #endif #ifdef OPENSSL_EXTRA #include #include #include #include #include #include #include #include #include #include #include #include #include #ifndef NO_AES #include #endif #ifndef NO_DES3 #include #endif #endif /* OPENSSL_EXTRA */ #if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \ && !defined(NO_SHA256) && !defined(RC_NO_RNG) #include #endif #if defined(SESSION_CERTS) && defined(TEST_PEER_CERT_CHAIN) #include "wolfssl/internal.h" /* for testing SSL_get_peer_cert_chain */ #endif /* enable testing buffer load functions */ #ifndef USE_CERT_BUFFERS_2048 #define USE_CERT_BUFFERS_2048 #endif #ifndef USE_CERT_BUFFERS_256 #define USE_CERT_BUFFERS_256 #endif #include typedef struct testVector { const char* input; const char* output; size_t inLen; size_t outLen; } testVector; #if defined(HAVE_PKCS7) typedef struct { const byte* content; word32 contentSz; int contentOID; int encryptOID; int keyWrapOID; int keyAgreeOID; byte* cert; size_t certSz; byte* privateKey; word32 privateKeySz; } pkcs7EnvelopedVector; #ifndef NO_PKCS7_ENCRYPTED_DATA typedef struct { const byte* content; word32 contentSz; int contentOID; int encryptOID; byte* encryptionKey; word32 encryptionKeySz; } pkcs7EncryptedVector; #endif #endif /* HAVE_PKCS7 */ /*----------------------------------------------------------------------------* | Constants *----------------------------------------------------------------------------*/ #define TEST_SUCCESS (1) #define TEST_FAIL (0) #define testingFmt " %s:" #define resultFmt " %s\n" static const char* passed = "passed"; static const char* failed = "failed"; #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) static const char* bogusFile = #ifdef _WIN32 "NUL" #else "/dev/null" #endif ; #endif enum { TESTING_RSA = 1, TESTING_ECC = 2 }; /*----------------------------------------------------------------------------* | Setup *----------------------------------------------------------------------------*/ static int test_wolfSSL_Init(void) { int result; printf(testingFmt, "wolfSSL_Init()"); result = wolfSSL_Init(); printf(resultFmt, result == WOLFSSL_SUCCESS ? passed : failed); return result; } static int test_wolfSSL_Cleanup(void) { int result; printf(testingFmt, "wolfSSL_Cleanup()"); result = wolfSSL_Cleanup(); printf(resultFmt, result == WOLFSSL_SUCCESS ? passed : failed); return result; } /* Initialize the wolfCrypt state. * POST: 0 success. */ static int test_wolfCrypt_Init(void) { int result; printf(testingFmt, "wolfCrypt_Init()"); result = wolfCrypt_Init(); printf(resultFmt, result == 0 ? passed : failed); return result; } /* END test_wolfCrypt_Init */ /*----------------------------------------------------------------------------* | Method Allocators *----------------------------------------------------------------------------*/ static void test_wolfSSL_Method_Allocators(void) { #define TEST_METHOD_ALLOCATOR(allocator, condition) \ do { \ WOLFSSL_METHOD *method; \ condition(method = allocator()); \ XFREE(method, 0, DYNAMIC_TYPE_METHOD); \ } while(0) #define TEST_VALID_METHOD_ALLOCATOR(a) \ TEST_METHOD_ALLOCATOR(a, AssertNotNull) #define TEST_INVALID_METHOD_ALLOCATOR(a) \ TEST_METHOD_ALLOCATOR(a, AssertNull) #ifndef NO_OLD_TLS #ifdef WOLFSSL_ALLOW_SSLV3 TEST_VALID_METHOD_ALLOCATOR(wolfSSLv3_server_method); TEST_VALID_METHOD_ALLOCATOR(wolfSSLv3_client_method); #endif #ifdef WOLFSL_ALLOW_TLSV10 TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_server_method); TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_client_method); #endif TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_1_server_method); TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_1_client_method); #endif #ifndef NO_WOLFSSL_SERVER TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_2_server_method); #endif #ifndef NO_WOLFSSL_CLIENT TEST_VALID_METHOD_ALLOCATOR(wolfTLSv1_2_client_method); TEST_VALID_METHOD_ALLOCATOR(wolfSSLv23_client_method); #endif #ifdef WOLFSSL_DTLS #ifndef NO_OLD_TLS TEST_VALID_METHOD_ALLOCATOR(wolfDTLSv1_server_method); TEST_VALID_METHOD_ALLOCATOR(wolfDTLSv1_client_method); #endif TEST_VALID_METHOD_ALLOCATOR(wolfDTLSv1_2_server_method); TEST_VALID_METHOD_ALLOCATOR(wolfDTLSv1_2_client_method); #endif #ifdef OPENSSL_EXTRA TEST_INVALID_METHOD_ALLOCATOR(wolfSSLv2_server_method); TEST_INVALID_METHOD_ALLOCATOR(wolfSSLv2_client_method); #endif } /*----------------------------------------------------------------------------* | Context *----------------------------------------------------------------------------*/ #ifndef NO_WOLFSSL_SERVER static void test_wolfSSL_CTX_new(WOLFSSL_METHOD *method) { WOLFSSL_CTX *ctx; AssertNull(ctx = wolfSSL_CTX_new(NULL)); AssertNotNull(method); AssertNotNull(ctx = wolfSSL_CTX_new(method)); wolfSSL_CTX_free(ctx); } #endif static void test_wolfSSL_CTX_use_certificate_file(void) { #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_WOLFSSL_SERVER) WOLFSSL_CTX *ctx; AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method())); /* invalid context */ AssertFalse(wolfSSL_CTX_use_certificate_file(NULL, svrCertFile, WOLFSSL_FILETYPE_PEM)); /* invalid cert file */ AssertFalse(wolfSSL_CTX_use_certificate_file(ctx, bogusFile, WOLFSSL_FILETYPE_PEM)); /* invalid cert type */ AssertFalse(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, 9999)); #ifdef NO_RSA /* rsa needed */ AssertFalse(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile,WOLFSSL_FILETYPE_PEM)); #else /* success */ AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM)); #endif wolfSSL_CTX_free(ctx); #endif } /* Test function for wolfSSL_CTX_use_certificate_buffer. Load cert into * context using buffer. * PRE: NO_CERTS not defined; USE_CERT_BUFFERS_2048 defined; compile with * --enable-testcert flag. */ static int test_wolfSSL_CTX_use_certificate_buffer(void) { #if !defined(NO_CERTS) && defined(USE_CERT_BUFFERS_2048) && \ !defined(NO_RSA) && !defined(NO_WOLFSSL_SERVER) WOLFSSL_CTX* ctx; int ret; printf(testingFmt, "wolfSSL_CTX_use_certificate_buffer()"); AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method())); ret = wolfSSL_CTX_use_certificate_buffer(ctx, server_cert_der_2048, sizeof_server_cert_der_2048, WOLFSSL_FILETYPE_ASN1); printf(resultFmt, ret == WOLFSSL_SUCCESS ? passed : failed); wolfSSL_CTX_free(ctx); return ret; #else return WOLFSSL_SUCCESS; #endif } /*END test_wolfSSL_CTX_use_certificate_buffer*/ static void test_wolfSSL_CTX_use_PrivateKey_file(void) { #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_WOLFSSL_SERVER) WOLFSSL_CTX *ctx; AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method())); /* invalid context */ AssertFalse(wolfSSL_CTX_use_PrivateKey_file(NULL, svrKeyFile, WOLFSSL_FILETYPE_PEM)); /* invalid key file */ AssertFalse(wolfSSL_CTX_use_PrivateKey_file(ctx, bogusFile, WOLFSSL_FILETYPE_PEM)); /* invalid key type */ AssertFalse(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, 9999)); /* success */ #ifdef NO_RSA /* rsa needed */ AssertFalse(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM)); #else /* success */ AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM)); #endif wolfSSL_CTX_free(ctx); #endif } /* test both file and buffer versions along with unloading trusted peer certs */ static void test_wolfSSL_CTX_trust_peer_cert(void) { #if !defined(NO_CERTS) && defined(WOLFSSL_TRUST_PEER_CERT) && !defined(NO_WOLFSSL_CLIENT) WOLFSSL_CTX *ctx; AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); #if !defined(NO_FILESYSTEM) /* invalid file */ assert(wolfSSL_CTX_trust_peer_cert(ctx, NULL, WOLFSSL_FILETYPE_PEM) != WOLFSSL_SUCCESS); assert(wolfSSL_CTX_trust_peer_cert(ctx, bogusFile, WOLFSSL_FILETYPE_PEM) != WOLFSSL_SUCCESS); assert(wolfSSL_CTX_trust_peer_cert(ctx, cliCertFile, WOLFSSL_FILETYPE_ASN1) != WOLFSSL_SUCCESS); /* success */ assert(wolfSSL_CTX_trust_peer_cert(ctx, cliCertFile, WOLFSSL_FILETYPE_PEM) == WOLFSSL_SUCCESS); /* unload cert */ assert(wolfSSL_CTX_Unload_trust_peers(NULL) != WOLFSSL_SUCCESS); assert(wolfSSL_CTX_Unload_trust_peers(ctx) == WOLFSSL_SUCCESS); #endif /* Test of loading certs from buffers */ /* invalid buffer */ assert(wolfSSL_CTX_trust_peer_buffer(ctx, NULL, -1, WOLFSSL_FILETYPE_ASN1) != WOLFSSL_SUCCESS); /* success */ #ifdef USE_CERT_BUFFERS_1024 assert(wolfSSL_CTX_trust_peer_buffer(ctx, client_cert_der_1024, sizeof_client_cert_der_1024, WOLFSSL_FILETYPE_ASN1) == WOLFSSL_SUCCESS); #endif #ifdef USE_CERT_BUFFERS_2048 assert(wolfSSL_CTX_trust_peer_buffer(ctx, client_cert_der_2048, sizeof_client_cert_der_2048, WOLFSSL_FILETYPE_ASN1) == WOLFSSL_SUCCESS); #endif /* unload cert */ assert(wolfSSL_CTX_Unload_trust_peers(NULL) != WOLFSSL_SUCCESS); assert(wolfSSL_CTX_Unload_trust_peers(ctx) == WOLFSSL_SUCCESS); wolfSSL_CTX_free(ctx); #endif } static void test_wolfSSL_CTX_load_verify_locations(void) { #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_WOLFSSL_CLIENT) WOLFSSL_CTX *ctx; WOLFSSL_CERT_MANAGER* cm; #ifdef PERSIST_CERT_CACHE int cacheSz; #endif AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); /* invalid context */ AssertFalse(wolfSSL_CTX_load_verify_locations(NULL, caCertFile, 0)); /* invalid ca file */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_load_verify_locations(ctx, NULL, 0)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_load_verify_locations(ctx, bogusFile, 0)); #ifndef WOLFSSL_TIRTOS /* invalid path */ /* not working... investigate! */ /* AssertFalse(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, bogusFile)); */ #endif /* load ca cert */ AssertTrue(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0)); #ifdef PERSIST_CERT_CACHE /* Get cert cache size */ cacheSz = wolfSSL_CTX_get_cert_cache_memsize(ctx); #endif /* Test unloading CA's */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UnloadCAs(ctx)); #ifdef PERSIST_CERT_CACHE /* Verify no certs (result is less than cacheSz) */ AssertIntGT(cacheSz, wolfSSL_CTX_get_cert_cache_memsize(ctx)); #endif /* load ca cert again */ AssertTrue(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0)); /* Test getting CERT_MANAGER */ AssertNotNull(cm = wolfSSL_CTX_GetCertManager(ctx)); /* Test unloading CA's using CM */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CertManagerUnloadCAs(cm)); #ifdef PERSIST_CERT_CACHE /* Verify no certs (result is less than cacheSz) */ AssertIntGT(cacheSz, wolfSSL_CTX_get_cert_cache_memsize(ctx)); #endif wolfSSL_CTX_free(ctx); #endif } static void test_wolfSSL_CTX_SetTmpDH_file(void) { #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_DH) && \ !defined(NO_WOLFSSL_CLIENT) WOLFSSL_CTX *ctx; AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); /* invalid context */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_file(NULL, dhParamFile, WOLFSSL_FILETYPE_PEM)); /* invalid dhParamFile file */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_file(ctx, NULL, WOLFSSL_FILETYPE_PEM)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_file(ctx, bogusFile, WOLFSSL_FILETYPE_PEM)); /* success */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_file(ctx, dhParamFile, WOLFSSL_FILETYPE_PEM)); wolfSSL_CTX_free(ctx); #endif } static void test_wolfSSL_CTX_SetTmpDH_buffer(void) { #if !defined(NO_CERTS) && !defined(NO_DH) && !defined(NO_WOLFSSL_CLIENT) WOLFSSL_CTX *ctx; AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); /* invalid context */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_buffer(NULL, dh_key_der_2048, sizeof_dh_key_der_2048, WOLFSSL_FILETYPE_ASN1)); /* invalid dhParamFile file */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_buffer(NULL, NULL, 0, WOLFSSL_FILETYPE_ASN1)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_buffer(ctx, dsa_key_der_2048, sizeof_dsa_key_der_2048, WOLFSSL_FILETYPE_ASN1)); /* success */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_SetTmpDH_buffer(ctx, dh_key_der_2048, sizeof_dh_key_der_2048, WOLFSSL_FILETYPE_ASN1)); wolfSSL_CTX_free(ctx); #endif } /*----------------------------------------------------------------------------* | SSL *----------------------------------------------------------------------------*/ static void test_server_wolfSSL_new(void) { #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_RSA) && \ !defined(NO_WOLFSSL_SERVER) WOLFSSL_CTX *ctx; WOLFSSL_CTX *ctx_nocert; WOLFSSL *ssl; AssertNotNull(ctx_nocert = wolfSSL_CTX_new(wolfSSLv23_server_method())); AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method())); AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM)); AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM)); /* invalid context */ AssertNull(ssl = wolfSSL_new(NULL)); #ifndef WOLFSSL_SESSION_EXPORT AssertNull(ssl = wolfSSL_new(ctx_nocert)); #endif /* success */ AssertNotNull(ssl = wolfSSL_new(ctx)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); wolfSSL_CTX_free(ctx_nocert); #endif } static void test_client_wolfSSL_new(void) { #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_RSA) && \ !defined(NO_WOLFSSL_CLIENT) WOLFSSL_CTX *ctx; WOLFSSL_CTX *ctx_nocert; WOLFSSL *ssl; AssertNotNull(ctx_nocert = wolfSSL_CTX_new(wolfSSLv23_client_method())); AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); AssertTrue(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0)); /* invalid context */ AssertNull(ssl = wolfSSL_new(NULL)); /* success */ AssertNotNull(ssl = wolfSSL_new(ctx_nocert)); wolfSSL_free(ssl); /* success */ AssertNotNull(ssl = wolfSSL_new(ctx)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); wolfSSL_CTX_free(ctx_nocert); #endif } static void test_wolfSSL_SetTmpDH_file(void) { #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_DH) && \ !defined(NO_WOLFSSL_SERVER) WOLFSSL_CTX *ctx; WOLFSSL *ssl; AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method())); #ifndef NO_RSA AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM)); AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM)); #else AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, eccCertFile, WOLFSSL_FILETYPE_PEM)); AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, eccKeyFile, WOLFSSL_FILETYPE_PEM)); #endif AssertNotNull(ssl = wolfSSL_new(ctx)); /* invalid ssl */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_file(NULL, dhParamFile, WOLFSSL_FILETYPE_PEM)); /* invalid dhParamFile file */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_file(ssl, NULL, WOLFSSL_FILETYPE_PEM)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_file(ssl, bogusFile, WOLFSSL_FILETYPE_PEM)); /* success */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_file(ssl, dhParamFile, WOLFSSL_FILETYPE_PEM)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); #endif } static void test_wolfSSL_SetTmpDH_buffer(void) { #if !defined(NO_CERTS) && !defined(NO_DH) && !defined(NO_WOLFSSL_SERVER) WOLFSSL_CTX *ctx; WOLFSSL *ssl; AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_server_method())); AssertTrue(wolfSSL_CTX_use_certificate_buffer(ctx, server_cert_der_2048, sizeof_server_cert_der_2048, WOLFSSL_FILETYPE_ASN1)); AssertTrue(wolfSSL_CTX_use_PrivateKey_buffer(ctx, server_key_der_2048, sizeof_server_key_der_2048, WOLFSSL_FILETYPE_ASN1)); AssertNotNull(ssl = wolfSSL_new(ctx)); /* invalid ssl */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_buffer(NULL, dh_key_der_2048, sizeof_dh_key_der_2048, WOLFSSL_FILETYPE_ASN1)); /* invalid dhParamFile file */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_buffer(NULL, NULL, 0, WOLFSSL_FILETYPE_ASN1)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_buffer(ssl, dsa_key_der_2048, sizeof_dsa_key_der_2048, WOLFSSL_FILETYPE_ASN1)); /* success */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_SetTmpDH_buffer(ssl, dh_key_der_2048, sizeof_dh_key_der_2048, WOLFSSL_FILETYPE_ASN1)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); #endif } /* Test function for wolfSSL_SetMinVersion. Sets the minimum downgrade version * allowed. * POST: return 1 on success. */ static int test_wolfSSL_SetMinVersion(void) { int failFlag = WOLFSSL_SUCCESS; #ifndef NO_WOLFSSL_CLIENT WOLFSSL_CTX* ctx; WOLFSSL* ssl; int itr; #ifndef NO_OLD_TLS const int versions[] = { WOLFSSL_TLSV1, WOLFSSL_TLSV1_1, WOLFSSL_TLSV1_2}; #else const int versions[] = { WOLFSSL_TLSV1_2 }; #endif AssertTrue(wolfSSL_Init()); ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method()); ssl = wolfSSL_new(ctx); printf(testingFmt, "wolfSSL_SetMinVersion()"); for (itr = 0; itr < (int)(sizeof(versions)/sizeof(int)); itr++){ if(wolfSSL_SetMinVersion(ssl, *(versions + itr)) != WOLFSSL_SUCCESS){ failFlag = WOLFSSL_FAILURE; } } printf(resultFmt, failFlag == WOLFSSL_SUCCESS ? passed : failed); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); AssertTrue(wolfSSL_Cleanup()); #endif return failFlag; } /* END test_wolfSSL_SetMinVersion */ /*----------------------------------------------------------------------------* | EC *----------------------------------------------------------------------------*/ /* Test function for EC_POINT_new, EC_POINT_mul, EC_POINT_free, EC_GROUP_new_by_curve_name */ # if defined(OPENSSL_EXTRA) static void test_wolfSSL_EC(void) { #ifdef HAVE_ECC BN_CTX *ctx; EC_GROUP *group; EC_POINT *Gxy, *new_point; BIGNUM *k = NULL, *Gx = NULL, *Gy = NULL, *Gz = NULL; BIGNUM *X, *Y; #if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(DEBUG_WOLFSSL) char* hexStr; #endif const char* kTest = "F4F8338AFCC562C5C3F3E1E46A7EFECD17AF381913FF7A96314EA47055EA0FD0"; /* NISTP256R1 Gx/Gy */ const char* kGx = "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296"; const char* kGy = "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5"; AssertNotNull(ctx = BN_CTX_new()); AssertNotNull(group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); AssertNotNull(Gxy = EC_POINT_new(group)); AssertNotNull(new_point = EC_POINT_new(group)); AssertNotNull(X = BN_new()); AssertNotNull(Y = BN_new()); /* load test values */ AssertIntEQ(BN_hex2bn(&k, kTest), WOLFSSL_SUCCESS); AssertIntEQ(BN_hex2bn(&Gx, kGx), WOLFSSL_SUCCESS); AssertIntEQ(BN_hex2bn(&Gy, kGy), WOLFSSL_SUCCESS); AssertIntEQ(BN_hex2bn(&Gz, "1"), WOLFSSL_SUCCESS); /* populate coordinates for input point */ Gxy->X = Gx; Gxy->Y = Gy; Gxy->Z = Gz; /* perform point multiplication */ AssertIntEQ(EC_POINT_mul(group, new_point, NULL, Gxy, k, ctx), WOLFSSL_SUCCESS); /* check if point X coordinate is zero */ AssertIntEQ(BN_is_zero(new_point->X), WOLFSSL_FAILURE); /* extract the coordinates from point */ AssertIntEQ(EC_POINT_get_affine_coordinates_GFp(group, new_point, X, Y, ctx), WOLFSSL_SUCCESS); /* check if point X coordinate is zero */ AssertIntEQ(BN_is_zero(X), WOLFSSL_FAILURE); /* check bx2hex */ #if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) || defined(DEBUG_WOLFSSL) hexStr = BN_bn2hex(k); AssertStrEQ(hexStr, kTest); XFREE(hexStr, NULL, DYNAMIC_TYPE_ECC); hexStr = BN_bn2hex(Gx); AssertStrEQ(hexStr, kGx); XFREE(hexStr, NULL, DYNAMIC_TYPE_ECC); hexStr = BN_bn2hex(Gy); AssertStrEQ(hexStr, kGy); XFREE(hexStr, NULL, DYNAMIC_TYPE_ECC); #endif /* cleanup */ BN_free(X); BN_free(Y); BN_free(k); EC_POINT_free(new_point); EC_POINT_free(Gxy); EC_GROUP_free(group); BN_CTX_free(ctx); #endif /* HAVE_ECC */ } #endif #include /*----------------------------------------------------------------------------* | EVP *----------------------------------------------------------------------------*/ /* Test function for wolfSSL_EVP_get_cipherbynid. */ # if defined(OPENSSL_EXTRA) static void test_wolfSSL_EVP_get_cipherbynid(void) { #ifndef NO_AES const WOLFSSL_EVP_CIPHER* c; c = wolfSSL_EVP_get_cipherbynid(419); #if defined(HAVE_AES_CBC) && defined(WOLFSSL_AES_128) AssertNotNull(c); AssertNotNull(strcmp("EVP_AES_128_CBC", c)); #else AssertNull(c); #endif c = wolfSSL_EVP_get_cipherbynid(423); #if defined(HAVE_AES_CBC) && defined(WOLFSSL_AES_192) AssertNotNull(c); AssertNotNull(strcmp("EVP_AES_192_CBC", c)); #else AssertNull(c); #endif c = wolfSSL_EVP_get_cipherbynid(427); #if defined(HAVE_AES_CBC) && defined(WOLFSSL_AES_256) AssertNotNull(c); AssertNotNull(strcmp("EVP_AES_256_CBC", c)); #else AssertNull(c); #endif c = wolfSSL_EVP_get_cipherbynid(904); #if defined(WOLFSSL_AES_COUNTER) && defined(WOLFSSL_AES_128) AssertNotNull(c); AssertNotNull(strcmp("EVP_AES_128_CTR", c)); #else AssertNull(c); #endif c = wolfSSL_EVP_get_cipherbynid(905); #if defined(WOLFSSL_AES_COUNTER) && defined(WOLFSSL_AES_192) AssertNotNull(c); AssertNotNull(strcmp("EVP_AES_192_CTR", c)); #else AssertNull(c); #endif c = wolfSSL_EVP_get_cipherbynid(906); #if defined(WOLFSSL_AES_COUNTER) && defined(WOLFSSL_AES_256) AssertNotNull(c); AssertNotNull(strcmp("EVP_AES_256_CTR", c)); #else AssertNull(c); #endif c = wolfSSL_EVP_get_cipherbynid(418); #if defined(HAVE_AES_ECB) && defined(WOLFSSL_AES_128) AssertNotNull(c); AssertNotNull(strcmp("EVP_AES_128_ECB", c)); #else AssertNull(c); #endif c = wolfSSL_EVP_get_cipherbynid(422); #if defined(HAVE_AES_ECB) && defined(WOLFSSL_AES_192) AssertNotNull(c); AssertNotNull(strcmp("EVP_AES_192_ECB", c)); #else AssertNull(c); #endif c = wolfSSL_EVP_get_cipherbynid(426); #if defined(HAVE_AES_ECB) && defined(WOLFSSL_AES_256) AssertNotNull(c); AssertNotNull(strcmp("EVP_AES_256_ECB", c)); #else AssertNull(c); #endif #endif #ifndef NO_DES3 AssertNotNull(strcmp("EVP_DES_CBC", wolfSSL_EVP_get_cipherbynid(31))); #ifdef WOLFSSL_DES_ECB AssertNotNull(strcmp("EVP_DES_ECB", wolfSSL_EVP_get_cipherbynid(29))); #endif AssertNotNull(strcmp("EVP_DES_EDE3_CBC", wolfSSL_EVP_get_cipherbynid(44))); #ifdef WOLFSSL_DES_ECB AssertNotNull(strcmp("EVP_DES_EDE3_ECB", wolfSSL_EVP_get_cipherbynid(33))); #endif #endif /*NO_DES3*/ #ifdef HAVE_IDEA AssertNotNull(strcmp("EVP_IDEA_CBC", wolfSSL_EVP_get_cipherbynid(34))); #endif /* test for nid is out of range */ AssertNull(wolfSSL_EVP_get_cipherbynid(1)); } #endif /*----------------------------------------------------------------------------* | IO *----------------------------------------------------------------------------*/ #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && \ !defined(NO_RSA) && !defined(SINGLE_THREADED) && \ !defined(NO_WOLFSSL_SERVER) && !defined(NO_WOLFSSL_CLIENT) #define HAVE_IO_TESTS_DEPENDENCIES #endif /* helper functions */ #ifdef HAVE_IO_TESTS_DEPENDENCIES #ifdef WOLFSSL_SESSION_EXPORT /* set up function for sending session information */ static int test_export(WOLFSSL* inSsl, byte* buf, word32 sz, void* userCtx) { WOLFSSL_CTX* ctx; WOLFSSL* ssl; AssertNotNull(inSsl); AssertNotNull(buf); AssertIntNE(0, sz); /* Set ctx to DTLS 1.2 */ ctx = wolfSSL_CTX_new(wolfDTLSv1_2_server_method()); AssertNotNull(ctx); ssl = wolfSSL_new(ctx); AssertNotNull(ssl); AssertIntGE(wolfSSL_dtls_import(ssl, buf, sz), 0); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); (void)userCtx; return WOLFSSL_SUCCESS; } #endif #ifndef NO_WOLFSSL_SERVER static THREAD_RETURN WOLFSSL_THREAD test_server_nofail(void* args) { SOCKET_T sockfd = 0; SOCKET_T clientfd = 0; word16 port; callback_functions* cbf = NULL; WOLFSSL_METHOD* method = 0; WOLFSSL_CTX* ctx = 0; WOLFSSL* ssl = 0; char msg[] = "I hear you fa shizzle!"; char input[1024]; int idx; int ret, err = 0; #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif ((func_args*)args)->return_code = TEST_FAIL; cbf = ((func_args*)args)->callbacks; if (cbf != NULL && cbf->method != NULL) { method = cbf->method(); } else { method = wolfSSLv23_server_method(); } ctx = wolfSSL_CTX_new(method); #if defined(USE_WINDOWS_API) port = ((func_args*)args)->signal->port; #elif defined(NO_MAIN_DRIVER) && !defined(WOLFSSL_SNIFFER) && \ !defined(WOLFSSL_MDK_SHELL) && !defined(WOLFSSL_TIRTOS) /* Let tcp_listen assign port */ port = 0; #else /* Use default port */ port = wolfSSLPort; #endif wolfSSL_CTX_set_verify(ctx, WOLFSSL_VERIFY_PEER | WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT, 0); #ifdef WOLFSSL_ENCRYPTED_KEYS wolfSSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack); #endif if (wolfSSL_CTX_load_verify_locations(ctx, cliCertFile, 0) != WOLFSSL_SUCCESS) { /*err_sys("can't load ca file, Please run from wolfSSL home dir");*/ goto done; } if (wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM) != WOLFSSL_SUCCESS) { /*err_sys("can't load server cert chain file, " "Please run from wolfSSL home dir");*/ goto done; } if (wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM) != WOLFSSL_SUCCESS) { /*err_sys("can't load server key file, " "Please run from wolfSSL home dir");*/ goto done; } /* call ctx setup callback */ if (cbf != NULL && cbf->ctx_ready != NULL) { cbf->ctx_ready(ctx); } ssl = wolfSSL_new(ctx); tcp_accept(&sockfd, &clientfd, (func_args*)args, port, 0, 0, 0, 0, 1); CloseSocket(sockfd); if (wolfSSL_set_fd(ssl, clientfd) != WOLFSSL_SUCCESS) { /*err_sys("SSL_set_fd failed");*/ goto done; } #if !defined(NO_FILESYSTEM) && !defined(NO_DH) wolfSSL_SetTmpDH_file(ssl, dhParamFile, WOLFSSL_FILETYPE_PEM); #elif !defined(NO_DH) SetDH(ssl); /* will repick suites with DHE, higher priority than PSK */ #endif /* call ssl setup callback */ if (cbf != NULL && cbf->ssl_ready != NULL) { cbf->ssl_ready(ssl); } do { #ifdef WOLFSSL_ASYNC_CRYPT if (err == WC_PENDING_E) { ret = wolfSSL_AsyncPoll(ssl, WOLF_POLL_FLAG_CHECK_HW); if (ret < 0) { break; } else if (ret == 0) { continue; } } #endif err = 0; /* Reset error */ ret = wolfSSL_accept(ssl); if (ret != WOLFSSL_SUCCESS) { err = wolfSSL_get_error(ssl, 0); } } while (ret != WOLFSSL_SUCCESS && err == WC_PENDING_E); if (ret != WOLFSSL_SUCCESS) { char buff[WOLFSSL_MAX_ERROR_SZ]; printf("error = %d, %s\n", err, wolfSSL_ERR_error_string(err, buff)); /*err_sys("SSL_accept failed");*/ goto done; } idx = wolfSSL_read(ssl, input, sizeof(input)-1); if (idx > 0) { input[idx] = 0; printf("Client message: %s\n", input); } if (wolfSSL_write(ssl, msg, sizeof(msg)) != sizeof(msg)) { /*err_sys("SSL_write failed");*/ #ifdef WOLFSSL_TIRTOS return; #else return 0; #endif } #ifdef WOLFSSL_TIRTOS Task_yield(); #endif ((func_args*)args)->return_code = TEST_SUCCESS; done: wolfSSL_shutdown(ssl); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); CloseSocket(clientfd); #ifdef WOLFSSL_TIRTOS fdCloseSession(Task_self()); #endif #if defined(NO_MAIN_DRIVER) && defined(HAVE_ECC) && defined(FP_ECC) \ && defined(HAVE_THREAD_LS) wc_ecc_fp_free(); /* free per thread cache */ #endif #ifndef WOLFSSL_TIRTOS return 0; #endif } #endif /* !NO_WOLFSSL_SERVER */ typedef int (*cbType)(WOLFSSL_CTX *ctx, WOLFSSL *ssl); static void test_client_nofail(void* args, void *cb) { SOCKET_T sockfd = 0; callback_functions* cbf = NULL; WOLFSSL_METHOD* method = 0; WOLFSSL_CTX* ctx = 0; WOLFSSL* ssl = 0; char msg[64] = "hello wolfssl!"; char reply[1024]; int input; int msgSz = (int)XSTRLEN(msg); int ret, err = 0; #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif if (((func_args*)args)->callbacks != NULL) { cbf = ((func_args*)args)->callbacks; } ((func_args*)args)->return_code = TEST_FAIL; if (cbf != NULL && cbf->method != NULL) { method = cbf->method(); } else { method = wolfSSLv23_client_method(); } ctx = wolfSSL_CTX_new(method); #ifdef WOLFSSL_ENCRYPTED_KEYS wolfSSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack); #endif if (wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0) != WOLFSSL_SUCCESS) { /* err_sys("can't load ca file, Please run from wolfSSL home dir");*/ goto done2; } if (wolfSSL_CTX_use_certificate_file(ctx, cliCertFile, WOLFSSL_FILETYPE_PEM) != WOLFSSL_SUCCESS) { /*err_sys("can't load client cert file, " "Please run from wolfSSL home dir");*/ goto done2; } if (wolfSSL_CTX_use_PrivateKey_file(ctx, cliKeyFile, WOLFSSL_FILETYPE_PEM) != WOLFSSL_SUCCESS) { /*err_sys("can't load client key file, " "Please run from wolfSSL home dir");*/ goto done2; } /* call ctx setup callback */ if (cbf != NULL && cbf->ctx_ready != NULL) { cbf->ctx_ready(ctx); } ssl = wolfSSL_new(ctx); tcp_connect(&sockfd, wolfSSLIP, ((func_args*)args)->signal->port, 0, 0, ssl); if (wolfSSL_set_fd(ssl, sockfd) != WOLFSSL_SUCCESS) { /*err_sys("SSL_set_fd failed");*/ goto done2; } /* call ssl setup callback */ if (cbf != NULL && cbf->ssl_ready != NULL) { cbf->ssl_ready(ssl); } do { #ifdef WOLFSSL_ASYNC_CRYPT if (err == WC_PENDING_E) { ret = wolfSSL_AsyncPoll(ssl, WOLF_POLL_FLAG_CHECK_HW); if (ret < 0) { break; } else if (ret == 0) { continue; } } #endif err = 0; /* Reset error */ ret = wolfSSL_connect(ssl); if (ret != WOLFSSL_SUCCESS) { err = wolfSSL_get_error(ssl, 0); } } while (ret != WOLFSSL_SUCCESS && err == WC_PENDING_E); if (ret != WOLFSSL_SUCCESS) { char buff[WOLFSSL_MAX_ERROR_SZ]; printf("error = %d, %s\n", err, wolfSSL_ERR_error_string(err, buff)); /*err_sys("SSL_connect failed");*/ goto done2; } if(cb != NULL)((cbType)cb)(ctx, ssl); if (wolfSSL_write(ssl, msg, msgSz) != msgSz) { /*err_sys("SSL_write failed");*/ goto done2; } input = wolfSSL_read(ssl, reply, sizeof(reply)-1); if (input > 0) { reply[input] = 0; printf("Server response: %s\n", reply); } ((func_args*)args)->return_code = TEST_SUCCESS; done2: wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); CloseSocket(sockfd); #ifdef WOLFSSL_TIRTOS fdCloseSession(Task_self()); #endif return; } /* SNI / ALPN / session export helper functions */ #if defined(HAVE_SNI) || defined(HAVE_ALPN) || defined(WOLFSSL_SESSION_EXPORT) static THREAD_RETURN WOLFSSL_THREAD run_wolfssl_server(void* args) { callback_functions* callbacks = ((func_args*)args)->callbacks; WOLFSSL_CTX* ctx = wolfSSL_CTX_new(callbacks->method()); WOLFSSL* ssl = NULL; SOCKET_T sfd = 0; SOCKET_T cfd = 0; word16 port; char msg[] = "I hear you fa shizzle!"; int len = (int) XSTRLEN(msg); char input[1024]; int idx; int ret, err = 0; #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif ((func_args*)args)->return_code = TEST_FAIL; #if defined(USE_WINDOWS_API) port = ((func_args*)args)->signal->port; #elif defined(NO_MAIN_DRIVER) && !defined(WOLFSSL_SNIFFER) && \ !defined(WOLFSSL_MDK_SHELL) && !defined(WOLFSSL_TIRTOS) /* Let tcp_listen assign port */ port = 0; #else /* Use default port */ port = wolfSSLPort; #endif wolfSSL_CTX_set_verify(ctx, WOLFSSL_VERIFY_PEER | WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT, 0); #ifdef WOLFSSL_ENCRYPTED_KEYS wolfSSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack); #endif #ifdef WOLFSSL_SESSION_EXPORT AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_dtls_set_export(ctx, test_export)); #endif AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_load_verify_locations(ctx, cliCertFile, 0)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM)); if (callbacks->ctx_ready) callbacks->ctx_ready(ctx); ssl = wolfSSL_new(ctx); if (wolfSSL_dtls(ssl)) { SOCKADDR_IN_T cliAddr; socklen_t cliLen; cliLen = sizeof(cliAddr); tcp_accept(&sfd, &cfd, (func_args*)args, port, 0, 1, 0, 0, 0); idx = (int)recvfrom(sfd, input, sizeof(input), MSG_PEEK, (struct sockaddr*)&cliAddr, &cliLen); AssertIntGT(idx, 0); wolfSSL_dtls_set_peer(ssl, &cliAddr, cliLen); } else { tcp_accept(&sfd, &cfd, (func_args*)args, port, 0, 0, 0, 0, 1); CloseSocket(sfd); } AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_set_fd(ssl, cfd)); #ifdef NO_PSK #if !defined(NO_FILESYSTEM) && !defined(NO_DH) wolfSSL_SetTmpDH_file(ssl, dhParamFile, WOLFSSL_FILETYPE_PEM); #elif !defined(NO_DH) SetDH(ssl); /* will repick suites with DHE, higher priority than PSK */ #endif #endif if (callbacks->ssl_ready) callbacks->ssl_ready(ssl); do { #ifdef WOLFSSL_ASYNC_CRYPT if (err == WC_PENDING_E) { ret = wolfSSL_AsyncPoll(ssl, WOLF_POLL_FLAG_CHECK_HW); if (ret < 0) { break; } else if (ret == 0) { continue; } } #endif err = 0; /* Reset error */ ret = wolfSSL_accept(ssl); if (ret != WOLFSSL_SUCCESS) { err = wolfSSL_get_error(ssl, 0); } } while (ret != WOLFSSL_SUCCESS && err == WC_PENDING_E); if (ret != WOLFSSL_SUCCESS) { char buff[WOLFSSL_MAX_ERROR_SZ]; printf("error = %d, %s\n", err, wolfSSL_ERR_error_string(err, buff)); /*err_sys("SSL_accept failed");*/ } else { if (0 < (idx = wolfSSL_read(ssl, input, sizeof(input)-1))) { input[idx] = 0; printf("Client message: %s\n", input); } AssertIntEQ(len, wolfSSL_write(ssl, msg, len)); #if defined(WOLFSSL_SESSION_EXPORT) && !defined(HAVE_IO_POOL) if (wolfSSL_dtls(ssl)) { byte* import; word32 sz; wolfSSL_dtls_export(ssl, NULL, &sz); import = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_TMP_BUFFER); AssertNotNull(import); idx = wolfSSL_dtls_export(ssl, import, &sz); AssertIntGE(idx, 0); AssertIntGE(wolfSSL_dtls_import(ssl, import, idx), 0); XFREE(import, NULL, DYNAMIC_TYPE_TMP_BUFFER); } #endif #ifdef WOLFSSL_TIRTOS Task_yield(); #endif ((func_args*)args)->return_code = TEST_SUCCESS; } if (callbacks->on_result) callbacks->on_result(ssl); wolfSSL_shutdown(ssl); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); CloseSocket(cfd); #ifdef WOLFSSL_TIRTOS fdCloseSession(Task_self()); #endif #if defined(NO_MAIN_DRIVER) && defined(HAVE_ECC) && defined(FP_ECC) \ && defined(HAVE_THREAD_LS) wc_ecc_fp_free(); /* free per thread cache */ #endif #ifndef WOLFSSL_TIRTOS return 0; #endif } static void run_wolfssl_client(void* args) { callback_functions* callbacks = ((func_args*)args)->callbacks; WOLFSSL_CTX* ctx = wolfSSL_CTX_new(callbacks->method()); WOLFSSL* ssl = NULL; SOCKET_T sfd = 0; char msg[] = "hello wolfssl server!"; int len = (int) XSTRLEN(msg); char input[1024]; int idx; int ret, err = 0; #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif ((func_args*)args)->return_code = TEST_FAIL; #ifdef WOLFSSL_ENCRYPTED_KEYS wolfSSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack); #endif AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_use_certificate_file(ctx, cliCertFile, WOLFSSL_FILETYPE_PEM)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_use_PrivateKey_file(ctx, cliKeyFile, WOLFSSL_FILETYPE_PEM)); if (callbacks->ctx_ready) callbacks->ctx_ready(ctx); ssl = wolfSSL_new(ctx); if (wolfSSL_dtls(ssl)) { tcp_connect(&sfd, wolfSSLIP, ((func_args*)args)->signal->port, 1, 0, ssl); } else { tcp_connect(&sfd, wolfSSLIP, ((func_args*)args)->signal->port, 0, 0, ssl); } AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_set_fd(ssl, sfd)); if (callbacks->ssl_ready) callbacks->ssl_ready(ssl); do { #ifdef WOLFSSL_ASYNC_CRYPT if (err == WC_PENDING_E) { ret = wolfSSL_AsyncPoll(ssl, WOLF_POLL_FLAG_CHECK_HW); if (ret < 0) { break; } else if (ret == 0) { continue; } } #endif err = 0; /* Reset error */ ret = wolfSSL_connect(ssl); if (ret != WOLFSSL_SUCCESS) { err = wolfSSL_get_error(ssl, 0); } } while (ret != WOLFSSL_SUCCESS && err == WC_PENDING_E); if (ret != WOLFSSL_SUCCESS) { char buff[WOLFSSL_MAX_ERROR_SZ]; printf("error = %d, %s\n", err, wolfSSL_ERR_error_string(err, buff)); /*err_sys("SSL_connect failed");*/ } else { AssertIntEQ(len, wolfSSL_write(ssl, msg, len)); if (0 < (idx = wolfSSL_read(ssl, input, sizeof(input)-1))) { input[idx] = 0; printf("Server response: %s\n", input); } ((func_args*)args)->return_code = TEST_SUCCESS; } if (callbacks->on_result) callbacks->on_result(ssl); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); CloseSocket(sfd); #ifdef WOLFSSL_TIRTOS fdCloseSession(Task_self()); #endif } #endif /* defined(HAVE_SNI) || defined(HAVE_ALPN) || defined(WOLFSSL_SESSION_EXPORT) */ #endif /* io tests dependencies */ static void test_wolfSSL_read_write(void) { #ifdef HAVE_IO_TESTS_DEPENDENCIES /* The unit testing for read and write shall happen simutaneously, since * one can't do anything with one without the other. (Except for a failure * test case.) This function will call all the others that will set up, * execute, and report their test findings. * * Set up the success case first. This function will become the template * for the other tests. This should eventually be renamed * * The success case isn't interesting, how can this fail? * - Do not give the client context a CA certificate. The connect should * fail. Do not need server for this? * - Using NULL for the ssl object on server. Do not need client for this. * - Using NULL for the ssl object on client. Do not need server for this. * - Good ssl objects for client and server. Client write() without server * read(). * - Good ssl objects for client and server. Server write() without client * read(). * - Forgetting the password callback? */ tcp_ready ready; func_args client_args; func_args server_args; THREAD_TYPE serverThread; XMEMSET(&client_args, 0, sizeof(func_args)); XMEMSET(&server_args, 0, sizeof(func_args)); #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif StartTCP(); InitTcpReady(&ready); #if defined(USE_WINDOWS_API) /* use RNG to get random port if using windows */ ready.port = GetRandomPort(); #endif server_args.signal = &ready; client_args.signal = &ready; start_thread(test_server_nofail, &server_args, &serverThread); wait_tcp_ready(&server_args); test_client_nofail(&client_args, NULL); join_thread(serverThread); AssertTrue(client_args.return_code); AssertTrue(server_args.return_code); FreeTcpReady(&ready); #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif #endif } #if defined(HAVE_IO_TESTS_DEPENDENCIES) && defined(WOLFSSL_DTLS) && \ defined(WOLFSSL_SESSION_EXPORT) /* canned export of a session using older version 3 */ static unsigned char version_3[] = { 0xA5, 0xA3, 0x01, 0x87, 0x00, 0x39, 0x00, 0x01, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x00, 0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x30, 0x05, 0x09, 0x0A, 0x01, 0x01, 0x00, 0x0D, 0x05, 0xFE, 0xFD, 0x01, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x05, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x01, 0x00, 0x07, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x10, 0x01, 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x05, 0x12, 0xCF, 0x22, 0xA1, 0x9F, 0x1C, 0x39, 0x1D, 0x31, 0x11, 0x12, 0x1D, 0x11, 0x18, 0x0D, 0x0B, 0xF3, 0xE1, 0x4D, 0xDC, 0xB1, 0xF1, 0x39, 0x98, 0x91, 0x6C, 0x48, 0xE5, 0xED, 0x11, 0x12, 0xA0, 0x00, 0xF2, 0x25, 0x4C, 0x09, 0x26, 0xD1, 0x74, 0xDF, 0x23, 0x40, 0x15, 0x6A, 0x42, 0x2A, 0x26, 0xA5, 0xAC, 0x56, 0xD5, 0x4A, 0x20, 0xB7, 0xE9, 0xEF, 0xEB, 0xAF, 0xA8, 0x1E, 0x23, 0x7C, 0x04, 0xAA, 0xA1, 0x6D, 0x92, 0x79, 0x7B, 0xFA, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x0C, 0x79, 0x7B, 0xFA, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xAA, 0xA1, 0x6D, 0x92, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x20, 0x00, 0x04, 0x00, 0x10, 0x00, 0x10, 0x08, 0x02, 0x05, 0x08, 0x01, 0x30, 0x28, 0x00, 0x00, 0x0F, 0x00, 0x02, 0x00, 0x09, 0x31, 0x32, 0x37, 0x2E, 0x30, 0x2E, 0x30, 0x2E, 0x31, 0xED, 0x4F }; #endif /* defined(HAVE_IO_TESTS_DEPENDENCIES) && defined(WOLFSSL_DTLS) && \ defined(WOLFSSL_SESSION_EXPORT) */ static void test_wolfSSL_dtls_export(void) { #if defined(HAVE_IO_TESTS_DEPENDENCIES) && defined(WOLFSSL_DTLS) && \ defined(WOLFSSL_SESSION_EXPORT) tcp_ready ready; func_args client_args; func_args server_args; THREAD_TYPE serverThread; callback_functions server_cbf; callback_functions client_cbf; #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif InitTcpReady(&ready); #if defined(USE_WINDOWS_API) /* use RNG to get random port if using windows */ ready.port = GetRandomPort(); #endif /* set using dtls */ XMEMSET(&client_args, 0, sizeof(func_args)); XMEMSET(&server_args, 0, sizeof(func_args)); XMEMSET(&server_cbf, 0, sizeof(callback_functions)); XMEMSET(&client_cbf, 0, sizeof(callback_functions)); server_cbf.method = wolfDTLSv1_2_server_method; client_cbf.method = wolfDTLSv1_2_client_method; server_args.callbacks = &server_cbf; client_args.callbacks = &client_cbf; server_args.signal = &ready; client_args.signal = &ready; start_thread(run_wolfssl_server, &server_args, &serverThread); wait_tcp_ready(&server_args); run_wolfssl_client(&client_args); join_thread(serverThread); AssertTrue(client_args.return_code); AssertTrue(server_args.return_code); FreeTcpReady(&ready); #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif { WOLFSSL_CTX* ctx; WOLFSSL* ssl; /* Set ctx to DTLS 1.2 */ AssertNotNull(ctx = wolfSSL_CTX_new(wolfDTLSv1_2_server_method())); AssertNotNull(ssl = wolfSSL_new(ctx)); /* test importing version 3 */ AssertIntGE(wolfSSL_dtls_import(ssl, version_3, sizeof(version_3)), 0); /* test importing bad length and bad version */ version_3[2] += 1; AssertIntLT(wolfSSL_dtls_import(ssl, version_3, sizeof(version_3)), 0); version_3[2] -= 1; version_3[1] = 0XA0; AssertIntLT(wolfSSL_dtls_import(ssl, version_3, sizeof(version_3)), 0); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); } printf(testingFmt, "wolfSSL_dtls_export()"); printf(resultFmt, passed); #endif } /*----------------------------------------------------------------------------* | TLS extensions tests *----------------------------------------------------------------------------*/ #if defined(HAVE_SNI) || defined(HAVE_ALPN) /* connection test runner */ static void test_wolfSSL_client_server(callback_functions* client_callbacks, callback_functions* server_callbacks) { #ifdef HAVE_IO_TESTS_DEPENDENCIES tcp_ready ready; func_args client_args; func_args server_args; THREAD_TYPE serverThread; XMEMSET(&client_args, 0, sizeof(func_args)); XMEMSET(&server_args, 0, sizeof(func_args)); StartTCP(); client_args.callbacks = client_callbacks; server_args.callbacks = server_callbacks; #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif /* RUN Server side */ InitTcpReady(&ready); #if defined(USE_WINDOWS_API) /* use RNG to get random port if using windows */ ready.port = GetRandomPort(); #endif server_args.signal = &ready; client_args.signal = &ready; start_thread(run_wolfssl_server, &server_args, &serverThread); wait_tcp_ready(&server_args); /* RUN Client side */ run_wolfssl_client(&client_args); join_thread(serverThread); FreeTcpReady(&ready); #ifdef WOLFSSL_TIRTOS fdCloseSession(Task_self()); #endif #else (void)client_callbacks; (void)server_callbacks; #endif } #endif /* defined(HAVE_SNI) || defined(HAVE_ALPN) */ #ifdef HAVE_SNI static void test_wolfSSL_UseSNI_params(void) { WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); WOLFSSL *ssl = wolfSSL_new(ctx); AssertNotNull(ctx); AssertNotNull(ssl); /* invalid [ctx|ssl] */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSNI(NULL, 0, "ctx", 3)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseSNI( NULL, 0, "ssl", 3)); /* invalid type */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSNI(ctx, -1, "ctx", 3)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseSNI( ssl, -1, "ssl", 3)); /* invalid data */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSNI(ctx, 0, NULL, 3)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseSNI( ssl, 0, NULL, 3)); /* success case */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSNI(ctx, 0, "ctx", 3)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseSNI( ssl, 0, "ssl", 3)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); } /* BEGIN of connection tests callbacks */ static void use_SNI_at_ctx(WOLFSSL_CTX* ctx) { AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSNI(ctx, WOLFSSL_SNI_HOST_NAME, "www.wolfssl.com", 15)); } static void use_SNI_at_ssl(WOLFSSL* ssl) { AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME, "www.wolfssl.com", 15)); } static void different_SNI_at_ssl(WOLFSSL* ssl) { AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME, "ww2.wolfssl.com", 15)); } static void use_SNI_WITH_CONTINUE_at_ssl(WOLFSSL* ssl) { use_SNI_at_ssl(ssl); wolfSSL_SNI_SetOptions(ssl, WOLFSSL_SNI_HOST_NAME, WOLFSSL_SNI_CONTINUE_ON_MISMATCH); } static void use_SNI_WITH_FAKE_ANSWER_at_ssl(WOLFSSL* ssl) { use_SNI_at_ssl(ssl); wolfSSL_SNI_SetOptions(ssl, WOLFSSL_SNI_HOST_NAME, WOLFSSL_SNI_ANSWER_ON_MISMATCH); } static void use_MANDATORY_SNI_at_ctx(WOLFSSL_CTX* ctx) { use_SNI_at_ctx(ctx); wolfSSL_CTX_SNI_SetOptions(ctx, WOLFSSL_SNI_HOST_NAME, WOLFSSL_SNI_ABORT_ON_ABSENCE); } static void use_MANDATORY_SNI_at_ssl(WOLFSSL* ssl) { use_SNI_at_ssl(ssl); wolfSSL_SNI_SetOptions(ssl, WOLFSSL_SNI_HOST_NAME, WOLFSSL_SNI_ABORT_ON_ABSENCE); } static void use_PSEUDO_MANDATORY_SNI_at_ctx(WOLFSSL_CTX* ctx) { use_SNI_at_ctx(ctx); wolfSSL_CTX_SNI_SetOptions(ctx, WOLFSSL_SNI_HOST_NAME, WOLFSSL_SNI_ANSWER_ON_MISMATCH | WOLFSSL_SNI_ABORT_ON_ABSENCE); } static void verify_UNKNOWN_SNI_on_server(WOLFSSL* ssl) { AssertIntEQ(UNKNOWN_SNI_HOST_NAME_E, wolfSSL_get_error(ssl, 0)); } static void verify_SNI_ABSENT_on_server(WOLFSSL* ssl) { AssertIntEQ(SNI_ABSENT_ERROR, wolfSSL_get_error(ssl, 0)); } static void verify_SNI_no_matching(WOLFSSL* ssl) { byte type = WOLFSSL_SNI_HOST_NAME; char* request = (char*) &type; /* to be overwriten */ AssertIntEQ(WOLFSSL_SNI_NO_MATCH, wolfSSL_SNI_Status(ssl, type)); AssertNotNull(request); AssertIntEQ(0, wolfSSL_SNI_GetRequest(ssl, type, (void**) &request)); AssertNull(request); } static void verify_SNI_real_matching(WOLFSSL* ssl) { byte type = WOLFSSL_SNI_HOST_NAME; char* request = NULL; AssertIntEQ(WOLFSSL_SNI_REAL_MATCH, wolfSSL_SNI_Status(ssl, type)); AssertIntEQ(15, wolfSSL_SNI_GetRequest(ssl, type, (void**) &request)); AssertNotNull(request); AssertStrEQ("www.wolfssl.com", request); } static void verify_SNI_fake_matching(WOLFSSL* ssl) { byte type = WOLFSSL_SNI_HOST_NAME; char* request = NULL; AssertIntEQ(WOLFSSL_SNI_FAKE_MATCH, wolfSSL_SNI_Status(ssl, type)); AssertIntEQ(15, wolfSSL_SNI_GetRequest(ssl, type, (void**) &request)); AssertNotNull(request); AssertStrEQ("ww2.wolfssl.com", request); } static void verify_FATAL_ERROR_on_client(WOLFSSL* ssl) { AssertIntEQ(FATAL_ERROR, wolfSSL_get_error(ssl, 0)); } /* END of connection tests callbacks */ static void test_wolfSSL_UseSNI_connection(void) { unsigned long i; callback_functions callbacks[] = { /* success case at ctx */ {0, use_SNI_at_ctx, 0, 0}, {0, use_SNI_at_ctx, 0, verify_SNI_real_matching}, /* success case at ssl */ {0, 0, use_SNI_at_ssl, verify_SNI_real_matching}, {0, 0, use_SNI_at_ssl, verify_SNI_real_matching}, /* default missmatch behavior */ {0, 0, different_SNI_at_ssl, verify_FATAL_ERROR_on_client}, {0, 0, use_SNI_at_ssl, verify_UNKNOWN_SNI_on_server}, /* continue on missmatch */ {0, 0, different_SNI_at_ssl, 0}, {0, 0, use_SNI_WITH_CONTINUE_at_ssl, verify_SNI_no_matching}, /* fake answer on missmatch */ {0, 0, different_SNI_at_ssl, 0}, {0, 0, use_SNI_WITH_FAKE_ANSWER_at_ssl, verify_SNI_fake_matching}, /* sni abort - success */ {0, use_SNI_at_ctx, 0, 0}, {0, use_MANDATORY_SNI_at_ctx, 0, verify_SNI_real_matching}, /* sni abort - abort when absent (ctx) */ {0, 0, 0, verify_FATAL_ERROR_on_client}, {0, use_MANDATORY_SNI_at_ctx, 0, verify_SNI_ABSENT_on_server}, /* sni abort - abort when absent (ssl) */ {0, 0, 0, verify_FATAL_ERROR_on_client}, {0, 0, use_MANDATORY_SNI_at_ssl, verify_SNI_ABSENT_on_server}, /* sni abort - success when overwriten */ {0, 0, 0, 0}, {0, use_MANDATORY_SNI_at_ctx, use_SNI_at_ssl, verify_SNI_no_matching}, /* sni abort - success when allowing missmatches */ {0, 0, different_SNI_at_ssl, 0}, {0, use_PSEUDO_MANDATORY_SNI_at_ctx, 0, verify_SNI_fake_matching}, }; for (i = 0; i < sizeof(callbacks) / sizeof(callback_functions); i += 2) { callbacks[i ].method = wolfSSLv23_client_method; callbacks[i + 1].method = wolfSSLv23_server_method; test_wolfSSL_client_server(&callbacks[i], &callbacks[i + 1]); } } static void test_wolfSSL_SNI_GetFromBuffer(void) { byte buffer[] = { /* www.paypal.com */ 0x00, 0x00, 0x00, 0x00, 0xff, 0x01, 0x00, 0x00, 0x60, 0x03, 0x03, 0x5c, 0xc4, 0xb3, 0x8c, 0x87, 0xef, 0xa4, 0x09, 0xe0, 0x02, 0xab, 0x86, 0xca, 0x76, 0xf0, 0x9e, 0x01, 0x65, 0xf6, 0xa6, 0x06, 0x13, 0x1d, 0x0f, 0xa5, 0x79, 0xb0, 0xd4, 0x77, 0x22, 0xeb, 0x1a, 0x00, 0x00, 0x16, 0x00, 0x6b, 0x00, 0x67, 0x00, 0x39, 0x00, 0x33, 0x00, 0x3d, 0x00, 0x3c, 0x00, 0x35, 0x00, 0x2f, 0x00, 0x05, 0x00, 0x04, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x21, 0x00, 0x00, 0x00, 0x13, 0x00, 0x11, 0x00, 0x00, 0x0e, 0x77, 0x77, 0x77, 0x2e, 0x70, 0x61, 0x79, 0x70, 0x61, 0x6c, 0x2e, 0x63, 0x6f, 0x6d, 0x00, 0x0d, 0x00, 0x06, 0x00, 0x04, 0x04, 0x01, 0x02, 0x01 }; byte buffer2[] = { /* api.textmate.org */ 0x16, 0x03, 0x01, 0x00, 0xc6, 0x01, 0x00, 0x00, 0xc2, 0x03, 0x03, 0x52, 0x8b, 0x7b, 0xca, 0x69, 0xec, 0x97, 0xd5, 0x08, 0x03, 0x50, 0xfe, 0x3b, 0x99, 0xc3, 0x20, 0xce, 0xa5, 0xf6, 0x99, 0xa5, 0x71, 0xf9, 0x57, 0x7f, 0x04, 0x38, 0xf6, 0x11, 0x0b, 0xb8, 0xd3, 0x00, 0x00, 0x5e, 0x00, 0xff, 0xc0, 0x24, 0xc0, 0x23, 0xc0, 0x0a, 0xc0, 0x09, 0xc0, 0x07, 0xc0, 0x08, 0xc0, 0x28, 0xc0, 0x27, 0xc0, 0x14, 0xc0, 0x13, 0xc0, 0x11, 0xc0, 0x12, 0xc0, 0x26, 0xc0, 0x25, 0xc0, 0x2a, 0xc0, 0x29, 0xc0, 0x05, 0xc0, 0x04, 0xc0, 0x02, 0xc0, 0x03, 0xc0, 0x0f, 0xc0, 0x0e, 0xc0, 0x0c, 0xc0, 0x0d, 0x00, 0x3d, 0x00, 0x3c, 0x00, 0x2f, 0x00, 0x05, 0x00, 0x04, 0x00, 0x35, 0x00, 0x0a, 0x00, 0x67, 0x00, 0x6b, 0x00, 0x33, 0x00, 0x39, 0x00, 0x16, 0x00, 0xaf, 0x00, 0xae, 0x00, 0x8d, 0x00, 0x8c, 0x00, 0x8a, 0x00, 0x8b, 0x00, 0xb1, 0x00, 0xb0, 0x00, 0x2c, 0x00, 0x3b, 0x01, 0x00, 0x00, 0x3b, 0x00, 0x00, 0x00, 0x15, 0x00, 0x13, 0x00, 0x00, 0x10, 0x61, 0x70, 0x69, 0x2e, 0x74, 0x65, 0x78, 0x74, 0x6d, 0x61, 0x74, 0x65, 0x2e, 0x6f, 0x72, 0x67, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x17, 0x00, 0x18, 0x00, 0x19, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x0d, 0x00, 0x0c, 0x00, 0x0a, 0x05, 0x01, 0x04, 0x01, 0x02, 0x01, 0x04, 0x03, 0x02, 0x03 }; byte buffer3[] = { /* no sni extension */ 0x16, 0x03, 0x03, 0x00, 0x4d, 0x01, 0x00, 0x00, 0x49, 0x03, 0x03, 0xea, 0xa1, 0x9f, 0x60, 0xdd, 0x52, 0x12, 0x13, 0xbd, 0x84, 0x34, 0xd5, 0x1c, 0x38, 0x25, 0xa8, 0x97, 0xd2, 0xd5, 0xc6, 0x45, 0xaf, 0x1b, 0x08, 0xe4, 0x1e, 0xbb, 0xdf, 0x9d, 0x39, 0xf0, 0x65, 0x00, 0x00, 0x16, 0x00, 0x6b, 0x00, 0x67, 0x00, 0x39, 0x00, 0x33, 0x00, 0x3d, 0x00, 0x3c, 0x00, 0x35, 0x00, 0x2f, 0x00, 0x05, 0x00, 0x04, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x0d, 0x00, 0x06, 0x00, 0x04, 0x04, 0x01, 0x02, 0x01 }; byte buffer4[] = { /* last extension has zero size */ 0x16, 0x03, 0x01, 0x00, 0xba, 0x01, 0x00, 0x00, 0xb6, 0x03, 0x03, 0x83, 0xa3, 0xe6, 0xdc, 0x16, 0xa1, 0x43, 0xe9, 0x45, 0x15, 0xbd, 0x64, 0xa9, 0xb6, 0x07, 0xb4, 0x50, 0xc6, 0xdd, 0xff, 0xc2, 0xd3, 0x0d, 0x4f, 0x36, 0xb4, 0x41, 0x51, 0x61, 0xc1, 0xa5, 0x9e, 0x00, 0x00, 0x28, 0xcc, 0x14, 0xcc, 0x13, 0xc0, 0x2b, 0xc0, 0x2f, 0x00, 0x9e, 0xc0, 0x0a, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x14, 0xc0, 0x07, 0xc0, 0x11, 0x00, 0x33, 0x00, 0x32, 0x00, 0x39, 0x00, 0x9c, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x00, 0x05, 0x00, 0x04, 0x01, 0x00, 0x00, 0x65, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x17, 0x00, 0x18, 0x00, 0x19, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x33, 0x74, 0x00, 0x00, 0x00, 0x10, 0x00, 0x1b, 0x00, 0x19, 0x06, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x33, 0x08, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x33, 0x2e, 0x31, 0x08, 0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31, 0x75, 0x50, 0x00, 0x00, 0x00, 0x05, 0x00, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x12, 0x00, 0x10, 0x04, 0x01, 0x05, 0x01, 0x02, 0x01, 0x04, 0x03, 0x05, 0x03, 0x02, 0x03, 0x04, 0x02, 0x02, 0x02, 0x00, 0x12, 0x00, 0x00 }; byte buffer5[] = { /* SSL v2.0 client hello */ 0x00, 0x2b, 0x01, 0x03, 0x01, 0x00, 0x09, 0x00, 0x00, /* dummy bytes bellow, just to pass size check */ 0xb6, 0x03, 0x03, 0x83, 0xa3, 0xe6, 0xdc, 0x16, 0xa1, 0x43, 0xe9, 0x45, 0x15, 0xbd, 0x64, 0xa9, 0xb6, 0x07, 0xb4, 0x50, 0xc6, 0xdd, 0xff, 0xc2, 0xd3, 0x0d, 0x4f, 0x36, 0xb4, 0x41, 0x51, 0x61, 0xc1, 0xa5, 0x9e, 0x00, }; byte result[32] = {0}; word32 length = 32; AssertIntEQ(0, wolfSSL_SNI_GetFromBuffer(buffer4, sizeof(buffer4), 0, result, &length)); AssertIntEQ(0, wolfSSL_SNI_GetFromBuffer(buffer3, sizeof(buffer3), 0, result, &length)); AssertIntEQ(0, wolfSSL_SNI_GetFromBuffer(buffer2, sizeof(buffer2), 1, result, &length)); AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer, sizeof(buffer), 0, result, &length)); buffer[0] = 0x16; AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer, sizeof(buffer), 0, result, &length)); buffer[1] = 0x03; AssertIntEQ(SNI_UNSUPPORTED, wolfSSL_SNI_GetFromBuffer(buffer, sizeof(buffer), 0, result, &length)); buffer[2] = 0x03; AssertIntEQ(INCOMPLETE_DATA, wolfSSL_SNI_GetFromBuffer(buffer, sizeof(buffer), 0, result, &length)); buffer[4] = 0x64; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_SNI_GetFromBuffer(buffer, sizeof(buffer), 0, result, &length)); result[length] = 0; AssertStrEQ("www.paypal.com", (const char*) result); length = 32; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_SNI_GetFromBuffer(buffer2, sizeof(buffer2), 0, result, &length)); result[length] = 0; AssertStrEQ("api.textmate.org", (const char*) result); /* SSL v2.0 tests */ AssertIntEQ(SNI_UNSUPPORTED, wolfSSL_SNI_GetFromBuffer(buffer5, sizeof(buffer5), 0, result, &length)); buffer5[2] = 0x02; AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer5, sizeof(buffer5), 0, result, &length)); buffer5[2] = 0x01; buffer5[6] = 0x08; AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer5, sizeof(buffer5), 0, result, &length)); buffer5[6] = 0x09; buffer5[8] = 0x01; AssertIntEQ(BUFFER_ERROR, wolfSSL_SNI_GetFromBuffer(buffer5, sizeof(buffer5), 0, result, &length)); } #endif /* HAVE_SNI */ static void test_wolfSSL_UseSNI(void) { #ifdef HAVE_SNI test_wolfSSL_UseSNI_params(); test_wolfSSL_UseSNI_connection(); test_wolfSSL_SNI_GetFromBuffer(); #endif } static void test_wolfSSL_UseMaxFragment(void) { #if defined(HAVE_MAX_FRAGMENT) && !defined(NO_WOLFSSL_CLIENT) WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); WOLFSSL *ssl = wolfSSL_new(ctx); AssertNotNull(ctx); AssertNotNull(ssl); /* error cases */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(NULL, WOLFSSL_MFL_2_9)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( NULL, WOLFSSL_MFL_2_9)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, 0)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, 6)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment(ssl, 0)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment(ssl, 6)); /* success case */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_9)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_10)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_11)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_12)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseMaxFragment(ctx, WOLFSSL_MFL_2_13)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_9)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_10)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_11)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_12)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseMaxFragment( ssl, WOLFSSL_MFL_2_13)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); #endif } static void test_wolfSSL_UseTruncatedHMAC(void) { #if defined(HAVE_TRUNCATED_HMAC) && !defined(NO_WOLFSSL_CLIENT) WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); WOLFSSL *ssl = wolfSSL_new(ctx); AssertNotNull(ctx); AssertNotNull(ssl); /* error cases */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseTruncatedHMAC(NULL)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseTruncatedHMAC(NULL)); /* success case */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseTruncatedHMAC(ctx)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseTruncatedHMAC(ssl)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); #endif } static void test_wolfSSL_UseSupportedCurve(void) { #if defined(HAVE_SUPPORTED_CURVES) && !defined(NO_WOLFSSL_CLIENT) WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); WOLFSSL *ssl = wolfSSL_new(ctx); AssertNotNull(ctx); AssertNotNull(ssl); /* error cases */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSupportedCurve(NULL, WOLFSSL_ECC_SECP256R1)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSupportedCurve(ctx, 0)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseSupportedCurve(NULL, WOLFSSL_ECC_SECP256R1)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseSupportedCurve(ssl, 0)); /* success case */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_UseSupportedCurve(ctx, WOLFSSL_ECC_SECP256R1)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseSupportedCurve(ssl, WOLFSSL_ECC_SECP256R1)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); #endif } #ifdef HAVE_ALPN static void verify_ALPN_FATAL_ERROR_on_client(WOLFSSL* ssl) { AssertIntEQ(UNKNOWN_ALPN_PROTOCOL_NAME_E, wolfSSL_get_error(ssl, 0)); } static void use_ALPN_all(WOLFSSL* ssl) { /* http/1.1,spdy/1,spdy/2,spdy/3 */ char alpn_list[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31, 0x2c, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x31, 0x2c, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x32, 0x2c, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x33}; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, alpn_list, sizeof(alpn_list), WOLFSSL_ALPN_FAILED_ON_MISMATCH)); } static void use_ALPN_all_continue(WOLFSSL* ssl) { /* http/1.1,spdy/1,spdy/2,spdy/3 */ char alpn_list[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31, 0x2c, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x31, 0x2c, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x32, 0x2c, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x33}; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, alpn_list, sizeof(alpn_list), WOLFSSL_ALPN_CONTINUE_ON_MISMATCH)); } static void use_ALPN_one(WOLFSSL* ssl) { /* spdy/2 */ char proto[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x32}; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, proto, sizeof(proto), WOLFSSL_ALPN_FAILED_ON_MISMATCH)); } static void use_ALPN_unknown(WOLFSSL* ssl) { /* http/2.0 */ char proto[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x32, 0x2e, 0x30}; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, proto, sizeof(proto), WOLFSSL_ALPN_FAILED_ON_MISMATCH)); } static void use_ALPN_unknown_continue(WOLFSSL* ssl) { /* http/2.0 */ char proto[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x32, 0x2e, 0x30}; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, proto, sizeof(proto), WOLFSSL_ALPN_CONTINUE_ON_MISMATCH)); } static void verify_ALPN_not_matching_spdy3(WOLFSSL* ssl) { /* spdy/3 */ char nego_proto[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x33}; char *proto; word16 protoSz = 0; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_GetProtocol(ssl, &proto, &protoSz)); /* check value */ AssertIntNE(1, sizeof(nego_proto) == protoSz); AssertIntNE(0, XMEMCMP(nego_proto, proto, sizeof(nego_proto))); } static void verify_ALPN_not_matching_continue(WOLFSSL* ssl) { char *proto = NULL; word16 protoSz = 0; AssertIntEQ(WOLFSSL_ALPN_NOT_FOUND, wolfSSL_ALPN_GetProtocol(ssl, &proto, &protoSz)); /* check value */ AssertIntEQ(1, (0 == protoSz)); AssertIntEQ(1, (NULL == proto)); } static void verify_ALPN_matching_http1(WOLFSSL* ssl) { /* http/1.1 */ char nego_proto[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31}; char *proto; word16 protoSz = 0; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_GetProtocol(ssl, &proto, &protoSz)); /* check value */ AssertIntEQ(1, sizeof(nego_proto) == protoSz); AssertIntEQ(0, XMEMCMP(nego_proto, proto, protoSz)); } static void verify_ALPN_matching_spdy2(WOLFSSL* ssl) { /* spdy/2 */ char nego_proto[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x32}; char *proto; word16 protoSz = 0; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_GetProtocol(ssl, &proto, &protoSz)); /* check value */ AssertIntEQ(1, sizeof(nego_proto) == protoSz); AssertIntEQ(0, XMEMCMP(nego_proto, proto, protoSz)); } static void verify_ALPN_client_list(WOLFSSL* ssl) { /* http/1.1,spdy/1,spdy/2,spdy/3 */ char alpn_list[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31, 0x2c, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x31, 0x2c, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x32, 0x2c, 0x73, 0x70, 0x64, 0x79, 0x2f, 0x33}; char *clist = NULL; word16 clistSz = 0; AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_GetPeerProtocol(ssl, &clist, &clistSz)); /* check value */ AssertIntEQ(1, sizeof(alpn_list) == clistSz); AssertIntEQ(0, XMEMCMP(alpn_list, clist, clistSz)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_ALPN_FreePeerProtocol(ssl, &clist)); } static void test_wolfSSL_UseALPN_connection(void) { unsigned long i; callback_functions callbacks[] = { /* success case same list */ {0, 0, use_ALPN_all, 0}, {0, 0, use_ALPN_all, verify_ALPN_matching_http1}, /* success case only one for server */ {0, 0, use_ALPN_all, 0}, {0, 0, use_ALPN_one, verify_ALPN_matching_spdy2}, /* success case only one for client */ {0, 0, use_ALPN_one, 0}, {0, 0, use_ALPN_all, verify_ALPN_matching_spdy2}, /* success case none for client */ {0, 0, 0, 0}, {0, 0, use_ALPN_all, 0}, /* success case missmatch behavior but option 'continue' set */ {0, 0, use_ALPN_all_continue, verify_ALPN_not_matching_continue}, {0, 0, use_ALPN_unknown_continue, 0}, /* success case read protocol send by client */ {0, 0, use_ALPN_all, 0}, {0, 0, use_ALPN_one, verify_ALPN_client_list}, /* missmatch behavior with same list * the first and only this one must be taken */ {0, 0, use_ALPN_all, 0}, {0, 0, use_ALPN_all, verify_ALPN_not_matching_spdy3}, /* default missmatch behavior */ {0, 0, use_ALPN_all, 0}, {0, 0, use_ALPN_unknown, verify_ALPN_FATAL_ERROR_on_client}, }; for (i = 0; i < sizeof(callbacks) / sizeof(callback_functions); i += 2) { callbacks[i ].method = wolfSSLv23_client_method; callbacks[i + 1].method = wolfSSLv23_server_method; test_wolfSSL_client_server(&callbacks[i], &callbacks[i + 1]); } } static void test_wolfSSL_UseALPN_params(void) { #ifndef NO_WOLFSSL_CLIENT /* "http/1.1" */ char http1[] = {0x68, 0x74, 0x74, 0x70, 0x2f, 0x31, 0x2e, 0x31}; /* "spdy/1" */ char spdy1[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x31}; /* "spdy/2" */ char spdy2[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x32}; /* "spdy/3" */ char spdy3[] = {0x73, 0x70, 0x64, 0x79, 0x2f, 0x33}; char buff[256]; word32 idx; WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); WOLFSSL *ssl = wolfSSL_new(ctx); AssertNotNull(ctx); AssertNotNull(ssl); /* error cases */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseALPN(NULL, http1, sizeof(http1), WOLFSSL_ALPN_FAILED_ON_MISMATCH)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, NULL, 0, WOLFSSL_ALPN_FAILED_ON_MISMATCH)); /* success case */ /* http1 only */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, http1, sizeof(http1), WOLFSSL_ALPN_FAILED_ON_MISMATCH)); /* http1, spdy1 */ XMEMCPY(buff, http1, sizeof(http1)); idx = sizeof(http1); buff[idx++] = ','; XMEMCPY(buff+idx, spdy1, sizeof(spdy1)); idx += sizeof(spdy1); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, buff, idx, WOLFSSL_ALPN_FAILED_ON_MISMATCH)); /* http1, spdy2, spdy1 */ XMEMCPY(buff, http1, sizeof(http1)); idx = sizeof(http1); buff[idx++] = ','; XMEMCPY(buff+idx, spdy2, sizeof(spdy2)); idx += sizeof(spdy2); buff[idx++] = ','; XMEMCPY(buff+idx, spdy1, sizeof(spdy1)); idx += sizeof(spdy1); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, buff, idx, WOLFSSL_ALPN_FAILED_ON_MISMATCH)); /* spdy3, http1, spdy2, spdy1 */ XMEMCPY(buff, spdy3, sizeof(spdy3)); idx = sizeof(spdy3); buff[idx++] = ','; XMEMCPY(buff+idx, http1, sizeof(http1)); idx += sizeof(http1); buff[idx++] = ','; XMEMCPY(buff+idx, spdy2, sizeof(spdy2)); idx += sizeof(spdy2); buff[idx++] = ','; XMEMCPY(buff+idx, spdy1, sizeof(spdy1)); idx += sizeof(spdy1); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_UseALPN(ssl, buff, idx, WOLFSSL_ALPN_CONTINUE_ON_MISMATCH)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); #endif } #endif /* HAVE_ALPN */ static void test_wolfSSL_UseALPN(void) { #ifdef HAVE_ALPN test_wolfSSL_UseALPN_connection(); test_wolfSSL_UseALPN_params(); #endif } static void test_wolfSSL_DisableExtendedMasterSecret(void) { #if defined(HAVE_EXTENDED_MASTER) && !defined(NO_WOLFSSL_CLIENT) WOLFSSL_CTX *ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); WOLFSSL *ssl = wolfSSL_new(ctx); AssertNotNull(ctx); AssertNotNull(ssl); /* error cases */ AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_CTX_DisableExtendedMasterSecret(NULL)); AssertIntNE(WOLFSSL_SUCCESS, wolfSSL_DisableExtendedMasterSecret(NULL)); /* success cases */ AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_CTX_DisableExtendedMasterSecret(ctx)); AssertIntEQ(WOLFSSL_SUCCESS, wolfSSL_DisableExtendedMasterSecret(ssl)); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); #endif } /*----------------------------------------------------------------------------* | X509 Tests *----------------------------------------------------------------------------*/ static void test_wolfSSL_X509_NAME_get_entry(void) { #if !defined(NO_CERTS) && !defined(NO_RSA) #if defined(OPENSSL_ALL) || \ (defined(OPENSSL_EXTRA) && \ (defined(KEEP_PEER_CERT) || defined(SESSION_CERTS))) printf(testingFmt, "wolfSSL_X509_NAME_get_entry()"); { /* use openssl like name to test mapping */ X509_NAME_ENTRY* ne = NULL; X509_NAME* name = NULL; char* subCN = NULL; X509* x509; ASN1_STRING* asn; int idx; #ifndef NO_FILESYSTEM x509 = wolfSSL_X509_load_certificate_file(cliCertFile, WOLFSSL_FILETYPE_PEM); AssertNotNull(x509); name = X509_get_subject_name(x509); idx = X509_NAME_get_index_by_NID(name, NID_commonName, -1); AssertIntGE(idx, 0); ne = X509_NAME_get_entry(name, idx); AssertNotNull(ne); asn = X509_NAME_ENTRY_get_data(ne); AssertNotNull(asn); subCN = (char*)ASN1_STRING_data(asn); AssertNotNull(subCN); wolfSSL_FreeX509(x509); #endif } printf(resultFmt, passed); #endif /* OPENSSL_ALL || (OPENSSL_EXTRA && (KEEP_PEER_CERT || SESSION_CERTS) */ #endif /* !NO_CERTS && !NO_RSA */ } /* Testing functions dealing with PKCS12 parsing out X509 certs */ static void test_wolfSSL_PKCS12(void) { /* .p12 file is encrypted with DES3 */ #if defined(OPENSSL_EXTRA) && !defined(NO_DES3) && !defined(NO_FILESYSTEM) && \ !defined(NO_ASN) && !defined(NO_PWDBASED) && !defined(NO_RSA) byte buffer[5300]; char file[] = "./certs/test-servercert.p12"; char order[] = "./certs/ecc-rsa-server.p12"; char pass[] = "a password"; WOLFSSL_X509_NAME* subject; FILE *f; int bytes, ret; WOLFSSL_BIO *bio; WOLFSSL_EVP_PKEY *pkey; WC_PKCS12 *pkcs12; WC_PKCS12 *pkcs12_2; WOLFSSL_X509 *cert; WOLFSSL_X509 *x509; WOLFSSL_X509 *tmp; WOLF_STACK_OF(WOLFSSL_X509) *ca; printf(testingFmt, "wolfSSL_PKCS12()"); f = fopen(file, "rb"); AssertNotNull(f); bytes = (int)fread(buffer, 1, sizeof(buffer), f); fclose(f); bio = BIO_new_mem_buf((void*)buffer, bytes); AssertNotNull(bio); pkcs12 = d2i_PKCS12_bio(bio, NULL); AssertNotNull(pkcs12); PKCS12_free(pkcs12); d2i_PKCS12_bio(bio, &pkcs12); AssertNotNull(pkcs12); /* check verify MAC fail case */ ret = PKCS12_parse(pkcs12, "bad", &pkey, &cert, NULL); AssertIntEQ(ret, 0); AssertNull(pkey); AssertNull(cert); /* check parse with no extra certs kept */ ret = PKCS12_parse(pkcs12, "wolfSSL test", &pkey, &cert, NULL); AssertIntEQ(ret, 1); AssertNotNull(pkey); AssertNotNull(cert); wolfSSL_EVP_PKEY_free(pkey); wolfSSL_X509_free(cert); /* check parse with extra certs kept */ ret = PKCS12_parse(pkcs12, "wolfSSL test", &pkey, &cert, &ca); AssertIntEQ(ret, 1); AssertNotNull(pkey); AssertNotNull(cert); AssertNotNull(ca); /* should be 2 other certs on stack */ tmp = sk_X509_pop(ca); AssertNotNull(tmp); X509_free(tmp); tmp = sk_X509_pop(ca); AssertNotNull(tmp); X509_free(tmp); AssertNull(sk_X509_pop(ca)); EVP_PKEY_free(pkey); X509_free(cert); sk_X509_pop_free(ca, X509_free); /* check PKCS12_create */ AssertNull(PKCS12_create(pass, NULL, NULL, NULL, NULL, -1, -1, -1, -1,0)); AssertIntEQ(PKCS12_parse(pkcs12, "wolfSSL test", &pkey, &cert, &ca), SSL_SUCCESS); AssertNotNull((pkcs12_2 = PKCS12_create(pass, NULL, pkey, cert, ca, -1, -1, 100, -1, 0))); EVP_PKEY_free(pkey); X509_free(cert); sk_X509_free(ca); AssertIntEQ(PKCS12_parse(pkcs12_2, "a password", &pkey, &cert, &ca), SSL_SUCCESS); PKCS12_free(pkcs12_2); AssertNotNull((pkcs12_2 = PKCS12_create(pass, NULL, pkey, cert, ca, NID_pbe_WithSHA1And3_Key_TripleDES_CBC, NID_pbe_WithSHA1And3_Key_TripleDES_CBC, 2000, 1, 0))); EVP_PKEY_free(pkey); X509_free(cert); sk_X509_free(ca); AssertIntEQ(PKCS12_parse(pkcs12_2, "a password", &pkey, &cert, &ca), SSL_SUCCESS); /* should be 2 other certs on stack */ tmp = sk_X509_pop(ca); AssertNotNull(tmp); X509_free(tmp); tmp = sk_X509_pop(ca); AssertNotNull(tmp); X509_free(tmp); AssertNull(sk_X509_pop(ca)); #ifndef NO_RC4 PKCS12_free(pkcs12_2); AssertNotNull((pkcs12_2 = PKCS12_create(pass, NULL, pkey, cert, NULL, NID_pbe_WithSHA1And128BitRC4, NID_pbe_WithSHA1And128BitRC4, 2000, 1, 0))); EVP_PKEY_free(pkey); X509_free(cert); sk_X509_free(ca); AssertIntEQ(PKCS12_parse(pkcs12_2, "a password", &pkey, &cert, &ca), SSL_SUCCESS); #endif /* NO_RC4 */ EVP_PKEY_free(pkey); X509_free(cert); BIO_free(bio); PKCS12_free(pkcs12); PKCS12_free(pkcs12_2); sk_X509_free(ca); #ifdef HAVE_ECC /* test order of parsing */ f = fopen(order, "rb"); AssertNotNull(f); bytes = (int)fread(buffer, 1, sizeof(buffer), f); fclose(f); AssertNotNull(bio = BIO_new_mem_buf((void*)buffer, bytes)); AssertNotNull(pkcs12 = d2i_PKCS12_bio(bio, NULL)); AssertIntEQ((ret = PKCS12_parse(pkcs12, "", &pkey, &cert, &ca)), WOLFSSL_SUCCESS); AssertNotNull(pkey); AssertNotNull(cert); AssertNotNull(ca); /* compare subject lines of certificates */ AssertNotNull(subject = wolfSSL_X509_get_subject_name(cert)); AssertNotNull(x509 = wolfSSL_X509_load_certificate_file(eccRsaCertFile, SSL_FILETYPE_PEM)); AssertIntEQ(wolfSSL_X509_NAME_cmp((const WOLFSSL_X509_NAME*)subject, (const WOLFSSL_X509_NAME*)wolfSSL_X509_get_subject_name(x509)), 0); X509_free(x509); /* test expected fail case */ AssertNotNull(x509 = wolfSSL_X509_load_certificate_file(eccCertFile, SSL_FILETYPE_PEM)); AssertIntNE(wolfSSL_X509_NAME_cmp((const WOLFSSL_X509_NAME*)subject, (const WOLFSSL_X509_NAME*)wolfSSL_X509_get_subject_name(x509)), 0); X509_free(x509); X509_free(cert); /* get subject line from ca stack */ AssertNotNull(cert = sk_X509_pop(ca)); AssertNotNull(subject = wolfSSL_X509_get_subject_name(cert)); /* compare subject from certificate in ca to expected */ AssertNotNull(x509 = wolfSSL_X509_load_certificate_file(eccCertFile, SSL_FILETYPE_PEM)); AssertIntEQ(wolfSSL_X509_NAME_cmp((const WOLFSSL_X509_NAME*)subject, (const WOLFSSL_X509_NAME*)wolfSSL_X509_get_subject_name(x509)), 0); EVP_PKEY_free(pkey); X509_free(x509); X509_free(cert); BIO_free(bio); PKCS12_free(pkcs12); sk_X509_free(ca); #endif /* HAVE_ECC */ (void)x509; (void)subject; (void)order; printf(resultFmt, passed); #endif /* OPENSSL_EXTRA */ } #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \ !defined(NO_DES3) && !defined(NO_FILESYSTEM) && \ !defined(NO_ASN) && !defined(NO_PWDBASED) && !defined(NO_RSA) /* for PKCS8 test case */ static INLINE int PKCS8TestCallBack(char* passwd, int sz, int rw, void* userdata) { int flag = 0; (void)rw; if (userdata != NULL) { flag = *((int*)userdata); /* user set data */ } switch (flag) { case 1: /* flag set for specific WOLFSSL_CTX structure, note userdata * can be anything the user wishes to be passed to the callback * associated with the WOLFSSL_CTX */ strncpy(passwd, "yassl123", sz); return 8; default: return BAD_FUNC_ARG; } } #endif /* Testing functions dealing with PKCS8 */ static void test_wolfSSL_PKCS8(void) { #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \ !defined(NO_DES3) && !defined(NO_FILESYSTEM) && \ !defined(NO_ASN) && !defined(NO_PWDBASED) && !defined(NO_RSA) && \ defined(WOLFSSL_ENCRYPTED_KEYS) byte buffer[FOURK_BUF]; byte der[FOURK_BUF]; char file[] = "./certs/server-keyPkcs8Enc.pem"; FILE *f; int flag = 1; int bytes; WOLFSSL_CTX* ctx; printf(testingFmt, "wolfSSL_PKCS8()"); f = fopen(file, "rb"); AssertNotNull(f); bytes = (int)fread(buffer, 1, sizeof(buffer), f); fclose(f); /* Note that wolfSSL_Init() or wolfCrypt_Init() has been called before these * function calls */ AssertNotNull(ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method())); wolfSSL_CTX_set_default_passwd_cb(ctx, &PKCS8TestCallBack); wolfSSL_CTX_set_default_passwd_cb_userdata(ctx, (void*)&flag); AssertIntEQ(wolfSSL_CTX_use_PrivateKey_buffer(ctx, buffer, bytes, SSL_FILETYPE_PEM), SSL_SUCCESS); /* this next case should fail if setting the user flag to a value other * than 1 due to the password callback functions return value */ flag = 0; wolfSSL_CTX_set_default_passwd_cb_userdata(ctx, (void*)&flag); AssertIntNE(wolfSSL_CTX_use_PrivateKey_buffer(ctx, buffer, bytes, SSL_FILETYPE_PEM), SSL_SUCCESS); wolfSSL_CTX_free(ctx); /* decrypt PKCS8 PEM to key in DER format with not using WOLFSSL_CTX */ AssertIntGT(wc_KeyPemToDer(buffer, bytes, der, FOURK_BUF, "yassl123"), 0); /* test that error value is returned with a bad password */ AssertIntLT(wc_KeyPemToDer(buffer, bytes, der, FOURK_BUF, "bad"), 0); printf(resultFmt, passed); #endif /* OPENSSL_EXTRA */ } /* Testing functions dealing with PKCS5 */ static void test_wolfSSL_PKCS5(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_SHA) && !defined(NO_PWDBASED) const char *passwd = "pass1234"; const unsigned char *salt = (unsigned char *)"salt1234"; unsigned char *out = (unsigned char *)XMALLOC(WC_SHA_DIGEST_SIZE, NULL, DYNAMIC_TYPE_TMP_BUFFER); int ret = 0; AssertNotNull(out); ret = PKCS5_PBKDF2_HMAC_SHA1(passwd,(int)XSTRLEN(passwd), salt, (int)XSTRLEN((const char *) salt), 10, WC_SHA_DIGEST_SIZE,out); AssertIntEQ(ret, SSL_SUCCESS); XFREE(out, NULL, DYNAMIC_TYPE_TMP_BUFFER); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_SHA) */ } /* Testing function wolfSSL_CTX_SetMinVersion; sets the minimum downgrade * version allowed. * POST: 1 on success. */ static int test_wolfSSL_CTX_SetMinVersion(void) { int failFlag = WOLFSSL_SUCCESS; #ifndef NO_WOLFSSL_CLIENT WOLFSSL_CTX* ctx; int itr; #ifndef NO_OLD_TLS const int versions[] = { WOLFSSL_TLSV1, WOLFSSL_TLSV1_1, WOLFSSL_TLSV1_2 }; #else const int versions[] = { WOLFSSL_TLSV1_2 }; #endif failFlag = WOLFSSL_SUCCESS; AssertTrue(wolfSSL_Init()); ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method()); printf(testingFmt, "wolfSSL_CTX_SetMinVersion()"); for (itr = 0; itr < (int)(sizeof(versions)/sizeof(int)); itr++){ if(wolfSSL_CTX_SetMinVersion(ctx, *(versions + itr)) != WOLFSSL_SUCCESS){ failFlag = WOLFSSL_FAILURE; } } printf(resultFmt, failFlag == WOLFSSL_SUCCESS ? passed : failed); wolfSSL_CTX_free(ctx); AssertTrue(wolfSSL_Cleanup()); #endif return failFlag; } /* END test_wolfSSL_CTX_SetMinVersion */ /*----------------------------------------------------------------------------* | OCSP Stapling *----------------------------------------------------------------------------*/ /* Testing wolfSSL_UseOCSPStapling function. OCSP stapling eliminates the need * need to contact the CA, lowering the cost of cert revocation checking. * PRE: HAVE_OCSP and HAVE_CERTIFICATE_STATUS_REQUEST * POST: 1 returned for success. */ static int test_wolfSSL_UseOCSPStapling(void) { #if defined(HAVE_CERTIFICATE_STATUS_REQUEST) && defined(HAVE_OCSP) && \ !defined(NO_WOLFSSL_CLIENT) int ret; WOLFSSL_CTX* ctx; WOLFSSL* ssl; wolfSSL_Init(); ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method()); ssl = wolfSSL_new(ctx); printf(testingFmt, "wolfSSL_UseOCSPStapling()"); ret = wolfSSL_UseOCSPStapling(ssl, WOLFSSL_CSR2_OCSP, WOLFSSL_CSR2_OCSP_USE_NONCE); printf(resultFmt, ret == WOLFSSL_SUCCESS ? passed : failed); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); if(ret != WOLFSSL_SUCCESS){ wolfSSL_Cleanup(); return WOLFSSL_FAILURE; } return wolfSSL_Cleanup(); #else return WOLFSSL_SUCCESS; #endif } /*END test_wolfSSL_UseOCSPStapling */ /* Testing OCSP stapling version 2, wolfSSL_UseOCSPStaplingV2 funciton. OCSP * stapling eliminates the need ot contact the CA and lowers cert revocation * check. * PRE: HAVE_CERTIFICATE_STATUS_REQUEST_V2 and HAVE_OCSP defined. */ static int test_wolfSSL_UseOCSPStaplingV2 (void) { #if defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2) && defined(HAVE_OCSP) && \ !defined(NO_WOLFSSL_CLIENT) int ret; WOLFSSL_CTX* ctx; WOLFSSL* ssl; wolfSSL_Init(); ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method()); ssl = wolfSSL_new(ctx); printf(testingFmt, "wolfSSL_UseOCSPStaplingV2()"); ret = wolfSSL_UseOCSPStaplingV2(ssl, WOLFSSL_CSR2_OCSP, WOLFSSL_CSR2_OCSP_USE_NONCE ); printf(resultFmt, ret == WOLFSSL_SUCCESS ? passed : failed); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); if (ret != WOLFSSL_SUCCESS){ wolfSSL_Cleanup(); return WOLFSSL_FAILURE; } return wolfSSL_Cleanup(); #else return WOLFSSL_SUCCESS; #endif } /*END test_wolfSSL_UseOCSPStaplingV2*/ /*----------------------------------------------------------------------------* | Multicast Tests *----------------------------------------------------------------------------*/ static void test_wolfSSL_mcast(void) { #if defined(WOLFSSL_DTLS) && defined(WOLFSSL_MULTICAST) WOLFSSL_CTX* ctx; WOLFSSL* ssl; int result; byte preMasterSecret[512]; byte clientRandom[32]; byte serverRandom[32]; byte suite[2] = {0, 0xfe}; /* WDM_WITH_NULL_SHA256 */ byte buf[256]; word16 newId; ctx = wolfSSL_CTX_new(wolfDTLSv1_2_client_method()); AssertNotNull(ctx); result = wolfSSL_CTX_mcast_set_member_id(ctx, 0); AssertIntEQ(result, WOLFSSL_SUCCESS); ssl = wolfSSL_new(ctx); AssertNotNull(ssl); XMEMSET(preMasterSecret, 0x23, sizeof(preMasterSecret)); XMEMSET(clientRandom, 0xA5, sizeof(clientRandom)); XMEMSET(serverRandom, 0x5A, sizeof(serverRandom)); result = wolfSSL_set_secret(ssl, 23, preMasterSecret, sizeof(preMasterSecret), clientRandom, serverRandom, suite); AssertIntEQ(result, WOLFSSL_SUCCESS); result = wolfSSL_mcast_read(ssl, &newId, buf, sizeof(buf)); AssertIntLE(result, 0); AssertIntLE(newId, 100); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); #endif /* WOLFSSL_DTLS && WOLFSSL_MULTICAST */ } /*----------------------------------------------------------------------------* | Wolfcrypt *----------------------------------------------------------------------------*/ /* * Unit test for the wc_InitMd5() */ static int test_wc_InitMd5 (void) { int flag = 0; #ifndef NO_MD5 wc_Md5 md5; int ret; printf(testingFmt, "wc_InitMd5()"); /* Test good arg. */ ret = wc_InitMd5(&md5); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } /* Test bad arg. */ if (!flag) { ret = wc_InitMd5(NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Md5Free(&md5); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_InitMd5 */ /* * Testing wc_UpdateMd5() */ static int test_wc_Md5Update (void) { int flag = 0; #ifndef NO_MD5 wc_Md5 md5; byte hash[WC_MD5_DIGEST_SIZE]; testVector a, b, c; int ret; ret = wc_InitMd5(&md5); if (ret != 0) { flag = ret; } printf(testingFmt, "wc_Md5Update()"); /* Input */ if (!flag) { a.input = "a"; a.inLen = XSTRLEN(a.input); } if (!flag){ ret = wc_Md5Update(&md5, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Md5Final(&md5, hash); if (ret != 0) { flag = ret; } } /* Update input. */ if (!flag) { a.input = "abc"; a.output = "\x90\x01\x50\x98\x3c\xd2\x4f\xb0\xd6\x96\x3f\x7d\x28\xe1\x7f" "\x72"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); ret = wc_Md5Update(&md5, (byte*) a.input, (word32) a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Md5Final(&md5, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_MD5_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /*Pass in bad values. */ if (!flag) { b.input = NULL; b.inLen = 0; ret = wc_Md5Update(&md5, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } if (!flag) { c.input = NULL; c.inLen = WC_MD5_DIGEST_SIZE; ret = wc_Md5Update(&md5, (byte*)c.input, (word32)c.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Md5Update(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Md5Free(&md5); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Md5Update() */ /* * Unit test on wc_Md5Final() in wolfcrypt/src/md5.c */ static int test_wc_Md5Final (void) { int flag = 0; #ifndef NO_MD5 /* Instantiate */ wc_Md5 md5; byte* hash_test[3]; byte hash1[WC_MD5_DIGEST_SIZE]; byte hash2[2*WC_MD5_DIGEST_SIZE]; byte hash3[5*WC_MD5_DIGEST_SIZE]; int times, i, ret; /* Initialize */ ret = wc_InitMd5(&md5); if (ret != 0) { flag = ret; } if (!flag) { hash_test[0] = hash1; hash_test[1] = hash2; hash_test[2] = hash3; } times = sizeof(hash_test)/sizeof(byte*); /* Test good args. */ printf(testingFmt, "wc_Md5Final()"); for (i = 0; i < times; i++) { if (!flag) { ret = wc_Md5Final(&md5, hash_test[i]); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } } } /* Test bad args. */ if (!flag) { ret = wc_Md5Final(NULL, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Md5Final(NULL, hash1); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Md5Final(&md5, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Md5Free(&md5); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* * Unit test for the wc_InitSha() */ static int test_wc_InitSha(void) { int flag = 0; #ifndef NO_SHA wc_Sha sha; int ret; printf(testingFmt, "wc_InitSha()"); /* Test good arg. */ ret = wc_InitSha(&sha); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } /* Test bad arg. */ if (!flag) { ret = wc_InitSha(NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_ShaFree(&sha); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_InitSha */ /* * Tesing wc_ShaUpdate() */ static int test_wc_ShaUpdate (void) { int flag = 0; #ifndef NO_SHA wc_Sha sha; byte hash[WC_SHA_DIGEST_SIZE]; testVector a, b, c; int ret; ret = wc_InitSha(&sha); if (ret != 0) { flag = ret; } printf(testingFmt, "wc_ShaUpdate()"); /* Input. */ if (!flag) { a.input = "a"; a.inLen = XSTRLEN(a.input); } if (!flag) { ret = wc_ShaUpdate(&sha, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_ShaFinal(&sha, hash); if (ret != 0) { flag = ret; } } /* Update input. */ if (!flag) { a.input = "abc"; a.output = "\xA9\x99\x3E\x36\x47\x06\x81\x6A\xBA\x3E\x25\x71\x78\x50\xC2" "\x6C\x9C\xD0\xD8\x9D"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); ret = wc_ShaUpdate(&sha, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_ShaFinal(&sha, hash); if (ret !=0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_SHA_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Try passing in bad values. */ if (!flag) { b.input = NULL; b.inLen = 0; ret = wc_ShaUpdate(&sha, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } if (!flag) { c.input = NULL; c.inLen = WC_SHA_DIGEST_SIZE; ret = wc_ShaUpdate(&sha, (byte*)c.input, (word32)c.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_ShaUpdate(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_ShaFree(&sha); /* If not returned then the unit test passed test vectors. */ printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_ShaUpdate() */ /* * Unit test on wc_ShaFinal */ static int test_wc_ShaFinal (void) { int flag = 0; #ifndef NO_SHA wc_Sha sha; byte* hash_test[3]; byte hash1[WC_SHA_DIGEST_SIZE]; byte hash2[2*WC_SHA_DIGEST_SIZE]; byte hash3[5*WC_SHA_DIGEST_SIZE]; int times, i, ret; /*Initialize*/ ret = wc_InitSha(&sha); if (ret) { flag = ret; } if (!flag) { hash_test[0] = hash1; hash_test[1] = hash2; hash_test[2] = hash3; } times = sizeof(hash_test)/sizeof(byte*); /* Good test args. */ printf(testingFmt, "wc_ShaFinal()"); for (i = 0; i < times; i++) { if (!flag) { ret = wc_ShaFinal(&sha, hash_test[i]); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } } } /* Test bad args. */ if (!flag) { ret = wc_ShaFinal(NULL, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_ShaFinal(NULL, hash1); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_ShaFinal(&sha, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_ShaFree(&sha); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_ShaFinal */ /* * Unit test for wc_InitSha256() */ static int test_wc_InitSha256 (void) { int flag = 0; #ifndef NO_SHA256 wc_Sha256 sha256; int ret; printf(testingFmt, "wc_InitSha256()"); /* Test good arg. */ ret = wc_InitSha256(&sha256); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } /* Test bad arg. */ if (!flag) { ret = wc_InitSha256(NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha256Free(&sha256); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_InitSha256 */ /* * Unit test for wc_Sha256Update() */ static int test_wc_Sha256Update (void) { int flag = 0; #ifndef NO_SHA256 wc_Sha256 sha256; byte hash[WC_SHA256_DIGEST_SIZE]; testVector a, b, c; int ret; ret = wc_InitSha256(&sha256); if (ret != 0) { flag = ret; } printf(testingFmt, "wc_Sha256Update()"); /* Input. */ if (!flag) { a.input = "a"; a.inLen = XSTRLEN(a.input); } if (!flag) { ret = wc_Sha256Update(&sha256, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Sha256Final(&sha256, hash); if (ret != 0) { flag = ret; } } /* Update input. */ if (!flag) { a.input = "abc"; a.output = "\xBA\x78\x16\xBF\x8F\x01\xCF\xEA\x41\x41\x40\xDE\x5D\xAE\x22" "\x23\xB0\x03\x61\xA3\x96\x17\x7A\x9C\xB4\x10\xFF\x61\xF2\x00" "\x15\xAD"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); ret = wc_Sha256Update(&sha256, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Sha256Final(&sha256, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_SHA256_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Try passing in bad values */ if (!flag) { b.input = NULL; b.inLen = 0; ret = wc_Sha256Update(&sha256, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } if (!flag) { c.input = NULL; c.inLen = WC_SHA256_DIGEST_SIZE; ret = wc_Sha256Update(&sha256, (byte*)c.input, (word32)c.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha256Update(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha256Free(&sha256); /* If not returned then the unit test passed. */ printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha256Update */ /* * Unit test function for wc_Sha256Final() */ static int test_wc_Sha256Final (void) { int flag = 0; #ifndef NO_SHA256 wc_Sha256 sha256; byte* hash_test[3]; byte hash1[WC_SHA256_DIGEST_SIZE]; byte hash2[2*WC_SHA256_DIGEST_SIZE]; byte hash3[5*WC_SHA256_DIGEST_SIZE]; int times, i, ret; /* Initialize */ ret = wc_InitSha256(&sha256); if (ret != 0) { flag = ret; } if (!flag) { hash_test[0] = hash1; hash_test[1] = hash2; hash_test[2] = hash3; } times = sizeof(hash_test) / sizeof(byte*); /* Good test args. */ printf(testingFmt, "wc_Sha256Final()"); for (i = 0; i < times; i++) { if (!flag) { ret = wc_Sha256Final(&sha256, hash_test[i]); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } } } /* Test bad args. */ if (!flag ) { ret = wc_Sha256Final(NULL, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha256Final(NULL, hash1); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha256Final(&sha256, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha256Free(&sha256); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha256Final */ /* * Testing wc_InitSha512() */ static int test_wc_InitSha512 (void) { int flag = 0; #ifdef WOLFSSL_SHA512 wc_Sha512 sha512; int ret; printf(testingFmt, "wc_InitSha512()"); /* Test good arg. */ ret = wc_InitSha512(&sha512); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } /* Test bad arg. */ if (!flag) { ret = wc_InitSha512(NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha512Free(&sha512); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_InitSha512 */ /* * wc_Sha512Update() test. */ static int test_wc_Sha512Update (void) { int flag = 0; #ifdef WOLFSSL_SHA512 wc_Sha512 sha512; byte hash[WC_SHA512_DIGEST_SIZE]; testVector a, b, c; int ret; ret = wc_InitSha512(&sha512); if (ret != 0) { flag = ret; } printf(testingFmt, "wc_Sha512Update()"); /* Input. */ if (!flag) { a.input = "a"; a.inLen = XSTRLEN(a.input); } if (!flag) { ret = wc_Sha512Update(&sha512, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Sha512Final(&sha512, hash); if (ret != 0) { flag = ret; } } /* Update input. */ if (!flag) { a.input = "abc"; a.output = "\xdd\xaf\x35\xa1\x93\x61\x7a\xba\xcc\x41\x73\x49\xae\x20\x41" "\x31\x12\xe6\xfa\x4e\x89\xa9\x7e\xa2\x0a\x9e\xee\xe6\x4b" "\x55\xd3\x9a\x21\x92\x99\x2a\x27\x4f\xc1\xa8\x36\xba\x3c" "\x23\xa3\xfe\xeb\xbd\x45\x4d\x44\x23\x64\x3c\xe8\x0e\x2a" "\x9a\xc9\x4f\xa5\x4c\xa4\x9f"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); ret = wc_Sha512Update(&sha512, (byte*) a.input, (word32) a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Sha512Final(&sha512, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_SHA512_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Try passing in bad values */ if (!flag) { b.input = NULL; b.inLen = 0; ret = wc_Sha512Update(&sha512, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } if (!flag) { c.input = NULL; c.inLen = WC_SHA512_DIGEST_SIZE; ret = wc_Sha512Update(&sha512, (byte*)c.input, (word32)c.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha512Update(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha512Free(&sha512); /* If not returned then the unit test passed test vectors. */ printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha512Update */ /* * Unit test function for wc_Sha512Final() */ static int test_wc_Sha512Final (void) { int flag = 0; #ifdef WOLFSSL_SHA512 wc_Sha512 sha512; byte* hash_test[3]; byte hash1[WC_SHA512_DIGEST_SIZE]; byte hash2[2*WC_SHA512_DIGEST_SIZE]; byte hash3[5*WC_SHA512_DIGEST_SIZE]; int times, i, ret; /* Initialize */ ret = wc_InitSha512(&sha512); if (ret != 0) { flag = ret; } if (!flag) { hash_test[0] = hash1; hash_test[1] = hash2; hash_test[2] = hash3; } times = sizeof(hash_test) / sizeof(byte *); /* Good test args. */ printf(testingFmt, "wc_Sha512Final()"); for (i = 0; i < times; i++) { if (!flag) { ret = wc_Sha512Final(&sha512, hash_test[i]); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } } } /* Test bad args. */ if (!flag) { ret = wc_Sha512Final(NULL, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } if (!flag) {} ret = wc_Sha512Final(NULL, hash1); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha512Final(&sha512, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha512Free(&sha512); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha512Final */ /* * Testing wc_InitSha384() */ static int test_wc_InitSha384 (void) { int flag = 0; #ifdef WOLFSSL_SHA384 wc_Sha384 sha384; int ret; printf(testingFmt, "wc_InitSha384()"); /* Test good arg. */ ret = wc_InitSha384(&sha384); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } /* Test bad arg. */ if (!flag) { ret = wc_InitSha384(NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha384Free(&sha384); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_InitSha384 */ /* * test wc_Sha384Update() */ static int test_wc_Sha384Update (void) { int flag = 0; #ifdef WOLFSSL_SHA384 wc_Sha384 sha384; byte hash[WC_SHA384_DIGEST_SIZE]; testVector a, b, c; int ret; ret = wc_InitSha384(&sha384); if (ret != 0) { flag = ret; } printf(testingFmt, "wc_Sha384Update()"); /* Input */ if (!flag) { a.input = "a"; a.inLen = XSTRLEN(a.input); } if (!flag) { ret = wc_Sha384Update(&sha384, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Sha384Final(&sha384, hash); if (ret != 0) { flag = ret; } } /* Update input. */ if (!flag) { a.input = "abc"; a.output = "\xcb\x00\x75\x3f\x45\xa3\x5e\x8b\xb5\xa0\x3d\x69\x9a\xc6\x50" "\x07\x27\x2c\x32\xab\x0e\xde\xd1\x63\x1a\x8b\x60\x5a\x43\xff" "\x5b\xed\x80\x86\x07\x2b\xa1\xe7\xcc\x23\x58\xba\xec\xa1\x34" "\xc8\x25\xa7"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); ret = wc_Sha384Update(&sha384, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Sha384Final(&sha384, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_SHA384_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Pass in bad values. */ if (!flag) { b.input = NULL; b.inLen = 0; ret = wc_Sha384Update(&sha384, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } if (!flag) { c.input = NULL; c.inLen = WC_SHA384_DIGEST_SIZE; ret = wc_Sha384Update(&sha384, (byte*)c.input, (word32)c.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha384Update(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha384Free(&sha384); /* If not returned then the unit test passed test vectors. */ printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha384Update */ /* * Unit test function for wc_Sha384Final(); */ static int test_wc_Sha384Final (void) { int flag = 0; #ifdef WOLFSSL_SHA384 wc_Sha384 sha384; byte* hash_test[3]; byte hash1[WC_SHA384_DIGEST_SIZE]; byte hash2[2*WC_SHA384_DIGEST_SIZE]; byte hash3[5*WC_SHA384_DIGEST_SIZE]; int times, i, ret; /* Initialize */ ret = wc_InitSha384(&sha384); if (ret) { flag = ret; } if (!flag) { hash_test[0] = hash1; hash_test[1] = hash2; hash_test[2] = hash3; } times = sizeof(hash_test) / sizeof(byte*); /* Good test args. */ printf(testingFmt, "wc_Sha384Final()"); for (i = 0; i < times; i++) { if (!flag) { ret = wc_Sha384Final(&sha384, hash_test[i]); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } } } /* Test bad args. */ if (!flag) { ret = wc_Sha384Final(NULL, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha384Final(NULL, hash1); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha384Final(&sha384, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha384Free(&sha384); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha384Final */ /* * Testing wc_InitSha224(); */ static int test_wc_InitSha224 (void) { int flag = 0; #ifdef WOLFSSL_SHA224 wc_Sha224 sha224; int ret; printf(testingFmt, "wc_InitSha224()"); /* Test good arg. */ ret = wc_InitSha224(&sha224); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } /* Test bad arg. */ if (!flag) { ret = wc_InitSha224(NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha224Free(&sha224); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_InitSha224 */ /* * Unit test on wc_Sha224Update */ static int test_wc_Sha224Update (void) { int flag = 0; #ifdef WOLFSSL_SHA224 wc_Sha224 sha224; byte hash[WC_SHA224_DIGEST_SIZE]; testVector a, b, c; int ret; ret = wc_InitSha224(&sha224); if (ret != 0) { flag = ret; } printf(testingFmt, "wc_Sha224Update()"); /* Input. */ if (!flag) { a.input = "a"; a.inLen = XSTRLEN(a.input); } if (!flag) { ret = wc_Sha224Update(&sha224, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Sha224Final(&sha224, hash); if (ret != 0) { flag = ret; } } /* Update input. */ if (!flag) { a.input = "abc"; a.output = "\x23\x09\x7d\x22\x34\x05\xd8\x22\x86\x42\xa4\x77\xbd\xa2" "\x55\xb3\x2a\xad\xbc\xe4\xbd\xa0\xb3\xf7\xe3\x6c\x9d\xa7"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); ret = wc_Sha224Update(&sha224, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_Sha224Final(&sha224, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_SHA224_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Pass in bad values. */ if (!flag) { b.input = NULL; b.inLen = 0; ret = wc_Sha224Update(&sha224, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } if (!flag) { c.input = NULL; c.inLen = WC_SHA224_DIGEST_SIZE; ret = wc_Sha224Update(&sha224, (byte*)c.input, (word32)c.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha224Update(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha224Free(&sha224); /* If not returned then the unit test passed test vectors. */ printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha224Update */ /* * Unit test for wc_Sha224Final(); */ static int test_wc_Sha224Final (void) { int flag = 0; #ifdef WOLFSSL_SHA224 wc_Sha224 sha224; byte* hash_test[3]; byte hash1[WC_SHA224_DIGEST_SIZE]; byte hash2[2*WC_SHA224_DIGEST_SIZE]; byte hash3[5*WC_SHA224_DIGEST_SIZE]; int times, i, ret; /* Initialize */ ret = wc_InitSha224(&sha224); if (ret) { flag = ret; } if (!flag) { hash_test[0] = hash1; hash_test[1] = hash2; hash_test[2] = hash3; } times = sizeof(hash_test) / sizeof(byte*); /* Good test args. */ printf(testingFmt, "wc_sha224Final()"); /* Testing oversized buffers. */ for (i = 0; i < times; i++) { if (!flag) { ret = wc_Sha224Final(&sha224, hash_test[i]); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } } } /* Test bad args. */ if (!flag) { ret = wc_Sha224Final(NULL, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha224Final(NULL, hash1); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_Sha224Final(&sha224, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } wc_Sha224Free(&sha224); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha224Final */ /* * Testing wc_InitRipeMd() */ static int test_wc_InitRipeMd (void) { int flag = 0; #ifdef WOLFSSL_RIPEMD RipeMd ripemd; int ret; printf(testingFmt, "wc_InitRipeMd()"); /* Test good arg. */ ret = wc_InitRipeMd(&ripemd); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } /* Test bad arg. */ if (!flag) { ret = wc_InitRipeMd(NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_InitRipeMd */ /* * Testing wc_RipeMdUpdate() */ static int test_wc_RipeMdUpdate (void) { int flag = 0; #ifdef WOLFSSL_RIPEMD RipeMd ripemd; byte hash[RIPEMD_DIGEST_SIZE]; testVector a, b, c; int ret; ret = wc_InitRipeMd(&ripemd); if (ret != 0) { flag = ret; } printf(testingFmt, "wc_RipeMdUpdate()"); /* Input */ if (!flag) { a.input = "a"; a.inLen = XSTRLEN(a.input); } if (!flag) { ret = wc_RipeMdUpdate(&ripemd, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_RipeMdFinal(&ripemd, hash); if (ret != 0) { flag = ret; } } /* Update input. */ if (!flag) { a.input = "abc"; a.output = "\x8e\xb2\x08\xf7\xe0\x5d\x98\x7a\x9b\x04\x4a\x8e\x98\xc6" "\xb0\x87\xf1\x5a\x0b\xfc"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); ret = wc_RipeMdUpdate(&ripemd, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_RipeMdFinal(&ripemd, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, RIPEMD_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Pass in bad values. */ if (!flag) { b.input = NULL; b.inLen = 0; ret = wc_RipeMdUpdate(&ripemd, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } if (!flag) { c.input = NULL; c.inLen = RIPEMD_DIGEST_SIZE; ret = wc_RipeMdUpdate(&ripemd, (byte*)c.input, (word32)c.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_RipeMdUpdate(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_RipeMdUdpate */ /* * Unit test function for wc_RipeMdFinal() */ static int test_wc_RipeMdFinal (void) { int flag = 0; #ifdef WOLFSSL_RIPEMD RipeMd ripemd; byte* hash_test[3]; byte hash1[RIPEMD_DIGEST_SIZE]; byte hash2[2*RIPEMD_DIGEST_SIZE]; byte hash3[5*RIPEMD_DIGEST_SIZE]; int times, i, ret; /* Initialize */ ret = wc_InitRipeMd(&ripemd); if (ret != 0) { flag = ret; } if (!flag) { hash_test[0] = hash1; hash_test[1] = hash2; hash_test[2] = hash3; } times = sizeof(hash_test) / sizeof(byte*); /* Good test args. */ printf(testingFmt, "wc_RipeMdFinal()"); /* Testing oversized buffers. */ for (i = 0; i < times; i++) { if (!flag) { ret = wc_RipeMdFinal(&ripemd, hash_test[i]); if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } } } /* Test bad args. */ if (!flag) { ret = wc_RipeMdFinal(NULL, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_RipeMdFinal(NULL, hash1); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_RipeMdFinal(&ripemd, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_RipeMdFinal */ /* * Testing wc_InitSha3_224, wc_InitSha3_256, wc_InitSha3_384, and * wc_InitSha3_512 */ static int test_wc_InitSha3 (void) { int ret = 0; #if defined(WOLFSSL_SHA3) wc_Sha3 sha3; #if !defined(WOLFSSL_NOSHA3_224) printf(testingFmt, "wc_InitSha3_224()"); ret = wc_InitSha3_224(&sha3, HEAP_HINT, devId); /* Test bad args. */ if (ret == 0) { ret = wc_InitSha3_224(NULL, HEAP_HINT, devId); if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } wc_Sha3_224_Free(&sha3); printf(resultFmt, ret == 0 ? passed : failed); #endif /* NOSHA3_224 */ #if !defined(WOLFSSL_NOSHA3_256) if (ret == 0) { printf(testingFmt, "wc_InitSha3_256()"); ret = wc_InitSha3_256(&sha3, HEAP_HINT, devId); /* Test bad args. */ if (ret == 0) { ret = wc_InitSha3_256(NULL, HEAP_HINT, devId); if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } wc_Sha3_256_Free(&sha3); printf(resultFmt, ret == 0 ? passed : failed); } /* END sha3_256 */ #endif /* NOSHA3_256 */ #if !defined(WOLFSSL_NOSHA3_384) if (ret == 0) { printf(testingFmt, "wc_InitSha3_384()"); ret = wc_InitSha3_384(&sha3, HEAP_HINT, devId); /* Test bad args. */ if (ret == 0) { ret = wc_InitSha3_384(NULL, HEAP_HINT, devId); if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } wc_Sha3_384_Free(&sha3); printf(resultFmt, ret == 0 ? passed : failed); } /* END sha3_384 */ #endif /* NOSHA3_384 */ #if !defined(WOLFSSL_NOSHA3_512) if (ret == 0) { printf(testingFmt, "wc_InitSha3_512()"); ret = wc_InitSha3_512(&sha3, HEAP_HINT, devId); /* Test bad args. */ if (ret == 0) { ret = wc_InitSha3_512(NULL, HEAP_HINT, devId); if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } wc_Sha3_512_Free(&sha3); printf(resultFmt, ret == 0 ? passed : failed); } /* END sha3_512 */ #endif /* NOSHA3_512 */ #endif return ret; } /* END test_wc_InitSha3 */ /* * Testing wc_Sha3_Update() */ static int testing_wc_Sha3_Update (void) { int ret = 0; #if defined(WOLFSSL_SHA3) wc_Sha3 sha3; byte msg[] = "Everybody's working for the weekend."; byte msg2[] = "Everybody gets Friday off."; byte msgCmp[] = "\x45\x76\x65\x72\x79\x62\x6f\x64\x79\x27\x73\x20" "\x77\x6f\x72\x6b\x69\x6e\x67\x20\x66\x6f\x72\x20\x74" "\x68\x65\x20\x77\x65\x65\x6b\x65\x6e\x64\x2e\x45\x76" "\x65\x72\x79\x62\x6f\x64\x79\x20\x67\x65\x74\x73\x20" "\x46\x72\x69\x64\x61\x79\x20\x6f\x66\x66\x2e"; word32 msglen = sizeof(msg) - 1; word32 msg2len = sizeof(msg2); word32 msgCmplen = sizeof(msgCmp); #if !defined(WOLFSSL_NOSHA3_224) printf(testingFmt, "wc_Sha3_224_Update()"); ret = wc_InitSha3_224(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret = wc_Sha3_224_Update(&sha3, msg, msglen); if (XMEMCMP(msg, sha3.t, msglen) || sha3.i != msglen) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { ret = wc_Sha3_224_Update(&sha3, msg2, msg2len); if (ret == 0 && XMEMCMP(sha3.t, msgCmp, msgCmplen) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Pass bad args. */ if (ret == 0) { ret = wc_Sha3_224_Update(NULL, msg2, msg2len); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_224_Update(&sha3, NULL, 5); } if (ret == BAD_FUNC_ARG) { wc_Sha3_224_Free(&sha3); if (wc_InitSha3_224(&sha3, HEAP_HINT, devId)) { return ret; } ret = wc_Sha3_224_Update(&sha3, NULL, 0); if (ret == 0) { ret = wc_Sha3_224_Update(&sha3, msg2, msg2len); } if (ret == 0 && XMEMCMP(msg2, sha3.t, msg2len) != 0) { ret = WOLFSSL_FATAL_ERROR; } } } wc_Sha3_224_Free(&sha3); printf(resultFmt, ret == 0 ? passed : failed); #endif /* SHA3_224 */ #if !defined(WOLFSSL_NOSHA3_256) if (ret == 0) { printf(testingFmt, "wc_Sha3_256_Update()"); ret = wc_InitSha3_256(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret = wc_Sha3_256_Update(&sha3, msg, msglen); if (XMEMCMP(msg, sha3.t, msglen) || sha3.i != msglen) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { ret = wc_Sha3_256_Update(&sha3, msg2, msg2len); if (XMEMCMP(sha3.t, msgCmp, msgCmplen) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Pass bad args. */ if (ret == 0) { ret = wc_Sha3_256_Update(NULL, msg2, msg2len); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_256_Update(&sha3, NULL, 5); } if (ret == BAD_FUNC_ARG) { wc_Sha3_256_Free(&sha3); if (wc_InitSha3_256(&sha3, HEAP_HINT, devId)) { return ret; } ret = wc_Sha3_256_Update(&sha3, NULL, 0); if (ret == 0) { ret = wc_Sha3_256_Update(&sha3, msg2, msg2len); } if (ret == 0 && XMEMCMP(msg2, sha3.t, msg2len) != 0) { ret = WOLFSSL_FATAL_ERROR; } } } wc_Sha3_256_Free(&sha3); printf(resultFmt, ret == 0 ? passed : failed); } #endif /* SHA3_256 */ #if !defined(WOLFSSL_NOSHA3_384) if (ret == 0) { printf(testingFmt, "wc_Sha3_384_Update()"); ret = wc_InitSha3_384(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret = wc_Sha3_384_Update(&sha3, msg, msglen); if (XMEMCMP(msg, sha3.t, msglen) || sha3.i != msglen) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { ret = wc_Sha3_384_Update(&sha3, msg2, msg2len); if (XMEMCMP(sha3.t, msgCmp, msgCmplen) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Pass bad args. */ if (ret == 0) { ret = wc_Sha3_384_Update(NULL, msg2, msg2len); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_384_Update(&sha3, NULL, 5); } if (ret == BAD_FUNC_ARG) { wc_Sha3_384_Free(&sha3); if (wc_InitSha3_384(&sha3, HEAP_HINT, devId)) { return ret; } ret = wc_Sha3_384_Update(&sha3, NULL, 0); if (ret == 0) { ret = wc_Sha3_384_Update(&sha3, msg2, msg2len); } if (ret == 0 && XMEMCMP(msg2, sha3.t, msg2len) != 0) { ret = WOLFSSL_FATAL_ERROR; } } } wc_Sha3_384_Free(&sha3); printf(resultFmt, ret == 0 ? passed : failed); } #endif /* SHA3_384 */ #if !defined(WOLFSSL_NOSHA3_512) if (ret == 0) { printf(testingFmt, "wc_Sha3_512_Update()"); ret = wc_InitSha3_512(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret = wc_Sha3_512_Update(&sha3, msg, msglen); if (XMEMCMP(msg, sha3.t, msglen) || sha3.i != msglen) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { ret = wc_Sha3_512_Update(&sha3, msg2, msg2len); if (XMEMCMP(sha3.t, msgCmp, msgCmplen) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Pass bad args. */ if (ret == 0) { ret = wc_Sha3_512_Update(NULL, msg2, msg2len); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_512_Update(&sha3, NULL, 5); } if (ret == BAD_FUNC_ARG) { wc_Sha3_512_Free(&sha3); if (wc_InitSha3_512(&sha3, HEAP_HINT, devId)) { return ret; } ret = wc_Sha3_512_Update(&sha3, NULL, 0); if (ret == 0) { ret = wc_Sha3_512_Update(&sha3, msg2, msg2len); } if (ret == 0 && XMEMCMP(msg2, sha3.t, msg2len) != 0) { ret = WOLFSSL_FATAL_ERROR; } } } wc_Sha3_512_Free(&sha3); printf(resultFmt, ret == 0 ? passed : failed); } #endif /* SHA3_512 */ #endif /* WOLFSSL_SHA3 */ return ret; } /* END testing_wc_Sha3_Update */ /* * Testing wc_Sha3_224_Final() */ static int test_wc_Sha3_224_Final (void) { int ret = 0; #if defined(WOLFSSL_SHA3) && !defined(WOLFSSL_NOSHA3_224) wc_Sha3 sha3; const char* msg = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnom" "nopnopq"; const char* expOut = "\x8a\x24\x10\x8b\x15\x4a\xda\x21\xc9\xfd\x55" "\x74\x49\x44\x79\xba\x5c\x7e\x7a\xb7\x6e\xf2" "\x64\xea\xd0\xfc\xce\x33"; byte hash[WC_SHA3_224_DIGEST_SIZE]; byte hashRet[WC_SHA3_224_DIGEST_SIZE]; /* Init stack variables. */ XMEMSET(hash, 0, sizeof(hash)); printf(testingFmt, "wc_Sha3_224_Final()"); ret = wc_InitSha3_224(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret= wc_Sha3_224_Update(&sha3, (byte*)msg, (word32)XSTRLEN(msg)); if (ret == 0) { ret = wc_Sha3_224_Final(&sha3, hash); if (ret == 0 && XMEMCMP(expOut, hash, WC_SHA3_224_DIGEST_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_Sha3_224_Final(NULL, hash); if (ret == 0) { ret = wc_Sha3_224_Final(&sha3, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret == 0) { printf(testingFmt, "wc_Sha3_224_GetHash()"); ret = wc_InitSha3_224(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } /* Init stack variables. */ XMEMSET(hash, 0, sizeof(hash)); XMEMSET(hashRet, 0, sizeof(hashRet)); ret= wc_Sha3_224_Update(&sha3, (byte*)msg, (word32)XSTRLEN(msg)); if (ret == 0) { ret = wc_Sha3_224_GetHash(&sha3, hashRet); } if (ret == 0) { ret = wc_Sha3_224_Final(&sha3, hash); if (ret == 0 && XMEMCMP(hash, hashRet, WC_SHA3_224_DIGEST_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Test bad args. */ ret = wc_Sha3_224_GetHash(NULL, hashRet); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_224_GetHash(&sha3, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); } wc_Sha3_224_Free(&sha3); #endif return ret; } /* END test_wc_Sha3_224_Final */ /* * Testing wc_Sha3_256_Final() */ static int test_wc_Sha3_256_Final (void) { int ret = 0; #if defined(WOLFSSL_SHA3) && !defined(WOLFSSL_NOSHA3_256) wc_Sha3 sha3; const char* msg = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnom" "nopnopq"; const char* expOut = "\x41\xc0\xdb\xa2\xa9\xd6\x24\x08\x49\x10\x03\x76\xa8" "\x23\x5e\x2c\x82\xe1\xb9\x99\x8a\x99\x9e\x21\xdb\x32" "\xdd\x97\x49\x6d\x33\x76"; byte hash[WC_SHA3_256_DIGEST_SIZE]; byte hashRet[WC_SHA3_256_DIGEST_SIZE]; /* Init stack variables. */ XMEMSET(hash, 0, sizeof(hash)); printf(testingFmt, "wc_Sha3_256_Final()"); ret = wc_InitSha3_256(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret= wc_Sha3_256_Update(&sha3, (byte*)msg, (word32)XSTRLEN(msg)); if (ret == 0) { ret = wc_Sha3_256_Final(&sha3, hash); if (ret == 0 && XMEMCMP(expOut, hash, WC_SHA3_256_DIGEST_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_Sha3_256_Final(NULL, hash); if (ret == 0) { ret = wc_Sha3_256_Final(&sha3, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret == 0) { printf(testingFmt, "wc_Sha3_256_GetHash()"); ret = wc_InitSha3_256(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } /* Init stack variables. */ XMEMSET(hash, 0, sizeof(hash)); XMEMSET(hashRet, 0, sizeof(hashRet)); ret= wc_Sha3_256_Update(&sha3, (byte*)msg, (word32)XSTRLEN(msg)); if (ret == 0) { ret = wc_Sha3_256_GetHash(&sha3, hashRet); } if (ret == 0) { ret = wc_Sha3_256_Final(&sha3, hash); if (ret == 0 && XMEMCMP(hash, hashRet, WC_SHA3_256_DIGEST_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Test bad args. */ ret = wc_Sha3_256_GetHash(NULL, hashRet); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_256_GetHash(&sha3, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); } wc_Sha3_256_Free(&sha3); #endif return ret; } /* END test_wc_Sha3_256_Final */ /* * Testing wc_Sha3_384_Final() */ static int test_wc_Sha3_384_Final (void) { int ret = 0; #if defined(WOLFSSL_SHA3) && !defined(WOLFSSL_NOSHA3_384) wc_Sha3 sha3; const char* msg = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnom" "nopnopq"; const char* expOut = "\x99\x1c\x66\x57\x55\xeb\x3a\x4b\x6b\xbd\xfb\x75\xc7" "\x8a\x49\x2e\x8c\x56\xa2\x2c\x5c\x4d\x7e\x42\x9b\xfd" "\xbc\x32\xb9\xd4\xad\x5a\xa0\x4a\x1f\x07\x6e\x62\xfe" "\xa1\x9e\xef\x51\xac\xd0\x65\x7c\x22"; byte hash[WC_SHA3_384_DIGEST_SIZE]; byte hashRet[WC_SHA3_384_DIGEST_SIZE]; /* Init stack variables. */ XMEMSET(hash, 0, sizeof(hash)); printf(testingFmt, "wc_Sha3_384_Final()"); ret = wc_InitSha3_384(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret= wc_Sha3_384_Update(&sha3, (byte*)msg, (word32)XSTRLEN(msg)); if (ret == 0) { ret = wc_Sha3_384_Final(&sha3, hash); if (ret == 0 && XMEMCMP(expOut, hash, WC_SHA3_384_DIGEST_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_Sha3_384_Final(NULL, hash); if (ret == 0) { ret = wc_Sha3_384_Final(&sha3, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret == 0) { printf(testingFmt, "wc_Sha3_384_GetHash()"); ret = wc_InitSha3_384(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } /* Init stack variables. */ XMEMSET(hash, 0, sizeof(hash)); XMEMSET(hashRet, 0, sizeof(hashRet)); ret= wc_Sha3_384_Update(&sha3, (byte*)msg, (word32)XSTRLEN(msg)); if (ret == 0) { ret = wc_Sha3_384_GetHash(&sha3, hashRet); } if (ret == 0) { ret = wc_Sha3_384_Final(&sha3, hash); if (ret == 0 && XMEMCMP(hash, hashRet, WC_SHA3_384_DIGEST_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Test bad args. */ ret = wc_Sha3_384_GetHash(NULL, hashRet); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_384_GetHash(&sha3, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); } wc_Sha3_384_Free(&sha3); #endif return ret; } /* END test_wc_Sha3_384_Final */ /* * Testing wc_Sha3_512_Final() */ static int test_wc_Sha3_512_Final (void) { int ret = 0; #if defined(WOLFSSL_SHA3) && !defined(WOLFSSL_NOSHA3_384) wc_Sha3 sha3; const char* msg = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnom" "nopnopq"; const char* expOut = "\x04\xa3\x71\xe8\x4e\xcf\xb5\xb8\xb7\x7c\xb4\x86\x10" "\xfc\xa8\x18\x2d\xd4\x57\xce\x6f\x32\x6a\x0f\xd3\xd7" "\xec\x2f\x1e\x91\x63\x6d\xee\x69\x1f\xbe\x0c\x98\x53" "\x02\xba\x1b\x0d\x8d\xc7\x8c\x08\x63\x46\xb5\x33\xb4" "\x9c\x03\x0d\x99\xa2\x7d\xaf\x11\x39\xd6\xe7\x5e"; byte hash[WC_SHA3_512_DIGEST_SIZE]; byte hashRet[WC_SHA3_512_DIGEST_SIZE]; /* Init stack variables. */ XMEMSET(hash, 0, sizeof(hash)); printf(testingFmt, "wc_Sha3_512_Final()"); ret = wc_InitSha3_512(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret= wc_Sha3_512_Update(&sha3, (byte*)msg, (word32)XSTRLEN(msg)); if (ret == 0) { ret = wc_Sha3_512_Final(&sha3, hash); if (ret == 0 && XMEMCMP(expOut, hash, WC_SHA3_512_DIGEST_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_Sha3_512_Final(NULL, hash); if (ret == 0) { ret = wc_Sha3_384_Final(&sha3, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret == 0) { printf(testingFmt, "wc_Sha3_512_GetHash()"); ret = wc_InitSha3_512(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } /* Init stack variables. */ XMEMSET(hash, 0, sizeof(hash)); XMEMSET(hashRet, 0, sizeof(hashRet)); ret= wc_Sha3_512_Update(&sha3, (byte*)msg, (word32)XSTRLEN(msg)); if (ret == 0) { ret = wc_Sha3_512_GetHash(&sha3, hashRet); } if (ret == 0) { ret = wc_Sha3_512_Final(&sha3, hash); if (ret == 0 && XMEMCMP(hash, hashRet, WC_SHA3_512_DIGEST_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* Test bad args. */ ret = wc_Sha3_512_GetHash(NULL, hashRet); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_512_GetHash(&sha3, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); } wc_Sha3_512_Free(&sha3); #endif return ret; } /* END test_wc_Sha3_512_Final */ /* * Testing wc_Sha3_224_Copy() */ static int test_wc_Sha3_224_Copy (void) { int ret = 0; #if defined(WOLFSSL_SHA3) && !defined(WOLFSSL_NOSHA3_224) wc_Sha3 sha3, sha3Cpy; const char* msg = "Everyone gets Friday off."; word32 msglen = (word32)XSTRLEN(msg); byte hash[WC_SHA3_224_DIGEST_SIZE]; byte hashCpy[WC_SHA3_224_DIGEST_SIZE]; XMEMSET(hash, 0, sizeof(hash)); XMEMSET(hashCpy, 0, sizeof(hashCpy)); printf(testingFmt, "wc_Sha3_224_Copy()"); ret = wc_InitSha3_224(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret = wc_InitSha3_224(&sha3Cpy, HEAP_HINT, devId); if (ret != 0) { wc_Sha3_224_Free(&sha3); return ret; } ret = wc_Sha3_224_Update(&sha3, (byte*)msg, msglen); if (ret == 0) { ret = wc_Sha3_224_Copy(&sha3Cpy, &sha3); if (ret == 0) { ret = wc_Sha3_224_Final(&sha3, hash); if (ret == 0) { ret = wc_Sha3_224_Final(&sha3Cpy, hashCpy); } } if (ret == 0 && XMEMCMP(hash, hashCpy, sizeof(hash)) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_Sha3_224_Copy(NULL, &sha3); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_224_Copy(&sha3Cpy, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Sha3_224_Copy */ /* * Testing wc_Sha3_256_Copy() */ static int test_wc_Sha3_256_Copy (void) { int ret = 0; #if defined(WOLFSSL_SHA3) && !defined(WOLFSSL_NOSHA3_256) wc_Sha3 sha3, sha3Cpy; const char* msg = "Everyone gets Friday off."; word32 msglen = (word32)XSTRLEN(msg); byte hash[WC_SHA3_256_DIGEST_SIZE]; byte hashCpy[WC_SHA3_256_DIGEST_SIZE]; XMEMSET(hash, 0, sizeof(hash)); XMEMSET(hashCpy, 0, sizeof(hashCpy)); printf(testingFmt, "wc_Sha3_256_Copy()"); ret = wc_InitSha3_256(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret = wc_InitSha3_256(&sha3Cpy, HEAP_HINT, devId); if (ret != 0) { wc_Sha3_256_Free(&sha3); return ret; } ret = wc_Sha3_256_Update(&sha3, (byte*)msg, msglen); if (ret == 0) { ret = wc_Sha3_256_Copy(&sha3Cpy, &sha3); if (ret == 0) { ret = wc_Sha3_256_Final(&sha3, hash); if (ret == 0) { ret = wc_Sha3_256_Final(&sha3Cpy, hashCpy); } } if (ret == 0 && XMEMCMP(hash, hashCpy, sizeof(hash)) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_Sha3_256_Copy(NULL, &sha3); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_256_Copy(&sha3Cpy, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Sha3_256_Copy */ /* * Testing wc_Sha3_384_Copy() */ static int test_wc_Sha3_384_Copy (void) { int ret = 0; #if defined(WOLFSSL_SHA3) && !defined(WOLFSSL_NOSHA3_384) wc_Sha3 sha3, sha3Cpy; const char* msg = "Everyone gets Friday off."; word32 msglen = (word32)XSTRLEN(msg); byte hash[WC_SHA3_384_DIGEST_SIZE]; byte hashCpy[WC_SHA3_384_DIGEST_SIZE]; XMEMSET(hash, 0, sizeof(hash)); XMEMSET(hashCpy, 0, sizeof(hashCpy)); printf(testingFmt, "wc_Sha3_384_Copy()"); ret = wc_InitSha3_384(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret = wc_InitSha3_384(&sha3Cpy, HEAP_HINT, devId); if (ret != 0) { wc_Sha3_384_Free(&sha3); return ret; } ret = wc_Sha3_384_Update(&sha3, (byte*)msg, msglen); if (ret == 0) { ret = wc_Sha3_384_Copy(&sha3Cpy, &sha3); if (ret == 0) { ret = wc_Sha3_384_Final(&sha3, hash); if (ret == 0) { ret = wc_Sha3_384_Final(&sha3Cpy, hashCpy); } } if (ret == 0 && XMEMCMP(hash, hashCpy, sizeof(hash)) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_Sha3_384_Copy(NULL, &sha3); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_384_Copy(&sha3Cpy, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Sha3_384_Copy */ /* * Testing wc_Sha3_512_Copy() */ static int test_wc_Sha3_512_Copy (void) { int ret = 0; #if defined(WOLFSSL_SHA3) && !defined(WOLFSSL_NOSHA3_512) wc_Sha3 sha3, sha3Cpy; const char* msg = "Everyone gets Friday off."; word32 msglen = (word32)XSTRLEN(msg); byte hash[WC_SHA3_512_DIGEST_SIZE]; byte hashCpy[WC_SHA3_512_DIGEST_SIZE]; XMEMSET(hash, 0, sizeof(hash)); XMEMSET(hashCpy, 0, sizeof(hashCpy)); printf(testingFmt, "wc_Sha3_512_Copy()"); ret = wc_InitSha3_512(&sha3, HEAP_HINT, devId); if (ret != 0) { return ret; } ret = wc_InitSha3_512(&sha3Cpy, HEAP_HINT, devId); if (ret != 0) { wc_Sha3_512_Free(&sha3); return ret; } ret = wc_Sha3_512_Update(&sha3, (byte*)msg, msglen); if (ret == 0) { ret = wc_Sha3_512_Copy(&sha3Cpy, &sha3); if (ret == 0) { ret = wc_Sha3_512_Final(&sha3, hash); if (ret == 0) { ret = wc_Sha3_512_Final(&sha3Cpy, hashCpy); } } if (ret == 0 && XMEMCMP(hash, hashCpy, sizeof(hash)) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_Sha3_512_Copy(NULL, &sha3); if (ret == BAD_FUNC_ARG) { ret = wc_Sha3_512_Copy(&sha3Cpy, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Sha3_512_Copy */ /* * unit test for wc_IdeaSetKey() */ static int test_wc_IdeaSetKey (void) { int ret = 0; #ifdef HAVE_IDEA Idea idea; const byte key[] = { 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37 }; int flag = 0; printf(testingFmt, "wc_IdeaSetKey()"); /*IV can be NULL, default value is 0*/ ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, IDEA_ENCRYPTION); if (ret == 0) { ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, IDEA_DECRYPTION); } /* Bad args. */ if (ret == 0) { ret = wc_IdeaSetKey(NULL, key, IDEA_KEY_SIZE, NULL, IDEA_ENCRYPTION); if (ret != BAD_FUNC_ARG) { flag = 1; } ret = wc_IdeaSetKey(&idea, NULL, IDEA_KEY_SIZE, NULL, IDEA_ENCRYPTION); if (ret != BAD_FUNC_ARG) { flag = 1; } ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE - 1, NULL, IDEA_ENCRYPTION); if (ret != BAD_FUNC_ARG) { flag = 1; } ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, -1); if (ret != BAD_FUNC_ARG) { flag = 1; } if (flag == 1) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } } /* END Test Bad Args. */ printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_IdeaSetKey */ /* * Unit test for wc_IdeaSetIV() */ static int test_wc_IdeaSetIV (void) { int ret = 0; #ifdef HAVE_IDEA Idea idea; printf(testingFmt, "wc_IdeaSetIV()"); ret = wc_IdeaSetIV(&idea, NULL); /* Test bad args. */ if (ret == 0) { ret = wc_IdeaSetIV(NULL, NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_IdeaSetIV */ /* * Unit test for wc_IdeaCipher() */ static int test_wc_IdeaCipher (void) { int ret = 0; #ifdef HAVE_IDEA Idea idea; const byte key[] = { 0x2B, 0xD6, 0x45, 0x9F, 0x82, 0xC5, 0xB3, 0x00, 0x95, 0x2C, 0x49, 0x10, 0x48, 0x81, 0xFF, 0x48 }; const byte plain[] = { 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37 }; byte enc[sizeof(plain)]; byte dec[sizeof(enc)]; printf(testingFmt, "wc_IdeaCipher()"); ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, IDEA_ENCRYPTION); if (ret == 0) { ret = wc_IdeaCipher(&idea, enc, plain); if (ret != 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { ret = wc_IdeaSetKey(&idea, key, IDEA_KEY_SIZE, NULL, IDEA_DECRYPTION); if (ret == 0) { ret = wc_IdeaCipher(&idea, dec, enc); } if (ret == 0) { ret = XMEMCMP(plain, dec, IDEA_BLOCK_SIZE); } if (ret != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Pass Bad Args. */ if (ret == 0) { ret = wc_IdeaCipher(NULL, enc, dec); if (ret == BAD_FUNC_ARG) { ret = wc_IdeaCipher(&idea, NULL, dec); } if (ret == BAD_FUNC_ARG) { ret = wc_IdeaCipher(&idea, enc, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_IdeaCipher */ /* * Unit test for functions wc_IdeaCbcEncrypt and wc_IdeaCbcDecrypt */ static int test_wc_IdeaCbcEncyptDecrypt (void) { int ret = 0; #ifdef HAVE_IDEA Idea idea; const byte key[] = { 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37, 0x37 }; const char* message = "International Data Encryption Algorithm"; byte msg_enc[40]; byte msg_dec[40]; printf(testingFmt, "wc_IdeaCbcEncrypt()"); ret = wc_IdeaSetKey(&idea, key, sizeof(key), NULL, IDEA_ENCRYPTION); if (ret == 0) { ret = wc_IdeaCbcEncrypt(&idea, msg_enc, (byte *)message, (word32)XSTRLEN(message) + 1); } if (ret == 0) { ret = wc_IdeaSetKey(&idea, key, sizeof(key), NULL, IDEA_DECRYPTION); } if (ret == 0) { ret = wc_IdeaCbcDecrypt(&idea, msg_dec, msg_enc, (word32)XSTRLEN(message) + 1); if (XMEMCMP(message, msg_dec, (word32)XSTRLEN(message))) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. Enc */ if (ret == 0) { ret = wc_IdeaCbcEncrypt(NULL, msg_enc, (byte*)message, (word32)XSTRLEN(message) + 1); if (ret == BAD_FUNC_ARG) { ret = wc_IdeaCbcEncrypt(&idea, NULL, (byte*)message, (word32)XSTRLEN(message) + 1); } if (ret == BAD_FUNC_ARG) { ret = wc_IdeaCbcEncrypt(&idea, msg_enc, NULL, (word32)XSTRLEN(message) + 1); } if (ret != BAD_FUNC_ARG) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } } /* END test bad args ENC */ /* Test bad args DEC */ if (ret == 0) { ret = wc_IdeaCbcDecrypt(NULL, msg_dec, msg_enc, (word32)XSTRLEN(message) + 1); if (ret == BAD_FUNC_ARG) { ret = wc_IdeaCbcDecrypt(&idea, NULL, msg_enc, (word32)XSTRLEN(message) + 1); } if (ret == BAD_FUNC_ARG) { ret = wc_IdeaCbcDecrypt(&idea, msg_dec, NULL, (word32)XSTRLEN(message) + 1); } if (ret != BAD_FUNC_ARG) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_IdeaCbcEncryptDecrypt */ /* * Test function for wc_HmacSetKey */ static int test_wc_Md5HmacSetKey (void) { int flag = 0; #if !defined(NO_HMAC) && !defined(NO_MD5) Hmac hmac; int ret, times, itr; const char* keys[]= { "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b", #ifndef HAVE_FIPS "Jefe", /* smaller than minumum FIPS key size */ #endif "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" }; times = sizeof(keys) / sizeof(char*); flag = 0; printf(testingFmt, "wc_HmacSetKey() with MD5"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; for (itr = 0; itr < times; itr++) { ret = wc_HmacSetKey(&hmac, WC_MD5, (byte*)keys[itr], (word32)XSTRLEN(keys[itr])); if (ret != 0) { flag = ret; } } /* Bad args. */ if (!flag) { ret = wc_HmacSetKey(NULL, WC_MD5, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_MD5, NULL, (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_MD5, (byte*)keys[0], 0); #ifdef HAVE_FIPS if (ret != HMAC_MIN_KEYLEN_E) { flag = WOLFSSL_FATAL_ERROR; } #else if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } #endif } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Md5HmacSetKey */ /* * testing wc_HmacSetKey() on wc_Sha hash. */ static int test_wc_ShaHmacSetKey (void) { int flag = 0; #if !defined(NO_HMAC) && !defined(NO_SHA) Hmac hmac; int ret, times, itr; const char* keys[]= { "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", #ifndef HAVE_FIPS "Jefe", /* smaller than minumum FIPS key size */ #endif "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA" }; times = sizeof(keys) / sizeof(char*); flag = 0; printf(testingFmt, "wc_HmacSetKey() with SHA"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; for (itr = 0; itr < times; itr++) { ret = wc_HmacSetKey(&hmac, WC_SHA, (byte*)keys[itr], (word32)XSTRLEN(keys[itr])); if (ret != 0) { flag = ret; } } /* Bad args. */ if (!flag) { ret = wc_HmacSetKey(NULL, WC_SHA, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_SHA, NULL, (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_SHA, (byte*)keys[0], 0); #ifdef HAVE_FIPS if (ret != HMAC_MIN_KEYLEN_E) { flag = WOLFSSL_FATAL_ERROR; } #else if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } #endif } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_ShaHmacSetKey() */ /* * testing wc_HmacSetKey() on Sha224 hash. */ static int test_wc_Sha224HmacSetKey (void) { int flag = 0; #if !defined(NO_HMAC) && defined(WOLFSSL_SHA224) Hmac hmac; int ret, times, itr; const char* keys[]= { "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", #ifndef HAVE_FIPS "Jefe", /* smaller than minumum FIPS key size */ #endif "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA" }; times = sizeof(keys) / sizeof(char*); flag = 0; printf(testingFmt, "wc_HmacSetKey() with SHA 224"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; for (itr = 0; itr < times; itr++) { ret = wc_HmacSetKey(&hmac, WC_SHA224, (byte*)keys[itr], (word32)XSTRLEN(keys[itr])); if (ret != 0) { flag = ret; } } /* Bad args. */ if (!flag) { ret = wc_HmacSetKey(NULL, WC_SHA224, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_SHA224, NULL, (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_SHA224, (byte*)keys[0], 0); #ifdef HAVE_FIPS if (ret != HMAC_MIN_KEYLEN_E) { flag = WOLFSSL_FATAL_ERROR; } #else if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } #endif } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha224HmacSetKey() */ /* * testing wc_HmacSetKey() on Sha256 hash */ static int test_wc_Sha256HmacSetKey (void) { int flag = 0; #if !defined(NO_HMAC) && !defined(NO_SHA256) Hmac hmac; int ret, times, itr; const char* keys[]= { "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", #ifndef HAVE_FIPS "Jefe", /* smaller than minumum FIPS key size */ #endif "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA" }; times = sizeof(keys) / sizeof(char*); flag = 0; printf(testingFmt, "wc_HmacSetKey() with SHA256"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; for (itr = 0; itr < times; itr++) { ret = wc_HmacSetKey(&hmac, WC_SHA256, (byte*)keys[itr], (word32)XSTRLEN(keys[itr])); if (ret != 0) { flag = ret; } } /* Bad args. */ if (!flag) { ret = wc_HmacSetKey(NULL, WC_SHA256, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_SHA256, NULL, (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_SHA256, (byte*)keys[0], 0); #ifdef HAVE_FIPS if (ret != HMAC_MIN_KEYLEN_E) { flag = WOLFSSL_FATAL_ERROR; } #else if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } #endif } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha256HmacSetKey() */ /* * testing wc_HmacSetKey on Sha384 hash. */ static int test_wc_Sha384HmacSetKey (void) { int flag = 0; #if !defined(NO_HMAC) && defined(WOLFSSL_SHA384) Hmac hmac; int ret, times, itr; const char* keys[]= { "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b", #ifndef HAVE_FIPS "Jefe", /* smaller than minumum FIPS key size */ #endif "\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA\xAA" "\xAA\xAA\xAA" }; times = sizeof(keys) / sizeof(char*); flag = 0; printf(testingFmt, "wc_HmacSetKey() with SHA384"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; for (itr = 0; itr < times; itr++) { ret = wc_HmacSetKey(&hmac, WC_SHA384, (byte*)keys[itr], (word32)XSTRLEN(keys[itr])); if (ret != 0) { flag = ret; } } /* Bad args. */ if (!flag) { ret = wc_HmacSetKey(NULL, WC_SHA384, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_SHA384, NULL, (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, 20, (byte*)keys[0], (word32)XSTRLEN(keys[0])); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacSetKey(&hmac, WC_SHA384, (byte*)keys[0], 0); #ifdef HAVE_FIPS if (ret != HMAC_MIN_KEYLEN_E) { flag = WOLFSSL_FATAL_ERROR; } #else if (ret != 0) { flag = WOLFSSL_FATAL_ERROR; } #endif } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha384HmacSetKey() */ /* * testing wc_HmacUpdate on wc_Md5 hash. */ static int test_wc_Md5HmacUpdate (void) { int flag = 0; #if !defined(NO_HMAC) && !defined(NO_MD5) Hmac hmac; testVector a, b; int ret; #ifdef HAVE_FIPS const char* keys = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"; #else const char* keys = "Jefe"; #endif a.input = "what do ya want for nothing?"; a.inLen = XSTRLEN(a.input); b.input = "Hi There"; b.inLen = XSTRLEN(b.input); flag = 0; printf(testingFmt, "wc_HmacUpdate() with MD5"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_MD5, (byte*)keys, (word32)XSTRLEN(keys)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } /* Update Hmac. */ if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } /* Test bad args. */ if (!flag) { ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0); if (ret != 0) { flag = ret; } } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Md5HmacUpdate */ /* * testing wc_HmacUpdate on SHA hash. */ static int test_wc_ShaHmacUpdate (void) { int flag = 0; #if !defined(NO_HMAC) && !defined(NO_SHA) Hmac hmac; testVector a, b; int ret; #ifdef HAVE_FIPS const char* keys = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"; #else const char* keys = "Jefe"; #endif a.input = "what do ya want for nothing?"; a.inLen = XSTRLEN(a.input); b.input = "Hi There"; b.inLen = XSTRLEN(b.input); flag = 0; printf(testingFmt, "wc_HmacUpdate() with SHA"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_SHA, (byte*)keys, (word32)XSTRLEN(keys)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } /* Update Hmac. */ if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } /* Test bad args. */ if (!flag) { ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0); if (ret != 0) { flag = ret; } } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_ShaHmacUpdate */ /* * testing wc_HmacUpdate on SHA224 hash. */ static int test_wc_Sha224HmacUpdate (void) { int flag = 0; #if !defined(NO_HMAC) && defined(WOLFSSL_SHA224) Hmac hmac; testVector a, b; int ret; #ifdef HAVE_FIPS const char* keys = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"; #else const char* keys = "Jefe"; #endif a.input = "what do ya want for nothing?"; a.inLen = XSTRLEN(a.input); b.input = "Hi There"; b.inLen = XSTRLEN(b.input); flag = 0; printf(testingFmt, "wc_HmacUpdate() with SHA224"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_SHA224, (byte*)keys, (word32)XSTRLEN(keys)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } /* Update Hmac. */ if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } /* Test bad args. */ if (!flag) { ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0); if (ret != 0) { flag = ret; } } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha224HmacUpdate */ /* * testing wc_HmacUpdate on SHA256 hash. */ static int test_wc_Sha256HmacUpdate (void) { int flag = 0; #if !defined(NO_HMAC) && !defined(NO_SHA256) Hmac hmac; testVector a, b; int ret; #ifdef HAVE_FIPS const char* keys = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"; #else const char* keys = "Jefe"; #endif a.input = "what do ya want for nothing?"; a.inLen = XSTRLEN(a.input); b.input = "Hi There"; b.inLen = XSTRLEN(b.input); flag = 0; printf(testingFmt, "wc_HmacUpdate() with WC_SHA256"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_SHA256, (byte*)keys, (word32)XSTRLEN(keys)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } /* Update Hmac. */ if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } /* Test bad args. */ if (!flag) { ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0); if (ret != 0) { flag = ret; } } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha256HmacUpdate */ /* * testing wc_HmacUpdate on SHA384 hash. */ static int test_wc_Sha384HmacUpdate (void) { int flag = 0; #if !defined(NO_HMAC) && defined(WOLFSSL_SHA384) Hmac hmac; testVector a, b; int ret; #ifdef HAVE_FIPS const char* keys = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"; #else const char* keys = "Jefe"; #endif a.input = "what do ya want for nothing?"; a.inLen = XSTRLEN(a.input); b.input = "Hi There"; b.inLen = XSTRLEN(b.input); flag = 0; printf(testingFmt, "wc_HmacUpdate() with SHA384"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_SHA384, (byte*)keys, (word32)XSTRLEN(keys)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)b.input, (word32)b.inLen); if (ret != 0) { flag = ret; } } /* Update Hmac. */ if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } /* Test bad args. */ if (!flag) { ret = wc_HmacUpdate(NULL, (byte*)a.input, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, NULL, (word32)a.inLen); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, 0); if (ret != 0) { flag = ret; } } wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha384HmacUpdate */ /* * Testing wc_HmacFinal() with MD5 */ static int test_wc_Md5HmacFinal (void) { int flag = 0; #if !defined(NO_HMAC) && !defined(NO_MD5) Hmac hmac; byte hash[WC_MD5_DIGEST_SIZE]; testVector a; int ret; const char* key; key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b"; a.input = "Hi There"; a.output = "\x92\x94\x72\x7a\x36\x38\xbb\x1c\x13\xf4\x8e\xf8\x15\x8b\xfc" "\x9d"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); flag = 0; printf(testingFmt, "wc_HmacFinal() with MD5"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_MD5, (byte*)key, (word32)XSTRLEN(key)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_HmacFinal(&hmac, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_MD5_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Try bad parameters. */ if (!flag) { ret = wc_HmacFinal(NULL, hash); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_FIPS if (!flag) { ret = wc_HmacFinal(&hmac, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #endif wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Md5HmacFinal */ /* * Testing wc_HmacFinal() with SHA */ static int test_wc_ShaHmacFinal (void) { int flag = 0; #if !defined(NO_HMAC) && !defined(NO_SHA) Hmac hmac; byte hash[WC_SHA_DIGEST_SIZE]; testVector a; int ret; const char* key; key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b"; a.input = "Hi There"; a.output = "\xb6\x17\x31\x86\x55\x05\x72\x64\xe2\x8b\xc0\xb6\xfb\x37\x8c" "\x8e\xf1\x46\xbe\x00"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); flag = 0; printf(testingFmt, "wc_HmacFinal() with SHA"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_SHA, (byte*)key, (word32)XSTRLEN(key)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_HmacFinal(&hmac, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_SHA_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Try bad parameters. */ if (!flag) { ret = wc_HmacFinal(NULL, hash); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_FIPS if (!flag) { ret = wc_HmacFinal(&hmac, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #endif wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_ShaHmacFinal */ /* * Testing wc_HmacFinal() with SHA224 */ static int test_wc_Sha224HmacFinal (void) { int flag = 0; #if !defined(NO_HMAC) && defined(WOLFSSL_SHA224) Hmac hmac; byte hash[WC_SHA224_DIGEST_SIZE]; testVector a; int ret; const char* key; key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b"; a.input = "Hi There"; a.output = "\x89\x6f\xb1\x12\x8a\xbb\xdf\x19\x68\x32\x10\x7c\xd4\x9d\xf3" "\x3f\x47\xb4\xb1\x16\x99\x12\xba\x4f\x53\x68\x4b\x22"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); flag = 0; printf(testingFmt, "wc_HmacFinal() with SHA224"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_SHA224, (byte*)key, (word32)XSTRLEN(key)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_HmacFinal(&hmac, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_SHA224_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Try bad parameters. */ if (!flag) { ret = wc_HmacFinal(NULL, hash); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_FIPS if (!flag) { ret = wc_HmacFinal(&hmac, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #endif wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha224HmacFinal */ /* * Testing wc_HmacFinal() with SHA256 */ static int test_wc_Sha256HmacFinal (void) { int flag = 0; #if !defined(NO_HMAC) && !defined(NO_SHA256) Hmac hmac; byte hash[WC_SHA256_DIGEST_SIZE]; testVector a; int ret; const char* key; key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b"; a.input = "Hi There"; a.output = "\xb0\x34\x4c\x61\xd8\xdb\x38\x53\x5c\xa8\xaf\xce\xaf\x0b\xf1" "\x2b\x88\x1d\xc2\x00\xc9\x83\x3d\xa7\x26\xe9\x37\x6c\x2e\x32" "\xcf\xf7"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); flag = 0; printf(testingFmt, "wc_HmacFinal() with WC_SHA256"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_SHA256, (byte*)key, (word32)XSTRLEN(key)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_HmacFinal(&hmac, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_SHA256_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Try bad parameters. */ if (!flag) { ret = wc_HmacFinal(NULL, hash); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_FIPS if (!flag) { ret = wc_HmacFinal(&hmac, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #endif wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha256HmacFinal */ /* * Testing wc_HmacFinal() with SHA384 */ static int test_wc_Sha384HmacFinal (void) { int flag = 0; #if !defined(NO_HMAC) && defined(WOLFSSL_SHA384) Hmac hmac; byte hash[WC_SHA384_DIGEST_SIZE]; testVector a; int ret; const char* key; key = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b"; a.input = "Hi There"; a.output = "\xaf\xd0\x39\x44\xd8\x48\x95\x62\x6b\x08\x25\xf4\xab\x46\x90" "\x7f\x15\xf9\xda\xdb\xe4\x10\x1e\xc6\x82\xaa\x03\x4c\x7c\xeb" "\xc5\x9c\xfa\xea\x9e\xa9\x07\x6e\xde\x7f\x4a\xf1\x52\xe8\xb2" "\xfa\x9c\xb6"; a.inLen = XSTRLEN(a.input); a.outLen = XSTRLEN(a.output); flag = 0; printf(testingFmt, "wc_HmacFinal() with SHA384"); ret = wc_HmacInit(&hmac, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_HmacSetKey(&hmac, WC_SHA384, (byte*)key, (word32)XSTRLEN(key)); if (ret != 0) { flag = ret; } if (!flag) { ret = wc_HmacUpdate(&hmac, (byte*)a.input, (word32)a.inLen); if (ret != 0) { flag = ret; } } if (!flag) { ret = wc_HmacFinal(&hmac, hash); if (ret != 0) { flag = ret; } } if (!flag) { if (XMEMCMP(hash, a.output, WC_SHA384_DIGEST_SIZE) != 0) { flag = WOLFSSL_FATAL_ERROR; } } /* Try bad parameters. */ if (!flag) { ret = wc_HmacFinal(NULL, hash); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_FIPS if (!flag) { ret = wc_HmacFinal(&hmac, NULL); if (ret != BAD_FUNC_ARG) { flag = WOLFSSL_FATAL_ERROR; } } #endif wc_HmacFree(&hmac); printf(resultFmt, flag == 0 ? passed : failed); #endif return flag; } /* END test_wc_Sha384HmacFinal */ /* * Testing wc_InitCmac() */ static int test_wc_InitCmac (void) { int ret = 0; #if defined(WOLFSSL_CMAC) && !defined(NO_AES) Cmac cmac1, cmac2, cmac3; /* AES 128 key. */ byte key1[] = "\x01\x02\x03\x04\x05\x06\x07\x08" "\x09\x10\x11\x12\x13\x14\x15\x16"; /* AES 192 key. */ byte key2[] = "\x01\x02\x03\x04\x05\x06\x07\x08" "\x09\x01\x11\x12\x13\x14\x15\x16" "\x01\x02\x03\x04\x05\x06\x07\x08"; /* AES 256 key. */ byte key3[] = "\x01\x02\x03\x04\x05\x06\x07\x08" "\x09\x01\x11\x12\x13\x14\x15\x16" "\x01\x02\x03\x04\x05\x06\x07\x08" "\x09\x01\x11\x12\x13\x14\x15\x16"; word32 key1Sz = (word32)sizeof(key1) - 1; word32 key2Sz = (word32)sizeof(key2) - 1; word32 key3Sz = (word32)sizeof(key3) - 1; int type = WC_CMAC_AES; printf(testingFmt, "wc_InitCmac()"); #ifdef WOLFSSL_AES_128 ret = wc_InitCmac(&cmac1, key1, key1Sz, type, NULL); #endif #ifdef WOLFSSL_AES_192 if (ret == 0) ret = wc_InitCmac(&cmac2, key2, key2Sz, type, NULL); #endif #ifdef WOLFSSL_AES_256 if (ret == 0) ret = wc_InitCmac(&cmac3, key3, key3Sz, type, NULL); #endif /* Test bad args. */ if (ret == 0) { ret = wc_InitCmac(NULL, key3, key3Sz, type, NULL); if (ret == BAD_FUNC_ARG) { ret = wc_InitCmac(&cmac3, NULL, key3Sz, type, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_InitCmac(&cmac3, key3, 0, type, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_InitCmac(&cmac3, key3, key3Sz, 0, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = SSL_FATAL_ERROR; } } (void)key1; (void)key1Sz; (void)key2; (void)key2Sz; (void)cmac1; (void)cmac2; printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_InitCmac */ /* * Testing wc_CmacUpdate() */ static int test_wc_CmacUpdate (void) { int ret = 0; #if defined(WOLFSSL_CMAC) && !defined(NO_AES) && defined(WOLFSSL_AES_128) Cmac cmac; byte key[] = { 0x64, 0x4c, 0xbf, 0x12, 0x85, 0x9d, 0xf0, 0x55, 0x7e, 0xa9, 0x1f, 0x08, 0xe0, 0x51, 0xff, 0x27 }; byte in[] = "\xe2\xb4\xb6\xf9\x48\x44\x02\x64" "\x5c\x47\x80\x9e\xd5\xa8\x3a\x17" "\xb3\x78\xcf\x85\x22\x41\x74\xd9" "\xa0\x97\x39\x71\x62\xf1\x8e\x8f" "\xf4"; word32 inSz = (word32)sizeof(in) - 1; word32 keySz = (word32)sizeof(key); int type = WC_CMAC_AES; ret = wc_InitCmac(&cmac, key, keySz, type, NULL); if (ret != 0) { return ret; } printf(testingFmt, "wc_CmacUpdate()"); ret = wc_CmacUpdate(&cmac, in, inSz); /* Test bad args. */ if (ret == 0) { ret = wc_CmacUpdate(NULL, in, inSz); if (ret == BAD_FUNC_ARG) { ret = wc_CmacUpdate(&cmac, NULL, 30); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_CmacUpdate */ /* * Testing wc_CmacFinal() */ static int test_wc_CmacFinal (void) { int ret = 0; #if defined(WOLFSSL_CMAC) && !defined(NO_AES) && defined(WOLFSSL_AES_128) Cmac cmac; byte key[] = { 0x64, 0x4c, 0xbf, 0x12, 0x85, 0x9d, 0xf0, 0x55, 0x7e, 0xa9, 0x1f, 0x08, 0xe0, 0x51, 0xff, 0x27 }; byte msg[] = { 0xe2, 0xb4, 0xb6, 0xf9, 0x48, 0x44, 0x02, 0x64, 0x5c, 0x47, 0x80, 0x9e, 0xd5, 0xa8, 0x3a, 0x17, 0xb3, 0x78, 0xcf, 0x85, 0x22, 0x41, 0x74, 0xd9, 0xa0, 0x97, 0x39, 0x71, 0x62, 0xf1, 0x8e, 0x8f, 0xf4 }; /* Test vectors from CMACGenAES128.rsp from * http://csrc.nist.gov/groups/STM/cavp/block-cipher-modes.html#cmac * Per RFC4493 truncation of lsb is possible. */ byte expMac[] = { 0x4e, 0x6e, 0xc5, 0x6f, 0xf9, 0x5d, 0x0e, 0xae, 0x1c, 0xf8, 0x3e, 0xfc, 0xf4, 0x4b, 0xeb }; byte mac[AES_BLOCK_SIZE]; word32 msgSz = (word32)sizeof(msg); word32 keySz = (word32)sizeof(key); word32 macSz = sizeof(mac); word32 badMacSz = 17; int expMacSz = sizeof(expMac); int type = WC_CMAC_AES; XMEMSET(mac, 0, macSz); ret = wc_InitCmac(&cmac, key, keySz, type, NULL); if (ret != 0) { return ret; } ret = wc_CmacUpdate(&cmac, msg, msgSz); printf(testingFmt, "wc_CmacFinal()"); if (ret == 0) { ret = wc_CmacFinal(&cmac, mac, &macSz); if (ret == 0 && XMEMCMP(mac, expMac, expMacSz) != 0) { ret = SSL_FATAL_ERROR; } /* Pass in bad args. */ if (ret == 0) { ret = wc_CmacFinal(NULL, mac, &macSz); if (ret == BAD_FUNC_ARG) { ret = wc_CmacFinal(&cmac, NULL, &macSz); } if (ret == BAD_FUNC_ARG) { ret = wc_CmacFinal(&cmac, mac, &badMacSz); if (ret == BUFFER_E) { ret = 0; } } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_CmacFinal */ /* * Testing wc_AesCmacGenerate() && wc_AesCmacVerify() */ static int test_wc_AesCmacGenerate (void) { int ret = 0; #if defined(WOLFSSL_CMAC) && !defined(NO_AES) && defined(WOLFSSL_AES_128) Cmac cmac; byte key[] = { 0x26, 0xef, 0x8b, 0x40, 0x34, 0x11, 0x7d, 0x9e, 0xbe, 0xc0, 0xc7, 0xfc, 0x31, 0x08, 0x54, 0x69 }; byte msg[] = "\x18\x90\x49\xef\xfd\x7c\xf9\xc8" "\xf3\x59\x65\xbc\xb0\x97\x8f\xd4"; byte expMac[] = "\x29\x5f\x2f\x71\xfc\x58\xe6\xf6" "\x3d\x32\x65\x4c\x66\x23\xc5"; byte mac[AES_BLOCK_SIZE]; word32 keySz = sizeof(key); word32 macSz = sizeof(mac); word32 msgSz = sizeof(msg) - 1; word32 expMacSz = sizeof(expMac) - 1; int type = WC_CMAC_AES; XMEMSET(mac, 0, macSz); ret = wc_InitCmac(&cmac, key, keySz, type, NULL); if (ret != 0) { return ret; } ret = wc_CmacUpdate(&cmac, msg, msgSz); if (ret != 0) { return ret; } printf(testingFmt, "wc_AesCmacGenerate()"); ret = wc_AesCmacGenerate(mac, &macSz, msg, msgSz, key, keySz); if (ret == 0 && XMEMCMP(mac, expMac, expMacSz) != 0) { ret = SSL_FATAL_ERROR; } /* Pass in bad args. */ if (ret == 0) { ret = wc_AesCmacGenerate(NULL, &macSz, msg, msgSz, key, keySz); if (ret == BAD_FUNC_ARG) { ret = wc_AesCmacGenerate(mac, &macSz, msg, msgSz, NULL, keySz); } if (ret == BAD_FUNC_ARG) { ret = wc_AesCmacGenerate(mac, &macSz, msg, msgSz, key, 0); } if (ret == BAD_FUNC_ARG) { ret = wc_AesCmacGenerate(mac, &macSz, NULL, msgSz, key, keySz); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret == 0) { printf(testingFmt, "wc_AesCmacVerify()"); ret = wc_AesCmacVerify(mac, macSz, msg, msgSz, key, keySz); /* Test bad args. */ if (ret == 0) { ret = wc_AesCmacVerify(NULL, macSz, msg, msgSz, key, keySz); if (ret == BAD_FUNC_ARG) { ret = wc_AesCmacVerify(mac, 0, msg, msgSz, key, keySz); } if (ret == BAD_FUNC_ARG) { ret = wc_AesCmacVerify(mac, macSz, msg, msgSz, NULL, keySz); } if (ret == BAD_FUNC_ARG) { ret = wc_AesCmacVerify(mac, macSz, msg, msgSz, key, 0); } if (ret == BAD_FUNC_ARG) { ret = wc_AesCmacVerify(mac, macSz, NULL, msgSz, key, keySz); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); } #endif return ret; } /* END test_wc_AesCmacGenerate */ /* * unit test for wc_Des3_SetIV() */ static int test_wc_Des3_SetIV (void) { int ret = 0; #ifndef NO_DES3 Des3 des; const byte key[] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10, 0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67 }; const byte iv[] = { 0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81 }; printf(testingFmt, "wc_Des3_SetIV()"); ret = wc_Des3Init(&des, NULL, INVALID_DEVID); if (ret != 0) return ret; /* DES_ENCRYPTION or DES_DECRYPTION */ ret = wc_Des3_SetKey(&des, key, iv, DES_ENCRYPTION); if (ret == 0) { if (XMEMCMP(iv, des.reg, DES_BLOCK_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_FIPS /* no sanity checks with FIPS wrapper */ /* Test explicitly wc_Des3_SetIV() */ if (ret == 0) { ret = wc_Des3_SetIV(NULL, iv); if (ret == BAD_FUNC_ARG) { ret = wc_Des3_SetIV(&des, NULL); } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } #endif wc_Des3Free(&des); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Des3_SetIV */ /* * unit test for wc_Des3_SetKey() */ static int test_wc_Des3_SetKey (void) { int ret = 0; #ifndef NO_DES3 Des3 des; const byte key[] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10, 0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67 }; const byte iv[] = { 0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81 }; printf(testingFmt, "wc_Des3_SetKey()"); ret = wc_Des3Init(&des, NULL, INVALID_DEVID); if (ret != 0) return ret; /* DES_ENCRYPTION or DES_DECRYPTION */ ret = wc_Des3_SetKey(&des, key, iv, DES_ENCRYPTION); if (ret == 0) { if (XMEMCMP(iv, des.reg, DES_BLOCK_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_Des3_SetKey(NULL, key, iv, DES_ENCRYPTION); if (ret == BAD_FUNC_ARG) { ret = wc_Des3_SetKey(&des, NULL, iv, DES_ENCRYPTION); } if (ret == BAD_FUNC_ARG) { ret = wc_Des3_SetKey(&des, key, iv, -1); } if (ret == BAD_FUNC_ARG) { /* Default case. Should return 0. */ ret = wc_Des3_SetKey(&des, key, NULL, DES_ENCRYPTION); } } /* END if ret != 0 */ wc_Des3Free(&des); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Des3_SetKey */ /* * Test function for wc_Des3_CbcEncrypt and wc_Des3_CbcDecrypt */ static int test_wc_Des3_CbcEncryptDecrypt (void) { int ret = 0; #ifndef NO_DES3 Des3 des; byte cipher[24]; byte plain[24]; const byte key[] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10, 0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67 }; const byte iv[] = { 0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81 }; const byte vector[] = { /* "Now is the time for all " w/o trailing 0 */ 0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74, 0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20, 0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20 }; printf(testingFmt, "wc_Des3_CbcEncrypt()"); ret = wc_Des3Init(&des, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_Des3_SetKey(&des, key, iv, DES_ENCRYPTION); if (ret == 0) { ret = wc_Des3_CbcEncrypt(&des, cipher, vector, 24); if (ret == 0) { ret = wc_Des3_SetKey(&des, key, iv, DES_DECRYPTION); } if (ret == 0) { ret = wc_Des3_CbcDecrypt(&des, plain, cipher, 24); } } if (ret == 0) { if (XMEMCMP(plain, vector, 24) != 0) { ret = WOLFSSL_FATAL_ERROR; } } /* Pass in bad args. */ if (ret == 0) { ret = wc_Des3_CbcEncrypt(NULL, cipher, vector, 24); if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcEncrypt(&des, NULL, vector, 24); } if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcEncrypt(&des, cipher, NULL, sizeof(vector)); } if (ret != BAD_FUNC_ARG) { ret = WOLFSSL_FATAL_ERROR;; } else { ret = 0; } } if (ret == 0) { ret = wc_Des3_CbcDecrypt(NULL, plain, cipher, 24); if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcDecrypt(&des, NULL, cipher, 24); } if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcDecrypt(&des, plain, NULL, 24); } if (ret != BAD_FUNC_ARG) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } } wc_Des3Free(&des); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END wc_Des3_CbcEncrypt */ /* * Unit test for wc_Des3_CbcEncryptWithKey and wc_Des3_CbcDecryptWithKey */ static int test_wc_Des3_CbcEncryptDecryptWithKey (void) { int ret = 0; #ifndef NO_DES3 word32 vectorSz, cipherSz; byte cipher[24]; byte plain[24]; byte vector[] = /* Now is the time for all w/o trailing 0 */ { 0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74, 0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20, 0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20 }; byte key[] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10, 0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67 }; byte iv[] = { 0x12,0x34,0x56,0x78,0x90,0xab,0xcd,0xef, 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01, 0x11,0x21,0x31,0x41,0x51,0x61,0x71,0x81 }; vectorSz = sizeof(byte) * 24; cipherSz = sizeof(byte) * 24; printf(testingFmt, "wc_Des3_CbcEncryptWithKey()"); ret = wc_Des3_CbcEncryptWithKey(cipher, vector, vectorSz, key, iv); if (ret == 0) { ret = wc_Des3_CbcDecryptWithKey(plain, cipher, cipherSz, key, iv); if (ret == 0) { if (XMEMCMP(plain, vector, 24) != 0) { ret = WOLFSSL_FATAL_ERROR; } } } /* pass in bad args. */ if (ret == 0) { ret = wc_Des3_CbcEncryptWithKey(NULL, vector, vectorSz, key, iv); if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcEncryptWithKey(cipher, NULL, vectorSz, key, iv); } if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcEncryptWithKey(cipher, vector, vectorSz, NULL, iv); } if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcEncryptWithKey(cipher, vector, vectorSz, key, NULL); } else { /* Return code catch. */ ret = WOLFSSL_FAILURE; } } if (ret == 0) { ret = wc_Des3_CbcDecryptWithKey(NULL, cipher, cipherSz, key, iv); if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcDecryptWithKey(plain, NULL, cipherSz, key, iv); } if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcDecryptWithKey(plain, cipher, cipherSz, NULL, iv); } if (ret == BAD_FUNC_ARG) { ret = wc_Des3_CbcDecryptWithKey(plain, cipher, cipherSz, key, NULL); } else { ret = WOLFSSL_FAILURE; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Des3_CbcEncryptDecryptWithKey */ /* * Testing wc_Chacha_SetKey() and wc_Chacha_SetIV() */ static int test_wc_Chacha_SetKey (void) { int ret = 0; #ifdef HAVE_CHACHA ChaCha ctx; const byte key[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01 }; byte cipher[128]; printf(testingFmt, "wc_Chacha_SetKey()"); ret = wc_Chacha_SetKey(&ctx, key, (word32)(sizeof(key)/sizeof(byte))); /* Test bad args. */ if (ret == 0) { ret = wc_Chacha_SetKey(NULL, key, (word32)(sizeof(key)/sizeof(byte))); if (ret == BAD_FUNC_ARG) { ret = wc_Chacha_SetKey(&ctx, key, 18); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret != 0) { return ret; } printf(testingFmt, "wc_Chacha_SetIV"); ret = wc_Chacha_SetIV(&ctx, cipher, 0); if (ret == 0) { /* Test bad args. */ ret = wc_Chacha_SetIV(NULL, cipher, 0); if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FAILURE; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Chacha_SetKey */ /* * Testing wc_Chacha_Process() */ static int test_wc_Chacha_Process (void) { int ret = 0; #ifdef HAVE_CHACHA ChaCha enc, dec; byte cipher[128]; byte plain[128]; const byte key[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01 }; const char* input = "Everybody gets Friday off."; word32 keySz = sizeof(key)/sizeof(byte); unsigned long int inlen = XSTRLEN(input); /*Initialize stack varialbes.*/ XMEMSET(cipher, 0, 128); XMEMSET(plain, 0, 128); printf(testingFmt, "wc_Chacha_Process()"); ret = wc_Chacha_SetKey(&enc, key, keySz); if (ret == 0) { ret = wc_Chacha_SetKey(&dec, key, keySz); if (ret == 0) { ret = wc_Chacha_SetIV(&enc, cipher, 0); } if (ret == 0) { ret = wc_Chacha_SetIV(&dec, cipher, 0); } } if (ret == 0) { ret = wc_Chacha_Process(&enc, cipher, (byte*)input, (word32)inlen); if (ret == 0) { ret = wc_Chacha_Process(&dec, plain, cipher, (word32)inlen); if (ret == 0) { ret = XMEMCMP(input, plain, (int)inlen); } } } /* Test bad args. */ if (ret == 0) { ret = wc_Chacha_Process(NULL, cipher, (byte*)input, (word32)inlen); if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Chacha_Process */ /* * Testing wc_ChaCha20Poly1305_Encrypt() and wc_ChaCha20Poly1305_Decrypt() */ static int test_wc_ChaCha20Poly1305_aead (void) { int ret = 0; #if defined(HAVE_CHACHA) && defined(HAVE_POLY1305) const byte key[] = { 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f }; const byte plaintext[] = { 0x4c, 0x61, 0x64, 0x69, 0x65, 0x73, 0x20, 0x61, 0x6e, 0x64, 0x20, 0x47, 0x65, 0x6e, 0x74, 0x6c, 0x65, 0x6d, 0x65, 0x6e, 0x20, 0x6f, 0x66, 0x20, 0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x61, 0x73, 0x73, 0x20, 0x6f, 0x66, 0x20, 0x27, 0x39, 0x39, 0x3a, 0x20, 0x49, 0x66, 0x20, 0x49, 0x20, 0x63, 0x6f, 0x75, 0x6c, 0x64, 0x20, 0x6f, 0x66, 0x66, 0x65, 0x72, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x6f, 0x6e, 0x6c, 0x79, 0x20, 0x6f, 0x6e, 0x65, 0x20, 0x74, 0x69, 0x70, 0x20, 0x66, 0x6f, 0x72, 0x20, 0x74, 0x68, 0x65, 0x20, 0x66, 0x75, 0x74, 0x75, 0x72, 0x65, 0x2c, 0x20, 0x73, 0x75, 0x6e, 0x73, 0x63, 0x72, 0x65, 0x65, 0x6e, 0x20, 0x77, 0x6f, 0x75, 0x6c, 0x64, 0x20, 0x62, 0x65, 0x20, 0x69, 0x74, 0x2e }; const byte iv[] = { 0x07, 0x00, 0x00, 0x00, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47 }; const byte aad[] = { /* additional data */ 0x50, 0x51, 0x52, 0x53, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7 }; const byte cipher[] = { /* expected output from operation */ 0xd3, 0x1a, 0x8d, 0x34, 0x64, 0x8e, 0x60, 0xdb, 0x7b, 0x86, 0xaf, 0xbc, 0x53, 0xef, 0x7e, 0xc2, 0xa4, 0xad, 0xed, 0x51, 0x29, 0x6e, 0x08, 0xfe, 0xa9, 0xe2, 0xb5, 0xa7, 0x36, 0xee, 0x62, 0xd6, 0x3d, 0xbe, 0xa4, 0x5e, 0x8c, 0xa9, 0x67, 0x12, 0x82, 0xfa, 0xfb, 0x69, 0xda, 0x92, 0x72, 0x8b, 0x1a, 0x71, 0xde, 0x0a, 0x9e, 0x06, 0x0b, 0x29, 0x05, 0xd6, 0xa5, 0xb6, 0x7e, 0xcd, 0x3b, 0x36, 0x92, 0xdd, 0xbd, 0x7f, 0x2d, 0x77, 0x8b, 0x8c, 0x98, 0x03, 0xae, 0xe3, 0x28, 0x09, 0x1b, 0x58, 0xfa, 0xb3, 0x24, 0xe4, 0xfa, 0xd6, 0x75, 0x94, 0x55, 0x85, 0x80, 0x8b, 0x48, 0x31, 0xd7, 0xbc, 0x3f, 0xf4, 0xde, 0xf0, 0x8e, 0x4b, 0x7a, 0x9d, 0xe5, 0x76, 0xd2, 0x65, 0x86, 0xce, 0xc6, 0x4b, 0x61, 0x16 }; const byte authTag[] = { /* expected output from operation */ 0x1a, 0xe1, 0x0b, 0x59, 0x4f, 0x09, 0xe2, 0x6a, 0x7e, 0x90, 0x2e, 0xcb, 0xd0, 0x60, 0x06, 0x91 }; byte generatedCiphertext[272]; byte generatedPlaintext[272]; byte generatedAuthTag[CHACHA20_POLY1305_AEAD_AUTHTAG_SIZE]; /* Initialize stack variables. */ XMEMSET(generatedCiphertext, 0, 272); XMEMSET(generatedPlaintext, 0, 272); /* Test Encrypt */ printf(testingFmt, "wc_ChaCha20Poly1305_Encrypt()"); ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad), plaintext, sizeof(plaintext), generatedCiphertext, generatedAuthTag); if (ret == 0) { ret = XMEMCMP(generatedCiphertext, cipher, sizeof(cipher)/sizeof(byte)); } /* Test bad args. */ if (ret == 0) { ret = wc_ChaCha20Poly1305_Encrypt(NULL, iv, aad, sizeof(aad), plaintext, sizeof(plaintext), generatedCiphertext, generatedAuthTag); if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Encrypt(key, NULL, aad, sizeof(aad), plaintext, sizeof(plaintext), generatedCiphertext, generatedAuthTag); } if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad), NULL, sizeof(plaintext), generatedCiphertext, generatedAuthTag); } if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad), plaintext, 0, generatedCiphertext, generatedAuthTag); } if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad), plaintext, sizeof(plaintext), NULL, generatedAuthTag); } if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Encrypt(key, iv, aad, sizeof(aad), plaintext, sizeof(plaintext), generatedCiphertext, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret != 0) { return ret; } printf(testingFmt, "wc_ChaCha20Poly1305_Decrypt()"); ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), cipher, sizeof(cipher), authTag, generatedPlaintext); if (ret == 0) { ret = XMEMCMP(generatedPlaintext, plaintext, sizeof(plaintext)/sizeof(byte)); } /* Test bad args. */ if (ret == 0) { ret = wc_ChaCha20Poly1305_Decrypt(NULL, iv, aad, sizeof(aad), cipher, sizeof(cipher), authTag, generatedPlaintext); if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Decrypt(key, NULL, aad, sizeof(aad), cipher, sizeof(cipher), authTag, generatedPlaintext); } if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), NULL, sizeof(cipher), authTag, generatedPlaintext); } if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), cipher, sizeof(cipher), NULL, generatedPlaintext); } if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), cipher, sizeof(cipher), authTag, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ChaCha20Poly1305_Decrypt(key, iv, aad, sizeof(aad), cipher, 0, authTag, generatedPlaintext); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test-wc_ChaCha20Poly1305_EncryptDecrypt */ /* * Testing function for wc_AesSetIV */ static int test_wc_AesSetIV (void) { int ret = 0; #if !defined(NO_AES) && defined(WOLFSSL_AES_128) Aes aes; byte key16[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; byte iv1[] = "1234567890abcdef"; byte iv2[] = "0987654321fedcba"; printf(testingFmt, "wc_AesSetIV()"); ret = wc_AesInit(&aes, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_AesSetKey(&aes, key16, (word32) sizeof(key16) / sizeof(byte), iv1, AES_ENCRYPTION); if(ret == 0) { ret = wc_AesSetIV(&aes, iv2); } /* Test bad args. */ if(ret == 0) { ret = wc_AesSetIV(NULL, iv1); if(ret == BAD_FUNC_ARG) { /* NULL iv should return 0. */ ret = wc_AesSetIV(&aes, NULL); } else { ret = WOLFSSL_FATAL_ERROR; } } wc_AesFree(&aes); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* test_wc_AesSetIV */ /* * Testing function for wc_AesSetKey(). */ static int test_wc_AesSetKey (void) { int ret = 0; #ifndef NO_AES Aes aes; byte key16[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; #ifdef WOLFSSL_AES_192 byte key24[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37 }; #endif #ifdef WOLFSSL_AES_256 byte key32[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; #endif byte badKey16[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65 }; byte iv[] = "1234567890abcdef"; printf(testingFmt, "wc_AesSetKey()"); ret = wc_AesInit(&aes, NULL, INVALID_DEVID); if (ret != 0) return ret; #ifdef WOLFSSL_AES_128 ret = wc_AesSetKey(&aes, key16, (word32) sizeof(key16) / sizeof(byte), iv, AES_ENCRYPTION); #endif #ifdef WOLFSSL_AES_192 if (ret == 0) { ret = wc_AesSetKey (&aes, key24, (word32) sizeof(key24) / sizeof(byte), iv, AES_ENCRYPTION); } #endif #ifdef WOLFSSL_AES_256 if (ret == 0) { ret = wc_AesSetKey (&aes, key32, (word32) sizeof(key32) / sizeof(byte), iv, AES_ENCRYPTION); } #endif /* Pass in bad args. */ if (ret == 0) { ret = wc_AesSetKey (NULL, key16, (word32) sizeof(key16) / sizeof(byte), iv, AES_ENCRYPTION); if (ret == BAD_FUNC_ARG) { ret = wc_AesSetKey(&aes, badKey16, (word32) sizeof(badKey16) / sizeof(byte), iv, AES_ENCRYPTION); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } wc_AesFree(&aes); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_AesSetKey */ /* * test function for wc_AesCbcEncrypt(), wc_AesCbcDecrypt(), * and wc_AesCbcDecryptWithKey() */ static int test_wc_AesCbcEncryptDecrypt (void) { int ret = 0; #if !defined(NO_AES) && defined(HAVE_AES_CBC) && defined(HAVE_AES_DECRYPT)&& \ defined(WOLFSSL_AES_256) Aes aes; byte key32[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; byte vector[] = /* Now is the time for all w/o trailing 0 */ { 0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74, 0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20, 0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20 }; byte iv[] = "1234567890abcdef"; byte enc[sizeof(vector)]; byte dec[sizeof(vector)]; int cbcE = WOLFSSL_FATAL_ERROR; int cbcD = WOLFSSL_FATAL_ERROR; int cbcDWK = WOLFSSL_FATAL_ERROR; byte dec2[sizeof(vector)]; /* Init stack variables. */ XMEMSET(enc, 0, sizeof(enc)); XMEMSET(dec, 0, sizeof(vector)); XMEMSET(dec2, 0, sizeof(vector)); ret = wc_AesInit(&aes, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_AesSetKey(&aes, key32, AES_BLOCK_SIZE * 2, iv, AES_ENCRYPTION); if (ret == 0) { ret = wc_AesCbcEncrypt(&aes, enc, vector, sizeof(vector)); if (ret == 0) { /* Re init for decrypt and set flag. */ cbcE = 0; ret = wc_AesSetKey(&aes, key32, AES_BLOCK_SIZE * 2, iv, AES_DECRYPTION); } if (ret == 0) { ret = wc_AesCbcDecrypt(&aes, dec, enc, AES_BLOCK_SIZE); if (ret != 0 || XMEMCMP(vector, dec, AES_BLOCK_SIZE) != 0) { ret = WOLFSSL_FATAL_ERROR; } else { /* Set flag. */ cbcD = 0; } } } /* If encrypt succeeds but cbc decrypt fails, we can still test. */ if (ret == 0 || (ret != 0 && cbcE == 0)) { ret = wc_AesCbcDecryptWithKey(dec2, enc, AES_BLOCK_SIZE, key32, sizeof(key32)/sizeof(byte), iv); if (ret == 0 || XMEMCMP(vector, dec2, AES_BLOCK_SIZE) == 0) { cbcDWK = 0; } } printf(testingFmt, "wc_AesCbcEncrypt()"); /* Pass in bad args */ if (cbcE == 0) { cbcE = wc_AesCbcEncrypt(NULL, enc, vector, sizeof(vector)); if (cbcE == BAD_FUNC_ARG) { cbcE = wc_AesCbcEncrypt(&aes, NULL, vector, sizeof(vector)); } if (cbcE == BAD_FUNC_ARG) { cbcE = wc_AesCbcEncrypt(&aes, enc, NULL, sizeof(vector)); } if (cbcE == BAD_FUNC_ARG) { cbcE = 0; } else { cbcE = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, cbcE == 0 ? passed : failed); if (cbcE != 0) { wc_AesFree(&aes); return cbcE; } printf(testingFmt, "wc_AesCbcDecrypt()"); if (cbcD == 0) { cbcD = wc_AesCbcDecrypt(NULL, dec, enc, AES_BLOCK_SIZE); if (cbcD == BAD_FUNC_ARG) { cbcD = wc_AesCbcDecrypt(&aes, NULL, enc, AES_BLOCK_SIZE); } if (cbcD == BAD_FUNC_ARG) { cbcD = wc_AesCbcDecrypt(&aes, dec, NULL, AES_BLOCK_SIZE); } if (cbcD == BAD_FUNC_ARG) { cbcD = wc_AesCbcDecrypt(&aes, dec, enc, AES_BLOCK_SIZE * 2 - 1); } if (cbcD == BAD_FUNC_ARG) { cbcD = 0; } else { cbcD = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, cbcD == 0 ? passed : failed); if (cbcD != 0) { wc_AesFree(&aes); return cbcD; } printf(testingFmt, "wc_AesCbcDecryptWithKey()"); if (cbcDWK == 0) { cbcDWK = wc_AesCbcDecryptWithKey(NULL, enc, AES_BLOCK_SIZE, key32, sizeof(key32)/sizeof(byte), iv); if (cbcDWK == BAD_FUNC_ARG) { cbcDWK = wc_AesCbcDecryptWithKey(dec2, NULL, AES_BLOCK_SIZE, key32, sizeof(key32)/sizeof(byte), iv); } if (cbcDWK == BAD_FUNC_ARG) { cbcDWK = wc_AesCbcDecryptWithKey(dec2, enc, AES_BLOCK_SIZE, NULL, sizeof(key32)/sizeof(byte), iv); } if (cbcDWK == BAD_FUNC_ARG) { cbcDWK = wc_AesCbcDecryptWithKey(dec2, enc, AES_BLOCK_SIZE, key32, sizeof(key32)/sizeof(byte), NULL); } if (cbcDWK == BAD_FUNC_ARG) { cbcDWK = 0; } else { cbcDWK = WOLFSSL_FATAL_ERROR; } } wc_AesFree(&aes); printf(resultFmt, cbcDWK == 0 ? passed : failed); if (cbcDWK != 0) { return cbcDWK; } #endif return ret; } /* END test_wc_AesCbcEncryptDecrypt */ /* * Testing wc_AesCtrEncrypt and wc_AesCtrDecrypt */ static int test_wc_AesCtrEncryptDecrypt (void) { int ret = 0; #if !defined(NO_AES) && defined(WOLFSSL_AES_COUNTER) && defined(WOLFSSL_AES_256) Aes aesEnc, aesDec; byte key32[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; byte vector[] = /* Now is the time for all w/o trailing 0 */ { 0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74, 0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20, 0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20 }; byte iv[] = "1234567890abcdef"; byte enc[AES_BLOCK_SIZE * 2]; byte dec[AES_BLOCK_SIZE * 2]; /* Init stack variables. */ XMEMSET(enc, 0, AES_BLOCK_SIZE * 2); XMEMSET(dec, 0, AES_BLOCK_SIZE * 2); printf(testingFmt, "wc_AesCtrEncrypt()"); ret = wc_AesInit(&aesEnc, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_AesInit(&aesDec, NULL, INVALID_DEVID); if (ret != 0) { wc_AesFree(&aesEnc); return ret; } ret = wc_AesSetKey(&aesEnc, key32, AES_BLOCK_SIZE * 2, iv, AES_ENCRYPTION); if (ret == 0) { ret = wc_AesCtrEncrypt(&aesEnc, enc, vector, sizeof(vector)/sizeof(byte)); if (ret == 0) { /* Decrypt with wc_AesCtrEncrypt() */ ret = wc_AesSetKey(&aesDec, key32, AES_BLOCK_SIZE * 2, iv, AES_ENCRYPTION); } if (ret == 0) { ret = wc_AesCtrEncrypt(&aesDec, dec, enc, sizeof(enc)/sizeof(byte)); if (ret != 0 || XMEMCMP(vector, dec, sizeof(vector))) { ret = WOLFSSL_FATAL_ERROR; } } } /* Test bad args. */ if (ret == 0) { ret = wc_AesCtrEncrypt(NULL, dec, enc, sizeof(enc)/sizeof(byte)); if (ret == BAD_FUNC_ARG) { ret = wc_AesCtrEncrypt(&aesDec, NULL, enc, sizeof(enc)/sizeof(byte)); } if (ret == BAD_FUNC_ARG) { ret = wc_AesCtrEncrypt(&aesDec, dec, NULL, sizeof(enc)/sizeof(byte)); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } wc_AesFree(&aesEnc); wc_AesFree(&aesDec); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_AesCtrEncryptDecrypt */ /* * test function for wc_AesGcmSetKey() */ static int test_wc_AesGcmSetKey (void) { int ret = 0; #if !defined(NO_AES) && defined(HAVE_AESGCM) Aes aes; #ifdef WOLFSSL_AES_128 byte key16[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; #endif #ifdef WOLFSSL_AES_192 byte key24[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37 }; #endif #ifdef WOLFSSL_AES_256 byte key32[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; #endif byte badKey16[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65 }; byte badKey24[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36 }; byte badKey32[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x37, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65 }; printf(testingFmt, "wc_AesGcmSetKey()"); ret = wc_AesInit(&aes, NULL, INVALID_DEVID); if (ret != 0) return ret; #ifdef WOLFSSL_AES_128 ret = wc_AesGcmSetKey(&aes, key16, sizeof(key16)/sizeof(byte)); #endif #ifdef WOLFSSL_AES_192 if (ret == 0) { ret = wc_AesGcmSetKey(&aes, key24, sizeof(key24)/sizeof(byte)); } #endif #ifdef WOLFSSL_AES_256 if (ret == 0) { ret = wc_AesGcmSetKey(&aes, key32, sizeof(key32)/sizeof(byte)); } #endif /* Pass in bad args. */ if (ret == 0) { ret = wc_AesGcmSetKey(&aes, badKey16, sizeof(badKey16)/sizeof(byte)); if (ret == BAD_FUNC_ARG) { ret = wc_AesGcmSetKey(&aes, badKey24, sizeof(badKey24)/sizeof(byte)); } if (ret == BAD_FUNC_ARG) { ret = wc_AesGcmSetKey(&aes, badKey32, sizeof(badKey32)/sizeof(byte)); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } wc_AesFree(&aes); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_AesGcmSetKey */ /* * test function for wc_AesGcmEncrypt and wc_AesGcmDecrypt */ static int test_wc_AesGcmEncryptDecrypt (void) { int ret = 0; #if !defined(NO_AES) && defined(HAVE_AESGCM) && defined(WOLFSSL_AES_256) Aes aes; byte key32[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; byte vector[] = /* Now is the time for all w/o trailing 0 */ { 0x4e,0x6f,0x77,0x20,0x69,0x73,0x20,0x74, 0x68,0x65,0x20,0x74,0x69,0x6d,0x65,0x20, 0x66,0x6f,0x72,0x20,0x61,0x6c,0x6c,0x20 }; const byte a[] = { 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xab, 0xad, 0xda, 0xd2 }; byte iv[] = "1234567890a"; byte longIV[] = "1234567890abcdefghij"; byte enc[sizeof(vector)]; byte resultT[AES_BLOCK_SIZE]; byte dec[sizeof(vector)]; int gcmD = WOLFSSL_FATAL_ERROR; int gcmE = WOLFSSL_FATAL_ERROR; /* Init stack variables. */ XMEMSET(enc, 0, sizeof(vector)); XMEMSET(dec, 0, sizeof(vector)); XMEMSET(resultT, 0, AES_BLOCK_SIZE); ret = wc_AesInit(&aes, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_AesGcmSetKey(&aes, key32, sizeof(key32)/sizeof(byte)); if (ret == 0) { gcmE = wc_AesGcmEncrypt(&aes, enc, vector, sizeof(vector), iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT), a, sizeof(a)); } if (gcmE == 0) { /* If encrypt fails, no decrypt. */ gcmD = wc_AesGcmDecrypt(&aes, dec, enc, sizeof(vector), iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT), a, sizeof(a)); if(gcmD == 0 && (XMEMCMP(vector, dec, sizeof(vector)) != 0)) { gcmD = WOLFSSL_FATAL_ERROR; } } printf(testingFmt, "wc_AesGcmEncrypt()"); /*Test bad args for wc_AesGcmEncrypt and wc_AesGcmDecrypt */ if (gcmE == 0) { gcmE = wc_AesGcmEncrypt(NULL, enc, vector, sizeof(vector), iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT), a, sizeof(a)); if (gcmE == BAD_FUNC_ARG) { gcmE = wc_AesGcmEncrypt(&aes, enc, vector, sizeof(vector), iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT) + 1, a, sizeof(a)); } if (gcmE == BAD_FUNC_ARG) { gcmE = wc_AesGcmEncrypt(&aes, enc, vector, sizeof(vector), iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT) - 5, a, sizeof(a)); } if (gcmE == BAD_FUNC_ARG) { gcmE = 0; } else { gcmE = WOLFSSL_FATAL_ERROR; } } /* This case is now considered good. Long IVs are now allowed. * Except for the original FIPS release, it still has an upper * bound on the IV length. */ #if !defined(HAVE_FIPS) || \ (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION >= 2)) if (gcmE == 0) { gcmE = wc_AesGcmEncrypt(&aes, enc, vector, sizeof(vector), longIV, sizeof(longIV)/sizeof(byte), resultT, sizeof(resultT), a, sizeof(a)); } #else (void)longIV; #endif /* Old FIPS */ /* END wc_AesGcmEncrypt */ printf(resultFmt, gcmE == 0 ? passed : failed); if (gcmE != 0) { wc_AesFree(&aes); return gcmE; } #ifdef HAVE_AES_DECRYPT printf(testingFmt, "wc_AesGcmDecrypt()"); if (gcmD == 0) { gcmD = wc_AesGcmDecrypt(NULL, dec, enc, sizeof(enc)/sizeof(byte), iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT), a, sizeof(a)); if (gcmD == BAD_FUNC_ARG) { gcmD = wc_AesGcmDecrypt(&aes, NULL, enc, sizeof(enc)/sizeof(byte), iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT), a, sizeof(a)); } if (gcmD == BAD_FUNC_ARG) { gcmD = wc_AesGcmDecrypt(&aes, dec, NULL, sizeof(enc)/sizeof(byte), iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT), a, sizeof(a)); } if (gcmD == BAD_FUNC_ARG) { gcmD = wc_AesGcmDecrypt(&aes, dec, enc, sizeof(enc)/sizeof(byte), NULL, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT), a, sizeof(a)); } if (gcmD == BAD_FUNC_ARG) { gcmD = wc_AesGcmDecrypt(&aes, dec, enc, sizeof(enc)/sizeof(byte), iv, sizeof(iv)/sizeof(byte), NULL, sizeof(resultT), a, sizeof(a)); } if (gcmD == BAD_FUNC_ARG) { gcmD = wc_AesGcmDecrypt(&aes, dec, enc, sizeof(enc)/sizeof(byte), iv, sizeof(iv)/sizeof(byte), resultT, sizeof(resultT) + 1, a, sizeof(a)); } if (gcmD == BAD_FUNC_ARG) { gcmD = 0; } else { gcmD = WOLFSSL_FATAL_ERROR; } } /* END wc_AesGcmDecrypt */ printf(resultFmt, gcmD == 0 ? passed : failed); #endif /* HAVE_AES_DECRYPT */ wc_AesFree(&aes); #endif return ret; } /* END test_wc_AesGcmEncryptDecrypt */ /* * unit test for wc_GmacSetKey() */ static int test_wc_GmacSetKey (void) { int ret = 0; #if !defined(NO_AES) && defined(HAVE_AESGCM) Gmac gmac; byte key16[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; #ifdef WOLFSSL_AES_192 byte key24[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37 }; #endif #ifdef WOLFSSL_AES_256 byte key32[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; #endif byte badKey16[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x66 }; byte badKey24[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37 }; byte badKey32[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; printf(testingFmt, "wc_GmacSetKey()"); ret = wc_AesInit(&gmac.aes, NULL, INVALID_DEVID); if (ret != 0) return ret; #ifdef WOLFSSL_AES_128 ret = wc_GmacSetKey(&gmac, key16, sizeof(key16)/sizeof(byte)); #endif #ifdef WOLFSSL_AES_192 if (ret == 0) { ret = wc_GmacSetKey(&gmac, key24, sizeof(key24)/sizeof(byte)); } #endif #ifdef WOLFSSL_AES_256 if (ret == 0) { ret = wc_GmacSetKey(&gmac, key32, sizeof(key32)/sizeof(byte)); } #endif /* Pass in bad args. */ if (ret == 0) { ret = wc_GmacSetKey(NULL, key16, sizeof(key16)/sizeof(byte)); if (ret == BAD_FUNC_ARG) { ret = wc_GmacSetKey(&gmac, NULL, sizeof(key16)/sizeof(byte)); } if (ret == BAD_FUNC_ARG) { ret = wc_GmacSetKey(&gmac, badKey16, sizeof(badKey16)/sizeof(byte)); } if (ret == BAD_FUNC_ARG) { ret = wc_GmacSetKey(&gmac, badKey24, sizeof(badKey24)/sizeof(byte)); } if (ret == BAD_FUNC_ARG) { ret = wc_GmacSetKey(&gmac, badKey32, sizeof(badKey32)/sizeof(byte)); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } wc_AesFree(&gmac.aes); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_GmacSetKey */ /* * unit test for wc_GmacUpdate */ static int test_wc_GmacUpdate (void) { int ret = 0; #if !defined(NO_AES) && defined(HAVE_AESGCM) Gmac gmac; #ifdef WOLFSSL_AES_128 const byte key16[] = { 0x89, 0xc9, 0x49, 0xe9, 0xc8, 0x04, 0xaf, 0x01, 0x4d, 0x56, 0x04, 0xb3, 0x94, 0x59, 0xf2, 0xc8 }; #endif #ifdef WOLFSSL_AES_192 byte key24[] = { 0x41, 0xc5, 0xda, 0x86, 0x67, 0xef, 0x72, 0x52, 0x20, 0xff, 0xe3, 0x9a, 0xe0, 0xac, 0x59, 0x0a, 0xc9, 0xfc, 0xa7, 0x29, 0xab, 0x60, 0xad, 0xa0 }; #endif #ifdef WOLFSSL_AES_256 byte key32[] = { 0x78, 0xdc, 0x4e, 0x0a, 0xaf, 0x52, 0xd9, 0x35, 0xc3, 0xc0, 0x1e, 0xea, 0x57, 0x42, 0x8f, 0x00, 0xca, 0x1f, 0xd4, 0x75, 0xf5, 0xda, 0x86, 0xa4, 0x9c, 0x8d, 0xd7, 0x3d, 0x68, 0xc8, 0xe2, 0x23 }; #endif #ifdef WOLFSSL_AES_128 const byte authIn[] = { 0x82, 0xad, 0xcd, 0x63, 0x8d, 0x3f, 0xa9, 0xd9, 0xf3, 0xe8, 0x41, 0x00, 0xd6, 0x1e, 0x07, 0x77 }; #endif #ifdef WOLFSSL_AES_192 const byte authIn2[] = { 0x8b, 0x5c, 0x12, 0x4b, 0xef, 0x6e, 0x2f, 0x0f, 0xe4, 0xd8, 0xc9, 0x5c, 0xd5, 0xfa, 0x4c, 0xf1 }; #endif const byte authIn3[] = { 0xb9, 0x6b, 0xaa, 0x8c, 0x1c, 0x75, 0xa6, 0x71, 0xbf, 0xb2, 0xd0, 0x8d, 0x06, 0xbe, 0x5f, 0x36 }; #ifdef WOLFSSL_AES_128 const byte tag1[] = /* Known. */ { 0x88, 0xdb, 0x9d, 0x62, 0x17, 0x2e, 0xd0, 0x43, 0xaa, 0x10, 0xf1, 0x6d, 0x22, 0x7d, 0xc4, 0x1b }; #endif #ifdef WOLFSSL_AES_192 const byte tag2[] = /* Known */ { 0x20, 0x4b, 0xdb, 0x1b, 0xd6, 0x21, 0x54, 0xbf, 0x08, 0x92, 0x2a, 0xaa, 0x54, 0xee, 0xd7, 0x05 }; #endif const byte tag3[] = /* Known */ { 0x3e, 0x5d, 0x48, 0x6a, 0xa2, 0xe3, 0x0b, 0x22, 0xe0, 0x40, 0xb8, 0x57, 0x23, 0xa0, 0x6e, 0x76 }; #ifdef WOLFSSL_AES_128 const byte iv[] = { 0xd1, 0xb1, 0x04, 0xc8, 0x15, 0xbf, 0x1e, 0x94, 0xe2, 0x8c, 0x8f, 0x16 }; #endif #ifdef WOLFSSL_AES_192 const byte iv2[] = { 0x05, 0xad, 0x13, 0xa5, 0xe2, 0xc2, 0xab, 0x66, 0x7e, 0x1a, 0x6f, 0xbc }; #endif const byte iv3[] = { 0xd7, 0x9c, 0xf2, 0x2d, 0x50, 0x4c, 0xc7, 0x93, 0xc3, 0xfb, 0x6c, 0x8a }; byte tagOut[16]; byte tagOut2[24]; byte tagOut3[32]; /* Init stack varaibles. */ XMEMSET(tagOut, 0, sizeof(tagOut)); XMEMSET(tagOut2, 0, sizeof(tagOut2)); XMEMSET(tagOut3, 0, sizeof(tagOut3)); printf(testingFmt, "wc_GmacUpdate()"); ret = wc_AesInit(&gmac.aes, NULL, INVALID_DEVID); if (ret != 0) return ret; #ifdef WOLFSSL_AES_128 ret = wc_GmacSetKey(&gmac, key16, sizeof(key16)); if (ret == 0) { ret = wc_GmacUpdate(&gmac, iv, sizeof(iv), authIn, sizeof(authIn), tagOut, sizeof(tag1)); if (ret == 0) { ret = XMEMCMP(tag1, tagOut, sizeof(tag1)); } } #endif #ifdef WOLFSSL_AES_192 if (ret == 0) { XMEMSET(&gmac, 0, sizeof(Gmac)); ret = wc_GmacSetKey(&gmac, key24, sizeof(key24)/sizeof(byte)); } if (ret == 0) { ret = wc_GmacUpdate(&gmac, iv2, sizeof(iv2), authIn2, sizeof(authIn2), tagOut2, sizeof(tag2)); } if (ret == 0) { ret = XMEMCMP(tagOut2, tag2, sizeof(tag2)); } #endif #ifdef WOLFSSL_AES_256 if (ret == 0) { XMEMSET(&gmac, 0, sizeof(Gmac)); ret = wc_GmacSetKey(&gmac, key32, sizeof(key32)/sizeof(byte)); } if (ret == 0) { ret = wc_GmacUpdate(&gmac, iv3, sizeof(iv3), authIn3, sizeof(authIn3), tagOut3, sizeof(tag3)); } if (ret == 0) { ret = XMEMCMP(tag3, tagOut3, sizeof(tag3)); } #endif /*Pass bad args. */ if (ret == 0) { ret = wc_GmacUpdate(NULL, iv3, sizeof(iv3), authIn3, sizeof(authIn3), tagOut3, sizeof(tag3)); if (ret == BAD_FUNC_ARG) { ret = wc_GmacUpdate(&gmac, iv3, sizeof(iv3), authIn3, sizeof(authIn3), tagOut3, sizeof(tag3) - 5); } if (ret == BAD_FUNC_ARG) { ret = wc_GmacUpdate(&gmac, iv3, sizeof(iv3), authIn3, sizeof(authIn3), tagOut3, sizeof(tag3) + 1); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } wc_AesFree(&gmac.aes); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_GmacUpdate */ /* * testing wc_CamelliaSetKey */ static int test_wc_CamelliaSetKey (void) { int ret = 0; #ifdef HAVE_CAMELLIA Camellia camellia; /*128-bit key*/ static const byte key16[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 }; /* 192-bit key */ static const byte key24[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }; /* 256-bit key */ static const byte key32[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff }; static const byte iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }; printf(testingFmt, "wc_CamelliaSetKey()"); ret = wc_CamelliaSetKey(&camellia, key16, (word32)sizeof(key16), iv); if (ret == 0) { ret = wc_CamelliaSetKey(&camellia, key16, (word32)sizeof(key16), NULL); if (ret == 0) { ret = wc_CamelliaSetKey(&camellia, key24, (word32)sizeof(key24), iv); } if (ret == 0) { ret = wc_CamelliaSetKey(&camellia, key24, (word32)sizeof(key24), NULL); } if (ret == 0) { ret = wc_CamelliaSetKey(&camellia, key32, (word32)sizeof(key32), iv); } if (ret == 0) { ret = wc_CamelliaSetKey(&camellia, key32, (word32)sizeof(key32), NULL); } } /* Bad args. */ if (ret == 0) { ret = wc_CamelliaSetKey(NULL, key32, (word32)sizeof(key32), iv); if (ret != BAD_FUNC_ARG) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } } /* END bad args. */ #endif return ret; } /* END test_wc_CammeliaSetKey */ /* * Testing wc_CamelliaSetIV() */ static int test_wc_CamelliaSetIV (void) { int ret = 0; #ifdef HAVE_CAMELLIA Camellia camellia; static const byte iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }; printf(testingFmt, "wc_CamelliaSetIV()"); ret = wc_CamelliaSetIV(&camellia, iv); if (ret == 0) { ret = wc_CamelliaSetIV(&camellia, NULL); } /* Bad args. */ if (ret == 0) { ret = wc_CamelliaSetIV(NULL, NULL); if (ret != BAD_FUNC_ARG) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /*END test_wc_CamelliaSetIV*/ /* * Test wc_CamelliaEncryptDirect and wc_CamelliaDecryptDirect */ static int test_wc_CamelliaEncryptDecryptDirect (void) { int ret = 0; #ifdef HAVE_CAMELLIA Camellia camellia; static const byte key24[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }; static const byte iv[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }; static const byte plainT[] = { 0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A }; byte enc[sizeof(plainT)]; byte dec[sizeof(enc)]; int camE = WOLFSSL_FATAL_ERROR; int camD = WOLFSSL_FATAL_ERROR; /*Init stack variables.*/ XMEMSET(enc, 0, 16); XMEMSET(enc, 0, 16); ret = wc_CamelliaSetKey(&camellia, key24, (word32)sizeof(key24), iv); if (ret == 0) { ret = wc_CamelliaEncryptDirect(&camellia, enc, plainT); if (ret == 0) { ret = wc_CamelliaDecryptDirect(&camellia, dec, enc); if (XMEMCMP(plainT, dec, CAMELLIA_BLOCK_SIZE)) { ret = WOLFSSL_FATAL_ERROR; } } } printf(testingFmt, "wc_CamelliaEncryptDirect()"); /* Pass bad args. */ if (ret == 0) { camE = wc_CamelliaEncryptDirect(NULL, enc, plainT); if (camE == BAD_FUNC_ARG) { camE = wc_CamelliaEncryptDirect(&camellia, NULL, plainT); } if (camE == BAD_FUNC_ARG) { camE = wc_CamelliaEncryptDirect(&camellia, enc, NULL); } if (camE == BAD_FUNC_ARG) { camE = 0; } else { camE = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, camE == 0 ? passed : failed); if (camE != 0) { return camE; } printf(testingFmt, "wc_CamelliaDecryptDirect()"); if (ret == 0) { camD = wc_CamelliaDecryptDirect(NULL, dec, enc); if (camD == BAD_FUNC_ARG) { camD = wc_CamelliaDecryptDirect(&camellia, NULL, enc); } if (camD == BAD_FUNC_ARG) { camD = wc_CamelliaDecryptDirect(&camellia, dec, NULL); } if (camD == BAD_FUNC_ARG) { camD = 0; } else { camD = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, camD == 0 ? passed : failed); if (camD != 0) { return camD; } #endif return ret; } /* END test-wc_CamelliaEncryptDecryptDirect */ /* * Testing wc_CamelliaCbcEncrypt and wc_CamelliaCbcDecrypt */ static int test_wc_CamelliaCbcEncryptDecrypt (void) { int ret = 0; #ifdef HAVE_CAMELLIA Camellia camellia; static const byte key24[] = { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 }; static const byte plainT[] = { 0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A }; byte enc[CAMELLIA_BLOCK_SIZE]; byte dec[CAMELLIA_BLOCK_SIZE]; int camCbcE = WOLFSSL_FATAL_ERROR; int camCbcD = WOLFSSL_FATAL_ERROR; /* Init stack variables. */ XMEMSET(enc, 0, CAMELLIA_BLOCK_SIZE); XMEMSET(enc, 0, CAMELLIA_BLOCK_SIZE); ret = wc_CamelliaSetKey(&camellia, key24, (word32)sizeof(key24), NULL); if (ret == 0) { ret = wc_CamelliaCbcEncrypt(&camellia, enc, plainT, CAMELLIA_BLOCK_SIZE); if (ret != 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { ret = wc_CamelliaSetKey(&camellia, key24, (word32)sizeof(key24), NULL); if (ret == 0) { ret = wc_CamelliaCbcDecrypt(&camellia, dec, enc, CAMELLIA_BLOCK_SIZE); if (XMEMCMP(plainT, dec, CAMELLIA_BLOCK_SIZE)) { ret = WOLFSSL_FATAL_ERROR; } } } printf(testingFmt, "wc_CamelliaCbcEncrypt"); /* Pass in bad args. */ if (ret == 0) { camCbcE = wc_CamelliaCbcEncrypt(NULL, enc, plainT, CAMELLIA_BLOCK_SIZE); if (camCbcE == BAD_FUNC_ARG) { camCbcE = wc_CamelliaCbcEncrypt(&camellia, NULL, plainT, CAMELLIA_BLOCK_SIZE); } if (camCbcE == BAD_FUNC_ARG) { camCbcE = wc_CamelliaCbcEncrypt(&camellia, enc, NULL, CAMELLIA_BLOCK_SIZE); } if (camCbcE == BAD_FUNC_ARG) { camCbcE = 0; } else { camCbcE = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, camCbcE == 0 ? passed : failed); if (camCbcE != 0) { return camCbcE; } printf(testingFmt, "wc_CamelliaCbcDecrypt()"); if (ret == 0) { camCbcD = wc_CamelliaCbcDecrypt(NULL, dec, enc, CAMELLIA_BLOCK_SIZE); if (camCbcD == BAD_FUNC_ARG) { camCbcD = wc_CamelliaCbcDecrypt(&camellia, NULL, enc, CAMELLIA_BLOCK_SIZE); } if (camCbcD == BAD_FUNC_ARG) { camCbcD = wc_CamelliaCbcDecrypt(&camellia, dec, NULL, CAMELLIA_BLOCK_SIZE); } if (camCbcD == BAD_FUNC_ARG) { camCbcD = 0; } else { camCbcD = WOLFSSL_FATAL_ERROR; } } /* END bad args. */ printf(resultFmt, camCbcD == 0 ? passed : failed); if (camCbcD != 0) { return camCbcD; } #endif return ret; } /* END test_wc_CamelliaCbcEncryptDecrypt */ /* * Testing wc_RabbitSetKey() */ static int test_wc_RabbitSetKey (void) { int ret = 0; #ifndef NO_RABBIT Rabbit rabbit; const char* key = "\xAC\xC3\x51\xDC\xF1\x62\xFC\x3B" "\xFE\x36\x3D\x2E\x29\x13\x28\x91"; const char* iv = "\x59\x7E\x26\xC1\x75\xF5\x73\xC3"; printf(testingFmt, "wc_RabbitSetKey()"); ret = wc_RabbitSetKey(&rabbit, (byte*)key, (byte*)iv); /* Test bad args. */ if (ret == 0) { ret = wc_RabbitSetKey(NULL, (byte*)key, (byte*)iv); if (ret == BAD_FUNC_ARG) { ret = wc_RabbitSetKey(&rabbit, NULL, (byte*)iv); } if (ret == BAD_FUNC_ARG) { ret = wc_RabbitSetKey(&rabbit, (byte*)key, NULL); } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RabbitSetKey */ /* * Test wc_RabbitProcess() */ static int test_wc_RabbitProcess (void) { int ret = 0; #ifndef NO_RABBIT Rabbit enc, dec; byte cipher[25]; byte plain[25]; const char* key = "\xAC\xC3\x51\xDC\xF1\x62\xFC\x3B" "\xFE\x36\x3D\x2E\x29\x13\x28\x91"; const char* iv = "\x59\x7E\x26\xC1\x75\xF5\x73\xC3"; const char* input = "Everyone gets Friday off."; unsigned long int inlen = XSTRLEN(input); /* Initialize stack variables. */ XMEMSET(cipher, 0, sizeof(cipher)); XMEMSET(plain, 0, sizeof(plain)); printf(testingFmt, "wc_RabbitProcess()"); ret = wc_RabbitSetKey(&enc, (byte*)key, (byte*)iv); if (ret == 0) { ret = wc_RabbitSetKey(&dec, (byte*)key, (byte*)iv); } if (ret == 0) { ret = wc_RabbitProcess(&enc, cipher, (byte*)input, (word32)inlen); } if (ret == 0) { ret = wc_RabbitProcess(&dec, plain, cipher, (word32)inlen); if (ret != 0 || XMEMCMP(input, plain, inlen)) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } } /* Test bad args. */ if (ret == 0) { ret = wc_RabbitProcess(NULL, plain, cipher, (word32)inlen); if (ret == BAD_FUNC_ARG) { ret = wc_RabbitProcess(&dec, NULL, cipher, (word32)inlen); } if (ret == BAD_FUNC_ARG) { ret = wc_RabbitProcess(&dec, plain, NULL, (word32)inlen); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RabbitProcess */ /* * Testing wc_Arc4SetKey() */ static int test_wc_Arc4SetKey (void) { int ret = 0; #ifndef NO_RC4 Arc4 arc; const char* key[] = { "\x01\x23\x45\x67\x89\xab\xcd\xef" }; int keyLen = 8; printf(testingFmt, "wc_Arch4SetKey()"); ret = wc_Arc4SetKey(&arc, (byte*)key, keyLen); /* Test bad args. */ if (ret == 0) { ret = wc_Arc4SetKey(NULL, (byte*)key, keyLen); if (ret == BAD_FUNC_ARG) { ret = wc_Arc4SetKey(&arc, NULL, keyLen); } if (ret == BAD_FUNC_ARG) { /* Exits normally if keyLen is incorrect. */ ret = wc_Arc4SetKey(&arc, (byte*)key, 0); } else { ret = WOLFSSL_FATAL_ERROR; } } /* END test bad args. */ printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Arc4SetKey */ /* * Testing wc_Arc4Process for ENC/DEC. */ static int test_wc_Arc4Process (void) { int ret = 0; #ifndef NO_RC4 Arc4 enc, dec; const char* key[] = {"\x01\x23\x45\x67\x89\xab\xcd\xef"}; int keyLen = 8; const char* input[] = {"\x01\x23\x45\x67\x89\xab\xcd\xef"}; byte cipher[8]; byte plain[8]; /* Init stack variables */ XMEMSET(cipher, 0, sizeof(cipher)); XMEMSET(plain, 0, sizeof(plain)); /* Use for async. */ ret = wc_Arc4Init(&enc, NULL, INVALID_DEVID); if (ret == 0) { ret = wc_Arc4Init(&dec, NULL, INVALID_DEVID); } printf(testingFmt, "wc_Arc4Process()"); if (ret == 0) { ret = wc_Arc4SetKey(&enc, (byte*)key, keyLen); } if (ret == 0) { ret = wc_Arc4SetKey(&dec, (byte*)key, keyLen); } if (ret == 0) { ret = wc_Arc4Process(&enc, cipher, (byte*)input, keyLen); } if (ret == 0) { ret = wc_Arc4Process(&dec, plain, cipher, keyLen); if (ret != 0 || XMEMCMP(plain, input, keyLen)) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } } /* Bad args. */ if (ret == 0) { ret = wc_Arc4Process(NULL, plain, cipher, keyLen); if (ret == BAD_FUNC_ARG) { ret = wc_Arc4Process(&dec, NULL, cipher, keyLen); } if (ret == BAD_FUNC_ARG) { ret = wc_Arc4Process(&dec, plain, NULL, keyLen); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); wc_Arc4Free(&enc); wc_Arc4Free(&dec); #endif return ret; }/* END test_wc_Arc4Process */ /* * Testing wc_Init RsaKey() */ static int test_wc_InitRsaKey (void) { int ret = 0; #ifndef NO_RSA RsaKey key; printf(testingFmt, "wc_InitRsaKey()"); ret = wc_InitRsaKey(&key, NULL); /* Test bad args. */ if (ret == 0) { ret = wc_InitRsaKey(NULL, NULL); #ifndef HAVE_USER_RSA if (ret == BAD_FUNC_ARG) { ret = 0; } else { #else if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { #endif ret = WOLFSSL_FATAL_ERROR; } } /* end if */ if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_InitRsaKey */ /* * Testing wc_RsaPrivateKeyDecode() */ static int test_wc_RsaPrivateKeyDecode (void) { int ret = 0; #if !defined(NO_RSA) && (defined(USE_CERT_BUFFERS_1024)\ || defined(USE_CERT_BUFFERS_2048)) && !defined(HAVE_FIPS) RsaKey key; byte* tmp; word32 idx = 0; int bytes = 0; printf(testingFmt, "wc_RsaPrivateKeyDecode()"); tmp = (byte*)XMALLOC(FOURK_BUF, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { ret = wc_InitRsaKey(&key, NULL); } if (ret == 0) { #ifdef USE_CERT_BUFFERS_1024 XMEMCPY(tmp, client_key_der_1024, sizeof_client_key_der_1024); bytes = sizeof_client_key_der_1024; #else XMEMCPY(tmp, client_key_der_2048, sizeof_client_key_der_2048); bytes = sizeof_client_key_der_2048; #endif /* Use cert buffers. */ ret = wc_RsaPrivateKeyDecode(tmp, &idx, &key, (word32)bytes); } #ifndef HAVE_USER_RSA /* Test bad args. */ if (ret == 0) { ret = wc_RsaPrivateKeyDecode(NULL, &idx, &key, (word32)bytes); if (ret == ASN_PARSE_E) { ret = wc_RsaPrivateKeyDecode(tmp, NULL, &key, (word32)bytes); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaPrivateKeyDecode(tmp, &idx, NULL, (word32)bytes); } if (ret == ASN_PARSE_E) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else /* Test bad args. User RSA. */ if (ret == 0) { ret = wc_RsaPrivateKeyDecode(NULL, &idx, &key, (word32)bytes); if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaPrivateKeyDecode(tmp, NULL, &key, (word32)bytes); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaPrivateKeyDecode(tmp, &idx, NULL, (word32)bytes); } if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #endif if (tmp != NULL) { XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER); } if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaPrivateKeyDecode */ /* * Testing wc_RsaPublicKeyDecode() */ static int test_wc_RsaPublicKeyDecode (void) { int ret = 0; #if !defined(NO_RSA) && (defined(USE_CERT_BUFFERS_1024)\ || defined(USE_CERT_BUFFERS_2048)) && !defined(HAVE_FIPS) RsaKey keyPub; byte* tmp; word32 idx = 0; int bytes = 0; tmp = (byte*)XMALLOC(GEN_BUF, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (tmp == NULL) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { ret = wc_InitRsaKey(&keyPub, NULL); } if (ret == 0) { #ifdef USE_CERT_BUFFERS_1024 XMEMCPY(tmp, client_keypub_der_1024, sizeof_client_keypub_der_1024); bytes = sizeof_client_keypub_der_1024; #else XMEMCPY(tmp, client_keypub_der_2048, sizeof_client_keypub_der_2048); bytes = sizeof_client_keypub_der_2048; #endif printf(testingFmt, "wc_RsaPublicKeyDecode()"); ret = wc_RsaPublicKeyDecode(tmp, &idx, &keyPub, (word32)bytes); } #ifndef HAVE_USER_RSA /* Pass in bad args. */ if (ret == 0) { ret = wc_RsaPublicKeyDecode(NULL, &idx, &keyPub, (word32)bytes); if (ret == BAD_FUNC_ARG) { ret = wc_RsaPublicKeyDecode(tmp, NULL, &keyPub, (word32)bytes); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaPublicKeyDecode(tmp, &idx, NULL, (word32)bytes); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else /* Pass in bad args. */ if (ret == 0) { ret = wc_RsaPublicKeyDecode(NULL, &idx, &keyPub, (word32)bytes); if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaPublicKeyDecode(tmp, NULL, &keyPub, (word32)bytes); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaPublicKeyDecode(tmp, &idx, NULL, (word32)bytes); } if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #endif if (tmp != NULL) { XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER); } if (wc_FreeRsaKey(&keyPub) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaPublicKeyDecode */ /* * Testing wc_RsaPublicKeyDecodeRaw() */ static int test_wc_RsaPublicKeyDecodeRaw (void) { int ret = 0; #if !defined(NO_RSA) RsaKey key; const byte n = 0x23; const byte e = 0x03; int nSz = sizeof(n); int eSz = sizeof(e); printf(testingFmt, "wc_RsaPublicKeyDecodeRaw()"); ret = wc_InitRsaKey(&key, NULL); if (ret == 0) { ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, &e, eSz, &key); } #ifndef HAVE_USER_RSA /* Pass in bad args. */ if (ret == 0) { ret = wc_RsaPublicKeyDecodeRaw(NULL, nSz, &e, eSz, &key); if (ret == BAD_FUNC_ARG) { ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, NULL, eSz, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, &e, eSz, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else /* Pass in bad args. User RSA. */ if (ret == 0) { ret = wc_RsaPublicKeyDecodeRaw(NULL, nSz, &e, eSz, &key); if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, NULL, eSz, &key); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaPublicKeyDecodeRaw(&n, nSz, &e, eSz, NULL); } if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #endif if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaPublicKeyDecodeRaw */ #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) /* In FIPS builds, wc_MakeRsaKey() will return an error if it cannot find * a probable prime in 5*(modLen/2) attempts. In non-FIPS builds, it keeps * trying until it gets a probable prime. */ #ifdef WOLFSSL_FIPS static int MakeRsaKeyRetry(RsaKey* key, int size, long e, WC_RNG* rng) { int ret; for (;;) { ret = wc_MakeRsaKey(key, size, e, rng); if (ret != PRIME_GEN_E) break; printf("MakeRsaKey couldn't find prime; trying again.\n"); } return ret; } #define MAKE_RSA_KEY(a, b, c, d) MakeRsaKeyRetry(a, b, c, d) #else #define MAKE_RSA_KEY(a, b, c, d) wc_MakeRsaKey(a, b, c, d) #endif #endif /* * Testing wc_MakeRsaKey() */ static int test_wc_MakeRsaKey (void) { int ret = 0; #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) RsaKey genKey; WC_RNG rng; printf(testingFmt, "wc_MakeRsaKey()"); ret = wc_InitRsaKey(&genKey, NULL); if (ret == 0) { ret = wc_InitRng(&rng); if (ret == 0) { ret = MAKE_RSA_KEY(&genKey, 1024, WC_RSA_EXPONENT, &rng); if (ret == 0 && wc_FreeRsaKey(&genKey) != 0) { ret = WOLFSSL_FATAL_ERROR; } } } #ifndef HAVE_USER_RSA /* Test bad args. */ if (ret == 0) { ret = MAKE_RSA_KEY(NULL, 1024, WC_RSA_EXPONENT, &rng); if (ret == BAD_FUNC_ARG) { ret = MAKE_RSA_KEY(&genKey, 1024, WC_RSA_EXPONENT, NULL); } if (ret == BAD_FUNC_ARG) { /* e < 3 */ ret = MAKE_RSA_KEY(&genKey, 1024, 2, &rng); } if (ret == BAD_FUNC_ARG) { /* e & 1 == 0 */ ret = MAKE_RSA_KEY(&genKey, 1024, 6, &rng); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else /* Test bad args. */ if (ret == 0) { ret = MAKE_RSA_KEY(NULL, 1024, WC_RSA_EXPONENT, &rng); if (ret == USER_CRYPTO_ERROR) { ret = MAKE_RSA_KEY(&genKey, 1024, WC_RSA_EXPONENT, NULL); } if (ret == USER_CRYPTO_ERROR) { /* e < 3 */ ret = MAKE_RSA_KEY(&genKey, 1024, 2, &rng); } if (ret == USER_CRYPTO_ERROR) { /* e & 1 == 0 */ ret = MAKE_RSA_KEY(&genKey, 1024, 6, &rng); } if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #endif if (wc_FreeRng(&rng) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_MakeRsaKey */ /* * Test the bounds checking on the cipher text versus the key modulus. * 1. Make a new RSA key. * 2. Set c to 1. * 3. Decrypt c into k. (error) * 4. Copy the key modulus to c and sub 1 from the copy. * 5. Decrypt c into k. (error) * Valid bounds test cases are covered by all the other RSA tests. */ static int test_RsaDecryptBoundsCheck(void) { int ret = 0; #if !defined(NO_RSA) && defined(WC_RSA_NO_PADDING) && \ (defined(USE_CERT_BUFFERS_1024) || defined(USE_CERT_BUFFERS_2048)) && \ defined(WOLFSSL_PUBLIC_MP) && !defined(NO_RSA_BOUNDS_CHECK) RsaKey key; byte flatC[256]; word32 flatCSz; byte out[256]; word32 outSz = sizeof(out); WC_RNG rng; printf(testingFmt, "RSA decrypt bounds check"); ret = wc_InitRng(&rng); if (ret == 0) ret = wc_InitRsaKey(&key, NULL); if (ret == 0) { const byte* derKey; word32 derKeySz; word32 idx = 0; #ifdef USE_CERT_BUFFERS_1024 derKey = server_key_der_1024; derKeySz = (word32)sizeof_server_key_der_1024; flatCSz = 128; #else derKey = server_key_der_2048; derKeySz = (word32)sizeof_server_key_der_2048; flatCSz = 256; #endif ret = wc_RsaPrivateKeyDecode(derKey, &idx, &key, derKeySz); } if (ret == 0) { XMEMSET(flatC, 0, flatCSz); flatC[flatCSz-1] = 1; ret = wc_RsaDirect(flatC, flatCSz, out, &outSz, &key, RSA_PRIVATE_DECRYPT, &rng); } if (ret == RSA_OUT_OF_RANGE_E) { mp_int c; mp_init_copy(&c, &key.n); mp_sub_d(&c, 1, &c); mp_to_unsigned_bin(&c, flatC); ret = wc_RsaDirect(flatC, sizeof(flatC), out, &outSz, &key, RSA_PRIVATE_DECRYPT, NULL); mp_clear(&c); } if (ret == RSA_OUT_OF_RANGE_E) ret = 0; if (wc_FreeRsaKey(&key) || wc_FreeRng(&rng) || ret != 0) ret = WOLFSSL_FATAL_ERROR; printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaDecryptBoundsCheck */ /* * Testing wc_SetKeyUsage() */ static int test_wc_SetKeyUsage (void) { int ret = 0; #if !defined(NO_RSA) && defined(WOLFSSL_CERT_EXT) && !defined(HAVE_FIPS) Cert myCert; ret = wc_InitCert(&myCert); printf(testingFmt, "wc_SetKeyUsage()"); if (ret == 0) { ret = wc_SetKeyUsage(&myCert, "keyEncipherment,keyAgreement"); if (ret == 0) { ret = wc_SetKeyUsage(&myCert, "digitalSignature,nonRepudiation"); } if (ret == 0) { ret = wc_SetKeyUsage(&myCert, "contentCommitment,encipherOnly"); } if (ret == 0) { ret = wc_SetKeyUsage(&myCert, "decipherOnly"); } if (ret == 0) { ret = wc_SetKeyUsage(&myCert, "cRLSign,keyCertSign"); } } /* Test bad args. */ if (ret == 0) { ret = wc_SetKeyUsage(NULL, "decipherOnly"); if (ret == BAD_FUNC_ARG) { ret = wc_SetKeyUsage(&myCert, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_SetKeyUsage(&myCert, ""); } if (ret == KEYUSAGE_E) { ret = wc_SetKeyUsage(&myCert, ","); } if (ret == KEYUSAGE_E) { ret = wc_SetKeyUsage(&myCert, "digitalSignature, cRLSign"); } if (ret == KEYUSAGE_E) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_SetKeyUsage */ /* * Testing wc_RsaKeyToDer() */ static int test_wc_RsaKeyToDer (void) { int ret = 0; #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) RsaKey genKey; WC_RNG rng; byte* der; word32 derSz = 611; /* (2 x 128) + 2 (possible leading 00) + (5 x 64) + 5 (possible leading 00) + 3 (e) + 8 (ASN tag) + 10 (ASN length) + 4 seqSz + 3 version */ der = (byte*)XMALLOC(derSz, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (der == NULL) { ret = WOLFSSL_FATAL_ERROR; } /* Init structures. */ if (ret == 0) { ret = wc_InitRsaKey(&genKey, NULL); } if (ret == 0) { ret = wc_InitRng(&rng); } /* Make key. */ if (ret == 0) { ret = MAKE_RSA_KEY(&genKey, 1024, WC_RSA_EXPONENT, &rng); if (ret != 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(testingFmt, "wc_RsaKeyToDer()"); if (ret == 0) { ret = wc_RsaKeyToDer(&genKey, der, derSz); if (ret > 0) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_USER_RSA /* Pass bad args. */ if (ret == 0) { ret = wc_RsaKeyToDer(NULL, der, FOURK_BUF); if (ret == BAD_FUNC_ARG) { ret = wc_RsaKeyToDer(&genKey, NULL, FOURK_BUF); } if (ret == BAD_FUNC_ARG) { /* Try Public Key. */ genKey.type = 0; ret = wc_RsaKeyToDer(&genKey, der, FOURK_BUF); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else /* Pass bad args. */ if (ret == 0) { ret = wc_RsaKeyToDer(NULL, der, FOURK_BUF); if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaKeyToDer(&genKey, NULL, FOURK_BUF); } if (ret == USER_CRYPTO_ERROR) { /* Try Public Key. */ genKey.type = 0; ret = wc_RsaKeyToDer(&genKey, der, FOURK_BUF); } if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #endif if (der != NULL) { XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER); } if (wc_FreeRsaKey(&genKey) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } if (wc_FreeRng(&rng) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaKeyToDer */ /* * Testing wc_RsaKeyToPublicDer() */ static int test_wc_RsaKeyToPublicDer (void) { int ret = 0; #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) RsaKey key; WC_RNG rng; byte* der; word32 derLen = 162; der = (byte*)XMALLOC(derLen, NULL, DYNAMIC_TYPE_TMP_BUFFER); if (der == NULL) { ret = WOLFSSL_FATAL_ERROR; } if (ret == 0) { ret = wc_InitRsaKey(&key, NULL); } if (ret == 0) { ret = wc_InitRng(&rng); } if (ret == 0) { ret = MAKE_RSA_KEY(&key, 1024, WC_RSA_EXPONENT, &rng); } printf(testingFmt, "wc_RsaKeyToPublicDer()"); if (ret == 0) { ret = wc_RsaKeyToPublicDer(&key, der, derLen); if (ret >= 0) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_USER_RSA /* Pass in bad args. */ if (ret == 0) { ret = wc_RsaKeyToPublicDer(NULL, der, derLen); if (ret == BAD_FUNC_ARG) { ret = wc_RsaKeyToPublicDer(&key, NULL, derLen); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaKeyToPublicDer(&key, der, -1); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else /* Pass in bad args. */ if (ret == 0) { ret = wc_RsaKeyToPublicDer(NULL, der, derLen); if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaKeyToPublicDer(&key, NULL, derLen); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaKeyToPublicDer(&key, der, -1); } if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #endif if (der != NULL) { XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER); } if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } if (wc_FreeRng(&rng) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaKeyToPublicDer */ /* * Testing wc_RsaPublicEncrypt() and wc_RsaPrivateDecrypt() */ static int test_wc_RsaPublicEncryptDecrypt (void) { int ret = 0; #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) RsaKey key; WC_RNG rng; const char* inStr = "Everyone gets Friday off."; word32 cipherLen = 128; word32 plainLen = 25; word32 inLen = (word32)XSTRLEN(inStr); DECLARE_VAR_INIT(in, byte, inLen, inStr, NULL); DECLARE_VAR(plain, byte, plainLen, NULL); DECLARE_VAR(cipher, byte, cipherLen, NULL); ret = wc_InitRsaKey(&key, NULL); if (ret == 0) { ret = wc_InitRng(&rng); } if (ret == 0) { ret = MAKE_RSA_KEY(&key, 1024, WC_RSA_EXPONENT, &rng); } /* Encrypt. */ printf(testingFmt, "wc_RsaPublicEncrypt()"); if (ret == 0) { ret = wc_RsaPublicEncrypt(in, inLen, cipher, cipherLen, &key, &rng); if (ret >= 0) { cipherLen = ret; ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } /* Pass bad args. */ /* Tests PsaPublicEncryptEx() which, is tested by another fn. No need dup.*/ printf(resultFmt, ret == 0 ? passed : failed); if (ret != 0) { return ret; } /* Decrypt */ printf(testingFmt, "wc_RsaPrivateDecrypt()"); #if defined(WC_RSA_BLINDING) /* Bind rng */ if (ret == 0) { ret = wc_RsaSetRNG(&key, &rng); } #endif if (ret == 0) { ret = wc_RsaPrivateDecrypt(cipher, cipherLen, plain, plainLen, &key); } if (ret >= 0) { ret = XMEMCMP(plain, inStr, plainLen); } /* Pass in bad args. */ /* Tests RsaPrivateDecryptEx() which, is tested by another fn. No need dup.*/ FREE_VAR(in, NULL); FREE_VAR(plain, NULL); FREE_VAR(cipher, NULL); if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } if (wc_FreeRng(&rng) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaPublicEncryptDecrypt */ /* * Testing wc_RsaPrivateDecrypt_ex() and wc_RsaPrivateDecryptInline_ex() */ static int test_wc_RsaPublicEncryptDecrypt_ex (void) { int ret = 0; #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) && !defined(HAVE_FIPS)\ && !defined(WC_NO_RSA_OAEP) && !defined(HAVE_USER_RSA)\ && !defined(NO_SHA) RsaKey key; WC_RNG rng; const char* inStr = "Everyone gets Friday off."; word32 inLen = (word32)XSTRLEN(inStr); const word32 cipherSz = 128; const word32 plainSz = 25; byte* res = NULL; int idx = 0; DECLARE_VAR_INIT(in, byte, inLen, inStr, NULL); DECLARE_VAR(plain, byte, plainSz, NULL); DECLARE_VAR(cipher, byte, cipherSz, NULL); /* Initialize stack structures. */ XMEMSET(&rng, 0, sizeof(rng)); XMEMSET(&key, 0, sizeof(key)); ret = wc_InitRsaKey_ex(&key, NULL, INVALID_DEVID); if (ret == 0) { ret = wc_InitRng(&rng); } if (ret == 0) { ret = MAKE_RSA_KEY(&key, 1024, WC_RSA_EXPONENT, &rng); } /* Encrypt */ printf(testingFmt, "wc_RsaPublicEncrypt_ex()"); if (ret == 0) { ret = wc_RsaPublicEncrypt_ex(in, inLen, cipher, cipherSz, &key, &rng, WC_RSA_OAEP_PAD, WC_HASH_TYPE_SHA, WC_MGF1SHA1, NULL, 0); if (ret >= 0) { idx = ret; ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } /*Pass bad args.*/ /* Tests RsaPublicEncryptEx again. No need duplicate. */ printf(resultFmt, ret == 0 ? passed : failed); if (ret != 0) { return ret; } /* Decrypt */ printf(testingFmt, "wc_RsaPrivateDecrypt_ex()"); #if defined(WC_RSA_BLINDING) if (ret == 0) { ret = wc_RsaSetRNG(&key, &rng); } #endif if (ret == 0) { ret = wc_RsaPrivateDecrypt_ex(cipher, (word32)idx, plain, plainSz, &key, WC_RSA_OAEP_PAD, WC_HASH_TYPE_SHA, WC_MGF1SHA1, NULL, 0); } if (ret >= 0) { if (!XMEMCMP(plain, inStr, plainSz)) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } /*Pass bad args.*/ /* Tests RsaPrivateDecryptEx() again. No need duplicate. */ printf(resultFmt, ret == 0 ? passed : failed); if (ret != 0) { return ret; } printf(testingFmt, "wc_RsaPrivateDecryptInline_ex()"); if (ret == 0) { ret = wc_RsaPrivateDecryptInline_ex(cipher, (word32)idx, &res, &key, WC_RSA_OAEP_PAD, WC_HASH_TYPE_SHA, WC_MGF1SHA1, NULL, 0); if (ret >= 0) { if (!XMEMCMP(inStr, res, plainSz)) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } } FREE_VAR(in, NULL); FREE_VAR(plain, NULL); FREE_VAR(cipher, NULL); if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } if (wc_FreeRng(&rng) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaPublicEncryptDecrypt_ex */ /* * Tesing wc_RsaSSL_Sign() and wc_RsaSSL_Verify() */ static int test_wc_RsaSSL_SignVerify (void) { int ret = 0; #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) RsaKey key; WC_RNG rng; const char* inStr = "Everyone gets Friday off."; const word32 outSz = 128; const word32 plainSz = 25; word32 inLen = (word32)XSTRLEN(inStr); word32 idx = 0; DECLARE_VAR_INIT(in, byte, inLen, inStr, NULL); DECLARE_VAR(out, byte, outSz, NULL); DECLARE_VAR(plain, byte, plainSz, NULL); ret = wc_InitRsaKey(&key, NULL); if (ret == 0) { ret = wc_InitRng(&rng); } if (ret == 0) { ret = MAKE_RSA_KEY(&key, 1024, WC_RSA_EXPONENT, &rng); } /* Sign. */ printf(testingFmt, "wc_RsaSSL_Sign()"); if (ret == 0) { ret = wc_RsaSSL_Sign(in, inLen, out, outSz, &key, &rng); if (ret == (int)outSz) { idx = ret; ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_USER_RSA /* Test bad args. */ if (ret == 0) { ret = wc_RsaSSL_Sign(NULL, inLen, out, outSz, &key, &rng); if (ret == BAD_FUNC_ARG) { ret = wc_RsaSSL_Sign(in, 0, out, outSz, &key, &rng); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaSSL_Sign(in, inLen, NULL, outSz, &key, &rng); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaSSL_Sign(in, inLen, out, outSz, NULL, &rng); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else /* Test bad args. */ if (ret == 0) { ret = wc_RsaSSL_Sign(NULL, inLen, out, outSz, &key, &rng); if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaSSL_Sign(in, 0, out, outSz, &key, &rng); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaSSL_Sign(in, inLen, NULL, outSz, &key, &rng); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaSSL_Sign(in, inLen, out, outSz, NULL, &rng); } if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #endif printf(resultFmt, ret == 0 ? passed : failed); if (ret != 0) { return ret; } /* Verify. */ printf(testingFmt, "wc_RsaSSL_Verify()"); if (ret == 0) { ret = wc_RsaSSL_Verify(out, idx, plain, plainSz, &key); if (ret == (int)inLen) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #ifndef HAVE_USER_RSA /* Pass bad args. */ if (ret == 0) { ret = wc_RsaSSL_Verify(NULL, idx, plain, plainSz, &key); if (ret == BAD_FUNC_ARG) { ret = wc_RsaSSL_Verify(out, 0, plain, plainSz, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaSSL_Verify(out, idx, NULL, plainSz, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaSSL_Verify(out, idx, plain, plainSz, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else /* Pass bad args. */ if (ret == 0) { ret = wc_RsaSSL_Verify(NULL, idx, plain, plainSz, &key); if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaSSL_Verify(out, 0, plain, plainSz, &key); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaSSL_Verify(out, idx, NULL, plainSz, &key); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaSSL_Verify(out, idx, plain, plainSz, NULL); } if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #endif FREE_VAR(in, NULL); FREE_VAR(out, NULL); FREE_VAR(plain, NULL); if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } if (wc_FreeRng(&rng) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaSSL_SignVerify */ /* * Testing wc_RsaEncryptSize() */ static int test_wc_RsaEncryptSize (void) { int ret = 0; #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) RsaKey key; WC_RNG rng; ret = wc_InitRsaKey(&key, NULL); if (ret == 0) { ret = wc_InitRng(&rng); } printf(testingFmt, "wc_RsaEncryptSize()"); if (ret == 0) { ret = MAKE_RSA_KEY(&key, 1024, WC_RSA_EXPONENT, &rng); if (ret == 0) { ret = wc_RsaEncryptSize(&key); } if (ret == 128) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } if (ret == 0) { ret = MAKE_RSA_KEY(&key, 2048, WC_RSA_EXPONENT, &rng); if (ret == 0) { ret = wc_RsaEncryptSize(&key); } if (ret == 256) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } /* Pass in bad arg. */ if (ret == 0) { ret = wc_RsaEncryptSize(NULL); #ifndef HAVE_USER_RSA if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } #endif } if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } if (wc_FreeRng(&rng) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaEncryptSize*/ /* * Testing wc_RsaFlattenPublicKey() */ static int test_wc_RsaFlattenPublicKey (void) { int ret = 0; #if !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) RsaKey key; WC_RNG rng; byte e[256]; byte n[256]; word32 eSz = sizeof(e); word32 nSz = sizeof(n); ret = wc_InitRsaKey(&key, NULL); if (ret == 0) { ret = wc_InitRng(&rng); } if (ret == 0) { ret = MAKE_RSA_KEY(&key, 1024, WC_RSA_EXPONENT, &rng); if (ret >= 0) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(testingFmt, "wc_RsaFlattenPublicKey()"); if (ret == 0) { ret = wc_RsaFlattenPublicKey(&key, e, &eSz, n, &nSz); } #ifndef HAVE_USER_RSA /* Pass bad args. */ if (ret == 0) { ret = wc_RsaFlattenPublicKey(NULL, e, &eSz, n, &nSz); if (ret == BAD_FUNC_ARG) { ret = wc_RsaFlattenPublicKey(&key, NULL, &eSz, n, &nSz); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaFlattenPublicKey(&key, e, NULL, n, &nSz); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaFlattenPublicKey(&key, e, &eSz, NULL, &nSz); } if (ret == BAD_FUNC_ARG) { ret = wc_RsaFlattenPublicKey(&key, e, &eSz, n, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else /* Pass bad args. */ if (ret == 0) { ret = wc_RsaFlattenPublicKey(NULL, e, &eSz, n, &nSz); if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaFlattenPublicKey(&key, NULL, &eSz, n, &nSz); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaFlattenPublicKey(&key, e, NULL, n, &nSz); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaFlattenPublicKey(&key, e, &eSz, NULL, &nSz); } if (ret == USER_CRYPTO_ERROR) { ret = wc_RsaFlattenPublicKey(&key, e, &eSz, n, NULL); } if (ret == USER_CRYPTO_ERROR) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #endif if (wc_FreeRsaKey(&key) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } if (wc_FreeRng(&rng) || ret != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_RsaFlattenPublicKey */ /* * unit test for wc_AesCcmSetKey */ static int test_wc_AesCcmSetKey (void) { int ret = 0; #ifdef HAVE_AESCCM Aes aes; const byte key16[] = { 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf }; const byte key24[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37 }; const byte key32[] = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66 }; printf(testingFmt, "wc_AesCcmSetKey()"); ret = wc_AesInit(&aes, NULL, INVALID_DEVID); if (ret != 0) return ret; #ifdef WOLFSSL_AES_128 ret = wc_AesCcmSetKey(&aes, key16, sizeof(key16)); #endif #ifdef WOLFSSL_AES_192 if (ret == 0) { ret = wc_AesCcmSetKey(&aes, key24, sizeof(key24)); } #endif #ifdef WOLFSSL_AES_256 if (ret == 0) { ret = wc_AesCcmSetKey(&aes, key32, sizeof(key32)); } #endif /* Test bad args. */ if (ret == 0) { ret = wc_AesCcmSetKey(&aes, key16, sizeof(key16) - 1); if (ret == BAD_FUNC_ARG) { ret = wc_AesCcmSetKey(&aes, key24, sizeof(key24) - 1); } if (ret == BAD_FUNC_ARG) { ret = wc_AesCcmSetKey(&aes, key32, sizeof(key32) - 1); } if (ret != BAD_FUNC_ARG) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } } wc_AesFree(&aes); printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_AesCcmSetKey */ /* * Unit test function for wc_AesCcmEncrypt and wc_AesCcmDecrypt */ static int test_wc_AesCcmEncryptDecrypt (void) { int ret = 0; #if defined(HAVE_AESCCM) && defined(WOLFSSL_AES_128) Aes aes; const byte key16[] = { 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf }; /* plaintext */ const byte plainT[] = { 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e }; /* nonce */ const byte iv[] = { 0x00, 0x00, 0x00, 0x03, 0x02, 0x01, 0x00, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5 }; const byte c[] = /* cipher text. */ { 0x58, 0x8c, 0x97, 0x9a, 0x61, 0xc6, 0x63, 0xd2, 0xf0, 0x66, 0xd0, 0xc2, 0xc0, 0xf9, 0x89, 0x80, 0x6d, 0x5f, 0x6b, 0x61, 0xda, 0xc3, 0x84 }; const byte t[] = /* Auth tag */ { 0x17, 0xe8, 0xd1, 0x2c, 0xfd, 0xf9, 0x26, 0xe0 }; const byte authIn[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 }; byte cipherOut[sizeof(plainT)]; byte authTag[sizeof(t)]; int ccmE = WOLFSSL_FATAL_ERROR; #ifdef HAVE_AES_DECRYPT int ccmD = WOLFSSL_FATAL_ERROR; byte plainOut[sizeof(cipherOut)]; #endif ret = wc_AesInit(&aes, NULL, INVALID_DEVID); if (ret != 0) return ret; ret = wc_AesCcmSetKey(&aes, key16, sizeof(key16)); if (ret == 0) { ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut), iv, sizeof(iv), authTag, sizeof(authTag), authIn , sizeof(authIn)); if ((XMEMCMP(cipherOut, c, sizeof(c)) && ccmE == 0) || XMEMCMP(t, authTag, sizeof(t))) { ccmE = WOLFSSL_FATAL_ERROR; ret = WOLFSSL_FATAL_ERROR; } #ifdef HAVE_AES_DECRYPT if (ret == 0) { ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut, sizeof(plainOut), iv, sizeof(iv), authTag, sizeof(authTag), authIn, sizeof(authIn)); } if (XMEMCMP(plainOut, plainT, sizeof(plainT)) && ccmD == 0) { ccmD = WOLFSSL_FATAL_ERROR; } #endif } printf(testingFmt, "wc_AesCcmEncrypt()"); /* Pass in bad args. Encrypt*/ if (ret == 0 && ccmE == 0) { ccmE = wc_AesCcmEncrypt(NULL, cipherOut, plainT, sizeof(cipherOut), iv, sizeof(iv), authTag, sizeof(authTag), authIn , sizeof(authIn)); if (ccmE == BAD_FUNC_ARG) { ccmE = wc_AesCcmEncrypt(&aes, NULL, plainT, sizeof(cipherOut), iv, sizeof(iv), authTag, sizeof(authTag), authIn , sizeof(authIn)); } if (ccmE == BAD_FUNC_ARG) { ccmE = wc_AesCcmEncrypt(&aes, cipherOut, NULL, sizeof(cipherOut), iv, sizeof(iv), authTag, sizeof(authTag), authIn , sizeof(authIn)); } if (ccmE == BAD_FUNC_ARG) { ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut), NULL, sizeof(iv), authTag, sizeof(authTag), authIn , sizeof(authIn)); } if (ccmE == BAD_FUNC_ARG) { ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut), iv, sizeof(iv), NULL, sizeof(authTag), authIn , sizeof(authIn)); } if (ccmE == BAD_FUNC_ARG) { ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut), iv, sizeof(iv) + 1, authTag, sizeof(authTag), authIn , sizeof(authIn)); } if (ccmE == BAD_FUNC_ARG) { ccmE = wc_AesCcmEncrypt(&aes, cipherOut, plainT, sizeof(cipherOut), iv, sizeof(iv) - 7, authTag, sizeof(authTag), authIn , sizeof(authIn)); } if (ccmE != BAD_FUNC_ARG) { ccmE = WOLFSSL_FATAL_ERROR; } else { ccmE = 0; } } /* End Encrypt */ printf(resultFmt, ccmE == 0 ? passed : failed); if (ccmE != 0) { wc_AesFree(&aes); return ccmE; } #ifdef HAVE_AES_DECRYPT printf(testingFmt, "wc_AesCcmDecrypt()"); /* Pass in bad args. Decrypt*/ if (ret == 0 && ccmD == 0) { ccmD = wc_AesCcmDecrypt(NULL, plainOut, cipherOut, sizeof(plainOut), iv, sizeof(iv), authTag, sizeof(authTag), authIn, sizeof(authIn)); if (ccmD == BAD_FUNC_ARG) { ccmD = wc_AesCcmDecrypt(&aes, NULL, cipherOut, sizeof(plainOut), iv, sizeof(iv), authTag, sizeof(authTag), authIn, sizeof(authIn)); } if (ccmD == BAD_FUNC_ARG) { ccmD = wc_AesCcmDecrypt(&aes, plainOut, NULL, sizeof(plainOut), iv, sizeof(iv), authTag, sizeof(authTag), authIn, sizeof(authIn)); } if (ccmD == BAD_FUNC_ARG) { ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut, sizeof(plainOut), NULL, sizeof(iv), authTag, sizeof(authTag), authIn, sizeof(authIn)); } if (ccmD == BAD_FUNC_ARG) { ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut, sizeof(plainOut), iv, sizeof(iv), NULL, sizeof(authTag), authIn, sizeof(authIn)); } if (ccmD == BAD_FUNC_ARG) { ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut, sizeof(plainOut), iv, sizeof(iv) + 1, authTag, sizeof(authTag), authIn, sizeof(authIn)); } if (ccmD == BAD_FUNC_ARG) { ccmD = wc_AesCcmDecrypt(&aes, plainOut, cipherOut, sizeof(plainOut), iv, sizeof(iv) - 7, authTag, sizeof(authTag), authIn, sizeof(authIn)); } if (ccmD != BAD_FUNC_ARG) { ccmD = WOLFSSL_FATAL_ERROR; } else { ccmD = 0; } } /* END Decrypt */ printf(resultFmt, ccmD == 0 ? passed : failed); if (ccmD != 0) { return ccmD; } #endif wc_AesFree(&aes); #endif /* HAVE_AESCCM */ return ret; } /* END test_wc_AesCcmEncryptDecrypt */ /* * Test wc_Hc128_SetKey() */ static int test_wc_Hc128_SetKey (void) { int ret = 0; #ifdef HAVE_HC128 HC128 ctx; const char* key = "\x80\x00\x00\x00\x00\x00\x00\x00" "\x00\x00\x00\x00\x00\x00\x00\x00"; const char* iv = "\x0D\x74\xDB\x42\xA9\x10\x77\xDE" "\x45\xAC\x13\x7A\xE1\x48\xAF\x16"; printf(testingFmt, "wc_Hc128_SetKey()"); ret = wc_Hc128_SetKey(&ctx, (byte*)key, (byte*)iv); /* Test bad args. */ if (ret == 0) { ret = wc_Hc128_SetKey(NULL, (byte*)key, (byte*)iv); if (ret == BAD_FUNC_ARG) { ret = wc_Hc128_SetKey(&ctx, NULL, (byte*)iv); } if (ret == BAD_FUNC_ARG) { ret = wc_Hc128_SetKey(&ctx, (byte*)key, NULL); } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Hc128_SetKey */ /* * Testing wc_Hc128_Process() */ static int test_wc_Hc128_Process (void) { int ret = 0; #ifdef HAVE_HC128 HC128 enc; HC128 dec; const char* key = "\x0F\x62\xB5\x08\x5B\xAE\x01\x54" "\xA7\xFA\x4D\xA0\xF3\x46\x99\xEC"; const char* input = "Encrypt Hc128, and then Decrypt."; size_t inlen = XSTRLEN(input) + 1; /* Add null terminator */ byte cipher[inlen]; byte plain[inlen]; printf(testingFmt, "wc_Hc128_Process()"); ret = wc_Hc128_SetKey(&enc, (byte*)key, NULL); if (ret == 0) { ret = wc_Hc128_SetKey(&dec, (byte*)key, NULL); } if (ret == 0) { ret = wc_Hc128_Process(&enc, cipher, (byte*)input, (word32)inlen); if (ret == 0) { ret = wc_Hc128_Process(&dec, plain, cipher, (word32)inlen); } } /* Bad args. */ if (ret == 0) { ret = wc_Hc128_Process(NULL, plain, cipher, (word32)inlen); if (ret == BAD_FUNC_ARG) { ret = wc_Hc128_Process(&dec, NULL, cipher, (word32)inlen); } if (ret == BAD_FUNC_ARG) { ret = wc_Hc128_Process(&dec, plain, NULL, (word32)inlen); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_Hc128_Process */ /* * Testing wc_InitDsaKey() */ static int test_wc_InitDsaKey (void) { int ret = 0; #ifndef NO_DSA DsaKey key; printf(testingFmt, "wc_InitDsaKey()"); ret = wc_InitDsaKey(&key); /* Pass in bad args. */ if (ret == 0) { ret = wc_InitDsaKey(NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); wc_FreeDsaKey(&key); #endif return ret; } /* END test_wc_InitDsaKey */ /* * Testing wc_DsaSign() and wc_DsaVerify() */ static int test_wc_DsaSignVerify (void) { int ret = 0; #if !defined(NO_DSA) DsaKey key; WC_RNG rng; wc_Sha sha; byte signature[DSA_SIG_SIZE]; byte hash[WC_SHA_DIGEST_SIZE]; word32 idx = 0; word32 bytes; int answer; #ifdef USE_CERT_BUFFERS_1024 byte tmp[ONEK_BUF]; XMEMSET(tmp, 0, sizeof(tmp)); XMEMCPY(tmp, dsa_key_der_1024, sizeof_dsa_key_der_1024); bytes = sizeof_dsa_key_der_1024; #elif defined(USE_CERT_BUFFERS_2048) byte tmp[TWOK_BUF]; XMEMSET(tmp, 0, sizeof(tmp)); XMEMCPY(tmp, dsa_key_der_2048, sizeof_dsa_key_der_2048); bytes = sizeof_dsa_key_der_2048; #else byte tmp[TWOK_BUF]; XMEMSET(tmp, 0, sizeof(tmp)); FILE* fp = fopen("./certs/dsa2048.der", "rb"); if (!fp) { return WOLFSSL_BAD_FILE; } bytes = (word32) fread(tmp, 1, sizeof(tmp), fp); fclose(fp); #endif /* END USE_CERT_BUFFERS_1024 */ ret = wc_InitSha(&sha); if (ret == 0) { ret = wc_ShaUpdate(&sha, tmp, bytes); if (ret == 0) { ret = wc_ShaFinal(&sha, hash); } if (ret == 0) { ret = wc_InitDsaKey(&key); } if (ret == 0) { ret = wc_DsaPrivateKeyDecode(tmp, &idx, &key, bytes); } if (ret == 0) { ret = wc_InitRng(&rng); } } printf(testingFmt, "wc_DsaSign()"); /* Sign. */ if (ret == 0) { ret = wc_DsaSign(hash, signature, &key, &rng); } /* Test bad args. */ if (ret == 0) { ret = wc_DsaSign(NULL, signature, &key, &rng); if (ret == BAD_FUNC_ARG) { ret = wc_DsaSign(hash, NULL, &key, &rng); } if (ret == BAD_FUNC_ARG) { ret = wc_DsaSign(hash, signature, NULL, &rng); } if (ret == BAD_FUNC_ARG) { ret = wc_DsaSign(hash, signature, &key, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret != 0) { return ret; } /* Verify. */ printf(testingFmt, "wc_DsaVerify()"); ret = wc_DsaVerify(hash, signature, &key, &answer); if (ret != 0 || answer != 1) { ret = WOLFSSL_FATAL_ERROR; } else { ret = 0; } /* Pass in bad args. */ if (ret == 0) { ret = wc_DsaVerify(NULL, signature, &key, &answer); if (ret == BAD_FUNC_ARG) { ret = wc_DsaVerify(hash, NULL, &key, &answer); } if (ret == BAD_FUNC_ARG) { ret = wc_DsaVerify(hash, signature, NULL, &answer); } if (ret == BAD_FUNC_ARG) { ret = wc_DsaVerify(hash, signature, &key, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); wc_FreeDsaKey(&key); wc_ShaFree(&sha); #endif return ret; } /* END test_wc_DsaSign */ /* * Testing wc_DsaPrivateKeyDecode() and wc_DsaPublicKeyDecode() */ static int test_wc_DsaPublicPrivateKeyDecode (void) { int ret = 0; #if !defined(NO_DSA) DsaKey key; word32 bytes; word32 idx = 0; int priv = WOLFSSL_FATAL_ERROR; int pub = WOLFSSL_FATAL_ERROR; #ifdef USE_CERT_BUFFERS_1024 byte tmp[ONEK_BUF]; XMEMCPY(tmp, dsa_key_der_1024, sizeof_dsa_key_der_1024); bytes = sizeof_dsa_key_der_1024; #elif defined(USE_CERT_BUFFERS_2048) byte tmp[TWOK_BUF]; XMEMCPY(tmp, dsa_key_der_2048, sizeof_dsa_key_der_2048); bytes = sizeof_dsa_key_der_2048; #else byte tmp[TWOK_BUF]; XMEMSET(tmp, 0, sizeof(tmp)); FILE* fp = fopen("./certs/dsa2048.der", "rb"); if (!fp) { return WOLFSSL_BAD_FILE; } bytes = (word32) fread(tmp, 1, sizeof(tmp), fp); fclose(fp); #endif /* END USE_CERT_BUFFERS_1024 */ ret = wc_InitDsaKey(&key); printf(testingFmt, "wc_DsaPrivateKeyDecode()"); if (ret == 0) { priv = wc_DsaPrivateKeyDecode(tmp, &idx, &key, bytes); /* Test bad args. */ if (priv == 0) { priv = wc_DsaPrivateKeyDecode(NULL, &idx, &key, bytes); if (priv == BAD_FUNC_ARG) { priv = wc_DsaPrivateKeyDecode(tmp, NULL, &key, bytes); } if (priv == BAD_FUNC_ARG) { priv = wc_DsaPrivateKeyDecode(tmp, &idx, NULL, bytes); } if (priv == BAD_FUNC_ARG) { priv = wc_DsaPrivateKeyDecode(tmp, &idx, &key, bytes); } if (priv == ASN_PARSE_E) { priv = 0; } else { priv = WOLFSSL_FATAL_ERROR; } } } /* END Private Key */ if (ret == 0) { wc_FreeDsaKey(&key); ret = wc_InitDsaKey(&key); } printf(resultFmt, priv == 0 ? passed : failed); printf(testingFmt, "wc_DsaPublicKeyDecode()"); if (ret == 0) { idx = 0; /* Reset */ pub = wc_DsaPublicKeyDecode(tmp, &idx, &key, bytes); /* Test bad args. */ if (pub == 0) { pub = wc_DsaPublicKeyDecode(NULL, &idx, &key, bytes); if (pub == BAD_FUNC_ARG) { pub = wc_DsaPublicKeyDecode(tmp, NULL, &key, bytes); } if (pub == BAD_FUNC_ARG) { pub = wc_DsaPublicKeyDecode(tmp, &idx, NULL, bytes); } if (pub == BAD_FUNC_ARG) { pub = wc_DsaPublicKeyDecode(tmp, &idx, &key, bytes); } if (pub == ASN_PARSE_E) { pub = 0; } else { pub = WOLFSSL_FATAL_ERROR; } } } /* END Public Key */ printf(resultFmt, pub == 0 ? passed : failed); wc_FreeDsaKey(&key); #endif return ret; } /* END test_wc_DsaPublicPrivateKeyDecode */ /* * Testing wc_MakeDsaKey() and wc_MakeDsaParameters() */ static int test_wc_MakeDsaKey (void) { int ret = 0; #if !defined(NO_DSA) && defined(WOLFSSL_KEY_GEN) DsaKey genKey; WC_RNG rng; ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_InitDsaKey(&genKey); } printf(testingFmt, "wc_MakeDsaParameters()"); if (ret == 0) { ret = wc_MakeDsaParameters(&rng, ONEK_BUF, &genKey); } /* Test bad args. */ if (ret == 0) { ret = wc_MakeDsaParameters(NULL, ONEK_BUF, &genKey); if (ret == BAD_FUNC_ARG) { ret = wc_MakeDsaParameters(&rng, ONEK_BUF, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_MakeDsaParameters(&rng, ONEK_BUF + 1, &genKey); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); printf(testingFmt, "wc_MakeDsaKey()"); if (ret == 0) { ret = wc_MakeDsaKey(&rng, &genKey); } /* Test bad args. */ if (ret == 0) { ret = wc_MakeDsaKey(NULL, &genKey); if (ret == BAD_FUNC_ARG) { ret = wc_MakeDsaKey(&rng, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FAILURE; } printf(resultFmt, ret == 0 ? passed : failed); wc_FreeDsaKey(&genKey); #endif return ret; } /* END test_wc_MakeDsaKey */ /* * Testing wc_DsaKeyToDer() */ static int test_wc_DsaKeyToDer (void) { int ret = 0; #if !defined(NO_DSA) && defined(WOLFSSL_KEY_GEN) DsaKey genKey; WC_RNG rng; word32 bytes; word32 idx = 0; #ifdef USE_CERT_BUFFERS_1024 byte tmp[ONEK_BUF]; byte der[ONEK_BUF]; XMEMSET(tmp, 0, sizeof(tmp)); XMEMSET(der, 0, sizeof(der)); XMEMCPY(tmp, dsa_key_der_1024, sizeof_dsa_key_der_1024); bytes = sizeof_dsa_key_der_1024; #elif defined(USE_CERT_BUFFERS_2048) byte tmp[TWOK_BUF]; byte der[TWOK_BUF]; XMEMSET(tmp, 0, sizeof(tmp)); XMEMSET(der, 0, sizeof(der)); XMEMCPY(tmp, dsa_key_der_2048, sizeof_dsa_key_der_2048); bytes = sizeof_dsa_key_der_2048; #else byte tmp[TWOK_BUF]; byte der[TWOK_BUF]; XMEMSET(tmp, 0, sizeof(tmp)); XMEMSET(der, 0, sizeof(der)); FILE* fp = fopen("./certs/dsa2048.der", "rb"); if (!fp) { return WOLFSSL_BAD_FILE; } bytes = (word32) fread(tmp, 1, sizeof(tmp), fp); fclose(fp); #endif /* END USE_CERT_BUFFERS_1024 */ ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_InitDsaKey(&genKey); } if (ret == 0) { ret = wc_MakeDsaParameters(&rng, sizeof(tmp), &genKey); if (ret == 0) { wc_FreeDsaKey(&genKey); ret = wc_InitDsaKey(&genKey); } } if (ret == 0) { ret = wc_DsaPrivateKeyDecode(tmp, &idx, &genKey, bytes); } printf(testingFmt, "wc_DsaKeyToDer()"); if (ret == 0) { ret = wc_DsaKeyToDer(&genKey, der, bytes); if ( ret >= 0 && ( ret = XMEMCMP(der, tmp, bytes) ) == 0 ) { ret = 0; } } /* Test bad args. */ if (ret == 0) { ret = wc_DsaKeyToDer(NULL, der, FOURK_BUF); if (ret == BAD_FUNC_ARG) { ret = wc_DsaKeyToDer(&genKey, NULL, FOURK_BUF); } if (ret == BAD_FUNC_ARG) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); wc_FreeDsaKey(&genKey); #endif return ret; } /* END test_wc_DsaKeyToDer */ /* * Testing wc_DsaImportParamsRaw() */ static int test_wc_DsaImportParamsRaw (void) { int ret = 0; #if !defined(NO_DSA) DsaKey key; /* [mod = L=1024, N=160], from CAVP KeyPair */ const char* p = "d38311e2cd388c3ed698e82fdf88eb92b5a9a483dc88005d" "4b725ef341eabb47cf8a7a8a41e792a156b7ce97206c4f9c" "5ce6fc5ae7912102b6b502e59050b5b21ce263dddb2044b6" "52236f4d42ab4b5d6aa73189cef1ace778d7845a5c1c1c71" "47123188f8dc551054ee162b634d60f097f719076640e209" "80a0093113a8bd73"; const char* q = "96c5390a8b612c0e422bb2b0ea194a3ec935a281"; const char* g = "06b7861abbd35cc89e79c52f68d20875389b127361ca66822" "138ce4991d2b862259d6b4548a6495b195aa0e0b6137ca37e" "b23b94074d3c3d300042bdf15762812b6333ef7b07ceba786" "07610fcc9ee68491dbc1e34cd12615474e52b18bc934fb00c" "61d39e7da8902291c4434a4e2224c3f4fd9f93cd6f4f17fc0" "76341a7e7d9"; /* invalid p and q parameters */ const char* invalidP = "d38311e2cd388c3ed698e82fdf88eb92b5a9a483dc88005d"; const char* invalidQ = "96c5390a"; printf(testingFmt, "wc_DsaImportParamsRaw()"); ret = wc_InitDsaKey(&key); if (ret == 0) { ret = wc_DsaImportParamsRaw(&key, p, q, g); } /* test bad args */ if (ret == 0) { /* null key struct */ ret = wc_DsaImportParamsRaw(NULL, p, q, g); if (ret == BAD_FUNC_ARG) { /* null param pointers */ ret = wc_DsaImportParamsRaw(&key, NULL, NULL, NULL); } if (ret == BAD_FUNC_ARG) { /* illegal p length */ ret = wc_DsaImportParamsRaw(&key, invalidP, q, g); } if (ret == BAD_FUNC_ARG) { /* illegal q length */ ret = wc_DsaImportParamsRaw(&key, p, invalidQ, g); if (ret == BAD_FUNC_ARG) ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); wc_FreeDsaKey(&key); #endif return ret; } /* END test_wc_DsaImportParamsRaw */ /* * Testing wc_DsaExportParamsRaw() */ static int test_wc_DsaExportParamsRaw (void) { int ret = 0; #if !defined(NO_DSA) DsaKey key; /* [mod = L=1024, N=160], from CAVP KeyPair */ const char* p = "d38311e2cd388c3ed698e82fdf88eb92b5a9a483dc88005d" "4b725ef341eabb47cf8a7a8a41e792a156b7ce97206c4f9c" "5ce6fc5ae7912102b6b502e59050b5b21ce263dddb2044b6" "52236f4d42ab4b5d6aa73189cef1ace778d7845a5c1c1c71" "47123188f8dc551054ee162b634d60f097f719076640e209" "80a0093113a8bd73"; const char* q = "96c5390a8b612c0e422bb2b0ea194a3ec935a281"; const char* g = "06b7861abbd35cc89e79c52f68d20875389b127361ca66822" "138ce4991d2b862259d6b4548a6495b195aa0e0b6137ca37e" "b23b94074d3c3d300042bdf15762812b6333ef7b07ceba786" "07610fcc9ee68491dbc1e34cd12615474e52b18bc934fb00c" "61d39e7da8902291c4434a4e2224c3f4fd9f93cd6f4f17fc0" "76341a7e7d9"; const char* pCompare = "\xd3\x83\x11\xe2\xcd\x38\x8c\x3e\xd6\x98\xe8\x2f" "\xdf\x88\xeb\x92\xb5\xa9\xa4\x83\xdc\x88\x00\x5d" "\x4b\x72\x5e\xf3\x41\xea\xbb\x47\xcf\x8a\x7a\x8a" "\x41\xe7\x92\xa1\x56\xb7\xce\x97\x20\x6c\x4f\x9c" "\x5c\xe6\xfc\x5a\xe7\x91\x21\x02\xb6\xb5\x02\xe5" "\x90\x50\xb5\xb2\x1c\xe2\x63\xdd\xdb\x20\x44\xb6" "\x52\x23\x6f\x4d\x42\xab\x4b\x5d\x6a\xa7\x31\x89" "\xce\xf1\xac\xe7\x78\xd7\x84\x5a\x5c\x1c\x1c\x71" "\x47\x12\x31\x88\xf8\xdc\x55\x10\x54\xee\x16\x2b" "\x63\x4d\x60\xf0\x97\xf7\x19\x07\x66\x40\xe2\x09" "\x80\xa0\x09\x31\x13\xa8\xbd\x73"; const char* qCompare = "\x96\xc5\x39\x0a\x8b\x61\x2c\x0e\x42\x2b\xb2\xb0" "\xea\x19\x4a\x3e\xc9\x35\xa2\x81"; const char* gCompare = "\x06\xb7\x86\x1a\xbb\xd3\x5c\xc8\x9e\x79\xc5\x2f" "\x68\xd2\x08\x75\x38\x9b\x12\x73\x61\xca\x66\x82" "\x21\x38\xce\x49\x91\xd2\xb8\x62\x25\x9d\x6b\x45" "\x48\xa6\x49\x5b\x19\x5a\xa0\xe0\xb6\x13\x7c\xa3" "\x7e\xb2\x3b\x94\x07\x4d\x3c\x3d\x30\x00\x42\xbd" "\xf1\x57\x62\x81\x2b\x63\x33\xef\x7b\x07\xce\xba" "\x78\x60\x76\x10\xfc\xc9\xee\x68\x49\x1d\xbc\x1e" "\x34\xcd\x12\x61\x54\x74\xe5\x2b\x18\xbc\x93\x4f" "\xb0\x0c\x61\xd3\x9e\x7d\xa8\x90\x22\x91\xc4\x43" "\x4a\x4e\x22\x24\xc3\xf4\xfd\x9f\x93\xcd\x6f\x4f" "\x17\xfc\x07\x63\x41\xa7\xe7\xd9"; byte pOut[MAX_DSA_PARAM_SIZE]; byte qOut[MAX_DSA_PARAM_SIZE]; byte gOut[MAX_DSA_PARAM_SIZE]; word32 pOutSz, qOutSz, gOutSz; printf(testingFmt, "wc_DsaExportParamsRaw()"); ret = wc_InitDsaKey(&key); if (ret == 0) { /* first test using imported raw parameters, for expected */ ret = wc_DsaImportParamsRaw(&key, p, q, g); } if (ret == 0) { pOutSz = sizeof(pOut); qOutSz = sizeof(qOut); gOutSz = sizeof(gOut); ret = wc_DsaExportParamsRaw(&key, pOut, &pOutSz, qOut, &qOutSz, gOut, &gOutSz); } if (ret == 0) { /* validate exported parameters are correct */ if ((XMEMCMP(pOut, pCompare, pOutSz) != 0) || (XMEMCMP(qOut, qCompare, qOutSz) != 0) || (XMEMCMP(gOut, gCompare, gOutSz) != 0) ) { ret = -1; } } /* test bad args */ if (ret == 0) { /* null key struct */ ret = wc_DsaExportParamsRaw(NULL, pOut, &pOutSz, qOut, &qOutSz, gOut, &gOutSz); if (ret == BAD_FUNC_ARG) { /* null output pointers */ ret = wc_DsaExportParamsRaw(&key, NULL, &pOutSz, NULL, &qOutSz, NULL, &gOutSz); } if (ret == LENGTH_ONLY_E) { /* null output size pointers */ ret = wc_DsaExportParamsRaw(&key, pOut, NULL, qOut, NULL, gOut, NULL); } if (ret == BAD_FUNC_ARG) { /* p output buffer size too small */ pOutSz = 1; ret = wc_DsaExportParamsRaw(&key, pOut, &pOutSz, qOut, &qOutSz, gOut, &gOutSz); pOutSz = sizeof(pOut); } if (ret == BUFFER_E) { /* q output buffer size too small */ qOutSz = 1; ret = wc_DsaExportParamsRaw(&key, pOut, &pOutSz, qOut, &qOutSz, gOut, &gOutSz); qOutSz = sizeof(qOut); } if (ret == BUFFER_E) { /* g output buffer size too small */ gOutSz = 1; ret = wc_DsaExportParamsRaw(&key, pOut, &pOutSz, qOut, &qOutSz, gOut, &gOutSz); if (ret == BUFFER_E) ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); wc_FreeDsaKey(&key); #endif return ret; } /* END test_wc_DsaExportParamsRaw */ /* * Testing wc_DsaExportKeyRaw() */ static int test_wc_DsaExportKeyRaw (void) { int ret = 0; #if !defined(NO_DSA) && defined(WOLFSSL_KEY_GEN) DsaKey key; WC_RNG rng; byte xOut[MAX_DSA_PARAM_SIZE]; byte yOut[MAX_DSA_PARAM_SIZE]; word32 xOutSz, yOutSz; printf(testingFmt, "wc_DsaExportKeyRaw()"); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_InitDsaKey(&key); } if (ret == 0) { ret = wc_MakeDsaParameters(&rng, 1024, &key); if (ret == 0) { ret = wc_MakeDsaKey(&rng, &key); } } /* try successful export */ if (ret == 0) { xOutSz = sizeof(xOut); yOutSz = sizeof(yOut); ret = wc_DsaExportKeyRaw(&key, xOut, &xOutSz, yOut, &yOutSz); } /* test bad args */ if (ret == 0) { /* null key struct */ ret = wc_DsaExportKeyRaw(NULL, xOut, &xOutSz, yOut, &yOutSz); if (ret == BAD_FUNC_ARG) { /* null output pointers */ ret = wc_DsaExportKeyRaw(&key, NULL, &xOutSz, NULL, &yOutSz); } if (ret == LENGTH_ONLY_E) { /* null output size pointers */ ret = wc_DsaExportKeyRaw(&key, xOut, NULL, yOut, NULL); } if (ret == BAD_FUNC_ARG) { /* x output buffer size too small */ xOutSz = 1; ret = wc_DsaExportKeyRaw(&key, xOut, &xOutSz, yOut, &yOutSz); xOutSz = sizeof(xOut); } if (ret == BUFFER_E) { /* y output buffer size too small */ yOutSz = 1; ret = wc_DsaExportKeyRaw(&key, xOut, &xOutSz, yOut, &yOutSz); if (ret == BUFFER_E) ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); wc_FreeDsaKey(&key); wc_FreeRng(&rng); #endif return ret; } /* END test_wc_DsaExportParamsRaw */ /* * Testing wc_ed25519_make_key(). */ static int test_wc_ed25519_make_key (void) { int ret = 0; #if defined(HAVE_ED25519) ed25519_key key; WC_RNG rng; ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ed25519_init(&key); } printf(testingFmt, "wc_ed25519_make_key()"); if (ret == 0) { ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &key); } /* Test bad args. */ if (ret == 0) { ret = wc_ed25519_make_key(NULL, ED25519_KEY_SIZE, &key); if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE - 1, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE + 1, &key); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = SSL_FATAL_ERROR; } wc_ed25519_free(&key); #endif return ret; } /* END test_wc_ed25519_make_key */ /* * Testing wc_ed25519_init() */ static int test_wc_ed25519_init (void) { int ret = 0; #if defined(HAVE_ED25519) ed25519_key key; printf(testingFmt, "wc_ed25519_init()"); ret = wc_ed25519_init(&key); /* Test bad args. */ if (ret == 0) { ret = wc_ed25519_init(NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); wc_ed25519_free(&key); #endif return ret; } /* END test_wc_ed25519_init */ /* * Test wc_ed25519_sign_msg() and wc_ed25519_verify_msg() */ static int test_wc_ed25519_sign_msg (void) { int ret = 0; #if defined(HAVE_ED25519) && defined(HAVE_ED25519_SIGN) WC_RNG rng; ed25519_key key; byte msg[] = "Everybody gets Friday off.\n"; byte sig[ED25519_SIG_SIZE]; word32 msglen = sizeof(msg); word32 siglen = sizeof(sig); word32 badSigLen = sizeof(sig) - 1; int stat = 0; /*1 = Verify success.*/ /* Initialize stack variables. */ XMEMSET(sig, 0, siglen); /* Initialize key. */ ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ed25519_init(&key); if (ret == 0) { ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &key); } } printf(testingFmt, "wc_ed25519_sign_msg()"); if (ret == 0) { ret = wc_ed25519_sign_msg(msg, msglen, sig, &siglen, &key); } /* Test bad args. */ if (ret == 0 && siglen == ED25519_SIG_SIZE) { ret = wc_ed25519_sign_msg(NULL, msglen, sig, &siglen, &key); if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_sign_msg(msg, msglen, NULL, &siglen, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_sign_msg(msg, msglen, sig, NULL, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_sign_msg(msg, msglen, sig, &siglen, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_sign_msg(msg, msglen, sig, &badSigLen, &key); } if (ret == BUFFER_E && badSigLen == ED25519_SIG_SIZE) { badSigLen -= 1; ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } /* END sign */ printf(resultFmt, ret == 0 ? passed : failed); #ifdef HAVE_ED25519_VERIFY printf(testingFmt, "wc_ed25519_verify_msg()"); if (ret == 0) { ret = wc_ed25519_verify_msg(sig, siglen, msg, msglen, &stat, &key); if (ret == 0 && stat == 1) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } /* Test bad args. */ if (ret == 0) { ret = wc_ed25519_verify_msg(NULL, siglen, msg, msglen, &stat, &key); if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_verify_msg(sig, siglen, NULL, msglen, &stat, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_verify_msg(sig, siglen, msg, msglen, NULL, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_verify_msg(sig, siglen, msg, msglen, &stat, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_verify_msg(sig, badSigLen, msg, msglen, &stat, &key); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } } /* END verify. */ printf(resultFmt, ret == 0 ? passed : failed); #endif /* Verify. */ if (wc_FreeRng(&rng) && ret == 0) { ret = SSL_FATAL_ERROR; } wc_ed25519_free(&key); #endif return ret; } /* END test_wc_ed25519_sign_msg */ /* * Testing wc_ed25519_import_public() */ static int test_wc_ed25519_import_public (void) { int ret = 0; #if defined(HAVE_ED25519) && defined(HAVE_ED25519_KEY_IMPORT) WC_RNG rng; ed25519_key pubKey; const byte in[] = "Ed25519PublicKeyUnitTest......\n"; word32 inlen = sizeof(in); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ed25519_init(&pubKey); if (ret == 0) { ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &pubKey); } } printf(testingFmt, "wc_ed25519_import_public()"); if (ret == 0) { ret = wc_ed25519_import_public(in, inlen, &pubKey); if (ret == 0 && XMEMCMP(in, pubKey.p, inlen) == 0) { ret = 0; } else { ret = SSL_FATAL_ERROR; } /* Test bad args. */ if (ret == 0) { ret = wc_ed25519_import_public(NULL, inlen, &pubKey); if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_import_public(in, inlen, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_import_public(in, inlen - 1, &pubKey); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = SSL_FATAL_ERROR; } wc_ed25519_free(&pubKey); #endif return ret; } /* END wc_ed25519_import_public */ /* * Testing wc_ed25519_import_private_key() */ static int test_wc_ed25519_import_private_key (void) { int ret = 0; #if defined(HAVE_ED25519) && defined(HAVE_ED25519_KEY_IMPORT) WC_RNG rng; ed25519_key key; const byte privKey[] = "Ed25519PrivateKeyUnitTest.....\n"; const byte pubKey[] = "Ed25519PublicKeyUnitTest......\n"; word32 privKeySz = sizeof(privKey); word32 pubKeySz = sizeof(pubKey); ret = wc_InitRng(&rng); if (ret != 0) { return ret; } ret = wc_ed25519_init(&key); if (ret != 0) { wc_FreeRng(&rng); return ret; } ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &key); printf(testingFmt, "wc_ed25519_import_private_key()"); if (ret == 0) { ret = wc_ed25519_import_private_key(privKey, privKeySz, pubKey, pubKeySz, &key); if (ret == 0 && (XMEMCMP(pubKey, key.p, privKeySz) != 0 || XMEMCMP(privKey, key.k, pubKeySz) != 0)) { ret = SSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_ed25519_import_private_key(NULL, privKeySz, pubKey, pubKeySz, &key); if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_import_private_key(privKey, privKeySz, NULL, pubKeySz, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_import_private_key(privKey, privKeySz, pubKey, pubKeySz, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_import_private_key(privKey, privKeySz - 1, pubKey, pubKeySz, &key); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_import_private_key(privKey, privKeySz, pubKey, pubKeySz - 1, &key); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = SSL_FATAL_ERROR; } wc_ed25519_free(&key); #endif return ret; } /* END test_wc_ed25519_import_private_key */ /* * Testing wc_ed25519_export_public() and wc_ed25519_export_private_only() */ static int test_wc_ed25519_export (void) { int ret = 0; #if defined(HAVE_ED25519) && defined(HAVE_ED25519_KEY_EXPORT) WC_RNG rng; ed25519_key key; byte priv[ED25519_PRV_KEY_SIZE]; byte pub[ED25519_PUB_KEY_SIZE]; word32 privSz = sizeof(priv); word32 pubSz = sizeof(pub); ret = wc_InitRng(&rng); if (ret != 0) { return ret; } ret = wc_ed25519_init(&key); if (ret != 0) { wc_FreeRng(&rng); return ret; } if (ret == 0) { ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &key); } printf(testingFmt, "wc_ed25519_export_public()"); if (ret == 0) { ret = wc_ed25519_export_public(&key, pub, &pubSz); if (ret == 0 && (pubSz != ED25519_KEY_SIZE || XMEMCMP(key.p, pub, pubSz) != 0)) { ret = SSL_FATAL_ERROR; } if (ret == 0) { ret = wc_ed25519_export_public(NULL, pub, &pubSz); if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_public(&key, NULL, &pubSz); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_public(&key, pub, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } } printf(resultFmt, ret == 0 ? passed : failed); printf(testingFmt, "wc_ed25519_export_private_only()"); if (ret == 0) { ret = wc_ed25519_export_private_only(&key, priv, &privSz); if (ret == 0 && (privSz != ED25519_KEY_SIZE || XMEMCMP(key.k, priv, privSz) != 0)) { ret = SSL_FATAL_ERROR; } if (ret == 0) { ret = wc_ed25519_export_private_only(NULL, priv, &privSz); if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_private_only(&key, NULL, &privSz); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_private_only(&key, priv, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = SSL_FATAL_ERROR; } wc_ed25519_free(&key); #endif return ret; } /* END test_wc_ed25519_export */ /* * Testing wc_ed25519_size() */ static int test_wc_ed25519_size (void) { int ret = 0; #if defined(HAVE_ED25519) WC_RNG rng; ed25519_key key; ret = wc_InitRng(&rng); if (ret != 0) { return ret; } ret = wc_ed25519_init(&key); if (ret != 0) { wc_FreeRng(&rng); return ret; } ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &key); if (ret != 0) { wc_FreeRng(&rng); wc_ed25519_free(&key); return ret; } printf(testingFmt, "wc_ed25519_size()"); ret = wc_ed25519_size(&key); /* Test bad args. */ if (ret == ED25519_KEY_SIZE) { ret = wc_ed25519_size(NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret == 0) { printf(testingFmt, "wc_ed25519_sig_size()"); ret = wc_ed25519_sig_size(&key); if (ret == ED25519_SIG_SIZE) { ret = 0; } /* Test bad args. */ if (ret == 0) { ret = wc_ed25519_sig_size(NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); } /* END wc_ed25519_sig_size() */ if (ret == 0) { printf(testingFmt, "wc_ed25519_pub_size"); ret = wc_ed25519_pub_size(&key); if (ret == ED25519_PUB_KEY_SIZE) { ret = 0; } if (ret == 0) { ret = wc_ed25519_pub_size(NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); } /* END wc_ed25519_pub_size */ if (ret == 0) { printf(testingFmt, "wc_ed25519_priv_size"); ret = wc_ed25519_priv_size(&key); if (ret == ED25519_PRV_KEY_SIZE) { ret = 0; } if (ret == 0) { ret = wc_ed25519_priv_size(NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); } /* END wc_ed25519_pub_size */ if (wc_FreeRng(&rng) && ret == 0) { ret = SSL_FATAL_ERROR; } wc_ed25519_free(&key); #endif return ret; } /* END test_wc_ed25519_size */ /* * Testing wc_ed25519_export_private() and wc_ed25519_export_key() */ static int test_wc_ed25519_exportKey (void) { int ret = 0; #if defined(HAVE_ED25519) && defined(HAVE_ED25519_KEY_EXPORT) WC_RNG rng; ed25519_key key; byte priv[ED25519_PRV_KEY_SIZE]; byte pub[ED25519_PUB_KEY_SIZE]; byte privOnly[ED25519_PRV_KEY_SIZE]; word32 privSz = sizeof(priv); word32 pubSz = sizeof(pub); word32 privOnlySz = sizeof(privOnly); ret = wc_InitRng(&rng); if (ret != 0) { return ret; } ret = wc_ed25519_init(&key); if (ret != 0) { wc_FreeRng(&rng); return ret; } ret = wc_ed25519_make_key(&rng, ED25519_KEY_SIZE, &key); if (ret != 0) { wc_FreeRng(&rng); wc_ed25519_free(&key); return ret; } printf(testingFmt, "wc_ed25519_export_private()"); ret = wc_ed25519_export_private(&key, privOnly, &privOnlySz); if (ret == 0) { ret = wc_ed25519_export_private(NULL, privOnly, &privOnlySz); if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_private(&key, NULL, &privOnlySz); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_private(&key, privOnly, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (ret == 0) { printf(testingFmt, "wc_ed25519_export_key()"); ret = wc_ed25519_export_key(&key, priv, &privSz, pub, &pubSz); if (ret == 0) { ret = wc_ed25519_export_key(NULL, priv, &privSz, pub, &pubSz); if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_key(&key, NULL, &privSz, pub, &pubSz); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_key(&key, priv, NULL, pub, &pubSz); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_key(&key, priv, &privSz, NULL, &pubSz); } if (ret == BAD_FUNC_ARG) { ret = wc_ed25519_export_key(&key, priv, &privSz, pub, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = SSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); } /* END wc_ed25519_export_key() */ /* Cross check output. */ if (ret == 0 && XMEMCMP(priv, privOnly, privSz) != 0) { ret = SSL_FATAL_ERROR; } if (wc_FreeRng(&rng) && ret == 0) { ret = SSL_FATAL_ERROR; } wc_ed25519_free(&key); #endif return ret; } /* END test_wc_ed25519_exportKey */ /* * Testing wc_ecc_make_key. */ static int test_wc_ecc_make_key (void) { int ret = 0; #if defined(HAVE_ECC) WC_RNG rng; ecc_key key; ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); } printf(testingFmt, "wc_ecc_make_key()"); if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY14, &key); } /* Pass in bad args. */ if (ret == 0) { ret = wc_ecc_make_key(NULL, KEY14, &key); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_make_key(&rng, KEY14, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_make_key */ /* * Testing wc_ecc_init() */ static int test_wc_ecc_init (void) { int ret = 0; #ifdef HAVE_ECC ecc_key key; printf(testingFmt, "wc_ecc_init()"); ret = wc_ecc_init(&key); /* Pass in bad args. */ if (ret == 0) { ret = wc_ecc_init(NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_init */ /* * Testing wc_ecc_check_key() */ static int test_wc_ecc_check_key (void) { int ret = 0; #if defined(HAVE_ECC) WC_RNG rng; ecc_key key; ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY14, &key); } } printf(testingFmt, "wc_ecc_check_key()"); if (ret == 0) { ret = wc_ecc_check_key(&key); } /* Pass in bad args. */ if (ret == 0) { ret = wc_ecc_check_key(NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_check_key */ /* * Testing wc_ecc_size() */ static int test_wc_ecc_size (void) { int ret = 0; #if defined(HAVE_ECC) WC_RNG rng; ecc_key key; ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY14, &key); } } printf(testingFmt, "wc_ecc_size()"); if (ret == 0) { ret = wc_ecc_size(&key); if (ret == KEY14) { ret = 0; } else if (ret == 0){ ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { /* Returns Zero for bad arg. */ ret = wc_ecc_size(NULL); } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_size */ /* * Testing wc_ecc_sign_hash() and wc_ecc_verify_hash() */ static int test_wc_ecc_signVerify_hash (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_SIGN) && !defined(NO_ASN) WC_RNG rng; ecc_key key; int signH = WOLFSSL_FATAL_ERROR; #ifdef HAVE_ECC_VERIFY int verifyH = WOLFSSL_FATAL_ERROR; int verify = 0; #endif word32 siglen = ECC_BUFSIZE; byte sig[ECC_BUFSIZE]; byte digest[] = "Everyone gets Friday off."; word32 digestlen = (word32)XSTRLEN((char*)digest); /* Init stack var */ XMEMSET(sig, 0, siglen); /* Init structs. */ ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY14, &key); } } printf(testingFmt, "wc_ecc_sign_hash()"); if (ret == 0) { ret = wc_ecc_sign_hash(digest, digestlen, sig, &siglen, &rng, &key); } /* Checkk bad args. */ if (ret == 0) { signH = wc_ecc_sign_hash(NULL, digestlen, sig, &siglen, &rng, &key); if (signH == ECC_BAD_ARG_E) { signH = wc_ecc_sign_hash(digest, digestlen, NULL, &siglen, &rng, &key); } if (signH == ECC_BAD_ARG_E) { signH = wc_ecc_sign_hash(digest, digestlen, sig, NULL, &rng, &key); } if (signH == ECC_BAD_ARG_E) { signH = wc_ecc_sign_hash(digest, digestlen, sig, &siglen, NULL, &key); } if (signH == ECC_BAD_ARG_E) { signH = wc_ecc_sign_hash(digest, digestlen, sig, &siglen, &rng, NULL); } if (signH == ECC_BAD_ARG_E) { signH = 0; } else if (ret == 0) { signH = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, signH == 0 ? passed : failed); #ifdef HAVE_ECC_VERIFY printf(testingFmt, "wc_ecc_verify_hash()"); ret = wc_ecc_verify_hash(sig, siglen, digest, digestlen, &verify, &key); if (verify != 1 && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } /* Test bad args. */ if (ret == 0) { verifyH = wc_ecc_verify_hash(NULL, siglen, digest, digestlen, &verify, &key); if (verifyH == ECC_BAD_ARG_E) { verifyH = wc_ecc_verify_hash(sig, siglen, NULL, digestlen, &verify, &key); } if (verifyH == ECC_BAD_ARG_E) { verifyH = wc_ecc_verify_hash(sig, siglen, digest, digestlen, NULL, &key); } if (verifyH == ECC_BAD_ARG_E) { verifyH = wc_ecc_verify_hash(sig, siglen, digest, digestlen, &verify, NULL); } if (verifyH == ECC_BAD_ARG_E) { verifyH = 0; } else if (ret == 0) { verifyH = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, verifyH == 0 ? passed : failed); #endif /* HAVE_ECC_VERIFY */ if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_sign_hash */ /* * Testing wc_ecc_shared_secret() */ static int test_wc_ecc_shared_secret (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_DHE) ecc_key key, pubKey; WC_RNG rng; int keySz = KEY16; byte out[keySz]; word32 outlen = (word32)sizeof(out); /* Initialize variables. */ XMEMSET(out, 0, keySz); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_init(&pubKey); } } if (ret == 0) { ret = wc_ecc_make_key(&rng, keySz, &key); } if (ret == 0) { ret = wc_ecc_make_key(&rng, keySz, &pubKey); } printf(testingFmt, "wc_ecc_shared_secret()"); if (ret == 0) { ret = wc_ecc_shared_secret(&key, &pubKey, out, &outlen); /* Test bad args. */ if (ret == 0) { ret = wc_ecc_shared_secret(NULL, &pubKey, out, &outlen); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_shared_secret(&key, NULL, out, &outlen); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_shared_secret(&key, &pubKey, NULL, &outlen); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_shared_secret(&key, &pubKey, out, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); wc_ecc_free(&pubKey); #endif return ret; } /* END tests_wc_ecc_shared_secret */ /* * testint wc_ecc_export_x963() */ static int test_wc_ecc_export_x963 (void) { int ret = 0; #ifdef HAVE_ECC ecc_key key; WC_RNG rng; byte out[ECC_ASN963_MAX_BUF_SZ]; word32 outlen = sizeof(out); /* Initialize variables. */ XMEMSET(out, 0, outlen); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY20, &key); } } printf(testingFmt, "wc_ecc_export_x963()"); if (ret == 0) { ret = wc_ecc_export_x963(&key, out, &outlen); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_export_x963(NULL, out, &outlen); if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_export_x963(&key, NULL, &outlen); } if (ret == LENGTH_ONLY_E) { ret = wc_ecc_export_x963(&key, out, NULL); } if (ret == ECC_BAD_ARG_E) { key.idx = -4; ret = wc_ecc_export_x963(&key, out, &outlen); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_export_x963 */ /* * Testing wc_ecc_export_x963_ex() * compile with --enable-compkey will use compression. */ static int test_wc_ecc_export_x963_ex (void) { int ret = 0; #if defined(HAVE_ECC) ecc_key key; WC_RNG rng; byte out[ECC_ASN963_MAX_BUF_SZ]; word32 outlen = sizeof(out); #ifdef HAVE_COMP_KEY word32 badOutLen = 5; #endif /* Init stack variables. */ XMEMSET(out, 0, outlen); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY64, &key); } } printf(testingFmt, "wc_ecc_export_x963_ex()"); #ifdef HAVE_COMP_KEY if (ret == 0) { ret = wc_ecc_export_x963_ex(&key, out, &outlen, COMP); } #else if (ret == 0) { ret = wc_ecc_export_x963_ex(&key, out, &outlen, NOCOMP); } #endif /* Test bad args. */ #ifdef HAVE_COMP_KEY if (ret == 0) { ret = wc_ecc_export_x963_ex(NULL, out, &outlen, COMP); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_export_x963_ex(&key, NULL, &outlen, COMP); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_export_x963_ex(&key, out, NULL, COMP); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_export_x963_ex(&key, out, &badOutLen, COMP); } if (ret == BUFFER_E) { key.idx = -4; ret = wc_ecc_export_x963_ex(&key, out, &outlen, COMP); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } #else if (ret == 0) { ret = wc_ecc_export_x963_ex(NULL, out, &outlen, NOCOMP); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_export_x963_ex(&key, NULL, &outlen, NOCOMP); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_export_x963_ex(&key, out, &outlen, 1); } if (ret == NOT_COMPILED_IN) { ret = wc_ecc_export_x963_ex(&key, out, NULL, NOCOMP); } if (ret == BAD_FUNC_ARG) { key.idx = -4; ret = wc_ecc_export_x963_ex(&key, out, &outlen, NOCOMP); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } #endif printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_export_x963_ex */ /* * testing wc_ecc_import_x963() */ static int test_wc_ecc_import_x963 (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_KEY_IMPORT) ecc_key pubKey, key; WC_RNG rng; byte x963[ECC_ASN963_MAX_BUF_SZ]; word32 x963Len = (word32)sizeof(x963); /* Init stack variables. */ XMEMSET(x963, 0, x963Len); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&pubKey); if (ret == 0) { ret = wc_ecc_init(&key); } if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY24, &key); } if (ret == 0) { ret = wc_ecc_export_x963(&key, x963, &x963Len); } } printf(testingFmt, "wc_ecc_import_x963()"); if (ret == 0) { ret = wc_ecc_import_x963(x963, x963Len, &pubKey); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_import_x963(NULL, x963Len, &pubKey); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_import_x963(x963, x963Len, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_import_x963(x963, x963Len + 1, &pubKey); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); wc_ecc_free(&pubKey); #endif return ret; } /* END wc_ecc_import_x963 */ /* * testing wc_ecc_import_private_key() */ static int ecc_import_private_key (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_KEY_IMPORT) ecc_key key, keyImp; WC_RNG rng; byte privKey[ECC_PRIV_KEY_BUF]; /* Raw private key.*/ byte x963Key[ECC_ASN963_MAX_BUF_SZ]; word32 privKeySz = (word32)sizeof(privKey); word32 x963KeySz = (word32)sizeof(x963Key); /* Init stack variables. */ XMEMSET(privKey, 0, privKeySz); XMEMSET(x963Key, 0, x963KeySz); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_init(&keyImp); } if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY48, &key); } if (ret == 0) { ret = wc_ecc_export_x963(&key, x963Key, &x963KeySz); } if (ret == 0) { ret = wc_ecc_export_private_only(&key, privKey, &privKeySz); } } printf(testingFmt, "wc_ecc_import_private_key()"); if (ret == 0) { ret = wc_ecc_import_private_key(privKey, privKeySz, x963Key, x963KeySz, &keyImp); } /* Pass in bad args. */ if (ret == 0) { ret = wc_ecc_import_private_key(privKey, privKeySz, x963Key, x963KeySz, NULL); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_import_private_key(NULL, privKeySz, x963Key, x963KeySz, &keyImp); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); wc_ecc_free(&keyImp); #endif return ret; } /* END wc_ecc_import_private_key */ /* * Testing wc_ecc_export_private_only() */ static int test_wc_ecc_export_private_only (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_KEY_EXPORT) ecc_key key; WC_RNG rng; byte out[ECC_PRIV_KEY_BUF]; word32 outlen = sizeof(out); /* Init stack variables. */ XMEMSET(out, 0, outlen); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY32, &key); } } printf(testingFmt, "wc_ecc_export_private_only()"); if (ret == 0) { ret = wc_ecc_export_private_only(&key, out, &outlen); } /* Pass in bad args. */ if (ret == 0) { ret = wc_ecc_export_private_only(NULL, out, &outlen); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_export_private_only(&key, NULL, &outlen); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_export_private_only(&key, out, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_export_private_only */ /* * Testing wc_ecc_rs_to_sig() */ static int test_wc_ecc_rs_to_sig (void) { int ret = 0; #if defined(HAVE_ECC) && !defined(NO_ASN) /* first [P-192,SHA-1] vector from FIPS 186-3 NIST vectors */ const char* R = "6994d962bdd0d793ffddf855ec5bf2f91a9698b46258a63e"; const char* S = "02ba6465a234903744ab02bc8521405b73cf5fc00e1a9f41"; byte sig[ECC_MAX_SIG_SIZE]; word32 siglen = (word32)sizeof(sig); /*R and S max size is the order of curve. 2^192.*/ int keySz = KEY24; byte r[keySz]; byte s[keySz]; word32 rlen = (word32)sizeof(r); word32 slen = (word32)sizeof(s); /* Init stack variables. */ XMEMSET(sig, 0, ECC_MAX_SIG_SIZE); XMEMSET(r, 0, keySz); XMEMSET(s, 0, keySz); printf(testingFmt, "wc_ecc_rs_to_sig()"); ret = wc_ecc_rs_to_sig(R, S, sig, &siglen); /* Test bad args. */ if (ret == 0) { ret = wc_ecc_rs_to_sig(NULL, S, sig, &siglen); if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_rs_to_sig(R, NULL, sig, &siglen); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_rs_to_sig(R, S, sig, NULL); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_rs_to_sig(R, S, NULL, &siglen); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); printf(testingFmt, "wc_ecc_sig_to_rs()"); if (ret == 0) { ret = wc_ecc_sig_to_rs(sig, siglen, r, &rlen, s, &slen); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_sig_to_rs(NULL, siglen, r, &rlen, s, &slen); if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_sig_to_rs(sig, siglen, NULL, &rlen, s, &slen); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_sig_to_rs(sig, siglen, r, NULL, s, &slen); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_sig_to_rs(sig, siglen, r, &rlen, NULL, &slen); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_sig_to_rs(sig, siglen, r, &rlen, s, NULL); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); #endif return ret; } /* END test_wc_ecc_rs_to_sig */ static int test_wc_ecc_import_raw (void) { int ret = 0; #ifdef HAVE_ECC ecc_key key; #ifdef HAVE_ALL_CURVES const char* qx = "07008ea40b08dbe76432096e80a2494c94982d2d5bcf98e6"; const char* qy = "76fab681d00b414ea636ba215de26d98c41bd7f2e4d65477"; const char* d = "e14f37b3d1374ff8b03f41b9b3fdd2f0ebccf275d660d7f3"; const char* curveName = "SECP192R1"; #else const char* qx = "6c450448386596485678dcf46ccf75e80ff292443cddab1ff216d0c72cd9341"; const char* qy = "9cac72ff8a90e4939e37714bfa07ae4612588535c3fdeab63ceb29b1d80f0d1"; const char* d = "1e1dd938e15bdd036b0b0e2a6dc62fe7b46dbe042ac42310c6d5db0cda63e807"; const char* curveName = "SECP256R1"; #endif ret = wc_ecc_init(&key); printf(testingFmt, "wc_ecc_import_raw()"); if (ret == 0) { ret = wc_ecc_import_raw(&key, qx, qy, d, curveName); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_import_raw(NULL, qx, qy, d, curveName); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_import_raw(&key, NULL, qy, d, curveName); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_import_raw(&key, qx, NULL, d, curveName); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_import_raw(&key, qx, qy, d, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_import_raw */ /* * Testing wc_ecc_sig_size() */ static int test_wc_ecc_sig_size (void) { int ret = 0; #ifdef HAVE_ECC ecc_key key; WC_RNG rng; int keySz = KEY16; ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, keySz, &key); } } printf(testingFmt, "wc_ecc_sig_size()"); if (ret == 0) { ret = wc_ecc_sig_size(&key); if (ret == (2 * keySz + SIG_HEADER_SZ + ECC_MAX_PAD_SZ)) { ret = 0; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_sig_size */ /* * Testing wc_ecc_ctx_new() */ static int test_wc_ecc_ctx_new (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_ENCRYPT) WC_RNG rng; ecEncCtx* cli = NULL; ecEncCtx* srv = NULL; ret = wc_InitRng(&rng); printf(testingFmt, "wc_ecc_ctx_new()"); if (ret == 0) { cli = wc_ecc_ctx_new(REQ_RESP_CLIENT, &rng); srv = wc_ecc_ctx_new(REQ_RESP_SERVER, &rng); } if (ret == 0 && (cli == NULL || srv == NULL)) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_ctx_free(cli); wc_ecc_ctx_free(srv); /* Test bad args. */ if (ret == 0) { /* wc_ecc_ctx_new_ex() will free if returned NULL. */ cli = wc_ecc_ctx_new(0, &rng); if (cli != NULL) { ret = WOLFSSL_FATAL_ERROR; } cli = wc_ecc_ctx_new(REQ_RESP_CLIENT, NULL); if (cli != NULL) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_ctx_free(cli); #endif return ret; } /* END test_wc_ecc_ctx_new */ /* * Tesing wc_ecc_reset() */ static int test_wc_ecc_ctx_reset (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_ENCRYPT) ecEncCtx* ctx = NULL; WC_RNG rng; ret = wc_InitRng(&rng); if (ret == 0) { if ( (ctx = wc_ecc_ctx_new(REQ_RESP_CLIENT, &rng)) == NULL ) { ret = WOLFSSL_FATAL_ERROR; } } printf(testingFmt, "wc_ecc_ctx_reset()"); if (ret == 0) { ret = wc_ecc_ctx_reset(ctx, &rng); } /* Pass in bad args. */ if (ret == 0) { ret = wc_ecc_ctx_reset(NULL, &rng); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_ctx_reset(ctx, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_ctx_free(ctx); #endif return ret; } /* END test_wc_ecc_ctx_reset */ /* * Testing wc_ecc_ctx_set_peer_salt() and wc_ecc_ctx_get_own_salt() */ static int test_wc_ecc_ctx_set_peer_salt (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_ENCRYPT) WC_RNG rng; ecEncCtx* cliCtx = NULL; ecEncCtx* servCtx = NULL; const byte* cliSalt = NULL; const byte* servSalt = NULL; ret = wc_InitRng(&rng); if (ret == 0) { if ( ( (cliCtx = wc_ecc_ctx_new(REQ_RESP_CLIENT, &rng)) == NULL ) || ( (servCtx = wc_ecc_ctx_new(REQ_RESP_SERVER, &rng)) == NULL) ) { ret = WOLFSSL_FATAL_ERROR; } } printf(testingFmt, "wc_ecc_ctx_get_own_salt()"); /* Test bad args. */ if (ret == 0) { cliSalt = wc_ecc_ctx_get_own_salt(NULL); if (cliSalt != NULL) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { cliSalt = wc_ecc_ctx_get_own_salt(cliCtx); servSalt = wc_ecc_ctx_get_own_salt(servCtx); if (cliSalt == NULL || servSalt == NULL) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); printf(testingFmt, "wc_ecc_ctx_set_peer_salt()"); if (ret == 0) { ret = wc_ecc_ctx_set_peer_salt(cliCtx, servSalt); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_ctx_set_peer_salt(NULL, servSalt); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_ctx_set_peer_salt(cliCtx, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_ctx_free(cliCtx); wc_ecc_ctx_free(servCtx); #endif return ret; } /* END test_wc_ecc_ctx_set_peer_salt */ /* * Testing wc_ecc_ctx_set_info() */ static int test_wc_ecc_ctx_set_info (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_ENCRYPT) ecEncCtx* ctx = NULL; WC_RNG rng; const char* optInfo = "Optional Test Info."; int optInfoSz = (int)XSTRLEN(optInfo); const char* badOptInfo = NULL; ret = wc_InitRng(&rng); if ( (ctx = wc_ecc_ctx_new(REQ_RESP_CLIENT, &rng)) == NULL || ret != 0 ) { ret = WOLFSSL_FATAL_ERROR; } printf(testingFmt, "wc_ecc_ctx_set_info()"); if (ret == 0) { ret = wc_ecc_ctx_set_info(ctx, (byte*)optInfo, optInfoSz); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_ctx_set_info(NULL, (byte*)optInfo, optInfoSz); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_ctx_set_info(ctx, (byte*)badOptInfo, optInfoSz); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_ctx_set_info(ctx, (byte*)optInfo, -1); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_ctx_free(ctx); #endif return ret; } /* END test_wc_ecc_ctx_set_info */ /* * Testing wc_ecc_encrypt() and wc_ecc_decrypt() */ static int test_wc_ecc_encryptDecrypt (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_ENCRYPT) && defined(WOLFSSL_AES_128) ecc_key srvKey, cliKey; WC_RNG rng; const char* msg = "EccBlock Size 16"; word32 msgSz = (word32)XSTRLEN(msg); byte out[XSTRLEN(msg) + WC_SHA256_DIGEST_SIZE]; word32 outSz = (word32)sizeof(out); byte plain[XSTRLEN(msg) + 1]; word32 plainSz = (word32)sizeof(plain); int keySz = KEY20; /* Init stack variables. */ XMEMSET(out, 0, outSz); XMEMSET(plain, 0, plainSz); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&cliKey); if (ret == 0) { ret = wc_ecc_make_key(&rng, keySz, &cliKey); } if (ret == 0) { ret = wc_ecc_init(&srvKey); } if (ret == 0) { ret = wc_ecc_make_key(&rng, keySz, &srvKey); } } printf(testingFmt, "wc_ecc_encrypt()"); if (ret == 0) { ret = wc_ecc_encrypt(&cliKey, &srvKey, (byte*)msg, msgSz, out, &outSz, NULL); } if (ret == 0) { ret = wc_ecc_encrypt(NULL, &srvKey, (byte*)msg, msgSz, out, &outSz, NULL); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_encrypt(&cliKey, NULL, (byte*)msg, msgSz, out, &outSz, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_encrypt(&cliKey, &srvKey, NULL, msgSz, out, &outSz, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_encrypt(&cliKey, &srvKey, (byte*)msg, msgSz, NULL, &outSz, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_encrypt(&cliKey, &srvKey, (byte*)msg, msgSz, out, NULL, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); printf(testingFmt, "wc_ecc_decrypt()"); if (ret == 0) { ret = wc_ecc_decrypt(&srvKey, &cliKey, out, outSz, plain, &plainSz, NULL); } if (ret == 0) { ret = wc_ecc_decrypt(NULL, &cliKey, out, outSz, plain, &plainSz, NULL); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_decrypt(&srvKey, NULL, out, outSz, plain, &plainSz, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_decrypt(&srvKey, &cliKey, NULL, outSz, plain, &plainSz, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_decrypt(&srvKey, &cliKey, out, outSz, NULL, &plainSz, NULL); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_decrypt(&srvKey, &cliKey, out, outSz, plain, NULL, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } if (XMEMCMP(msg, plain, msgSz) != 0) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&cliKey); wc_ecc_free(&srvKey); #endif return ret; } /* END test_wc_ecc_encryptDecrypt */ /* * Testing wc_ecc_del_point() and wc_ecc_new_point() */ static int test_wc_ecc_del_point (void) { int ret = 0; #if defined(HAVE_ECC) ecc_point* pt; printf(testingFmt, "wc_ecc_new_point()"); pt = wc_ecc_new_point(); if (!pt) { ret = WOLFSSL_FATAL_ERROR; } printf(resultFmt, ret == 0 ? passed : failed); wc_ecc_del_point(pt); #endif return ret; } /* END test_wc_ecc_del_point */ /* * Testing wc_ecc_point_is_at_infinity(), wc_ecc_export_point_der(), * wc_ecc_import_point_der(), wc_ecc_copy_point(), and wc_ecc_cmp_point() */ static int test_wc_ecc_pointFns (void) { int ret = 0; #if defined(HAVE_ECC) ecc_key key; WC_RNG rng; ecc_point* point = NULL; ecc_point* cpypt = NULL; int idx = 0; int keySz = KEY32; byte der[DER_SZ]; word32 derlenChk = 0; word32 derSz = (int)sizeof(der); /* Init stack variables. */ XMEMSET(der, 0, derSz); ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, keySz, &key); } } if (ret == 0) { point = wc_ecc_new_point(); if (!point) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { cpypt = wc_ecc_new_point(); if (!cpypt) { ret = WOLFSSL_FATAL_ERROR; } } /* Export */ printf(testingFmt, "wc_ecc_export_point_der()"); if (ret == 0) { ret = wc_ecc_export_point_der((idx = key.idx), &key.pubkey, NULL, &derlenChk); /* Check length value. */ if (derSz == derlenChk && ret == LENGTH_ONLY_E) { ret = wc_ecc_export_point_der((idx = key.idx), &key.pubkey, der, &derSz); } } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_export_point_der(-2, &key.pubkey, der, &derSz); if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_export_point_der((idx = key.idx), NULL, der, &derSz); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_export_point_der((idx = key.idx), &key.pubkey, der, NULL); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); /* Import */ printf(testingFmt, "wc_ecc_import_point_der()"); if (ret == 0) { ret = wc_ecc_import_point_der(der, derSz, idx, point); /* Condition double checks wc_ecc_cmp_point(). */ if (ret == 0 && XMEMCMP(&key.pubkey, point, sizeof(key.pubkey))) { ret = wc_ecc_cmp_point(&key.pubkey, point); } } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_import_point_der(NULL, derSz, idx, point); if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_import_point_der(der, derSz, idx, NULL); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_import_point_der(der, derSz, -1, point); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_import_point_der(der, derSz + 1, idx, point); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); /* Copy */ printf(testingFmt, "wc_ecc_copy_point()"); if (ret == 0) { ret = wc_ecc_copy_point(point, cpypt); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_copy_point(NULL, cpypt); if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_copy_point(point, NULL); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); printf(testingFmt, "wc_ecc_cmp_point()"); /* Compare point */ if (ret == 0) { ret = wc_ecc_cmp_point(point, cpypt); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_cmp_point(NULL, cpypt); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_cmp_point(point, NULL); } if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); printf(testingFmt, "wc_ecc_point_is_at_infinity()"); /* At infinity if return == 1, otherwise return == 0. */ if (ret == 0) { ret = wc_ecc_point_is_at_infinity(point); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_point_is_at_infinity(NULL); if (ret == BAD_FUNC_ARG) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); /* Free */ wc_ecc_del_point(point); wc_ecc_del_point(cpypt); wc_ecc_free(&key); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } #endif return ret; } /* END test_wc_ecc_pointFns */ /* * Testing wc_ecc_sahred_secret_ssh() */ static int test_wc_ecc_shared_secret_ssh (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_DHE) ecc_key key, key2; WC_RNG rng; int keySz = KEY32; int key2Sz = KEY24; byte secret[keySz]; word32 secretLen = keySz; /* Init stack variables. */ XMEMSET(secret, 0, secretLen); /* Make keys */ ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, keySz, &key); } if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key2); } if (ret == 0) { ret = wc_ecc_make_key(&rng, key2Sz, &key2); } } printf(testingFmt, "ecc_shared_secret_ssh()"); if (ret == 0) { ret = wc_ecc_shared_secret_ssh(&key, &key2.pubkey, secret, &secretLen); } /* Pass in bad args. */ if (ret == 0) { ret = wc_ecc_shared_secret_ssh(NULL, &key2.pubkey, secret, &secretLen); if (ret == BAD_FUNC_ARG) { ret = wc_ecc_shared_secret_ssh(&key, NULL, secret, &secretLen); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_shared_secret_ssh(&key, &key2.pubkey, NULL, &secretLen); } if (ret == BAD_FUNC_ARG) { ret = wc_ecc_shared_secret_ssh(&key, &key2.pubkey, secret, NULL); } if (ret == BAD_FUNC_ARG) { key.type = ECC_PUBLICKEY; ret = wc_ecc_shared_secret_ssh(&key, &key2.pubkey, secret, &secretLen); if (ret == ECC_BAD_ARG_E) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); wc_ecc_free(&key2); #endif return ret; } /* END test_wc_ecc_shared_secret_ssh */ /* * Testing wc_ecc_verify_hash_ex() and wc_ecc_verify_hash_ex() */ static int test_wc_ecc_verify_hash_ex (void) { int ret = 0; #if defined(HAVE_ECC) && defined(HAVE_ECC_SIGN) && defined(WOLFSSL_PUBLIC_MP) ecc_key key; WC_RNG rng; mp_int r; mp_int s; unsigned char hash[] = "Everyone gets Friday off.EccSig"; unsigned char iHash[] = "Everyone gets Friday off......."; unsigned char shortHash[] = "Everyone gets Friday off."; word32 hashlen = sizeof(hash); word32 iHashLen = sizeof(iHash); word32 shortHashLen = sizeof(shortHash); int keySz = KEY32; int sig = WOLFSSL_FATAL_ERROR; int ver = WOLFSSL_FATAL_ERROR; int stat = 0; /* Initialize r and s. */ ret = mp_init_multi(&r, &s, NULL, NULL, NULL, NULL); if (ret != MP_OKAY) { return MP_INIT_E; } ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, keySz, &key); } } if (ret == 0) { ret = wc_ecc_sign_hash_ex(hash, hashlen, &rng, &key, &r, &s); if (ret == 0) { /* stat should be 1. */ ret = wc_ecc_verify_hash_ex(&r, &s, hash, hashlen, &stat, &key); if (stat != 1 && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* stat should be 0 */ ret = wc_ecc_verify_hash_ex(&r, &s, iHash, iHashLen, &stat, &key); if (stat != 0 && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } if (ret == 0) { /* stat should be 0. */ ret = wc_ecc_verify_hash_ex(&r, &s, shortHash, shortHashLen, &stat, &key); if (stat != 0 && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } } printf(testingFmt, "wc_ecc_sign_hash_ex()"); /* Test bad args. */ if (ret == 0) { if (wc_ecc_sign_hash_ex(NULL, hashlen, &rng, &key, &r, &s) == ECC_BAD_ARG_E) { sig = 0; } if (sig == 0 && wc_ecc_sign_hash_ex(hash, hashlen, NULL, &key, &r, &s) != ECC_BAD_ARG_E) { sig = WOLFSSL_FATAL_ERROR; } if (sig == 0 && wc_ecc_sign_hash_ex(hash, hashlen, &rng, NULL, &r, &s) != ECC_BAD_ARG_E) { sig = WOLFSSL_FATAL_ERROR; } if (sig == 0 && wc_ecc_sign_hash_ex(hash, hashlen, &rng, &key, NULL, &s) != ECC_BAD_ARG_E) { sig = WOLFSSL_FATAL_ERROR; } if (sig == 0 && wc_ecc_sign_hash_ex(hash, hashlen, &rng, &key, &r, NULL) != ECC_BAD_ARG_E) { sig = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, sig == 0 ? passed : failed); printf(testingFmt, "wc_ecc_verify_hash_ex()"); /* Test bad args. */ if (ret == 0) { if (wc_ecc_verify_hash_ex(NULL, &s, shortHash, shortHashLen, &stat, &key) == ECC_BAD_ARG_E) { ver = 0; } if (ver == 0 && wc_ecc_verify_hash_ex(&r, NULL, shortHash, shortHashLen, &stat, &key) != ECC_BAD_ARG_E) { ver = WOLFSSL_FATAL_ERROR; } if (ver == 0 && wc_ecc_verify_hash_ex(&r, &s, NULL, shortHashLen, &stat, &key) != ECC_BAD_ARG_E) { ver = WOLFSSL_FATAL_ERROR; } if (ver == 0 && wc_ecc_verify_hash_ex(&r, &s, shortHash, shortHashLen, NULL, &key) != ECC_BAD_ARG_E) { ver = WOLFSSL_FATAL_ERROR; } if (ver == 0 && wc_ecc_verify_hash_ex(&r, &s, shortHash, shortHashLen, &stat, NULL) != ECC_BAD_ARG_E) { ver = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ver == 0 ? passed : failed); wc_ecc_free(&key); mp_free(&r); mp_free(&s); if (wc_FreeRng(&rng)) { return WOLFSSL_FATAL_ERROR; } if (ret == 0 && (sig != 0 || ver != 0)) { ret = WOLFSSL_FATAL_ERROR; } #endif return ret; } /* END test_wc_ecc_verify_hash_ex */ /* * Testing wc_ecc_mulmod() */ static int test_wc_ecc_mulmod (void) { int ret = 0; #if defined(HAVE_ECC) ecc_key key1, key2, key3; WC_RNG rng; ret = wc_InitRng(&rng); if (ret == 0) { if (ret == 0) { ret = wc_ecc_init(&key1); } if (ret == 0) { ret = wc_ecc_init(&key2); } if (ret == 0) { ret = wc_ecc_init(&key3); } if (ret == 0) { ret = wc_ecc_make_key(&rng, KEY32, &key1); } } if (ret == 0) { ret = wc_ecc_import_raw_ex(&key2, key1.dp->Gx, key1.dp->Gy, key1.dp->Af, ECC_SECP256R1); if (ret == 0) { ret = wc_ecc_import_raw_ex(&key3, key1.dp->Gx, key1.dp->Gy, key1.dp->prime, ECC_SECP256R1); } } printf(testingFmt, "wc_ecc_mulmod()"); if (ret == 0) { ret = wc_ecc_mulmod(&key1.k, &key2.pubkey, &key3.pubkey, &key2.k, &key3.k, 1); } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_mulmod(NULL, &key2.pubkey, &key3.pubkey, &key2.k, &key3.k, 1); if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_mulmod(&key1.k, NULL, &key3.pubkey, &key2.k, &key3.k, 1); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_mulmod(&key1.k, &key2.pubkey, NULL, &key2.k, &key3.k, 1); } if (ret == ECC_BAD_ARG_E) { ret = wc_ecc_mulmod(&key1.k, &key2.pubkey, &key3.pubkey, &key2.k, NULL, 1); } if (ret == ECC_BAD_ARG_E) { ret = 0; } else if (ret == 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key1); wc_ecc_free(&key2); wc_ecc_free(&key3); #endif return ret; } /* END test_wc_ecc_mulmod */ /* * Testing wc_ecc_is_valid_idx() */ static int test_wc_ecc_is_valid_idx (void) { int ret = 0; #if defined(HAVE_ECC) ecc_key key; WC_RNG rng; int iVal = -2; int iVal2 = 3000; ret = wc_InitRng(&rng); if (ret == 0) { ret = wc_ecc_init(&key); if (ret == 0) { ret = wc_ecc_make_key(&rng, 32, &key); } } printf(testingFmt, "wc_ecc_is_valid_idx()"); if (ret == 0) { ret = wc_ecc_is_valid_idx(key.idx); if (ret == 1) { ret = 0; } else { ret = WOLFSSL_FATAL_ERROR; } } /* Test bad args. */ if (ret == 0) { ret = wc_ecc_is_valid_idx(iVal); /* should return 0 */ if (ret == 0) { ret = wc_ecc_is_valid_idx(iVal2); } if (ret != 0) { ret = WOLFSSL_FATAL_ERROR; } } printf(resultFmt, ret == 0 ? passed : failed); if (wc_FreeRng(&rng) && ret == 0) { ret = WOLFSSL_FATAL_ERROR; } wc_ecc_free(&key); #endif return ret; } /* END test_wc_ecc_is_valid_idx */ /* * Testing wc_PKCS7_Init() */ static void test_wc_PKCS7_Init (void) { #if defined(HAVE_PKCS7) PKCS7 pkcs7; void* heap = NULL; printf(testingFmt, "wc_PKCS7_Init()"); AssertIntEQ(wc_PKCS7_Init(&pkcs7, heap, devId), 0); /* Pass in bad args. */ AssertIntEQ(wc_PKCS7_Init(NULL, heap, devId), BAD_FUNC_ARG); printf(resultFmt, passed); wc_PKCS7_Free(&pkcs7); #endif } /* END test-wc_PKCS7_Init */ /* * Testing wc_PKCS7_InitWithCert() */ static void test_wc_PKCS7_InitWithCert (void) { #if defined(HAVE_PKCS7) PKCS7 pkcs7; #ifndef NO_RSA #if defined(USE_CERT_BUFFERS_2048) unsigned char cert[sizeof_client_cert_der_2048]; int certSz = (int)sizeof(cert); XMEMSET(cert, 0, certSz); XMEMCPY(cert, client_cert_der_2048, sizeof_client_cert_der_2048); #elif defined(USE_CERT_BUFFERS_1024) unsigned char cert[sizeof_client_cert_der_1024]; int certSz = (int)sizeof(cert); XMEMSET(cert, 0, certSz); XMEMCPY(cert, client_cert_der_1024, sizeof_client_cert_der_1024); #else unsigned char cert[ONEK_BUF]; FILE* fp; int certSz; fp = fopen("./certs/1024/client-cert.der", "rb"); AssertNotNull(fp); certSz = fread(cert, 1, sizeof_client_cert_der_1024, fp); fclose(fp); #endif #elif defined(HAVE_ECC) #if defined(USE_CERT_BUFFERS_256) unsigned char cert[sizeof_cliecc_cert_der_256]; int certSz = (int)sizeof(cert); XMEMSET(cert, 0, certSz); XMEMCPY(cert, cliecc_cert_der_256, sizeof_cliecc_cert_der_256); #else unsigned char cert[ONEK_BUF]; FILE* fp; int certSz; fp = fopen("./certs/client-ecc-cert.der", "rb"); AssertNotNull(fp); certSz = fread(cert, 1, sizeof_cliecc_cert_der_256, fp); fclose(fp); #endif #else #error PKCS7 requires ECC or RSA #endif printf(testingFmt, "wc_PKCS7_InitWithCert()"); /* If initialization is not successful, it's free'd in init func. */ AssertIntEQ(wc_PKCS7_InitWithCert(&pkcs7, (byte*)cert, (word32)certSz), 0); wc_PKCS7_Free(&pkcs7); /* Valid initialization usage. */ AssertIntEQ(wc_PKCS7_InitWithCert(&pkcs7, NULL, 0), 0); /* Pass in bad args. No need free for null checks, free at end.*/ AssertIntEQ(wc_PKCS7_InitWithCert(NULL, (byte*)cert, (word32)certSz), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_InitWithCert(&pkcs7, NULL, (word32)certSz), BAD_FUNC_ARG); printf(resultFmt, passed); wc_PKCS7_Free(&pkcs7); #endif } /* END test_wc_PKCS7_InitWithCert */ /* * Testing wc_PKCS7_EncodeData() */ static void test_wc_PKCS7_EncodeData (void) { #if defined(HAVE_PKCS7) PKCS7 pkcs7; byte output[FOURK_BUF]; byte data[] = "My encoded DER cert."; #ifndef NO_RSA #if defined(USE_CERT_BUFFERS_2048) unsigned char cert[sizeof_client_cert_der_2048]; unsigned char key[sizeof_client_key_der_2048]; int certSz = (int)sizeof(cert); int keySz = (int)sizeof(key); XMEMSET(cert, 0, certSz); XMEMSET(key, 0, keySz); XMEMCPY(cert, client_cert_der_2048, certSz); XMEMCPY(key, client_key_der_2048, keySz); #elif defined(USE_CERT_BUFFERS_1024) unsigned char cert[sizeof_client_cert_der_1024]; unsigned char key[sizeof_client_key_der_1024]; int certSz = (int)sizeof(cert); int keySz = (int)sizeof(key); XMEMSET(cert, 0, certSz); XMEMSET(key, 0, keySz); XMEMCPY(cert, client_cert_der_1024, certSz); XMEMCPY(key, client_key_der_1024, keySz); #else unsigned char cert[ONEK_BUF]; unsigned char key[ONEK_BUF]; FILE* fp; int certSz; int keySz; fp = fopen("./certs/1024/client-cert.der", "rb"); AssertNotNull(fp); certSz = fread(cert, 1, sizeof_client_cert_der_1024, fp); fclose(fp); fp = fopen("./certs/1024/client-key.der", "rb"); AssertNotNull(fp); keySz = fread(key, 1, sizeof_client_key_der_1024, fp); fclose(fp); #endif #elif defined(HAVE_ECC) #if defined(USE_CERT_BUFFERS_256) unsigned char cert[sizeof_cliecc_cert_der_256]; unsigned char key[sizeof_ecc_clikey_der_256]; int certSz = (int)sizeof(cert); int keySz = (int)sizeof(key); XMEMSET(cert, 0, certSz); XMEMSET(key, 0, keySz); XMEMCPY(cert, cliecc_cert_der_256, sizeof_cliecc_cert_der_256); XMEMCPY(key, ecc_clikey_der_256, sizeof_ecc_clikey_der_256); #else unsigned char cert[ONEK_BUF]; unsigned char key[ONEK_BUF]; FILE* fp; int certSz, keySz; fp = fopen("./certs/client-ecc-cert.der", "rb"); AssertNotNull(fp); certSz = fread(cert, 1, sizeof_cliecc_cert_der_256, fp); fclose(fp); fp = fopen("./certs/client-ecc-key.der", "rb"); AssertNotNull(fp); keySz = fread(key, 1, sizeof_ecc_clikey_der_256, fp); fclose(fp); #endif #endif XMEMSET(output, 0, sizeof(output)); AssertIntEQ(wc_PKCS7_InitWithCert(&pkcs7, (byte*)cert, certSz), 0); printf(testingFmt, "wc_PKCS7_EncodeData()"); pkcs7.content = data; pkcs7.contentSz = sizeof(data); pkcs7.privateKey = key; pkcs7.privateKeySz = keySz; AssertIntGT(wc_PKCS7_EncodeData(&pkcs7, output, (word32)sizeof(output)), 0); /* Test bad args. */ AssertIntEQ(wc_PKCS7_EncodeData(NULL, output, (word32)sizeof(output)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_EncodeData(&pkcs7, NULL, (word32)sizeof(output)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_EncodeData(&pkcs7, output, 5), BUFFER_E); printf(resultFmt, passed); wc_PKCS7_Free(&pkcs7); #endif } /* END test_wc_PKCS7_EncodeData */ /* * Testing wc_PKCS7_EncodeSignedData() */ static void test_wc_PKCS7_EncodeSignedData (void) { #if defined(HAVE_PKCS7) PKCS7 pkcs7; WC_RNG rng; byte output[FOURK_BUF]; byte badOut[0]; word32 outputSz = (word32)sizeof(output); word32 badOutSz = (word32)sizeof(badOut); byte data[] = "Test data to encode."; #ifndef NO_RSA #if defined(USE_CERT_BUFFERS_2048) byte key[sizeof_client_key_der_2048]; byte cert[sizeof_client_cert_der_2048]; word32 keySz = (word32)sizeof(key); word32 certSz = (word32)sizeof(cert); XMEMSET(key, 0, keySz); XMEMSET(cert, 0, certSz); XMEMCPY(key, client_key_der_2048, keySz); XMEMCPY(cert, client_cert_der_2048, certSz); #elif defined(USE_CERT_BUFFERS_1024) byte key[sizeof_client_key_der_1024]; byte cert[sizeof_client_cert_der_1024]; word32 keySz = (word32)sizeof(key); word32 certSz = (word32)sizeof(cert); XMEMSET(key, 0, keySz); XMEMSET(cert, 0, certSz); XMEMCPY(key, client_key_der_1024, keySz); XMEMCPY(cert, client_cert_der_1024, certSz); #else unsigned char cert[ONEK_BUF]; unsigned char key[ONEK_BUF]; FILE* fp; int certSz; int keySz; fp = fopen("./certs/1024/client-cert.der", "rb"); AssertNotNull(fp); certSz = fread(cert, 1, sizeof_client_cert_der_1024, fp); fclose(fp); fp = fopen("./certs/1024/client-key.der", "rb"); AssertNotNull(fp); keySz = fread(key, 1, sizeof_client_key_der_1024, fp); fclose(fp); #endif #elif defined(HAVE_ECC) #if defined(USE_CERT_BUFFERS_256) unsigned char cert[sizeof_cliecc_cert_der_256]; unsigned char key[sizeof_ecc_clikey_der_256]; int certSz = (int)sizeof(cert); int keySz = (int)sizeof(key); XMEMSET(cert, 0, certSz); XMEMSET(key, 0, keySz); XMEMCPY(cert, cliecc_cert_der_256, sizeof_cliecc_cert_der_256); XMEMCPY(key, ecc_clikey_der_256, sizeof_ecc_clikey_der_256); #else unsigned char cert[ONEK_BUF]; unsigned char key[ONEK_BUF]; FILE* fp; int certSz, keySz; fp = fopen("./certs/client-ecc-cert.der", "rb"); AssertNotNull(fp); certSz = fread(cert, 1, sizeof_cliecc_cert_der_256, fp); fclose(fp); fp = fopen("./certs/client-ecc-key.der", "rb"); AssertNotNull(fp); keySz = fread(key, 1, sizeof_ecc_clikey_der_256, fp); fclose(fp); #endif #endif XMEMSET(output, 0, outputSz); AssertIntEQ(wc_InitRng(&rng), 0); AssertIntEQ(wc_PKCS7_InitWithCert(&pkcs7, cert, certSz), 0); printf(testingFmt, "wc_PKCS7_EncodeSignedData()"); pkcs7.content = data; pkcs7.contentSz = (word32)sizeof(data); pkcs7.privateKey = key; pkcs7.privateKeySz = (word32)sizeof(key); pkcs7.encryptOID = RSAk; pkcs7.hashOID = SHAh; pkcs7.rng = &rng; AssertIntGT(wc_PKCS7_EncodeSignedData(&pkcs7, output, outputSz), 0); wc_PKCS7_Free(&pkcs7); AssertIntEQ(wc_PKCS7_InitWithCert(&pkcs7, NULL, 0), 0); AssertIntEQ(wc_PKCS7_VerifySignedData(&pkcs7, output, outputSz), 0); /* Pass in bad args. */ AssertIntEQ(wc_PKCS7_EncodeSignedData(NULL, output, outputSz), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_EncodeSignedData(&pkcs7, NULL, outputSz), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_EncodeSignedData(&pkcs7, badOut, badOutSz), BAD_FUNC_ARG); printf(resultFmt, passed); wc_PKCS7_Free(&pkcs7); wc_FreeRng(&rng); #endif } /* END test_wc_PKCS7_EncodeSignedData */ /* * Testing wc_PKCS_VerifySignedData() */ static void test_wc_PKCS7_VerifySignedData(void) { #if defined(HAVE_PKCS7) PKCS7 pkcs7; WC_RNG rng; byte output[FOURK_BUF]; byte badOut[0]; word32 outputSz = (word32)sizeof(output); word32 badOutSz = (word32)sizeof(badOut); byte data[] = "Test data to encode."; #ifndef NO_RSA #if defined(USE_CERT_BUFFERS_2048) byte key[sizeof_client_key_der_2048]; byte cert[sizeof_client_cert_der_2048]; word32 keySz = (word32)sizeof(key); word32 certSz = (word32)sizeof(cert); XMEMSET(key, 0, keySz); XMEMSET(cert, 0, certSz); XMEMCPY(key, client_key_der_2048, keySz); XMEMCPY(cert, client_cert_der_2048, certSz); #elif defined(USE_CERT_BUFFERS_1024) byte key[sizeof_client_key_der_1024]; byte cert[sizeof_client_cert_der_1024]; word32 keySz = (word32)sizeof(key); word32 certSz = (word32)sizeof(cert); XMEMSET(key, 0, keySz); XMEMSET(cert, 0, certSz); XMEMCPY(key, client_key_der_1024, keySz); XMEMCPY(cert, client_cert_der_1024, certSz); #else unsigned char cert[ONEK_BUF]; unsigned char key[ONEK_BUF]; FILE* fp; int certSz; int keySz; fp = fopen("./certs/1024/client-cert.der", "rb"); AssertNotNull(fp); certSz = fread(cert, 1, sizeof_client_cert_der_1024, fp); fclose(fp); fp = fopen("./certs/1024/client-key.der", "rb"); AssertNotNull(fp); keySz = fread(key, 1, sizeof_client_key_der_1024, fp); fclose(fp); #endif #elif defined(HAVE_ECC) #if defined(USE_CERT_BUFFERS_256) unsigned char cert[sizeof_cliecc_cert_der_256]; unsigned char key[sizeof_ecc_clikey_der_256]; int certSz = (int)sizeof(cert); int keySz = (int)sizeof(key); XMEMSET(cert, 0, certSz); XMEMSET(key, 0, keySz); XMEMCPY(cert, cliecc_cert_der_256, sizeof_cliecc_cert_der_256); XMEMCPY(key, ecc_clikey_der_256, sizeof_ecc_clikey_der_256); #else unsigned char cert[ONEK_BUF]; unsigned char key[ONEK_BUF]; FILE* fp; int certSz, keySz; fp = fopen("./certs/client-ecc-cert.der", "rb"); AssertNotNull(fp); certSz = fread(cert, 1, sizeof_cliecc_cert_der_256, fp); fclose(fp); fp = fopen("./certs/client-ecc-key.der", "rb"); AssertNotNull(fp); keySz = fread(key, 1, sizeof_ecc_clikey_der_256, fp); fclose(fp); #endif #endif XMEMSET(output, 0, outputSz); AssertIntEQ(wc_InitRng(&rng), 0); AssertIntEQ(wc_PKCS7_InitWithCert(&pkcs7, cert, certSz), 0); printf(testingFmt, "wc_PKCS7_VerifySignedData()"); pkcs7.content = data; pkcs7.contentSz = (word32)sizeof(data); pkcs7.privateKey = key; pkcs7.privateKeySz = (word32)sizeof(key); pkcs7.encryptOID = RSAk; pkcs7.hashOID = SHAh; pkcs7.rng = &rng; AssertIntGT(wc_PKCS7_EncodeSignedData(&pkcs7, output, outputSz), 0); wc_PKCS7_Free(&pkcs7); AssertIntEQ(wc_PKCS7_InitWithCert(&pkcs7, NULL, 0), 0); AssertIntEQ(wc_PKCS7_VerifySignedData(&pkcs7, output, outputSz), 0); /* Test bad args. */ AssertIntEQ(wc_PKCS7_VerifySignedData(NULL, output, outputSz), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_VerifySignedData(&pkcs7, NULL, outputSz), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_VerifySignedData(&pkcs7, badOut, badOutSz), BAD_FUNC_ARG); printf(resultFmt, passed); wc_PKCS7_Free(&pkcs7); wc_FreeRng(&rng); #endif } /* END test_wc_PKCS7_VerifySignedData() */ /* * Testing wc_PKCS7_EncodeEnvelopedData() */ static void test_wc_PKCS7_EncodeDecodeEnvelopedData (void) { #if defined(HAVE_PKCS7) PKCS7 pkcs7; word32 tempWrd32 = 0; byte* tmpBytePtr = NULL; const char input[] = "Test data to encode."; int i; int testSz = 0; #if !defined(NO_RSA) && (!defined(NO_AES) || (!defined(NO_SHA) ||\ !defined(NO_SHA256) || !defined(NO_SHA512))) byte* rsaCert = NULL; byte* rsaPrivKey = NULL; word32 rsaCertSz; word32 rsaPrivKeySz; #if !defined(NO_FILESYSTEM) && (!defined(USE_CERT_BUFFERS_1024) && \ !defined(USE_CERT_BUFFERS_2048) ) static const char* rsaClientCert = "./certs/client-cert.der"; static const char* rsaClientKey = "./certs/client-key.der"; rsaCertSz = (word32)sizeof(rsaClientCert); rsaPrivKeySz = (word32)sizeof(rsaClientKey); #endif #endif #if defined(HAVE_ECC) && (!defined(NO_AES) || (!defined(NO_SHA) ||\ !defined(NO_SHA256) || !defined(NO_SHA512))) byte* eccCert = NULL; byte* eccPrivKey = NULL; word32 eccCertSz; word32 eccPrivKeySz; #if !defined(NO_FILESYSTEM) && !defined(USE_CERT_BUFFERS_256) static const char* eccClientCert = "./certs/client-ecc-cert.der"; static const char* eccClientKey = "./certs/ecc-client-key.der"; #endif #endif /* Generic buffer size. */ byte output[ONEK_BUF]; byte decoded[sizeof(input)/sizeof(char)]; int decodedSz = 0; #ifndef NO_FILESYSTEM FILE* certFile; FILE* keyFile; #endif #if !defined(NO_RSA) && (!defined(NO_AES) || (!defined(NO_SHA) ||\ !defined(NO_SHA256) || !defined(NO_SHA512))) /* RSA certs and keys. */ #if defined(USE_CERT_BUFFERS_1024) /* Allocate buffer space. */ rsaCert = (byte*)XMALLOC(ONEK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); /* Init buffer. */ rsaCertSz = (word32)sizeof_client_cert_der_1024; XMEMCPY(rsaCert, client_cert_der_1024, rsaCertSz); rsaPrivKey = (byte*)XMALLOC(ONEK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); rsaPrivKeySz = (word32)sizeof_client_key_der_1024; XMEMCPY(rsaPrivKey, client_key_der_1024, rsaPrivKeySz); #elif defined(USE_CERT_BUFFERS_2048) /* Allocate buffer */ rsaCert = (byte*)XMALLOC(TWOK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); /* Init buffer. */ rsaCertSz = (word32)sizeof_client_cert_der_2048; XMEMCPY(rsaCert, client_cert_der_2048, rsaCertSz); rsaPrivKey = (byte*)XMALLOC(TWOK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); rsaPrivKeySz = (word32)sizeof_client_key_der_2048; XMEMCPY(rsaPrivKey, client_key_der_2048, rsaPrivKeySz); #else /* File system. */ certFile = fopen(rsaClientCert, "rb"); AssertNotNull(certFile); rsaCertSz = (word32)FOURK_BUF; rsaCert = (byte*)XMALLOC(FOURK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); rsaCertSz = (word32)fread(rsaCert, 1, rsaCertSz, certFile); fclose(certFile); keyFile = fopen(rsaClientKey, "rb"); AssertNotNull(keyFile); rsaPrivKey = (byte*)XMALLOC(FOURK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); rsaPrivKeySz = (word32)FOURK_BUF; rsaPrivKeySz = (word32)fread(rsaPrivKey, 1, rsaPrivKeySz, keyFile); fclose(keyFile); #endif /* USE_CERT_BUFFERS */ #endif /* NO_RSA */ /* ECC */ #if defined(HAVE_ECC) && (!defined(NO_AES) || (!defined(NO_SHA) ||\ !defined(NO_SHA256) || !defined(NO_SHA512))) #ifdef USE_CERT_BUFFERS_256 eccCert = (byte*)XMALLOC(TWOK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); /* Init buffer. */ eccCertSz = (word32)sizeof_cliecc_cert_der_256; XMEMCPY(eccCert, cliecc_cert_der_256, eccCertSz); eccPrivKey = (byte*)XMALLOC(TWOK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); eccPrivKeySz = (word32)sizeof_ecc_clikey_der_256; XMEMCPY(eccPrivKey, ecc_clikey_der_256, eccPrivKeySz); #else /* File system. */ certFile = fopen(eccClientCert, "rb"); AssertNotNull(certFile); eccCertSz = (word32)FOURK_BUF; eccCert = (byte*)XMALLOC(FOURK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); eccCertSz = (word32)fread(eccCert, 1, eccCertSz, certFile); fclose(certFile); keyFile = fopen(eccClientKey, "rb"); AssertNotNull(keyFile); eccPrivKeySz = (word32)FOURK_BUF; eccPrivKey = (byte*)XMALLOC(FOURK_BUF, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); eccPrivKeySz = (word32)fread(eccPrivKey, 1, eccPrivKeySz, keyFile); fclose(keyFile); #endif /* USE_CERT_BUFFERS_256 */ #endif /* END HAVE_ECC */ /* Silence. */ (void)keyFile; (void)certFile; const pkcs7EnvelopedVector testVectors[] = { /* DATA is a global variable defined in the makefile. */ #if !defined(NO_RSA) #ifndef NO_DES3 {(byte*)input, (word32)(sizeof(input)/sizeof(char)), DATA, DES3b, 0, 0, rsaCert, rsaCertSz, rsaPrivKey, rsaPrivKeySz}, #endif /* NO_DES3 */ #ifndef NO_AES {(byte*)input, (word32)(sizeof(input)/sizeof(char)), DATA, AES128CBCb, 0, 0, rsaCert, rsaCertSz, rsaPrivKey, rsaPrivKeySz}, {(byte*)input, (word32)(sizeof(input)/sizeof(char)), DATA, AES192CBCb, 0, 0, rsaCert, rsaCertSz, rsaPrivKey, rsaPrivKeySz}, {(byte*)input, (word32)(sizeof(input)/sizeof(char)), DATA, AES256CBCb, 0, 0, rsaCert, rsaCertSz, rsaPrivKey, rsaPrivKeySz}, #endif /* NO_AES */ #endif /* NO_RSA */ #if defined(HAVE_ECC) #ifndef NO_AES #ifndef NO_SHA {(byte*)input, (word32)(sizeof(input)/sizeof(char)), DATA, AES128CBCb, AES128_WRAP, dhSinglePass_stdDH_sha1kdf_scheme, eccCert, eccCertSz, eccPrivKey, eccPrivKeySz}, #endif #ifndef NO_SHA256 {(byte*)input, (word32)(sizeof(input)/sizeof(char)), DATA, AES256CBCb, AES256_WRAP, dhSinglePass_stdDH_sha256kdf_scheme, eccCert, eccCertSz, eccPrivKey, eccPrivKeySz}, #endif #ifdef WOLFSSL_SHA512 {(byte*)input, (word32)(sizeof(input)/sizeof(char)), DATA, AES256CBCb, AES256_WRAP, dhSinglePass_stdDH_sha512kdf_scheme, eccCert, eccCertSz, eccPrivKey, eccPrivKeySz}, #endif #endif /* NO_AES */ #endif /* END HAVE_ECC */ }; /* END pkcs7EnvelopedVector */ printf(testingFmt, "wc_PKCS7_EncodeEnvelopedData()"); testSz = (int)sizeof(testVectors)/(int)sizeof(pkcs7EnvelopedVector); for (i = 0; i < testSz; i++) { AssertIntEQ(wc_PKCS7_InitWithCert(&pkcs7, (testVectors + i)->cert, (word32)(testVectors + i)->certSz), 0); pkcs7.content = (byte*)(testVectors + i)->content; pkcs7.contentSz = (testVectors + i)->contentSz; pkcs7.contentOID = (testVectors + i)->contentOID; pkcs7.encryptOID = (testVectors + i)->encryptOID; pkcs7.keyWrapOID = (testVectors + i)->keyWrapOID; pkcs7.keyAgreeOID = (testVectors + i)->keyAgreeOID; pkcs7.privateKey = (testVectors + i)->privateKey; pkcs7.privateKeySz = (testVectors + i)->privateKeySz; AssertIntGE(wc_PKCS7_EncodeEnvelopedData(&pkcs7, output, (word32)sizeof(output)), 0); decodedSz = wc_PKCS7_DecodeEnvelopedData(&pkcs7, output, (word32)sizeof(output), decoded, (word32)sizeof(decoded)); AssertIntGE(decodedSz, 0); /* Verify the size of each buffer. */ AssertIntEQ((word32)sizeof(input)/sizeof(char), decodedSz); /* Don't free the last time through the loop. */ if (i < testSz - 1 ){ wc_PKCS7_Free(&pkcs7); } } /* END test loop. */ /* Test bad args. */ AssertIntEQ(wc_PKCS7_EncodeEnvelopedData(NULL, output, (word32)sizeof(output)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_EncodeEnvelopedData(&pkcs7, NULL, (word32)sizeof(output)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_EncodeEnvelopedData(&pkcs7, output, 0), BAD_FUNC_ARG); printf(resultFmt, passed); /* Decode. */ printf(testingFmt, "wc_PKCS7_DecodeEnvelopedData()"); AssertIntEQ(wc_PKCS7_DecodeEnvelopedData(NULL, output, (word32)sizeof(output), decoded, (word32)sizeof(decoded)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_DecodeEnvelopedData(&pkcs7, output, (word32)sizeof(output), NULL, (word32)sizeof(decoded)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_DecodeEnvelopedData(&pkcs7, output, (word32)sizeof(output), decoded, 0), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_DecodeEnvelopedData(&pkcs7, NULL, (word32)sizeof(output), decoded, (word32)sizeof(decoded)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_DecodeEnvelopedData(&pkcs7, output, 0, decoded, (word32)sizeof(decoded)), BAD_FUNC_ARG); /* Should get a return of BAD_FUNC_ARG with structure data. Order matters.*/ tempWrd32 = pkcs7.singleCertSz; pkcs7.singleCertSz = 0; AssertIntEQ(wc_PKCS7_DecodeEnvelopedData(&pkcs7, output, (word32)sizeof(output), decoded, (word32)sizeof(decoded)), BAD_FUNC_ARG); pkcs7.singleCertSz = tempWrd32; tempWrd32 = pkcs7.privateKeySz; pkcs7.privateKeySz = 0; AssertIntEQ(wc_PKCS7_DecodeEnvelopedData(&pkcs7, output, (word32)sizeof(output), decoded, (word32)sizeof(decoded)), BAD_FUNC_ARG); pkcs7.privateKeySz = tempWrd32; tmpBytePtr = pkcs7.singleCert; pkcs7.singleCert = NULL; AssertIntEQ(wc_PKCS7_DecodeEnvelopedData(&pkcs7, output, (word32)sizeof(output), decoded, (word32)sizeof(decoded)), BAD_FUNC_ARG); pkcs7.singleCert = tmpBytePtr; tmpBytePtr = pkcs7.privateKey; pkcs7.privateKey = NULL; AssertIntEQ(wc_PKCS7_DecodeEnvelopedData(&pkcs7, output, (word32)sizeof(output), decoded, (word32)sizeof(decoded)), BAD_FUNC_ARG); pkcs7.privateKey = tmpBytePtr; printf(resultFmt, passed); wc_PKCS7_Free(&pkcs7); #ifndef NO_RSA if (rsaCert) { XFREE(rsaCert, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); } if (rsaPrivKey) { XFREE(rsaPrivKey, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); } #endif /*NO_RSA */ #ifdef HAVE_ECC if (eccCert) { XFREE(eccCert, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); } if (eccPrivKey) { XFREE(eccPrivKey, HEAP_HINT, DYNAMIC_TYPE_TMP_BUFFER); } #endif /* HAVE_ECC */ #endif /* HAVE_PKCS7 */ } /* END test_wc_PKCS7_EncodeEnvelopedData() */ /* * Testing wc_PKCS7_EncodeEncryptedData() */ static void test_wc_PKCS7_EncodeEncryptedData (void) { #if defined(HAVE_PKCS7) && !defined(NO_PKCS7_ENCRYPTED_DATA) PKCS7 pkcs7; byte* tmpBytePtr = NULL; byte encrypted[TWOK_BUF]; byte decoded[TWOK_BUF]; word32 tmpWrd32 = 0; int tmpInt = 0; int decodedSz; int encryptedSz; int testSz; int i; const byte data[] = { /* Hello World */ 0x48,0x65,0x6c,0x6c,0x6f,0x20,0x57,0x6f, 0x72,0x6c,0x64 }; #ifndef NO_DES3 byte desKey[] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef }; byte des3Key[] = { 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0xfe,0xde,0xba,0x98,0x76,0x54,0x32,0x10, 0x89,0xab,0xcd,0xef,0x01,0x23,0x45,0x67 }; #endif #ifndef NO_AES byte aes128Key[] = { 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08, 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08 }; byte aes192Key[] = { 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08, 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08, 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08 }; byte aes256Key[] = { 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08, 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08, 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08, 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08 }; #endif const pkcs7EncryptedVector testVectors[] = { #ifndef NO_DES3 {data, (word32)sizeof(data), DATA, DES3b, des3Key, sizeof(des3Key)}, {data, (word32)sizeof(data), DATA, DESb, desKey, sizeof(desKey)}, #endif /* NO_DES3 */ #ifndef NO_AES {data, (word32)sizeof(data), DATA, AES128CBCb, aes128Key, sizeof(aes128Key)}, {data, (word32)sizeof(data), DATA, AES192CBCb, aes192Key, sizeof(aes192Key)}, {data, (word32)sizeof(data), DATA, AES256CBCb, aes256Key, sizeof(aes256Key)}, #endif /* NO_AES */ }; testSz = sizeof(testVectors) / sizeof(pkcs7EncryptedVector); for (i = 0; i < testSz; i++) { AssertIntEQ(wc_PKCS7_Init(&pkcs7, HEAP_HINT, devId), 0); pkcs7.content = (byte*)testVectors[i].content; pkcs7.contentSz = testVectors[i].contentSz; pkcs7.contentOID = testVectors[i].contentOID; pkcs7.encryptOID = testVectors[i].encryptOID; pkcs7.encryptionKey = testVectors[i].encryptionKey; pkcs7.encryptionKeySz = testVectors[i].encryptionKeySz; pkcs7.heap = HEAP_HINT; /* encode encryptedData */ encryptedSz = wc_PKCS7_EncodeEncryptedData(&pkcs7, encrypted, sizeof(encrypted)); AssertIntGT(encryptedSz, 0); /* Decode encryptedData */ decodedSz = wc_PKCS7_DecodeEncryptedData(&pkcs7, encrypted, encryptedSz, decoded, sizeof(decoded)); AssertIntEQ(XMEMCMP(decoded, data, decodedSz), 0); /* Keep values for last itr. */ if (i < testSz - 1) { wc_PKCS7_Free(&pkcs7); } } printf(testingFmt, "wc_PKCS7_EncodeEncryptedData()"); AssertIntEQ(wc_PKCS7_EncodeEncryptedData(NULL, encrypted, sizeof(encrypted)),BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_EncodeEncryptedData(&pkcs7, NULL, sizeof(encrypted)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_EncodeEncryptedData(&pkcs7, encrypted, 0), BAD_FUNC_ARG); /* Testing the struct. */ tmpBytePtr = pkcs7.content; pkcs7.content = NULL; AssertIntEQ(wc_PKCS7_EncodeEncryptedData(&pkcs7, encrypted, sizeof(encrypted)), BAD_FUNC_ARG); pkcs7.content = tmpBytePtr; tmpWrd32 = pkcs7.contentSz; pkcs7.contentSz = 0; AssertIntEQ(wc_PKCS7_EncodeEncryptedData(&pkcs7, encrypted, sizeof(encrypted)), BAD_FUNC_ARG); pkcs7.contentSz = tmpWrd32; tmpInt = pkcs7.encryptOID; pkcs7.encryptOID = 0; AssertIntEQ(wc_PKCS7_EncodeEncryptedData(&pkcs7, encrypted, sizeof(encrypted)), BAD_FUNC_ARG); pkcs7.encryptOID = tmpInt; tmpBytePtr = pkcs7.encryptionKey; pkcs7.encryptionKey = NULL; AssertIntEQ(wc_PKCS7_EncodeEncryptedData(&pkcs7, encrypted, sizeof(encrypted)), BAD_FUNC_ARG); pkcs7.encryptionKey = tmpBytePtr; tmpWrd32 = pkcs7.encryptionKeySz; pkcs7.encryptionKeySz = 0; AssertIntEQ(wc_PKCS7_EncodeEncryptedData(&pkcs7, encrypted, sizeof(encrypted)), BAD_FUNC_ARG); pkcs7.encryptionKeySz = tmpWrd32; printf(resultFmt, passed); printf(testingFmt, "wc_PKCS7_EncodeEncryptedData()"); AssertIntEQ(wc_PKCS7_DecodeEncryptedData(NULL, encrypted, encryptedSz, decoded, sizeof(decoded)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_DecodeEncryptedData(&pkcs7, NULL, encryptedSz, decoded, sizeof(decoded)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_DecodeEncryptedData(&pkcs7, encrypted, 0, decoded, sizeof(decoded)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_DecodeEncryptedData(&pkcs7, encrypted, encryptedSz, NULL, sizeof(decoded)), BAD_FUNC_ARG); AssertIntEQ(wc_PKCS7_DecodeEncryptedData(&pkcs7, encrypted, encryptedSz, decoded, 0), BAD_FUNC_ARG); /* Test struct fields */ tmpBytePtr = pkcs7.encryptionKey; pkcs7.encryptionKey = NULL; AssertIntEQ(wc_PKCS7_DecodeEncryptedData(&pkcs7, encrypted, encryptedSz, decoded, sizeof(decoded)), BAD_FUNC_ARG); pkcs7.encryptionKey = tmpBytePtr; pkcs7.encryptionKeySz = 0; AssertIntEQ(wc_PKCS7_DecodeEncryptedData(&pkcs7, encrypted, encryptedSz, decoded, sizeof(decoded)), BAD_FUNC_ARG); printf(resultFmt, passed); wc_PKCS7_Free(&pkcs7); #endif } /* END test_wc_PKCS7_EncodeEncryptedData() */ /*----------------------------------------------------------------------------* | Compatibility Tests *----------------------------------------------------------------------------*/ static void test_wolfSSL_X509_NAME(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && !defined(NO_FILESYSTEM) \ && !defined(NO_RSA) && defined(WOLFSSL_CERT_GEN) X509* x509; const unsigned char* c; unsigned char buf[4096]; int bytes; FILE* f; const X509_NAME* a; const X509_NAME* b; int sz; unsigned char* tmp; char file[] = "./certs/ca-cert.der"; printf(testingFmt, "wolfSSL_X509_NAME()"); /* test compile of depricated function, returns 0 */ AssertIntEQ(CRYPTO_thread_id(), 0); AssertNotNull(a = X509_NAME_new()); X509_NAME_free((X509_NAME*)a); f = fopen(file, "rb"); AssertNotNull(f); bytes = (int)fread(buf, 1, sizeof(buf), f); fclose(f); c = buf; AssertNotNull(x509 = wolfSSL_X509_load_certificate_buffer(c, bytes, SSL_FILETYPE_ASN1)); /* test cmp function */ AssertNotNull(a = X509_get_issuer_name(x509)); AssertNotNull(b = X509_get_subject_name(x509)); AssertIntEQ(X509_NAME_cmp(a, b), 0); /* self signed should be 0 */ tmp = buf; AssertIntGT((sz = i2d_X509_NAME((X509_NAME*)a, &tmp)), 0); if (tmp == buf) { printf("\nERROR - %s line %d failed with:", __FILE__, __LINE__); \ printf(" Expected pointer to be incremented\n"); abort(); } /* retry but with the function creating a buffer */ tmp = NULL; AssertIntGT((sz = i2d_X509_NAME((X509_NAME*)b, &tmp)), 0); XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL); X509_free(x509); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_DES3) */ } static void test_wolfSSL_DES(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_DES3) const_DES_cblock myDes; DES_cblock iv; DES_key_schedule key; word32 i; DES_LONG dl; unsigned char msg[] = "hello wolfssl"; printf(testingFmt, "wolfSSL_DES()"); DES_check_key(1); DES_set_key(&myDes, &key); /* check, check of odd parity */ XMEMSET(myDes, 4, sizeof(const_DES_cblock)); myDes[0] = 6; /*set even parity*/ XMEMSET(key, 5, sizeof(DES_key_schedule)); AssertIntEQ(DES_set_key_checked(&myDes, &key), -1); AssertIntNE(key[0], myDes[0]); /* should not have copied over key */ /* set odd parity for success case */ DES_set_odd_parity(&myDes); printf("%02x %02x %02x %02x", myDes[0], myDes[1], myDes[2], myDes[3]); AssertIntEQ(DES_set_key_checked(&myDes, &key), 0); for (i = 0; i < sizeof(DES_key_schedule); i++) { AssertIntEQ(key[i], myDes[i]); } AssertIntEQ(DES_is_weak_key(&myDes), 0); /* check weak key */ XMEMSET(myDes, 1, sizeof(const_DES_cblock)); XMEMSET(key, 5, sizeof(DES_key_schedule)); AssertIntEQ(DES_set_key_checked(&myDes, &key), -2); AssertIntNE(key[0], myDes[0]); /* should not have copied over key */ /* now do unchecked copy of a weak key over */ DES_set_key_unchecked(&myDes, &key); /* compare arrays, should be the same */ for (i = 0; i < sizeof(DES_key_schedule); i++) { AssertIntEQ(key[i], myDes[i]); } AssertIntEQ(DES_is_weak_key(&myDes), 1); /* check DES_key_sched API */ XMEMSET(key, 1, sizeof(DES_key_schedule)); AssertIntEQ(DES_key_sched(&myDes, NULL), 0); AssertIntEQ(DES_key_sched(NULL, &key), 0); AssertIntEQ(DES_key_sched(&myDes, &key), 0); /* compare arrays, should be the same */ for (i = 0; i < sizeof(DES_key_schedule); i++) { AssertIntEQ(key[i], myDes[i]); } /* DES_cbc_cksum should return the last 4 of the last 8 bytes after * DES_cbc_encrypt on the input */ XMEMSET(iv, 0, sizeof(DES_cblock)); XMEMSET(myDes, 5, sizeof(DES_key_schedule)); AssertIntGT((dl = DES_cbc_cksum(msg, &key, sizeof(msg), &myDes, &iv)), 0); AssertIntEQ(dl, 480052723); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_DES3) */ } static void test_wolfSSL_certs(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) X509* x509; WOLFSSL* ssl; WOLFSSL_CTX* ctx; WOLF_STACK_OF(ASN1_OBJECT)* sk; int crit; printf(testingFmt, "wolfSSL_certs()"); AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method())); AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, SSL_FILETYPE_PEM)); AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, SSL_FILETYPE_PEM)); #ifndef HAVE_USER_RSA AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, cliKeyFile, SSL_FILETYPE_PEM)); AssertIntEQ(SSL_CTX_check_private_key(ctx), SSL_FAILURE); AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, SSL_FILETYPE_PEM)); AssertIntEQ(SSL_CTX_check_private_key(ctx), SSL_SUCCESS); #endif AssertNotNull(ssl = SSL_new(ctx)); AssertIntEQ(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS); #ifdef HAVE_PK_CALLBACKS AssertIntEQ((int)SSL_set_tlsext_debug_arg(ssl, NULL), WOLFSSL_SUCCESS); #endif /* HAVE_PK_CALLBACKS */ /* create and use x509 */ x509 = wolfSSL_X509_load_certificate_file(cliCertFile, WOLFSSL_FILETYPE_PEM); AssertNotNull(x509); AssertIntEQ(SSL_use_certificate(ssl, x509), WOLFSSL_SUCCESS); #ifndef HAVE_USER_RSA /* with loading in a new cert the check on private key should now fail */ AssertIntNE(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS); #endif #if defined(USE_CERT_BUFFERS_2048) AssertIntEQ(SSL_use_certificate_ASN1(ssl, (unsigned char*)server_cert_der_2048, sizeof_server_cert_der_2048), WOLFSSL_SUCCESS); #endif #if !defined(NO_SHA) && !defined(NO_SHA256) /************* Get Digest of Certificate ******************/ { byte digest[64]; /* max digest size */ word32 digestSz; XMEMSET(digest, 0, sizeof(digest)); AssertIntEQ(X509_digest(x509, wolfSSL_EVP_sha1(), digest, &digestSz), WOLFSSL_SUCCESS); AssertIntEQ(X509_digest(x509, wolfSSL_EVP_sha256(), digest, &digestSz), WOLFSSL_SUCCESS); AssertIntEQ(X509_digest(NULL, wolfSSL_EVP_sha1(), digest, &digestSz), WOLFSSL_FAILURE); } #endif /* !NO_SHA && !NO_SHA256*/ /* test and checkout X509 extensions */ sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_basic_constraints, &crit, NULL); AssertNotNull(sk); AssertIntEQ(crit, 0); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_key_usage, &crit, NULL); /* AssertNotNull(sk); NID not yet supported */ AssertIntEQ(crit, -1); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_ext_key_usage, &crit, NULL); /* AssertNotNull(sk); no extension set */ wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_authority_key_identifier, &crit, NULL); AssertNotNull(sk); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_private_key_usage_period, &crit, NULL); /* AssertNotNull(sk); NID not yet supported */ AssertIntEQ(crit, -1); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_subject_alt_name, &crit, NULL); /* AssertNotNull(sk); no alt names set */ wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_issuer_alt_name, &crit, NULL); /* AssertNotNull(sk); NID not yet supported */ AssertIntEQ(crit, -1); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_info_access, &crit, NULL); /* AssertNotNull(sk); no auth info set */ wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_sinfo_access, &crit, NULL); /* AssertNotNull(sk); NID not yet supported */ AssertIntEQ(crit, -1); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_name_constraints, &crit, NULL); /* AssertNotNull(sk); NID not yet supported */ AssertIntEQ(crit, -1); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_certificate_policies, &crit, NULL); #if !defined(WOLFSSL_SEP) && !defined(WOLFSSL_CERT_EXT) AssertNull(sk); #else /* AssertNotNull(sk); no cert policy set */ #endif wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_policy_mappings, &crit, NULL); /* AssertNotNull(sk); NID not yet supported */ AssertIntEQ(crit, -1); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_policy_constraints, &crit, NULL); /* AssertNotNull(sk); NID not yet supported */ AssertIntEQ(crit, -1); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_inhibit_any_policy, &crit, NULL); /* AssertNotNull(sk); NID not yet supported */ AssertIntEQ(crit, -1); wolfSSL_sk_ASN1_OBJECT_free(sk); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_tlsfeature, &crit, NULL); /* AssertNotNull(sk); NID not yet supported */ AssertIntEQ(crit, -1); wolfSSL_sk_ASN1_OBJECT_free(sk); /* test invalid cases */ crit = 0; sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, -1, &crit, NULL); AssertNull(sk); AssertIntEQ(crit, -1); sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(NULL, NID_tlsfeature, NULL, NULL); AssertNull(sk); AssertIntEQ(SSL_get_hit(ssl), 0); X509_free(x509); SSL_free(ssl); SSL_CTX_free(ctx); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) */ } static void test_wolfSSL_ASN1_TIME_print() { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && !defined(NO_RSA) \ && (defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX) || \ defined(WOLFSSL_HAPROXY)) && defined(USE_CERT_BUFFERS_2048) BIO* bio; X509* x509; const unsigned char* der = client_cert_der_2048; ASN1_TIME* t; unsigned char buf[25]; printf(testingFmt, "wolfSSL_ASN1_TIME_print()"); AssertNotNull(bio = BIO_new(BIO_s_mem())); AssertNotNull(x509 = wolfSSL_X509_load_certificate_buffer(der, sizeof_client_cert_der_2048, WOLFSSL_FILETYPE_ASN1)); AssertIntEQ(ASN1_TIME_print(bio, X509_get_notBefore(x509)), 1); AssertIntEQ(BIO_read(bio, buf, sizeof(buf)), 24); AssertIntEQ(XMEMCMP(buf, "Aug 11 20:07:37 2016 GMT", sizeof(buf) - 1), 0); /* create a bad time and test results */ AssertNotNull(t = X509_get_notAfter(x509)); t->data[10] = 0; t->data[5] = 0; AssertIntNE(ASN1_TIME_print(bio, t), 1); AssertIntEQ(BIO_read(bio, buf, sizeof(buf)), 14); AssertIntEQ(XMEMCMP(buf, "Bad time value", 14), 0); BIO_free(bio); X509_free(x509); printf(resultFmt, passed); #endif } static void test_wolfSSL_private_keys(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) WOLFSSL* ssl; WOLFSSL_CTX* ctx; EVP_PKEY* pkey = NULL; printf(testingFmt, "wolfSSL_private_keys()"); OpenSSL_add_all_digests(); OpenSSL_add_all_algorithms(); #ifndef NO_RSA AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method())); AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM)); AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM)); AssertNotNull(ssl = SSL_new(ctx)); AssertIntEQ(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS); #ifdef USE_CERT_BUFFERS_2048 { const unsigned char* server_key = (const unsigned char*)server_key_der_2048; unsigned char buf[FOURK_BUF]; word32 bufSz; AssertIntEQ(SSL_use_RSAPrivateKey_ASN1(ssl, (unsigned char*)client_key_der_2048, sizeof_client_key_der_2048), WOLFSSL_SUCCESS); #ifndef HAVE_USER_RSA /* Should missmatch now that a different private key loaded */ AssertIntNE(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS); #endif AssertIntEQ(SSL_use_PrivateKey_ASN1(0, ssl, (unsigned char*)server_key, sizeof_server_key_der_2048), WOLFSSL_SUCCESS); /* After loading back in DER format of original key, should match */ AssertIntEQ(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS); /* pkey not set yet, expecting to fail */ AssertIntEQ(SSL_use_PrivateKey(ssl, pkey), WOLFSSL_FAILURE); /* set PKEY and test again */ AssertNotNull(wolfSSL_d2i_PrivateKey(EVP_PKEY_RSA, &pkey, &server_key, (long)sizeof_server_key_der_2048)); AssertIntEQ(SSL_use_PrivateKey(ssl, pkey), WOLFSSL_SUCCESS); /* reuse PKEY structure and test * this should be checked with a memory management sanity checker */ AssertFalse(server_key == (const unsigned char*)server_key_der_2048); server_key = (const unsigned char*)server_key_der_2048; AssertNotNull(wolfSSL_d2i_PrivateKey(EVP_PKEY_RSA, &pkey, &server_key, (long)sizeof_server_key_der_2048)); AssertIntEQ(SSL_use_PrivateKey(ssl, pkey), WOLFSSL_SUCCESS); /* check striping PKCS8 header with wolfSSL_d2i_PrivateKey */ bufSz = FOURK_BUF; AssertIntGT((bufSz = wc_CreatePKCS8Key(buf, &bufSz, (byte*)server_key_der_2048, sizeof_server_key_der_2048, RSAk, NULL, 0)), 0); server_key = (const unsigned char*)buf; AssertNotNull(wolfSSL_d2i_PrivateKey(EVP_PKEY_RSA, &pkey, &server_key, (long)bufSz)); } #endif EVP_PKEY_free(pkey); SSL_free(ssl); /* frees x509 also since loaded into ssl */ SSL_CTX_free(ctx); #endif /* end of RSA private key match tests */ #ifdef HAVE_ECC AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method())); AssertTrue(SSL_CTX_use_certificate_file(ctx, eccCertFile, WOLFSSL_FILETYPE_PEM)); AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, eccKeyFile, WOLFSSL_FILETYPE_PEM)); AssertNotNull(ssl = SSL_new(ctx)); AssertIntEQ(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS); SSL_free(ssl); AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, cliEccKeyFile, WOLFSSL_FILETYPE_PEM)); AssertNotNull(ssl = SSL_new(ctx)); AssertIntNE(wolfSSL_check_private_key(ssl), WOLFSSL_SUCCESS); SSL_free(ssl); SSL_CTX_free(ctx); #endif /* end of ECC private key match tests */ /* test existence of no-op macros in wolfssl/openssl/ssl.h */ CONF_modules_free(); ENGINE_cleanup(); CONF_modules_unload(); (void)ssl; (void)ctx; (void)pkey; printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) */ } static void test_wolfSSL_PEM_PrivateKey(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) && \ (defined(WOLFSSL_KEY_GEN) || defined(WOLFSSL_CERT_GEN)) && \ defined(USE_CERT_BUFFERS_2048) const unsigned char* server_key = (const unsigned char*)server_key_der_2048; EVP_PKEY* pkey = NULL; EVP_PKEY* pkey2 = NULL; BIO* bio; unsigned char extra[10]; int i; printf(testingFmt, "wolfSSL_PEM_PrivateKey()"); XMEMSET(extra, 0, sizeof(extra)); AssertNotNull(bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem())); AssertIntEQ(BIO_set_write_buf_size(bio, 4096), SSL_FAILURE); AssertNull(d2i_PrivateKey(EVP_PKEY_EC, &pkey, &server_key, (long)sizeof_server_key_der_2048)); AssertNull(pkey); AssertNotNull(wolfSSL_d2i_PrivateKey(EVP_PKEY_RSA, &pkey, &server_key, (long)sizeof_server_key_der_2048)); AssertIntEQ(PEM_write_bio_PrivateKey(bio, pkey, NULL, NULL, 0, NULL, NULL), WOLFSSL_SUCCESS); /* test of creating new EVP_PKEY */ AssertNotNull((pkey2 = PEM_read_bio_PrivateKey(bio, NULL, NULL, NULL))); AssertIntEQ((int)XMEMCMP(pkey->pkey.ptr, pkey2->pkey.ptr, pkey->pkey_sz),0); /* test of reuse of EVP_PKEY */ AssertNull(PEM_read_bio_PrivateKey(bio, &pkey, NULL, NULL)); AssertIntEQ(BIO_pending(bio), 0); AssertIntEQ(PEM_write_bio_PrivateKey(bio, pkey, NULL, NULL, 0, NULL, NULL), SSL_SUCCESS); AssertIntEQ(BIO_write(bio, extra, 10), 10); /*add 10 extra bytes after PEM*/ AssertNotNull(PEM_read_bio_PrivateKey(bio, &pkey, NULL, NULL)); AssertNotNull(pkey); AssertIntEQ((int)XMEMCMP(pkey->pkey.ptr, pkey2->pkey.ptr, pkey->pkey_sz),0); AssertIntEQ(BIO_pending(bio), 10); /* check 10 extra bytes still there */ AssertIntEQ(BIO_read(bio, extra, 10), 10); for (i = 0; i < 10; i++) { AssertIntEQ(extra[i], 0); } BIO_free(bio); EVP_PKEY_free(pkey); EVP_PKEY_free(pkey2); /* key is DES encrypted */ #if !defined(NO_DES3) && defined(WOLFSSL_ENCRYPTED_KEYS) { pem_password_cb* passwd_cb; void* passwd_cb_userdata; SSL_CTX* ctx; char passwd[] = "bad password"; AssertNotNull(ctx = SSL_CTX_new(TLSv1_2_server_method())); AssertNotNull(bio = BIO_new_file("./certs/server-keyEnc.pem", "rb")); SSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack); AssertNotNull(passwd_cb = SSL_CTX_get_default_passwd_cb(ctx)); AssertNull(passwd_cb_userdata = SSL_CTX_get_default_passwd_cb_userdata(ctx)); /* fail case with password call back */ AssertNull(pkey = PEM_read_bio_PrivateKey(bio, NULL, NULL, (void*)passwd)); BIO_free(bio); AssertNotNull(bio = BIO_new_file("./certs/server-keyEnc.pem", "rb")); AssertNull(pkey = PEM_read_bio_PrivateKey(bio, NULL, passwd_cb, (void*)passwd)); BIO_free(bio); AssertNotNull(bio = BIO_new_file("./certs/server-keyEnc.pem", "rb")); /* use callback that works */ AssertNotNull(pkey = PEM_read_bio_PrivateKey(bio, NULL, passwd_cb, (void*)"yassl123")); AssertIntEQ(SSL_CTX_use_PrivateKey(ctx, pkey), SSL_SUCCESS); EVP_PKEY_free(pkey); BIO_free(bio); SSL_CTX_free(ctx); } #endif /* !defined(NO_DES3) */ #ifdef HAVE_ECC { unsigned char buf[2048]; size_t bytes; XFILE f; SSL_CTX* ctx; AssertNotNull(ctx = SSL_CTX_new(TLSv1_2_server_method())); AssertNotNull(f = XFOPEN("./certs/ecc-key.der", "rb")); bytes = XFREAD(buf, 1, sizeof(buf), f); XFCLOSE(f); server_key = buf; pkey = NULL; AssertNull(d2i_PrivateKey(EVP_PKEY_RSA, &pkey, &server_key, bytes)); AssertNull(pkey); AssertNotNull(d2i_PrivateKey(EVP_PKEY_EC, &pkey, &server_key, bytes)); AssertIntEQ(SSL_CTX_use_PrivateKey(ctx, pkey), SSL_SUCCESS); EVP_PKEY_free(pkey); SSL_CTX_free(ctx); } #endif printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) */ } static void test_wolfSSL_PEM_RSAPrivateKey(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) RSA* rsa = NULL; BIO* bio = NULL; printf(testingFmt, "wolfSSL_PEM_RSAPrivateKey()"); AssertNotNull(bio = BIO_new_file(svrKeyFile, "rb")); AssertNotNull((rsa = PEM_read_bio_RSAPrivateKey(bio, NULL, NULL, NULL))); AssertIntEQ(RSA_size(rsa), 256); BIO_free(bio); RSA_free(rsa); #ifdef HAVE_ECC AssertNotNull(bio = BIO_new_file(eccKeyFile, "rb")); AssertNull((rsa = PEM_read_bio_RSAPrivateKey(bio, NULL, NULL, NULL))); BIO_free(bio); #endif /* HAVE_ECC */ printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) */ } static void test_wolfSSL_tmp_dh(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_DSA) && !defined(NO_RSA) && \ !defined(NO_DH) byte buffer[5300]; char file[] = "./certs/dsaparams.pem"; FILE *f; int bytes; DSA* dsa; DH* dh; BIO* bio; SSL* ssl; SSL_CTX* ctx; printf(testingFmt, "wolfSSL_tmp_dh()"); AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method())); AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, WOLFSSL_FILETYPE_PEM)); AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, WOLFSSL_FILETYPE_PEM)); AssertNotNull(ssl = SSL_new(ctx)); f = fopen(file, "rb"); AssertNotNull(f); bytes = (int)fread(buffer, 1, sizeof(buffer), f); fclose(f); bio = BIO_new_mem_buf((void*)buffer, bytes); AssertNotNull(bio); dsa = wolfSSL_PEM_read_bio_DSAparams(bio, NULL, NULL, NULL); AssertNotNull(dsa); dh = wolfSSL_DSA_dup_DH(dsa); AssertNotNull(dh); AssertIntEQ((int)SSL_CTX_set_tmp_dh(ctx, dh), WOLFSSL_SUCCESS); AssertIntEQ((int)SSL_set_tmp_dh(ssl, dh), WOLFSSL_SUCCESS); BIO_free(bio); DSA_free(dsa); DH_free(dh); SSL_free(ssl); SSL_CTX_free(ctx); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) */ } static void test_wolfSSL_ctrl(void) { #if defined(OPENSSL_EXTRA) byte buff[5300]; BIO* bio; int bytes; BUF_MEM* ptr = NULL; printf(testingFmt, "wolfSSL_crtl()"); bytes = sizeof(buff); bio = BIO_new_mem_buf((void*)buff, bytes); AssertNotNull(bio); AssertNotNull(BIO_s_socket()); AssertIntEQ((int)wolfSSL_BIO_get_mem_ptr(bio, &ptr), WOLFSSL_SUCCESS); /* needs tested after stubs filled out @TODO SSL_ctrl SSL_CTX_ctrl */ BIO_free(bio); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) */ } static void test_wolfSSL_EVP_PKEY_new_mac_key(void) { #ifdef OPENSSL_EXTRA static const unsigned char pw[] = "password"; static const int pwSz = sizeof(pw) - 1; size_t checkPwSz = 0; const unsigned char* checkPw = NULL; WOLFSSL_EVP_PKEY* key = NULL; printf(testingFmt, "wolfSSL_EVP_PKEY_new_mac_key()"); AssertNull(key = wolfSSL_EVP_PKEY_new_mac_key(0, NULL, pw, pwSz)); AssertNull(key = wolfSSL_EVP_PKEY_new_mac_key(0, NULL, NULL, pwSz)); AssertNotNull(key = wolfSSL_EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, pw, pwSz)); AssertIntEQ(key->type, EVP_PKEY_HMAC); AssertIntEQ(key->save_type, EVP_PKEY_HMAC); AssertIntEQ(key->pkey_sz, pwSz); AssertIntEQ(XMEMCMP(key->pkey.ptr, pw, pwSz), 0); AssertNotNull(checkPw = wolfSSL_EVP_PKEY_get0_hmac(key, &checkPwSz)); AssertIntEQ((int)checkPwSz, pwSz); AssertIntEQ(XMEMCMP(checkPw, pw, pwSz), 0); wolfSSL_EVP_PKEY_free(key); AssertNotNull(key = wolfSSL_EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, pw, 0)); AssertIntEQ(key->pkey_sz, 0); checkPw = wolfSSL_EVP_PKEY_get0_hmac(key, &checkPwSz); (void)checkPw; AssertIntEQ((int)checkPwSz, 0); wolfSSL_EVP_PKEY_free(key); AssertNotNull(key = wolfSSL_EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, NULL, 0)); AssertIntEQ(key->pkey_sz, 0); checkPw = wolfSSL_EVP_PKEY_get0_hmac(key, &checkPwSz); (void)checkPw; AssertIntEQ((int)checkPwSz, 0); wolfSSL_EVP_PKEY_free(key); printf(resultFmt, passed); #endif /* OPENSSL_EXTRA */ } static void test_wolfSSL_EVP_MD_hmac_signing(void) { #ifdef OPENSSL_EXTRA const unsigned char testKey[] = { 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b, 0x0b }; const char testData[] = "Hi There"; const unsigned char testResult[] = { 0xb0, 0x34, 0x4c, 0x61, 0xd8, 0xdb, 0x38, 0x53, 0x5c, 0xa8, 0xaf, 0xce, 0xaf, 0x0b, 0xf1, 0x2b, 0x88, 0x1d, 0xc2, 0x00, 0xc9, 0x83, 0x3d, 0xa7, 0x26, 0xe9, 0x37, 0x6c, 0x2e, 0x32, 0xcf, 0xf7 }; unsigned char check[sizeof(testResult)]; size_t checkSz = -1; WOLFSSL_EVP_PKEY* key; WOLFSSL_EVP_MD_CTX mdCtx; printf(testingFmt, "wolfSSL_EVP_MD_hmac_signing()"); AssertNotNull(key = wolfSSL_EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL, testKey, (int)sizeof(testKey))); wolfSSL_EVP_MD_CTX_init(&mdCtx); AssertIntEQ(wolfSSL_EVP_DigestSignInit(&mdCtx, NULL, wolfSSL_EVP_sha256(), NULL, key), 1); AssertIntEQ(wolfSSL_EVP_DigestSignUpdate(&mdCtx, testData, (unsigned int)XSTRLEN(testData)), 1); AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, NULL, &checkSz), 1); AssertIntEQ((int)checkSz, sizeof(testResult)); AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, check, &checkSz), 1); AssertIntEQ((int)checkSz,(int)sizeof(testResult)); AssertIntEQ(XMEMCMP(testResult, check, sizeof(testResult)), 0); AssertIntEQ(wolfSSL_EVP_MD_CTX_cleanup(&mdCtx), 1); wolfSSL_EVP_MD_CTX_init(&mdCtx); AssertIntEQ(wolfSSL_EVP_DigestSignInit(&mdCtx, NULL, wolfSSL_EVP_sha256(), NULL, key), 1); AssertIntEQ(wolfSSL_EVP_DigestSignUpdate(&mdCtx, testData, 4), 1); AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, NULL, &checkSz), 1); AssertIntEQ((int)checkSz, sizeof(testResult)); AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, check, &checkSz), 1); AssertIntEQ((int)checkSz,(int)sizeof(testResult)); AssertIntEQ(wolfSSL_EVP_DigestSignUpdate(&mdCtx, testData + 4, (unsigned int)XSTRLEN(testData) - 4), 1); AssertIntEQ(wolfSSL_EVP_DigestSignFinal(&mdCtx, check, &checkSz), 1); AssertIntEQ((int)checkSz,(int)sizeof(testResult)); AssertIntEQ(XMEMCMP(testResult, check, sizeof(testResult)), 0); AssertIntEQ(wolfSSL_EVP_MD_CTX_cleanup(&mdCtx), 1); wolfSSL_EVP_PKEY_free(key); printf(resultFmt, passed); #endif /* OPENSSL_EXTRA */ } static void test_wolfSSL_CTX_add_extra_chain_cert(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) char caFile[] = "./certs/client-ca.pem"; char clientFile[] = "./certs/client-cert.pem"; SSL_CTX* ctx; X509* x509 = NULL; printf(testingFmt, "wolfSSL_CTX_add_extra_chain_cert()"); AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method())); x509 = wolfSSL_X509_load_certificate_file(caFile, WOLFSSL_FILETYPE_PEM); AssertNotNull(x509); AssertIntEQ((int)SSL_CTX_add_extra_chain_cert(ctx, x509), WOLFSSL_SUCCESS); x509 = wolfSSL_X509_load_certificate_file(clientFile, WOLFSSL_FILETYPE_PEM); AssertNotNull(x509); #if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) /* additional test of getting EVP_PKEY key size from X509 * Do not run with user RSA because wolfSSL_RSA_size is not currently * allowed with user RSA */ { EVP_PKEY* pkey; #if defined(HAVE_ECC) X509* ecX509; #endif /* HAVE_ECC */ AssertNotNull(pkey = X509_get_pubkey(x509)); /* current RSA key is 2048 bit (256 bytes) */ AssertIntEQ(EVP_PKEY_size(pkey), 256); EVP_PKEY_free(pkey); #if defined(HAVE_ECC) #if defined(USE_CERT_BUFFERS_256) AssertNotNull(ecX509 = wolfSSL_X509_load_certificate_buffer( cliecc_cert_der_256, sizeof_cliecc_cert_der_256, SSL_FILETYPE_ASN1)); #else AssertNotNull(ecX509 = wolfSSL_X509_load_certificate_file(cliEccCertFile, SSL_FILETYPE_PEM)); #endif AssertNotNull(pkey = X509_get_pubkey(ecX509)); /* current ECC key is 256 bit (32 bytes) */ AssertIntEQ(EVP_PKEY_size(pkey), 32); X509_free(ecX509); EVP_PKEY_free(pkey); #endif /* HAVE_ECC */ } #endif /* !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) */ AssertIntEQ((int)SSL_CTX_add_extra_chain_cert(ctx, x509), SSL_SUCCESS); #ifdef WOLFSSL_ENCRYPTED_KEYS AssertNull(SSL_CTX_get_default_passwd_cb(ctx)); AssertNull(SSL_CTX_get_default_passwd_cb_userdata(ctx)); #endif SSL_CTX_free(ctx); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) */ } static void test_wolfSSL_ERR_peek_last_error_line(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && defined(DEBUG_WOLFSSL) && \ !defined(NO_OLD_TLS) && defined(HAVE_IO_TESTS_DEPENDENCIES) tcp_ready ready; func_args client_args; func_args server_args; #ifndef SINGLE_THREADED THREAD_TYPE serverThread; #endif callback_functions client_cb; callback_functions server_cb; int line = 0; int flag = ERR_TXT_STRING; const char* file = NULL; const char* data = NULL; printf(testingFmt, "wolfSSL_ERR_peek_last_error_line()"); /* create a failed connection and inspect the error */ #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif XMEMSET(&client_args, 0, sizeof(func_args)); XMEMSET(&server_args, 0, sizeof(func_args)); StartTCP(); InitTcpReady(&ready); XMEMSET(&client_cb, 0, sizeof(callback_functions)); XMEMSET(&server_cb, 0, sizeof(callback_functions)); client_cb.method = wolfTLSv1_1_client_method; server_cb.method = wolfTLSv1_2_server_method; server_args.signal = &ready; server_args.callbacks = &server_cb; client_args.signal = &ready; client_args.callbacks = &client_cb; #ifndef SINGLE_THREADED start_thread(test_server_nofail, &server_args, &serverThread); wait_tcp_ready(&server_args); test_client_nofail(&client_args, NULL); join_thread(serverThread); #endif FreeTcpReady(&ready); AssertIntGT(ERR_get_error_line_data(NULL, NULL, &data, &flag), 0); AssertNotNull(data); /* check clearing error state */ ERR_remove_state(0); AssertIntEQ((int)ERR_peek_last_error_line(NULL, NULL), 0); ERR_peek_last_error_line(NULL, &line); AssertIntEQ(line, 0); ERR_peek_last_error_line(&file, NULL); AssertNull(file); /* retry connection to fill error queue */ XMEMSET(&client_args, 0, sizeof(func_args)); XMEMSET(&server_args, 0, sizeof(func_args)); StartTCP(); InitTcpReady(&ready); client_cb.method = wolfTLSv1_1_client_method; server_cb.method = wolfTLSv1_2_server_method; server_args.signal = &ready; server_args.callbacks = &server_cb; client_args.signal = &ready; client_args.callbacks = &client_cb; start_thread(test_server_nofail, &server_args, &serverThread); wait_tcp_ready(&server_args); test_client_nofail(&client_args, NULL); join_thread(serverThread); FreeTcpReady(&ready); /* check that error code was stored */ AssertIntNE((int)ERR_peek_last_error_line(NULL, NULL), 0); ERR_peek_last_error_line(NULL, &line); AssertIntNE(line, 0); ERR_peek_last_error_line(&file, NULL); AssertNotNull(file); #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif printf(resultFmt, passed); printf("\nTesting error print out\n"); ERR_print_errors_fp(stdout); printf("Done testing print out\n\n"); fflush(stdout); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(DEBUG_WOLFSSL) */ } #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) static int verify_cb(int ok, X509_STORE_CTX *ctx) { (void) ok; (void) ctx; printf("ENTER verify_cb\n"); return SSL_SUCCESS; } #endif static void test_wolfSSL_X509_STORE_CTX(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) X509_STORE_CTX* ctx; X509_STORE* str; X509* x509; printf(testingFmt, "wolfSSL_X509_STORE_CTX()"); AssertNotNull(ctx = X509_STORE_CTX_new()); AssertNotNull((str = wolfSSL_X509_STORE_new())); AssertNotNull((x509 = wolfSSL_X509_load_certificate_file(svrCertFile, SSL_FILETYPE_PEM))); AssertIntEQ(X509_STORE_add_cert(str, x509), SSL_SUCCESS); AssertIntEQ(X509_STORE_CTX_init(ctx, str, x509, NULL), SSL_SUCCESS); AssertIntEQ(SSL_get_ex_data_X509_STORE_CTX_idx(), 0); X509_STORE_CTX_set_error(ctx, -5); X509_STORE_CTX_set_error(NULL, -5); X509_STORE_CTX_free(ctx); AssertNotNull(ctx = X509_STORE_CTX_new()); X509_STORE_CTX_set_verify_cb(ctx, (void *)verify_cb); X509_STORE_CTX_free(ctx); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) */ } static void test_wolfSSL_X509_STORE_set_flags(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) X509_STORE* store; X509* x509; printf(testingFmt, "wolfSSL_X509_STORE_set_flags()"); AssertNotNull((store = wolfSSL_X509_STORE_new())); AssertNotNull((x509 = wolfSSL_X509_load_certificate_file(svrCertFile, WOLFSSL_FILETYPE_PEM))); AssertIntEQ(X509_STORE_add_cert(store, x509), WOLFSSL_SUCCESS); #ifdef HAVE_CRL AssertIntEQ(X509_STORE_set_flags(store, WOLFSSL_CRL_CHECKALL), WOLFSSL_SUCCESS); #else AssertIntEQ(X509_STORE_set_flags(store, WOLFSSL_CRL_CHECKALL), NOT_COMPILED_IN); #endif wolfSSL_X509_free(x509); wolfSSL_X509_STORE_free(store); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) */ } static void test_wolfSSL_X509_LOOKUP_load_file(void) { #if defined(OPENSSL_EXTRA) && defined(HAVE_CRL) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) WOLFSSL_X509_STORE* store; WOLFSSL_X509_LOOKUP* lookup; printf(testingFmt, "wolfSSL_X509_LOOKUP_load_file()"); AssertNotNull(store = wolfSSL_X509_STORE_new()); AssertNotNull(lookup = X509_STORE_add_lookup(store, X509_LOOKUP_file())); AssertIntEQ(wolfSSL_X509_LOOKUP_load_file(lookup, "certs/client-ca.pem", X509_FILETYPE_PEM), 1); AssertIntEQ(wolfSSL_X509_LOOKUP_load_file(lookup, "certs/crl/crl2.pem", X509_FILETYPE_PEM), 1); AssertIntEQ(wolfSSL_CertManagerVerify(store->cm, cliCertFile, WOLFSSL_FILETYPE_PEM), 1); AssertIntEQ(wolfSSL_CertManagerVerify(store->cm, svrCertFile, WOLFSSL_FILETYPE_PEM), ASN_NO_SIGNER_E); AssertIntEQ(wolfSSL_X509_LOOKUP_load_file(lookup, "certs/ca-cert.pem", X509_FILETYPE_PEM), 1); AssertIntEQ(wolfSSL_CertManagerVerify(store->cm, svrCertFile, WOLFSSL_FILETYPE_PEM), 1); wolfSSL_X509_STORE_free(store); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && defined(HAVE_CRL) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) */ } static void test_wolfSSL_X509_STORE_CTX_set_time(void) { #if defined(OPENSSL_EXTRA) WOLFSSL_X509_STORE_CTX* ctx; time_t c_time; printf(testingFmt, "wolfSSL_X509_set_time()"); AssertNotNull(ctx = wolfSSL_X509_STORE_CTX_new()); c_time = 365*24*60*60; wolfSSL_X509_STORE_CTX_set_time(ctx, 0, c_time); AssertTrue( (ctx->param->flags & WOLFSSL_USE_CHECK_TIME) == WOLFSSL_USE_CHECK_TIME); AssertTrue(ctx->param->check_time == c_time); wolfSSL_X509_STORE_CTX_free(ctx); printf(resultFmt, passed); #endif /* OPENSSL_EXTRA */ } static void test_wolfSSL_CTX_set_client_CA_list(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_RSA) && !defined(NO_CERTS) WOLFSSL_CTX* ctx; WOLF_STACK_OF(WOLFSSL_X509_NAME)* names = NULL; WOLF_STACK_OF(WOLFSSL_X509_NAME)* ca_list = NULL; printf(testingFmt, "wolfSSL_CTX_set_client_CA_list()"); AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); names = wolfSSL_load_client_CA_file(cliCertFile); AssertNotNull(names); wolfSSL_CTX_set_client_CA_list(ctx,names); AssertNotNull(ca_list = wolfSSL_SSL_CTX_get_client_CA_list(ctx)); wolfSSL_CTX_free(ctx); printf(resultFmt, passed); #endif /* OPENSSL_EXTRA && !NO_RSA && !NO_CERTS */ } static void test_wolfSSL_CTX_add_client_CA(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_RSA) && !defined(NO_CERTS) WOLFSSL_CTX* ctx; WOLFSSL_X509* x509; WOLFSSL_X509* x509_a; WOLF_STACK_OF(WOLFSSLX509_NAME)* ca_list; int ret = 0; printf(testingFmt, "wolfSSL_CTX_add_client_CA()"); AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); /* Add client cert */ AssertNotNull(x509 = wolfSSL_X509_load_certificate_file(cliCertFile, SSL_FILETYPE_PEM)); ret = wolfSSL_CTX_add_client_CA(ctx, x509); AssertIntEQ(ret ,SSL_SUCCESS); AssertNotNull(ca_list = wolfSSL_SSL_CTX_get_client_CA_list(ctx)); /* Add another client cert */ AssertNotNull(x509_a = wolfSSL_X509_load_certificate_file(cliCertFile, SSL_FILETYPE_PEM)); AssertIntEQ(wolfSSL_CTX_add_client_CA(ctx, x509_a),SSL_SUCCESS); wolfSSL_X509_free(x509); wolfSSL_X509_free(x509_a); wolfSSL_CTX_free(ctx); printf(resultFmt, passed); #endif /* OPENSSL_EXTRA && !NO_RSA && !NO_CERTS */ } static void test_wolfSSL_X509_NID(void) { #if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \ !defined(NO_RSA) && defined(USE_CERT_BUFFERS_2048) && !defined(NO_ASN) int sigType; int nameSz; X509* cert; EVP_PKEY* pubKeyTmp; X509_NAME* name; char commonName[80]; char countryName[80]; char localityName[80]; char stateName[80]; char orgName[80]; char orgUnit[80]; printf(testingFmt, "wolfSSL_X509_NID()"); /* ------ PARSE ORIGINAL SELF-SIGNED CERTIFICATE ------ */ /* convert cert from DER to internal WOLFSSL_X509 struct */ AssertNotNull(cert = wolfSSL_X509_d2i(&cert, client_cert_der_2048, sizeof_client_cert_der_2048)); /* ------ EXTRACT CERTIFICATE ELEMENTS ------ */ /* extract PUBLIC KEY from cert */ AssertNotNull(pubKeyTmp = X509_get_pubkey(cert)); /* extract signatureType */ AssertIntNE((sigType = wolfSSL_X509_get_signature_type(cert)), 0); /* extract subjectName info */ AssertNotNull(name = X509_get_subject_name(cert)); AssertIntEQ(X509_NAME_get_text_by_NID(name, -1, NULL, 0), -1); AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_COMMON_NAME, NULL, 0)), 0); AssertIntEQ(nameSz, 15); AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_COMMON_NAME, commonName, sizeof(commonName))), 0); AssertIntEQ(nameSz, 15); AssertIntEQ(XMEMCMP(commonName, "www.wolfssl.com", nameSz), 0); AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_COMMON_NAME, commonName, 9)), 0); AssertIntEQ(nameSz, 8); AssertIntEQ(XMEMCMP(commonName, "www.wolf", nameSz), 0); AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_COUNTRY_NAME, countryName, sizeof(countryName))), 0); AssertIntEQ(XMEMCMP(countryName, "US", nameSz), 0); AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_LOCALITY_NAME, localityName, sizeof(localityName))), 0); AssertIntEQ(XMEMCMP(localityName, "Bozeman", nameSz), 0); AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_STATE_NAME, stateName, sizeof(stateName))), 0); AssertIntEQ(XMEMCMP(stateName, "Montana", nameSz), 0); AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_ORG_NAME, orgName, sizeof(orgName))), 0); AssertIntEQ(XMEMCMP(orgName, "wolfSSL_2048", nameSz), 0); AssertIntGT((nameSz = X509_NAME_get_text_by_NID(name, ASN_ORGUNIT_NAME, orgUnit, sizeof(orgUnit))), 0); AssertIntEQ(XMEMCMP(orgUnit, "Programming-2048", nameSz), 0); EVP_PKEY_free(pubKeyTmp); X509_free(cert); printf(resultFmt, passed); #endif } static void test_wolfSSL_CTX_set_srp_username(void) { #if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \ && !defined(NO_SHA256) && !defined(WC_NO_RNG) WOLFSSL_CTX* ctx; const char *username = "TESTUSER"; const char *password = "TESTPASSWORD"; int r; printf(testingFmt, "wolfSSL_CTX_set_srp_username()"); ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); AssertNotNull(ctx); r = wolfSSL_CTX_set_srp_username(ctx, (char *)username); AssertIntEQ(r,SSL_SUCCESS); wolfSSL_CTX_free(ctx); ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); AssertNotNull(ctx); r = wolfSSL_CTX_set_srp_password(ctx, (char *)password); AssertIntEQ(r,SSL_SUCCESS); r = wolfSSL_CTX_set_srp_username(ctx, (char *)username); AssertIntEQ(r,SSL_SUCCESS); wolfSSL_CTX_free(ctx); printf(resultFmt, passed); #endif /* OPENSSL_EXTRA && WOLFCRYPT_HAVE_SRP */ /* && !NO_SHA256 && !WC_NO_RNG */ } static void test_wolfSSL_CTX_set_srp_password(void) { #if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \ && !defined(NO_SHA256) && !defined(WC_NO_RNG) WOLFSSL_CTX* ctx; const char *username = "TESTUSER"; const char *password = "TESTPASSWORD"; int r; printf(testingFmt, "wolfSSL_CTX_set_srp_password()"); ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); AssertNotNull(ctx); r = wolfSSL_CTX_set_srp_password(ctx, (char *)password); AssertIntEQ(r,SSL_SUCCESS); wolfSSL_CTX_free(ctx); ctx = wolfSSL_CTX_new(wolfSSLv23_client_method()); AssertNotNull(ctx); r = wolfSSL_CTX_set_srp_username(ctx, (char *)username); AssertIntEQ(r,SSL_SUCCESS); r = wolfSSL_CTX_set_srp_password(ctx, (char *)password); AssertIntEQ(r,SSL_SUCCESS); wolfSSL_CTX_free(ctx); printf(resultFmt, passed); #endif /* OPENSSL_EXTRA && WOLFCRYPT_HAVE_SRP */ /* && !NO_SHA256 && !WC_NO_RNG */ } static void test_wolfSSL_BN(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_ASN) BIGNUM* a; BIGNUM* b; BIGNUM* c; BIGNUM* d; ASN1_INTEGER* ai; unsigned char value[1]; printf(testingFmt, "wolfSSL_BN()"); AssertNotNull(b = BN_new()); AssertNotNull(c = BN_new()); AssertNotNull(d = BN_new()); value[0] = 0x03; AssertNotNull(ai = ASN1_INTEGER_new()); /* at the moment hard setting since no set function */ ai->data[0] = 0x02; /* tag for ASN_INTEGER */ ai->data[1] = 0x01; /* length of integer */ ai->data[2] = value[0]; AssertNotNull(a = ASN1_INTEGER_to_BN(ai, NULL)); ASN1_INTEGER_free(ai); value[0] = 0x02; AssertNotNull(BN_bin2bn(value, sizeof(value), b)); value[0] = 0x05; AssertNotNull(BN_bin2bn(value, sizeof(value), c)); /* a^b mod c = */ AssertIntEQ(BN_mod_exp(d, NULL, b, c, NULL), WOLFSSL_FAILURE); AssertIntEQ(BN_mod_exp(d, a, b, c, NULL), WOLFSSL_SUCCESS); /* check result 3^2 mod 5 */ value[0] = 0; AssertIntEQ(BN_bn2bin(d, value), WOLFSSL_SUCCESS); AssertIntEQ(BN_bn2bin(d, value), SSL_SUCCESS); AssertIntEQ((int)(value[0]), 4); /* a*b mod c = */ AssertIntEQ(BN_mod_mul(d, NULL, b, c, NULL), SSL_FAILURE); AssertIntEQ(BN_mod_mul(d, a, b, c, NULL), SSL_SUCCESS); /* check result 3*2 mod 5 */ value[0] = 0; AssertIntEQ(BN_bn2bin(d, value), SSL_SUCCESS); AssertIntEQ((int)(value[0]), 1); /* BN_mod_inverse test */ value[0] = 0; BIGNUM *r = BN_new(); BIGNUM *val = BN_mod_inverse(r,b,c,NULL); AssertIntEQ(BN_bn2bin(r, value), 1); AssertIntEQ((int)(value[0] & 0x03), 3); BN_free(val); AssertIntEQ(BN_set_word(a, 1), SSL_SUCCESS); AssertIntEQ(BN_set_word(b, 5), SSL_SUCCESS); AssertIntEQ(BN_sub(c, a, b), SSL_SUCCESS); #if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) { char* ret; AssertNotNull(ret = BN_bn2dec(c)); AssertIntEQ(XMEMCMP(ret, "-4", sizeof("-4")), 0); XFREE(ret, NULL, DYNAMIC_TYPE_OPENSSL); } #endif AssertIntEQ(BN_get_word(c), 4); BN_free(a); BN_free(b); BN_free(c); BN_clear_free(d); /* check that converting NULL and the null string returns an error */ a = NULL; AssertIntLE(BN_hex2bn(&a, NULL), 0); AssertIntLE(BN_hex2bn(&a, ""), 0); AssertNull(a); /* check that getting a string and a bin of the same number are equal, * and that the comparison works EQ, LT and GT */ AssertIntGT(BN_hex2bn(&a, "03"), 0); value[0] = 0x03; AssertNotNull(b = BN_new()); AssertNotNull(BN_bin2bn(value, sizeof(value), b)); value[0] = 0x04; AssertNotNull(c = BN_new()); AssertNotNull(BN_bin2bn(value, sizeof(value), c)); AssertIntEQ(BN_cmp(a, b), 0); AssertIntLT(BN_cmp(a, c), 0); AssertIntGT(BN_cmp(c, b), 0); BN_free(a); BN_free(b); BN_free(c); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_ASN) */ } #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) #define TEST_ARG 0x1234 static void msg_cb(int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg) { (void)write_p; (void)version; (void)content_type; (void)buf; (void)len; (void)ssl; AssertTrue(arg == (void*)TEST_ARG); } #endif #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && defined(DEBUG_WOLFSSL) && \ !defined(NO_OLD_TLS) && defined(HAVE_IO_TESTS_DEPENDENCIES) #ifndef SINGLE_THREADED static int msgCb(SSL_CTX *ctx, SSL *ssl) { (void) ctx; (void) ssl; printf("\n===== msgcb called ====\n"); #if defined(SESSION_CERTS) && defined(TEST_PEER_CERT_CHAIN) AssertTrue(SSL_get_peer_cert_chain(ssl) != NULL); AssertIntEQ(((WOLFSSL_X509_CHAIN *)SSL_get_peer_cert_chain(ssl))->count, 1); #endif return SSL_SUCCESS; } #endif #endif static void test_wolfSSL_msgCb(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && defined(DEBUG_WOLFSSL) && \ !defined(NO_OLD_TLS) && defined(HAVE_IO_TESTS_DEPENDENCIES) tcp_ready ready; func_args client_args; func_args server_args; #ifndef SINGLE_THREADED THREAD_TYPE serverThread; #endif callback_functions client_cb; callback_functions server_cb; printf(testingFmt, "test_wolfSSL_msgCb"); /* create a failed connection and inspect the error */ #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif XMEMSET(&client_args, 0, sizeof(func_args)); XMEMSET(&server_args, 0, sizeof(func_args)); StartTCP(); InitTcpReady(&ready); XMEMSET(&client_cb, 0, sizeof(callback_functions)); XMEMSET(&server_cb, 0, sizeof(callback_functions)); client_cb.method = wolfTLSv1_2_client_method; server_cb.method = wolfTLSv1_2_server_method; server_args.signal = &ready; server_args.callbacks = &server_cb; client_args.signal = &ready; client_args.callbacks = &client_cb; client_args.return_code = TEST_FAIL; #ifndef SINGLE_THREADED start_thread(test_server_nofail, &server_args, &serverThread); wait_tcp_ready(&server_args); test_client_nofail(&client_args, (void *)msgCb); join_thread(serverThread); AssertTrue(client_args.return_code); AssertTrue(server_args.return_code); #endif FreeTcpReady(&ready); #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif printf(resultFmt, passed); #endif } static void test_wolfSSL_set_options(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) SSL* ssl; SSL_CTX* ctx; char appData[] = "extra msg"; unsigned char protos[] = { 7, 't', 'l', 's', '/', '1', '.', '2', 8, 'h', 't', 't', 'p', '/', '1', '.', '1' }; unsigned int len = sizeof(protos); void *arg = (void *)TEST_ARG; printf(testingFmt, "wolfSSL_set_options()"); AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method())); AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, SSL_FILETYPE_PEM)); AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, SSL_FILETYPE_PEM)); AssertTrue(SSL_CTX_set_options(ctx, SSL_OP_NO_TLSv1) == SSL_OP_NO_TLSv1); AssertTrue(SSL_CTX_get_options(ctx) == SSL_OP_NO_TLSv1); AssertIntGT((int)SSL_CTX_set_options(ctx, (SSL_OP_COOKIE_EXCHANGE | SSL_OP_NO_SSLv2)), 0); AssertTrue((SSL_CTX_set_options(ctx, SSL_OP_COOKIE_EXCHANGE) & SSL_OP_COOKIE_EXCHANGE) == SSL_OP_COOKIE_EXCHANGE); AssertTrue((SSL_CTX_set_options(ctx, SSL_OP_NO_TLSv1_2) & SSL_OP_NO_TLSv1_2) == SSL_OP_NO_TLSv1_2); AssertTrue((SSL_CTX_set_options(ctx, SSL_OP_NO_COMPRESSION) & SSL_OP_NO_COMPRESSION) == SSL_OP_NO_COMPRESSION); AssertNull((SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION) & SSL_OP_NO_COMPRESSION)); SSL_CTX_free(ctx); AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method())); AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, SSL_FILETYPE_PEM)); AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, SSL_FILETYPE_PEM)); AssertNotNull(ssl = SSL_new(ctx)); #if defined(HAVE_EX_DATA) || defined(FORTRESS) AssertIntEQ(SSL_set_app_data(ssl, (void*)appData), SSL_SUCCESS); AssertNotNull(SSL_get_app_data((const WOLFSSL*)ssl)); AssertIntEQ(XMEMCMP(SSL_get_app_data((const WOLFSSL*)ssl), appData, sizeof(appData)), 0); #else AssertIntEQ(SSL_set_app_data(ssl, (void*)appData), SSL_FAILURE); AssertNull(SSL_get_app_data((const WOLFSSL*)ssl)); #endif AssertTrue(SSL_set_options(ssl, SSL_OP_NO_TLSv1) == SSL_OP_NO_TLSv1); AssertTrue(SSL_get_options(ssl) == SSL_OP_NO_TLSv1); AssertIntGT((int)SSL_set_options(ssl, (SSL_OP_COOKIE_EXCHANGE | WOLFSSL_OP_NO_SSLv2)), 0); AssertTrue((SSL_set_options(ssl, SSL_OP_COOKIE_EXCHANGE) & SSL_OP_COOKIE_EXCHANGE) == SSL_OP_COOKIE_EXCHANGE); AssertTrue((SSL_set_options(ssl, SSL_OP_NO_TLSv1_2) & SSL_OP_NO_TLSv1_2) == SSL_OP_NO_TLSv1_2); AssertTrue((SSL_set_options(ssl, SSL_OP_NO_COMPRESSION) & SSL_OP_NO_COMPRESSION) == SSL_OP_NO_COMPRESSION); AssertNull((SSL_clear_options(ssl, SSL_OP_NO_COMPRESSION) & SSL_OP_NO_COMPRESSION)); AssertTrue(SSL_set_msg_callback(ssl, msg_cb) == SSL_SUCCESS); SSL_set_msg_callback_arg(ssl, arg); AssertTrue(SSL_CTX_set_alpn_protos(ctx, protos, len) == SSL_SUCCESS); SSL_free(ssl); SSL_CTX_free(ctx); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) */ } /* Testing wolfSSL_set_tlsext_status_type funciton. * PRE: OPENSSL and HAVE_CERTIFICATE_STATUS_REQUEST defined. */ static void test_wolfSSL_set_tlsext_status_type(void){ #if defined(OPENSSL_EXTRA) && defined(HAVE_CERTIFICATE_STATUS_REQUEST) SSL* ssl; SSL_CTX* ctx; printf(testingFmt, "wolfSSL_set_tlsext_status_type()"); AssertNotNull(ctx = SSL_CTX_new(wolfSSLv23_server_method())); AssertTrue(SSL_CTX_use_certificate_file(ctx, svrCertFile, SSL_FILETYPE_PEM)); AssertTrue(SSL_CTX_use_PrivateKey_file(ctx, svrKeyFile, SSL_FILETYPE_PEM)); AssertNotNull(ssl = SSL_new(ctx)); AssertTrue(SSL_set_tlsext_status_type(ssl,TLSEXT_STATUSTYPE_ocsp) == SSL_SUCCESS); SSL_free(ssl); SSL_CTX_free(ctx); #endif /* OPENSSL_EXTRA && HAVE_CERTIFICATE_STATUS_REQUEST */ } static void test_wolfSSL_PEM_read_bio(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) byte buff[5300]; FILE *f; int bytes; X509* x509; BIO* bio = NULL; BUF_MEM* buf; printf(testingFmt, "wolfSSL_PEM_read_bio()"); AssertNotNull(f = fopen(cliCertFile, "rb")); bytes = (int)fread(buff, 1, sizeof(buff), f); fclose(f); AssertNull(x509 = PEM_read_bio_X509_AUX(bio, NULL, NULL, NULL)); AssertNotNull(bio = BIO_new_mem_buf((void*)buff, bytes)); AssertNotNull(x509 = PEM_read_bio_X509_AUX(bio, NULL, NULL, NULL)); AssertIntEQ((int)BIO_set_fd(bio, 0, BIO_NOCLOSE), 1); AssertIntEQ(SSL_SUCCESS, BIO_get_mem_ptr(bio, &buf)); BIO_free(bio); BUF_MEM_free(buf); X509_free(x509); printf(resultFmt, passed); #endif /* defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_FILESYSTEM) && !defined(NO_RSA) */ } static void test_wolfSSL_BIO(void) { #if defined(OPENSSL_EXTRA) byte buff[20]; BIO* bio1; BIO* bio2; BIO* bio3; char* bufPt; int i; printf(testingFmt, "wolfSSL_BIO()"); for (i = 0; i < 20; i++) { buff[i] = i; } /* Creating and testing type BIO_s_bio */ AssertNotNull(bio1 = BIO_new(BIO_s_bio())); AssertNotNull(bio2 = BIO_new(BIO_s_bio())); AssertNotNull(bio3 = BIO_new(BIO_s_bio())); /* read/write before set up */ AssertIntEQ(BIO_read(bio1, buff, 2), WOLFSSL_BIO_UNSET); AssertIntEQ(BIO_write(bio1, buff, 2), WOLFSSL_BIO_UNSET); AssertIntEQ(BIO_set_write_buf_size(bio1, 20), WOLFSSL_SUCCESS); AssertIntEQ(BIO_set_write_buf_size(bio2, 8), WOLFSSL_SUCCESS); AssertIntEQ(BIO_make_bio_pair(bio1, bio2), WOLFSSL_SUCCESS); AssertIntEQ(BIO_nwrite(bio1, &bufPt, 10), 10); XMEMCPY(bufPt, buff, 10); AssertIntEQ(BIO_write(bio1, buff + 10, 10), 10); /* write buffer full */ AssertIntEQ(BIO_write(bio1, buff, 10), WOLFSSL_BIO_ERROR); AssertIntEQ(BIO_flush(bio1), WOLFSSL_SUCCESS); AssertIntEQ((int)BIO_ctrl_pending(bio1), 0); /* write the other direction with pair */ AssertIntEQ((int)BIO_nwrite(bio2, &bufPt, 10), 8); XMEMCPY(bufPt, buff, 8); AssertIntEQ(BIO_write(bio2, buff, 10), WOLFSSL_BIO_ERROR); /* try read */ AssertIntEQ((int)BIO_ctrl_pending(bio1), 8); AssertIntEQ((int)BIO_ctrl_pending(bio2), 20); AssertIntEQ(BIO_nread(bio2, &bufPt, (int)BIO_ctrl_pending(bio2)), 20); for (i = 0; i < 20; i++) { AssertIntEQ((int)bufPt[i], i); } AssertIntEQ(BIO_nread(bio2, &bufPt, 1), WOLFSSL_BIO_ERROR); AssertIntEQ(BIO_nread(bio1, &bufPt, (int)BIO_ctrl_pending(bio1)), 8); for (i = 0; i < 8; i++) { AssertIntEQ((int)bufPt[i], i); } AssertIntEQ(BIO_nread(bio1, &bufPt, 1), WOLFSSL_BIO_ERROR); AssertIntEQ(BIO_ctrl_reset_read_request(bio1), 1); /* new pair */ AssertIntEQ(BIO_make_bio_pair(bio1, bio3), WOLFSSL_FAILURE); BIO_free(bio2); /* free bio2 and automaticly remove from pair */ AssertIntEQ(BIO_make_bio_pair(bio1, bio3), WOLFSSL_SUCCESS); AssertIntEQ((int)BIO_ctrl_pending(bio3), 0); AssertIntEQ(BIO_nread(bio3, &bufPt, 10), WOLFSSL_BIO_ERROR); /* test wrap around... */ AssertIntEQ(BIO_reset(bio1), 0); AssertIntEQ(BIO_reset(bio3), 0); /* fill write buffer, read only small amount then write again */ AssertIntEQ(BIO_nwrite(bio1, &bufPt, 20), 20); XMEMCPY(bufPt, buff, 20); AssertIntEQ(BIO_nread(bio3, &bufPt, 4), 4); for (i = 0; i < 4; i++) { AssertIntEQ(bufPt[i], i); } /* try writing over read index */ AssertIntEQ(BIO_nwrite(bio1, &bufPt, 5), 4); XMEMSET(bufPt, 0, 4); AssertIntEQ((int)BIO_ctrl_pending(bio3), 20); /* read and write 0 bytes */ AssertIntEQ(BIO_nread(bio3, &bufPt, 0), 0); AssertIntEQ(BIO_nwrite(bio1, &bufPt, 0), 0); /* should read only to end of write buffer then need to read again */ AssertIntEQ(BIO_nread(bio3, &bufPt, 20), 16); for (i = 0; i < 16; i++) { AssertIntEQ(bufPt[i], buff[4 + i]); } AssertIntEQ(BIO_nread(bio3, NULL, 0), WOLFSSL_FAILURE); AssertIntEQ(BIO_nread0(bio3, &bufPt), 4); for (i = 0; i < 4; i++) { AssertIntEQ(bufPt[i], 0); } /* read index should not have advanced with nread0 */ AssertIntEQ(BIO_nread(bio3, &bufPt, 5), 4); for (i = 0; i < 4; i++) { AssertIntEQ(bufPt[i], 0); } /* write and fill up buffer checking reset of index state */ AssertIntEQ(BIO_nwrite(bio1, &bufPt, 20), 20); XMEMCPY(bufPt, buff, 20); /* test reset on data in bio1 write buffer */ AssertIntEQ(BIO_reset(bio1), 0); AssertIntEQ((int)BIO_ctrl_pending(bio3), 0); AssertIntEQ(BIO_nread(bio3, &bufPt, 3), WOLFSSL_BIO_ERROR); AssertIntEQ(BIO_nwrite(bio1, &bufPt, 20), 20); XMEMCPY(bufPt, buff, 20); AssertIntEQ(BIO_nread(bio3, &bufPt, 6), 6); for (i = 0; i < 6; i++) { AssertIntEQ(bufPt[i], i); } /* test case of writing twice with offset read index */ AssertIntEQ(BIO_nwrite(bio1, &bufPt, 3), 3); AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), 3); /* try overwriting */ AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), WOLFSSL_BIO_ERROR); AssertIntEQ(BIO_nread(bio3, &bufPt, 0), 0); AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), WOLFSSL_BIO_ERROR); AssertIntEQ(BIO_nread(bio3, &bufPt, 1), 1); AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), 1); AssertIntEQ(BIO_nwrite(bio1, &bufPt, 4), WOLFSSL_BIO_ERROR); BIO_free(bio1); BIO_free(bio3); /* BIOs with file pointers */ #if !defined(NO_FILESYSTEM) { XFILE f1; XFILE f2; BIO* f_bio1; BIO* f_bio2; unsigned char cert[300]; char testFile[] = "tests/bio_write_test.txt"; char msg[] = "bio_write_test.txt contains the first 300 bytes of certs/server-cert.pem\ncreated by tests/unit.test\n\n"; AssertNotNull(f_bio1 = BIO_new(BIO_s_file())); AssertNotNull(f_bio2 = BIO_new(BIO_s_file())); AssertIntEQ((int)BIO_set_mem_eof_return(f_bio1, -1), 0); AssertIntEQ((int)BIO_set_mem_eof_return(NULL, -1), 0); f1 = XFOPEN(svrCertFile, "rwb"); AssertIntEQ((int)BIO_set_fp(f_bio1, f1, BIO_CLOSE), WOLFSSL_SUCCESS); AssertIntEQ(BIO_write_filename(f_bio2, testFile), WOLFSSL_SUCCESS); AssertIntEQ(BIO_read(f_bio1, cert, sizeof(cert)), sizeof(cert)); AssertIntEQ(BIO_write(f_bio2, msg, sizeof(msg)), sizeof(msg)); AssertIntEQ(BIO_write(f_bio2, cert, sizeof(cert)), sizeof(cert)); AssertIntEQ((int)BIO_get_fp(f_bio2, &f2), WOLFSSL_SUCCESS); AssertIntEQ(BIO_reset(f_bio2), 0); AssertIntEQ(BIO_seek(f_bio2, 4), 0); BIO_free(f_bio1); BIO_free(f_bio2); AssertNotNull(f_bio1 = BIO_new_file(svrCertFile, "rwb")); AssertIntEQ((int)BIO_set_mem_eof_return(f_bio1, -1), 0); AssertIntEQ(BIO_read(f_bio1, cert, sizeof(cert)), sizeof(cert)); BIO_free(f_bio1); } #endif /* !defined(NO_FILESYSTEM) */ printf(resultFmt, passed); #endif } static void test_wolfSSL_ASN1_STRING(void) { #if defined(OPENSSL_EXTRA) ASN1_STRING* str = NULL; const char data[] = "hello wolfSSL"; printf(testingFmt, "wolfSSL_ASN1_STRING()"); AssertNotNull(str = ASN1_STRING_type_new(V_ASN1_OCTET_STRING)); AssertIntEQ(ASN1_STRING_set(str, (const void*)data, sizeof(data)), 1); AssertIntEQ(ASN1_STRING_set(str, (const void*)data, -1), 1); AssertIntEQ(ASN1_STRING_set(str, NULL, -1), 0); ASN1_STRING_free(str); printf(resultFmt, passed); #endif } static void test_wolfSSL_DES_ecb_encrypt(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_DES3) && defined(WOLFSSL_DES_ECB) WOLFSSL_DES_cblock input1,input2,output1,output2,back1,back2; WOLFSSL_DES_key_schedule key; printf(testingFmt, "wolfSSL_DES_ecb_encrypt()"); XMEMCPY(key,"12345678",sizeof(WOLFSSL_DES_key_schedule)); XMEMCPY(input1, "Iamhuman",sizeof(WOLFSSL_DES_cblock)); XMEMCPY(input2, "Whoisit?",sizeof(WOLFSSL_DES_cblock)); XMEMSET(output1, 0, sizeof(WOLFSSL_DES_cblock)); XMEMSET(output2, 0, sizeof(WOLFSSL_DES_cblock)); XMEMSET(back1, 0, sizeof(WOLFSSL_DES_cblock)); XMEMSET(back2, 0, sizeof(WOLFSSL_DES_cblock)); /* Encrypt messages */ wolfSSL_DES_ecb_encrypt(&input1,&output1,&key,DES_ENCRYPT); wolfSSL_DES_ecb_encrypt(&input2,&output2,&key,DES_ENCRYPT); /* Decrypt messages */ int ret1 = 0; int ret2 = 0; wolfSSL_DES_ecb_encrypt(&output1,&back1,&key,DES_DECRYPT); ret1 = XMEMCMP((unsigned char *) back1,(unsigned char *) input1,sizeof(WOLFSSL_DES_cblock)); AssertIntEQ(ret1,0); wolfSSL_DES_ecb_encrypt(&output2,&back2,&key,DES_DECRYPT); ret2 = XMEMCMP((unsigned char *) back2,(unsigned char *) input2,sizeof(WOLFSSL_DES_cblock)); AssertIntEQ(ret2,0); printf(resultFmt, passed); #endif } static void test_wolfSSL_ASN1_TIME_adj(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_ASN1_TIME) \ && !defined(USER_TIME) && !defined(TIME_OVERRIDES) const int year = 365*24*60*60; const int day = 24*60*60; const int hour = 60*60; const int mini = 60; const byte asn_utc_time = ASN_UTC_TIME; #if !defined(TIME_T_NOT_LONG) && !defined(NO_64BIT) const byte asn_gen_time = ASN_GENERALIZED_TIME; #endif WOLFSSL_ASN1_TIME *asn_time, *s; int offset_day; long offset_sec; char date_str[20]; time_t t; printf(testingFmt, "wolfSSL_ASN1_TIME_adj()"); s = (WOLFSSL_ASN1_TIME*)XMALLOC(sizeof(WOLFSSL_ASN1_TIME), NULL, DYNAMIC_TYPE_OPENSSL); /* UTC notation test */ /* 2000/2/15 20:30:00 */ t = (time_t)30 * year + 45 * day + 20 * hour + 30 * mini + 7 * day; offset_day = 7; offset_sec = 45 * mini; /* offset_sec = -45 * min;*/ asn_time = wolfSSL_ASN1_TIME_adj(s, t, offset_day, offset_sec); AssertTrue(asn_time->data[0] == asn_utc_time); XSTRNCPY(date_str,(const char*) &asn_time->data+2,13); AssertIntEQ(0, XMEMCMP(date_str, "000222211500Z", 13)); /* negative offset */ offset_sec = -45 * mini; asn_time = wolfSSL_ASN1_TIME_adj(s, t, offset_day, offset_sec); AssertTrue(asn_time->data[0] == asn_utc_time); XSTRNCPY(date_str,(const char*) &asn_time->data+2,13); AssertIntEQ(0, XMEMCMP(date_str, "000222194500Z", 13)); XFREE(s,NULL,DYNAMIC_TYPE_OPENSSL); XMEMSET(date_str, 0, sizeof(date_str)); /* Generalized time will overflow time_t if not long */ #if !defined(TIME_T_NOT_LONG) && !defined(NO_64BIT) s = (WOLFSSL_ASN1_TIME*)XMALLOC(sizeof(WOLFSSL_ASN1_TIME), NULL, DYNAMIC_TYPE_OPENSSL); /* GeneralizedTime notation test */ /* 2055/03/01 09:00:00 */ t = (time_t)85 * year + 59 * day + 9 * hour + 21 * day; offset_day = 12; offset_sec = 10 * mini; asn_time = wolfSSL_ASN1_TIME_adj(s, t, offset_day, offset_sec); AssertTrue(asn_time->data[0] == asn_gen_time); XSTRNCPY(date_str,(const char*) &asn_time->data+2, 15); AssertIntEQ(0, XMEMCMP(date_str, "20550313091000Z", 15)); XFREE(s,NULL,DYNAMIC_TYPE_OPENSSL); XMEMSET(date_str, 0, sizeof(date_str)); #endif /* !TIME_T_NOT_LONG && !NO_64BIT */ /* if WOLFSSL_ASN1_TIME struct is not allocated */ s = NULL; t = (time_t)30 * year + 45 * day + 20 * hour + 30 * mini + 15 + 7 * day; offset_day = 7; offset_sec = 45 * mini; asn_time = wolfSSL_ASN1_TIME_adj(s, t, offset_day, offset_sec); AssertTrue(asn_time->data[0] == asn_utc_time); XSTRNCPY(date_str,(const char*) &asn_time->data+2,13); AssertIntEQ(0, XMEMCMP(date_str, "000222211515Z", 13)); XFREE(asn_time,NULL,DYNAMIC_TYPE_OPENSSL); asn_time = wolfSSL_ASN1_TIME_adj(NULL, t, offset_day, offset_sec); AssertTrue(asn_time->data[0] == asn_utc_time); XSTRNCPY(date_str,(const char*) &asn_time->data+2,13); AssertIntEQ(0, XMEMCMP(date_str, "000222211515Z", 13)); XFREE(asn_time,NULL,DYNAMIC_TYPE_OPENSSL); printf(resultFmt, passed); #endif } static void test_wolfSSL_X509(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && !defined(NO_FILESYSTEM)\ && !defined(NO_RSA) X509* x509; BIO* bio; X509_STORE_CTX* ctx; X509_STORE* store; printf(testingFmt, "wolfSSL_X509()"); AssertNotNull(x509 = X509_new()); X509_free(x509); x509 = wolfSSL_X509_load_certificate_file(cliCertFile, SSL_FILETYPE_PEM); AssertNotNull(bio = BIO_new(BIO_s_mem())); AssertIntEQ(i2d_X509_bio(bio, x509), SSL_SUCCESS); AssertNotNull(ctx = X509_STORE_CTX_new()); AssertIntEQ(X509_verify_cert(ctx), SSL_FATAL_ERROR); AssertNotNull(store = X509_STORE_new()); AssertIntEQ(X509_STORE_add_cert(store, x509), SSL_SUCCESS); AssertIntEQ(X509_STORE_CTX_init(ctx, store, x509, NULL), SSL_SUCCESS); AssertIntEQ(X509_verify_cert(ctx), SSL_SUCCESS); X509_STORE_CTX_free(ctx); BIO_free(bio); printf(resultFmt, passed); #endif } static void test_wolfSSL_RAND(void) { #if defined(OPENSSL_EXTRA) byte seed[16]; printf(testingFmt, "wolfSSL_RAND()"); RAND_seed(seed, sizeof(seed)); RAND_cleanup(); AssertIntEQ(RAND_egd(NULL), -1); #ifndef NO_FILESYSTEM { char fname[100]; AssertNotNull(RAND_file_name(fname, (sizeof(fname) - 1))); AssertIntEQ(RAND_write_file(NULL), 0); } #endif printf(resultFmt, passed); #endif } static void test_wolfSSL_BUF(void) { #if defined(OPENSSL_EXTRA) BUF_MEM* buf; AssertNotNull(buf = BUF_MEM_new()); AssertIntEQ(BUF_MEM_grow(buf, 10), 10); AssertIntEQ(BUF_MEM_grow(buf, -1), 0); BUF_MEM_free(buf); #endif /* OPENSSL_EXTRA */ } static void test_wolfSSL_pseudo_rand(void) { #if defined(OPENSSL_EXTRA) BIGNUM* bn; unsigned char bin[8]; int i; printf(testingFmt, "wolfSSL_pseudo_rand()"); /* BN_pseudo_rand returns 1 on success 0 on failure * int BN_pseudo_rand(BIGNUM* bn, int bits, int top, int bottom) */ for (i = 0; i < 10; i++) { AssertNotNull(bn = BN_new()); AssertIntEQ(BN_pseudo_rand(bn, 8, 0, 0), SSL_SUCCESS); AssertIntGT(BN_bn2bin(bn, bin),0); AssertIntEQ((bin[0] & 0x80), 0x80); /* top bit should be set */ BN_free(bn); } for (i = 0; i < 10; i++) { AssertNotNull(bn = BN_new()); AssertIntEQ(BN_pseudo_rand(bn, 8, 1, 1), SSL_SUCCESS); AssertIntGT(BN_bn2bin(bn, bin),0); AssertIntEQ((bin[0] & 0xc1), 0xc1); /* top bit should be set */ BN_free(bn); } printf(resultFmt, passed); #endif } static void test_wolfSSL_pkcs8(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_FILESYSTEM) && defined(HAVE_ECC) PKCS8_PRIV_KEY_INFO* pt; BIO* bio; FILE* f; int bytes; char buffer[512]; printf(testingFmt, "wolfSSL_pkcs8()"); /* file from wolfssl/certs/ directory */ AssertNotNull(f = fopen("./certs/ecc-keyPkcs8.pem", "rb")); AssertIntGT((bytes = (int)fread(buffer, 1, sizeof(buffer), f)), 0); fclose(f); AssertNotNull(bio = BIO_new_mem_buf((void*)buffer, bytes)); AssertNotNull(pt = d2i_PKCS8_PRIV_KEY_INFO_bio(bio, NULL)); BIO_free(bio); PKCS8_PRIV_KEY_INFO_free(pt); printf(resultFmt, passed); #endif } static void test_wolfSSL_ERR_put_error(void) { #if defined(OPENSSL_EXTRA) && defined(DEBUG_WOLFSSL) const char* file; int line; printf(testingFmt, "wolfSSL_ERR_put_error()"); ERR_clear_error(); /* clear out any error nodes */ ERR_put_error(0,SYS_F_ACCEPT, 0, "this file", 0); AssertIntEQ(ERR_get_error_line(&file, &line), 0); ERR_put_error(0,SYS_F_BIND, 1, "this file", 1); AssertIntEQ(ERR_get_error_line(&file, &line), 1); ERR_put_error(0,SYS_F_CONNECT, 2, "this file", 2); AssertIntEQ(ERR_get_error_line(&file, &line), 2); ERR_put_error(0,SYS_F_FOPEN, 3, "this file", 3); AssertIntEQ(ERR_get_error_line(&file, &line), 3); ERR_put_error(0,SYS_F_FREAD, 4, "this file", 4); AssertIntEQ(ERR_get_error_line(&file, &line), 4); ERR_put_error(0,SYS_F_GETADDRINFO, 5, "this file", 5); AssertIntEQ(ERR_get_error_line(&file, &line), 5); ERR_put_error(0,SYS_F_GETSOCKOPT, 6, "this file", 6); AssertIntEQ(ERR_get_error_line(&file, &line), 6); ERR_put_error(0,SYS_F_GETSOCKNAME, 7, "this file", 7); AssertIntEQ(ERR_get_error_line(&file, &line), 7); ERR_put_error(0,SYS_F_GETHOSTBYNAME, 8, "this file", 8); AssertIntEQ(ERR_get_error_line(&file, &line), 8); ERR_put_error(0,SYS_F_GETNAMEINFO, 9, "this file", 9); AssertIntEQ(ERR_get_error_line(&file, &line), 9); ERR_put_error(0,SYS_F_GETSERVBYNAME, 10, "this file", 10); AssertIntEQ(ERR_get_error_line(&file, &line), 10); ERR_put_error(0,SYS_F_IOCTLSOCKET, 11, "this file", 11); AssertIntEQ(ERR_get_error_line(&file, &line), 11); ERR_put_error(0,SYS_F_LISTEN, 12, "this file", 12); AssertIntEQ(ERR_get_error_line(&file, &line), 12); ERR_put_error(0,SYS_F_OPENDIR, 13, "this file", 13); AssertIntEQ(ERR_get_error_line(&file, &line), 13); ERR_put_error(0,SYS_F_SETSOCKOPT, 14, "this file", 14); AssertIntEQ(ERR_get_error_line(&file, &line), 14); ERR_put_error(0,SYS_F_SOCKET, 15, "this file", 15); AssertIntEQ(ERR_get_error_line(&file, &line), 15); /* try reading past end of error queue */ file = NULL; AssertIntEQ(ERR_get_error_line(&file, &line), 0); AssertNull(file); AssertIntEQ(ERR_get_error_line_data(&file, &line, NULL, NULL), 0); /* Empty and free up all error nodes */ ERR_clear_error(); printf(resultFmt, passed); #endif } static void test_wolfSSL_HMAC(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_SHA256) HMAC_CTX hmac; ENGINE* e = NULL; const unsigned char key[] = "simple test key"; unsigned char hash[WC_MAX_DIGEST_SIZE]; unsigned int len; printf(testingFmt, "wolfSSL_HMAC()"); HMAC_CTX_init(&hmac); AssertIntEQ(HMAC_Init_ex(&hmac, (void*)key, (int)sizeof(key), EVP_sha256(), e), SSL_SUCCESS); /* re-using test key as data to hash */ AssertIntEQ(HMAC_Update(&hmac, key, (int)sizeof(key)), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&hmac, NULL, 0), SSL_SUCCESS); AssertIntEQ(HMAC_Final(&hmac, hash, &len), SSL_SUCCESS); AssertIntEQ(len, (int)WC_SHA256_DIGEST_SIZE); HMAC_cleanup(&hmac); #endif #if defined(OPENSSL_EXTRA) && !defined(NO_SHA256) len = 0; AssertNotNull(HMAC(EVP_sha256(), key, (int)sizeof(key), NULL, 0, hash, &len)); AssertIntEQ(len, (int)WC_SHA256_DIGEST_SIZE); #endif #if defined(OPENSSL_EXTRA) && defined(WOLFSSL_SHA224) len = 0; AssertNotNull(HMAC(EVP_sha224(), key, (int)sizeof(key), NULL, 0, hash, &len)); AssertIntEQ(len, (int)WC_SHA224_DIGEST_SIZE); #endif #if defined(OPENSSL_EXTRA) && (defined(WOLFSSL_SHA384) && defined(WOLFSSL_SHA512)) len = 0; AssertNotNull(HMAC(EVP_sha384(), key, (int)sizeof(key), NULL, 0, hash, &len)); AssertIntEQ(len, (int)WC_SHA384_DIGEST_SIZE); #endif #if defined(OPENSSL_EXTRA) && defined(WOLFSSL_SHA512) len = 0; AssertNotNull(HMAC(EVP_sha512(), key, (int)sizeof(key), NULL, 0, hash, &len)); AssertIntEQ(len, (int)WC_SHA512_DIGEST_SIZE); #endif printf(resultFmt, passed); } static void test_wolfSSL_OBJ(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_SHA256) ASN1_OBJECT* obj = NULL; char buf[50]; printf(testingFmt, "wolfSSL_OBJ()"); AssertIntEQ(OBJ_obj2txt(buf, (int)sizeof(buf), obj, 1), SSL_FAILURE); AssertNotNull(obj = OBJ_nid2obj(NID_any_policy)); AssertIntEQ(OBJ_obj2nid(obj), NID_any_policy); AssertIntEQ(OBJ_obj2txt(buf, (int)sizeof(buf), obj, 1), 11); AssertIntGT(OBJ_obj2txt(buf, (int)sizeof(buf), obj, 0), 0); ASN1_OBJECT_free(obj); AssertNotNull(obj = OBJ_nid2obj(NID_sha256)); AssertIntEQ(OBJ_obj2nid(obj), NID_sha256); AssertIntEQ(OBJ_obj2txt(buf, (int)sizeof(buf), obj, 1), 22); AssertIntGT(OBJ_obj2txt(buf, (int)sizeof(buf), obj, 0), 0); ASN1_OBJECT_free(obj); printf(resultFmt, passed); #endif } static void test_wolfSSL_X509_NAME_ENTRY(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) \ && !defined(NO_FILESYSTEM) && !defined(NO_RSA) && defined(WOLFSSL_CERT_GEN) X509* x509; BIO* bio; X509_NAME* nm; X509_NAME_ENTRY* entry; unsigned char cn[] = "another name to add"; printf(testingFmt, "wolfSSL_X509_NAME_ENTRY()"); AssertNotNull(x509 = wolfSSL_X509_load_certificate_file(cliCertFile, SSL_FILETYPE_PEM)); AssertNotNull(bio = BIO_new(BIO_s_mem())); AssertIntEQ(PEM_write_bio_X509_AUX(bio, x509), SSL_SUCCESS); #ifdef WOLFSSL_CERT_REQ { X509_REQ* req; BIO* bReq; AssertNotNull(req = wolfSSL_X509_load_certificate_file(cliCertFile, SSL_FILETYPE_PEM)); AssertNotNull(bReq = BIO_new(BIO_s_mem())); AssertIntEQ(PEM_write_bio_X509_REQ(bReq, req), SSL_SUCCESS); BIO_free(bReq); X509_free(req); } #endif AssertNotNull(nm = X509_get_subject_name(x509)); AssertNotNull(entry = X509_NAME_ENTRY_create_by_NID(NULL, NID_commonName, 0x0c, cn, (int)sizeof(cn))); AssertIntEQ(X509_NAME_add_entry(nm, entry, -1, 0), SSL_SUCCESS); X509_NAME_ENTRY_free(entry); BIO_free(bio); X509_free(x509); printf(resultFmt, passed); #endif } static void test_wolfSSL_BIO_gets(void) { #if defined(OPENSSL_EXTRA) BIO* bio; BIO* bio2; char msg[] = "\nhello wolfSSL\n security plus\t---...**adf\na...b.c"; char emp[] = ""; char buffer[20]; int bufferSz = 20; printf(testingFmt, "wolfSSL_X509_BIO_gets()"); AssertNotNull(bio = BIO_new_mem_buf((void*)msg, sizeof(msg))); XMEMSET(buffer, 0, bufferSz); AssertNotNull(BIO_push(bio, BIO_new(BIO_s_bio()))); AssertNull(bio2 = BIO_find_type(bio, BIO_TYPE_FILE)); AssertNotNull(bio2 = BIO_find_type(bio, BIO_TYPE_BIO)); AssertFalse(bio2 != BIO_next(bio)); /* make buffer filled with no terminating characters */ XMEMSET(buffer, 1, bufferSz); /* BIO_gets reads a line of data */ AssertIntEQ(BIO_gets(bio, buffer, -3), 0); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 1); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 14); AssertStrEQ(buffer, "hello wolfSSL\n"); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 19); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 8); AssertIntEQ(BIO_gets(bio, buffer, -1), 0); /* check not null terminated string */ BIO_free(bio); msg[0] = 0x33; msg[1] = 0x33; msg[2] = 0x33; AssertNotNull(bio = BIO_new_mem_buf((void*)msg, 3)); AssertIntEQ(BIO_gets(bio, buffer, 3), 2); AssertIntEQ(buffer[0], msg[0]); AssertIntEQ(buffer[1], msg[1]); AssertIntNE(buffer[2], msg[2]); BIO_free(bio); msg[3] = 0x33; buffer[3] = 0x33; AssertNotNull(bio = BIO_new_mem_buf((void*)msg, 3)); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 3); AssertIntEQ(buffer[0], msg[0]); AssertIntEQ(buffer[1], msg[1]); AssertIntEQ(buffer[2], msg[2]); AssertIntNE(buffer[3], 0x33); /* make sure null terminator was set */ /* check reading an empty string */ BIO_free(bio); AssertNotNull(bio = BIO_new_mem_buf((void*)emp, sizeof(emp))); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 1); /* just terminator */ AssertStrEQ(emp, buffer); /* check error cases */ BIO_free(bio); AssertIntEQ(BIO_gets(NULL, NULL, 0), SSL_FAILURE); AssertNotNull(bio = BIO_new(BIO_s_mem())); AssertIntEQ(BIO_gets(bio, buffer, 2), -1); /* nothing to read */ #if !defined(NO_FILESYSTEM) { BIO* f_bio; XFILE f; AssertNotNull(f_bio = BIO_new(BIO_s_file())); AssertIntLE(BIO_gets(f_bio, buffer, bufferSz), 0); f = XFOPEN(svrCertFile, "rb"); AssertIntEQ((int)BIO_set_fp(f_bio, f, BIO_CLOSE), SSL_SUCCESS); AssertIntGT(BIO_gets(f_bio, buffer, bufferSz), 0); BIO_free(f_bio); } #endif /* NO_FILESYSTEM */ BIO_free(bio); BIO_free(bio2); /* try with type BIO */ XMEMCPY(msg, "\nhello wolfSSL\n security plus\t---...**adf\na...b.c", sizeof(msg)); AssertNotNull(bio = BIO_new(BIO_s_bio())); AssertNotNull(bio2 = BIO_new(BIO_s_bio())); AssertIntEQ(BIO_set_write_buf_size(bio, 10), SSL_SUCCESS); AssertIntEQ(BIO_set_write_buf_size(bio2, sizeof(msg)), SSL_SUCCESS); AssertIntEQ(BIO_make_bio_pair(bio, bio2), SSL_SUCCESS); AssertIntEQ(BIO_write(bio2, msg, sizeof(msg)), sizeof(msg)); AssertIntEQ(BIO_gets(bio, buffer, -3), 0); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 1); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 14); AssertStrEQ(buffer, "hello wolfSSL\n"); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 19); AssertIntEQ(BIO_gets(bio, buffer, bufferSz), 8); AssertIntEQ(BIO_gets(bio, buffer, -1), 0); BIO_free(bio); BIO_free(bio2); printf(resultFmt, passed); #endif } static void test_wolfSSL_BIO_write(void) { #if defined(OPENSSL_EXTRA) && defined(WOLFSSL_BASE64_ENCODE) BIO* bio; BIO* bio64; BIO* ptr; int sz; char msg[] = "conversion test"; char out[40]; char expected[] = "Y29udmVyc2lvbiB0ZXN0AA==\n"; printf(testingFmt, "wolfSSL_BIO_write()"); AssertNotNull(bio64 = BIO_new(BIO_f_base64())); AssertNotNull(bio = BIO_push(bio64, BIO_new(BIO_s_mem()))); /* now should convert to base64 then write to memory */ AssertIntEQ(BIO_write(bio, msg, sizeof(msg)), 25); BIO_flush(bio); AssertNotNull(ptr = BIO_find_type(bio, BIO_TYPE_MEM)); sz = sizeof(out); XMEMSET(out, 0, sz); AssertIntEQ((sz = BIO_read(ptr, out, sz)), 25); AssertIntEQ(XMEMCMP(out, expected, sz), 0); /* write then read should return the same message */ AssertIntEQ(BIO_write(bio, msg, sizeof(msg)), 25); sz = sizeof(out); XMEMSET(out, 0, sz); AssertIntEQ(BIO_read(bio, out, sz), 16); AssertIntEQ(XMEMCMP(out, msg, sizeof(msg)), 0); /* now try encoding with no line ending */ BIO_set_flags(bio64, BIO_FLAG_BASE64_NO_NL); AssertIntEQ(BIO_write(bio, msg, sizeof(msg)), 24); BIO_flush(bio); sz = sizeof(out); XMEMSET(out, 0, sz); AssertIntEQ((sz = BIO_read(ptr, out, sz)), 24); AssertIntEQ(XMEMCMP(out, expected, sz), 0); BIO_free_all(bio); /* frees bio64 also */ /* test with more than one bio64 in list */ AssertNotNull(bio64 = BIO_new(BIO_f_base64())); AssertNotNull(bio = BIO_push(BIO_new(BIO_f_base64()), bio64)); AssertNotNull(BIO_push(bio64, BIO_new(BIO_s_mem()))); /* now should convert to base64(x2) when stored and then decode with read */ AssertIntEQ(BIO_write(bio, msg, sizeof(msg)), 37); BIO_flush(bio); sz = sizeof(out); XMEMSET(out, 0, sz); AssertIntEQ((sz = BIO_read(bio, out, sz)), 16); AssertIntEQ(XMEMCMP(out, msg, sz), 0); BIO_free_all(bio); /* frees bio64s also */ printf(resultFmt, passed); #endif } static void test_wolfSSL_SESSION(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && \ !defined(NO_RSA) && defined(HAVE_EXT_CACHE) && \ defined(HAVE_IO_TESTS_DEPENDENCIES) WOLFSSL* ssl; WOLFSSL_CTX* ctx; WOLFSSL_SESSION* sess; const unsigned char context[] = "user app context"; unsigned char* sessDer = NULL; unsigned char* ptr = NULL; unsigned int contextSz = (unsigned int)sizeof(context); int ret, err, sockfd, sz; tcp_ready ready; func_args server_args; THREAD_TYPE serverThread; printf(testingFmt, "wolfSSL_SESSION()"); AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, cliCertFile, SSL_FILETYPE_PEM)); AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, cliKeyFile, SSL_FILETYPE_PEM)); AssertIntEQ(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0), SSL_SUCCESS); #ifdef WOLFSSL_ENCRYPTED_KEYS wolfSSL_CTX_set_default_passwd_cb(ctx, PasswordCallBack); #endif XMEMSET(&server_args, 0, sizeof(func_args)); #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif StartTCP(); InitTcpReady(&ready); #if defined(USE_WINDOWS_API) /* use RNG to get random port if using windows */ ready.port = GetRandomPort(); #endif server_args.signal = &ready; start_thread(test_server_nofail, &server_args, &serverThread); wait_tcp_ready(&server_args); /* client connection */ ssl = wolfSSL_new(ctx); tcp_connect(&sockfd, wolfSSLIP, ready.port, 0, 0, ssl); AssertIntEQ(wolfSSL_set_fd(ssl, sockfd), SSL_SUCCESS); err = 0; /* Reset error */ do { #ifdef WOLFSSL_ASYNC_CRYPT if (err == WC_PENDING_E) { ret = wolfSSL_AsyncPoll(ssl, WOLF_POLL_FLAG_CHECK_HW); if (ret < 0) { break; } else if (ret == 0) { continue; } } #endif ret = wolfSSL_connect(ssl); if (ret != SSL_SUCCESS) { err = wolfSSL_get_error(ssl, 0); } } while (ret != SSL_SUCCESS && err == WC_PENDING_E); AssertIntEQ(ret, SSL_SUCCESS); sess = wolfSSL_get_session(ssl); wolfSSL_shutdown(ssl); wolfSSL_free(ssl); join_thread(serverThread); FreeTcpReady(&ready); #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif /* get session from DER and update the timeout */ AssertIntEQ(wolfSSL_i2d_SSL_SESSION(NULL, &sessDer), BAD_FUNC_ARG); AssertIntGT((sz = wolfSSL_i2d_SSL_SESSION(sess, &sessDer)), 0); wolfSSL_SESSION_free(sess); ptr = sessDer; AssertNull(sess = wolfSSL_d2i_SSL_SESSION(NULL, NULL, sz)); AssertNotNull(sess = wolfSSL_d2i_SSL_SESSION(NULL, (const unsigned char**)&ptr, sz)); XFREE(sessDer, NULL, DYNAMIC_TYPE_OPENSSL); AssertIntGT(wolfSSL_SESSION_get_time(sess), 0); AssertIntEQ(wolfSSL_SSL_SESSION_set_timeout(sess, 500), SSL_SUCCESS); /* successful set session test */ AssertNotNull(ssl = wolfSSL_new(ctx)); AssertIntEQ(wolfSSL_set_session(ssl, sess), SSL_SUCCESS); /* fail case with miss match session context IDs (use compatibility API) */ AssertIntEQ(SSL_set_session_id_context(ssl, context, contextSz), SSL_SUCCESS); AssertIntEQ(wolfSSL_set_session(ssl, sess), SSL_FAILURE); wolfSSL_free(ssl); AssertIntEQ(SSL_CTX_set_session_id_context(NULL, context, contextSz), SSL_FAILURE); AssertIntEQ(SSL_CTX_set_session_id_context(ctx, context, contextSz), SSL_SUCCESS); AssertNotNull(ssl = wolfSSL_new(ctx)); AssertIntEQ(wolfSSL_set_session(ssl, sess), SSL_FAILURE); wolfSSL_free(ssl); SSL_SESSION_free(sess); wolfSSL_CTX_free(ctx); printf(resultFmt, passed); #endif } static void test_wolfSSL_d2i_PUBKEY(void) { #if defined(OPENSSL_EXTRA) BIO* bio; EVP_PKEY* pkey; printf(testingFmt, "wolfSSL_d2i_PUBKEY()"); AssertNotNull(bio = BIO_new(BIO_s_mem())); AssertNull(d2i_PUBKEY_bio(NULL, NULL)); #if defined(USE_CERT_BUFFERS_2048) && !defined(NO_RSA) /* RSA PUBKEY test */ AssertIntGT(BIO_write(bio, client_keypub_der_2048, sizeof_client_keypub_der_2048), 0); AssertNotNull(pkey = d2i_PUBKEY_bio(bio, NULL)); EVP_PKEY_free(pkey); #endif #if defined(USE_CERT_BUFFERS_256) && defined(HAVE_ECC) /* ECC PUBKEY test */ AssertIntGT(BIO_write(bio, ecc_clikeypub_der_256, sizeof_ecc_clikeypub_der_256), 0); AssertNotNull(pkey = d2i_PUBKEY_bio(bio, NULL)); EVP_PKEY_free(pkey); #endif BIO_free(bio); (void)pkey; printf(resultFmt, passed); #endif } static void test_wolfSSL_sk_GENERAL_NAME(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && \ !defined(NO_RSA) X509* x509; unsigned char buf[4096]; const unsigned char* bufPt; int bytes; XFILE f; STACK_OF(GENERAL_NAME)* sk; printf(testingFmt, "wolfSSL_sk_GENERAL_NAME()"); AssertNotNull(f = XFOPEN(cliCertDerFile, "rb")); AssertIntGT((bytes = (int)XFREAD(buf, 1, sizeof(buf), f)), 0); XFCLOSE(f); bufPt = buf; AssertNotNull(x509 = d2i_X509(NULL, &bufPt, bytes)); /* current cert has no alt names */ AssertNull(sk = (WOLF_STACK_OF(ASN1_OBJECT)*)X509_get_ext_d2i(x509, NID_subject_alt_name, NULL, NULL)); AssertIntEQ(sk_GENERAL_NAME_num(sk), -1); #if 0 for (i = 0; i < sk_GENERAL_NAME_num(sk); i++) { GENERAL_NAME* gn = sk_GENERAL_NAME_value(sk, i); if (gn == NULL) { printf("massive falure\n"); return -1; } if (gn->type == GEN_DNS) { printf("found type GEN_DNS\n"); printf("length = %d\n", gn->d.ia5->length); printf("data = %s\n", (char*)gn->d.ia5->data); } if (gn->type == GEN_EMAIL) { printf("found type GEN_EMAIL\n"); printf("length = %d\n", gn->d.ia5->length); printf("data = %s\n", (char*)gn->d.ia5->data); } if (gn->type == GEN_URI) { printf("found type GEN_URI\n"); printf("length = %d\n", gn->d.ia5->length); printf("data = %s\n", (char*)gn->d.ia5->data); } } #endif X509_free(x509); sk_GENERAL_NAME_pop_free(sk, GENERAL_NAME_free); printf(resultFmt, passed); #endif } static void test_wolfSSL_MD4(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_MD4) MD4_CTX md4; unsigned char out[16]; /* MD4_DIGEST_SIZE */ const char* msg = "12345678901234567890123456789012345678901234567890123456" "789012345678901234567890"; const char* test = "\xe3\x3b\x4d\xdc\x9c\x38\xf2\x19\x9c\x3e\x7b\x16\x4f" "\xcc\x05\x36"; int msgSz = (int)XSTRLEN(msg); printf(testingFmt, "wolfSSL_MD4()"); XMEMSET(out, 0, sizeof(out)); MD4_Init(&md4); MD4_Update(&md4, (const void*)msg, (unsigned long)msgSz); MD4_Final(out, &md4); AssertIntEQ(XMEMCMP(out, test, sizeof(out)), 0); printf(resultFmt, passed); #endif } static void test_wolfSSL_RSA(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_RSA) && defined(WOLFSSL_KEY_GEN) RSA* rsa; printf(testingFmt, "wolfSSL_RSA()"); AssertNotNull(rsa = RSA_generate_key(2048, 3, NULL, NULL)); AssertIntEQ(RSA_size(rsa), 256); RSA_free(rsa); AssertNotNull(rsa = RSA_generate_key(3072, 17, NULL, NULL)); AssertIntEQ(RSA_size(rsa), 384); RSA_free(rsa); /* remove for now with odd key size until adjusting rsa key size check with wc_MakeRsaKey() AssertNotNull(rsa = RSA_generate_key(2999, 65537, NULL, NULL)); RSA_free(rsa); */ AssertNull(RSA_generate_key(-1, 3, NULL, NULL)); AssertNull(RSA_generate_key(511, 3, NULL, NULL)); /* RSA_MIN_SIZE - 1 */ AssertNull(RSA_generate_key(4097, 3, NULL, NULL)); /* RSA_MAX_SIZE + 1 */ AssertNull(RSA_generate_key(2048, 0, NULL, NULL)); printf(resultFmt, passed); #endif } static void test_wolfSSL_verify_depth(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_RSA) WOLFSSL* ssl; WOLFSSL_CTX* ctx; long depth; AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, cliCertFile, SSL_FILETYPE_PEM)); AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, cliKeyFile, SSL_FILETYPE_PEM)); AssertIntEQ(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0), SSL_SUCCESS); AssertIntGT((depth = SSL_CTX_get_verify_depth(ctx)), 0); AssertNotNull(ssl = SSL_new(ctx)); AssertIntEQ(SSL_get_verify_depth(ssl), SSL_CTX_get_verify_depth(ctx)); SSL_free(ssl); SSL_CTX_set_verify_depth(ctx, -1); AssertIntEQ(depth, SSL_CTX_get_verify_depth(ctx)); SSL_CTX_set_verify_depth(ctx, 2); AssertIntEQ(2, SSL_CTX_get_verify_depth(ctx)); AssertNotNull(ssl = SSL_new(ctx)); AssertIntEQ(2, SSL_get_verify_depth(ssl)); SSL_free(ssl); SSL_CTX_free(ctx); printf(resultFmt, passed); #endif } #if defined(OPENSSL_EXTRA) && !defined(NO_HMAC) /* helper function for test_wolfSSL_HMAC_CTX, digest size is expected to be a * buffer of 64 bytes. * * returns the size of the digest buffer on success and a negative value on * failure. */ static int test_HMAC_CTX_helper(const EVP_MD* type, unsigned char* digest) { HMAC_CTX ctx1; HMAC_CTX ctx2; unsigned char key[] = "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b" "\x0b\x0b\x0b\x0b\x0b\x0b\x0b"; unsigned char long_key[] = "0123456789012345678901234567890123456789" "0123456789012345678901234567890123456789" "0123456789012345678901234567890123456789" "0123456789012345678901234567890123456789"; unsigned char msg[] = "message to hash"; unsigned int digestSz = 64; int keySz = sizeof(key); int long_keySz = sizeof(long_key); int msgSz = sizeof(msg); unsigned char digest2[64]; unsigned int digestSz2 = 64; HMAC_CTX_init(&ctx1); AssertIntEQ(HMAC_Init(&ctx1, (const void*)key, keySz, type), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_CTX_copy(&ctx2, &ctx1), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Final(&ctx1, digest, &digestSz), SSL_SUCCESS); HMAC_CTX_cleanup(&ctx1); AssertIntEQ(HMAC_Update(&ctx2, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Final(&ctx2, digest2, &digestSz2), SSL_SUCCESS); HMAC_CTX_cleanup(&ctx2); AssertIntEQ(digestSz, digestSz2); AssertIntEQ(XMEMCMP(digest, digest2, digestSz), 0); /* test HMAC_Init with NULL key */ /* init after copy */ printf("test HMAC_Init with NULL key (0)\n"); HMAC_CTX_init(&ctx1); AssertIntEQ(HMAC_Init(&ctx1, (const void*)key, keySz, type), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_CTX_copy(&ctx2, &ctx1), SSL_SUCCESS); AssertIntEQ(HMAC_Init(&ctx1, NULL, 0, NULL), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Final(&ctx1, digest, &digestSz), SSL_SUCCESS); AssertIntEQ(HMAC_Init(&ctx2, NULL, 0, NULL), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx2, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx2, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Final(&ctx2, digest2, &digestSz), SSL_SUCCESS); HMAC_CTX_cleanup(&ctx2); AssertIntEQ(digestSz, digestSz2); AssertIntEQ(XMEMCMP(digest, digest2, digestSz), 0); /* long key */ printf("test HMAC_Init with NULL key (1)\n"); HMAC_CTX_init(&ctx1); AssertIntEQ(HMAC_Init(&ctx1, (const void*)long_key, long_keySz, type), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_CTX_copy(&ctx2, &ctx1), SSL_SUCCESS); AssertIntEQ(HMAC_Init(&ctx1, NULL, 0, NULL), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Final(&ctx1, digest, &digestSz), SSL_SUCCESS); AssertIntEQ(HMAC_Init(&ctx2, NULL, 0, NULL), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx2, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx2, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Final(&ctx2, digest2, &digestSz), SSL_SUCCESS); HMAC_CTX_cleanup(&ctx2); AssertIntEQ(digestSz, digestSz2); AssertIntEQ(XMEMCMP(digest, digest2, digestSz), 0); /* init before copy */ printf("test HMAC_Init with NULL key (2)\n"); HMAC_CTX_init(&ctx1); AssertIntEQ(HMAC_Init(&ctx1, (const void*)key, keySz, type), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Init(&ctx1, NULL, 0, NULL), SSL_SUCCESS); AssertIntEQ(HMAC_CTX_copy(&ctx2, &ctx1), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx1, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Final(&ctx1, digest, &digestSz), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx2, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Update(&ctx2, msg, msgSz), SSL_SUCCESS); AssertIntEQ(HMAC_Final(&ctx2, digest2, &digestSz), SSL_SUCCESS); HMAC_CTX_cleanup(&ctx2); AssertIntEQ(digestSz, digestSz2); AssertIntEQ(XMEMCMP(digest, digest2, digestSz), 0); return digestSz; } #endif /* defined(OPENSSL_EXTRA) && !defined(NO_HMAC) */ static void test_wolfSSL_HMAC_CTX(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_HMAC) unsigned char digest[64]; int digestSz; printf(testingFmt, "wolfSSL_HMAC_CTX()"); #ifndef NO_SHA AssertIntEQ((digestSz = test_HMAC_CTX_helper(EVP_sha1(), digest)), 20); AssertIntEQ(XMEMCMP("\xD9\x68\x77\x23\x70\xFB\x53\x70\x53\xBA\x0E\xDC\xDA" "\xBF\x03\x98\x31\x19\xB2\xCC", digest, digestSz), 0); #endif /* !NO_SHA */ #ifdef WOLFSSL_SHA224 AssertIntEQ((digestSz = test_HMAC_CTX_helper(EVP_sha224(), digest)), 28); AssertIntEQ(XMEMCMP("\x57\xFD\xF4\xE1\x2D\xB0\x79\xD7\x4B\x25\x7E\xB1\x95" "\x9C\x11\xAC\x2D\x1E\x78\x94\x4F\x3A\x0F\xED\xF8\xAD" "\x02\x0E", digest, digestSz), 0); #endif /* WOLFSSL_SHA224 */ #ifndef NO_SHA256 AssertIntEQ((digestSz = test_HMAC_CTX_helper(EVP_sha256(), digest)), 32); AssertIntEQ(XMEMCMP("\x13\xAB\x76\x91\x0C\x37\x86\x8D\xB3\x7E\x30\x0C\xFC" "\xB0\x2E\x8E\x4A\xD7\xD4\x25\xCC\x3A\xA9\x0F\xA2\xF2" "\x47\x1E\x62\x6F\x5D\xF2", digest, digestSz), 0); #endif /* !NO_SHA256 */ #ifdef WOLFSSL_SHA512 #ifdef WOLFSSL_SHA384 AssertIntEQ((digestSz = test_HMAC_CTX_helper(EVP_sha384(), digest)), 48); AssertIntEQ(XMEMCMP("\x9E\xCB\x07\x0C\x11\x76\x3F\x23\xC3\x25\x0E\xC4\xB7" "\x28\x77\x95\x99\xD5\x9D\x7A\xBB\x1A\x9F\xB7\xFD\x25" "\xC9\x72\x47\x9F\x8F\x86\x76\xD6\x20\x57\x87\xB7\xE7" "\xCD\xFB\xC2\xCC\x9F\x2B\xC5\x41\xAB", digest, digestSz), 0); #endif /* WOLFSSL_SHA384 */ AssertIntEQ((digestSz = test_HMAC_CTX_helper(EVP_sha512(), digest)), 64); AssertIntEQ(XMEMCMP("\xD4\x21\x0C\x8B\x60\x6F\xF4\xBF\x07\x2F\x26\xCC\xAD" "\xBC\x06\x0B\x34\x78\x8B\x4F\xD6\xC0\x42\xF1\x33\x10" "\x6C\x4F\x1E\x55\x59\xDD\x2A\x9F\x15\x88\x62\xF8\x60" "\xA3\x99\x91\xE2\x08\x7B\xF7\x95\x3A\xB0\x92\x48\x60" "\x88\x8B\x5B\xB8\x5F\xE9\xB6\xB1\x96\xE3\xB5\xF0", digest, digestSz), 0); #endif /* WOLFSSL_SHA512 */ #ifndef NO_MD5 AssertIntEQ((digestSz = test_HMAC_CTX_helper(EVP_md5(), digest)), 16); AssertIntEQ(XMEMCMP("\xB7\x27\xC4\x41\xE5\x2E\x62\xBA\x54\xED\x72\x70\x9F" "\xE4\x98\xDD", digest, digestSz), 0); #endif /* !NO_MD5 */ printf(resultFmt, passed); #endif } #if defined(OPENSSL_EXTRA) && !defined(NO_RSA) static void sslMsgCb(int w, int version, int type, const void* buf, size_t sz, SSL* ssl, void* arg) { int i; unsigned char* pt = (unsigned char*)buf; printf("%s %d bytes of version %d , type %d : ", (w)?"Writing":"Reading", (int)sz, version, type); for (i = 0; i < (int)sz; i++) printf("%02X", pt[i]); printf("\n"); (void)ssl; (void)arg; } #endif /* OPENSSL_EXTRA */ static void test_wolfSSL_msg_callback(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_RSA) WOLFSSL* ssl; WOLFSSL_CTX* ctx; printf(testingFmt, "wolfSSL_msg_callback()"); AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); AssertTrue(wolfSSL_CTX_use_certificate_file(ctx, cliCertFile, SSL_FILETYPE_PEM)); AssertTrue(wolfSSL_CTX_use_PrivateKey_file(ctx, cliKeyFile, SSL_FILETYPE_PEM)); AssertIntEQ(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0), SSL_SUCCESS); AssertNotNull(ssl = SSL_new(ctx)); AssertIntEQ(SSL_set_msg_callback(ssl, NULL), SSL_SUCCESS); AssertIntEQ(SSL_set_msg_callback(ssl, &sslMsgCb), SSL_SUCCESS); AssertIntEQ(SSL_set_msg_callback(NULL, &sslMsgCb), SSL_FAILURE); SSL_CTX_free(ctx); SSL_free(ssl); printf(resultFmt, passed); #endif } static void test_wolfSSL_SHA(void) { #if defined(OPENSSL_EXTRA) printf(testingFmt, "wolfSSL_SHA()"); #if !defined(NO_SHA) { const unsigned char in[] = "abc"; unsigned char expected[] = "\xA9\x99\x3E\x36\x47\x06\x81\x6A\xBA\x3E" "\x25\x71\x78\x50\xC2\x6C\x9C\xD0\xD8\x9D"; unsigned char out[WC_SHA_DIGEST_SIZE]; XMEMSET(out, 0, WC_SHA_DIGEST_SIZE); AssertNotNull(SHA1(in, XSTRLEN((char*)in), out)); AssertIntEQ(XMEMCMP(out, expected, WC_SHA_DIGEST_SIZE), 0); } #endif printf(resultFmt, passed); #endif } static void test_wolfSSL_DH_1536_prime(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_DH) BIGNUM* bn; unsigned char bits[200]; int sz = 192; /* known binary size */ const byte expected[] = { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xC9,0x0F,0xDA,0xA2,0x21,0x68,0xC2,0x34, 0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1, 0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74, 0x02,0x0B,0xBE,0xA6,0x3B,0x13,0x9B,0x22, 0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD, 0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B, 0x30,0x2B,0x0A,0x6D,0xF2,0x5F,0x14,0x37, 0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45, 0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6, 0xF4,0x4C,0x42,0xE9,0xA6,0x37,0xED,0x6B, 0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED, 0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5, 0xAE,0x9F,0x24,0x11,0x7C,0x4B,0x1F,0xE6, 0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D, 0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05, 0x98,0xDA,0x48,0x36,0x1C,0x55,0xD3,0x9A, 0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F, 0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96, 0x1C,0x62,0xF3,0x56,0x20,0x85,0x52,0xBB, 0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D, 0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04, 0xF1,0x74,0x6C,0x08,0xCA,0x23,0x73,0x27, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, }; printf(testingFmt, "wolfSSL_DH_1536_prime()"); AssertNotNull(bn = get_rfc3526_prime_1536(NULL)); AssertIntEQ(sz, BN_bn2bin((const BIGNUM*)bn, bits)); AssertIntEQ(0, XMEMCMP(expected, bits, sz)); BN_free(bn); printf(resultFmt, passed); #endif } static void test_wolfSSL_AES_ecb_encrypt(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_AES) && defined(HAVE_AES_ECB) AES_KEY aes; const byte msg[] = { 0x6b,0xc1,0xbe,0xe2,0x2e,0x40,0x9f,0x96, 0xe9,0x3d,0x7e,0x11,0x73,0x93,0x17,0x2a }; const byte verify[] = { 0xf3,0xee,0xd1,0xbd,0xb5,0xd2,0xa0,0x3c, 0x06,0x4b,0x5a,0x7e,0x3d,0xb1,0x81,0xf8 }; const byte key[] = { 0x60,0x3d,0xeb,0x10,0x15,0xca,0x71,0xbe, 0x2b,0x73,0xae,0xf0,0x85,0x7d,0x77,0x81, 0x1f,0x35,0x2c,0x07,0x3b,0x61,0x08,0xd7, 0x2d,0x98,0x10,0xa3,0x09,0x14,0xdf,0xf4 }; byte out[AES_BLOCK_SIZE]; printf(testingFmt, "wolfSSL_AES_ecb_encrypt()"); AssertIntEQ(AES_set_encrypt_key(key, sizeof(key)*8, &aes), 0); XMEMSET(out, 0, AES_BLOCK_SIZE); AES_ecb_encrypt(msg, out, &aes, AES_ENCRYPT); AssertIntEQ(XMEMCMP(out, verify, AES_BLOCK_SIZE), 0); #ifdef HAVE_AES_DECRYPT AssertIntEQ(AES_set_decrypt_key(key, sizeof(key)*8, &aes), 0); XMEMSET(out, 0, AES_BLOCK_SIZE); AES_ecb_encrypt(verify, out, &aes, AES_DECRYPT); AssertIntEQ(XMEMCMP(out, msg, AES_BLOCK_SIZE), 0); #endif /* test bad arguments */ AES_ecb_encrypt(NULL, out, &aes, AES_DECRYPT); AES_ecb_encrypt(verify, NULL, &aes, AES_DECRYPT); AES_ecb_encrypt(verify, out, NULL, AES_DECRYPT); printf(resultFmt, passed); #endif } static void test_wolfSSL_SHA256(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_SHA256) && \ defined(NO_OLD_SHA256_NAMES) && !defined(HAVE_FIPS) unsigned char input[] = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"; unsigned char output[] = "\x24\x8D\x6A\x61\xD2\x06\x38\xB8\xE5\xC0\x26\x93\x0C\x3E\x60" "\x39\xA3\x3C\xE4\x59\x64\xFF\x21\x67\xF6\xEC\xED\xD4\x19\xDB" "\x06\xC1"; size_t inLen; byte hash[WC_SHA256_DIGEST_SIZE]; printf(testingFmt, "wolfSSL_SHA256()"); inLen = XSTRLEN((char*)input); XMEMSET(hash, 0, WC_SHA256_DIGEST_SIZE); AssertNotNull(SHA256(input, inLen, hash)); AssertIntEQ(XMEMCMP(hash, output, WC_SHA256_DIGEST_SIZE), 0); printf(resultFmt, passed); #endif } static void test_wolfSSL_X509_get_serialNumber(void) { #if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \ !defined(NO_RSA) ASN1_INTEGER* a; BIGNUM* bn; X509* x509; printf(testingFmt, "wolfSSL_X509_get_serialNumber()"); AssertNotNull(x509 = wolfSSL_X509_load_certificate_file(svrCertFile, SSL_FILETYPE_PEM)); AssertNotNull(a = X509_get_serialNumber(x509)); X509_free(x509); /* check on value of ASN1 Integer */ AssertNotNull(bn = ASN1_INTEGER_to_BN(a, NULL)); AssertIntEQ(BN_get_word(bn), 1); BN_free(bn); ASN1_INTEGER_free(a); /* hard test free'ing with dynamic buffer to make sure there is no leaks */ a = ASN1_INTEGER_new(); AssertNotNull(a->data = (unsigned char*)XMALLOC(100, NULL, DYNAMIC_TYPE_OPENSSL)); a->isDynamic = 1; ASN1_INTEGER_free(a); printf(resultFmt, passed); #endif } static void test_no_op_functions(void) { #if defined(OPENSSL_EXTRA) printf(testingFmt, "no_op_functions()"); /* this makes sure wolfSSL can compile and run these no-op functions */ SSL_load_error_strings(); ENGINE_load_builtin_engines(); OpenSSL_add_all_ciphers(); CRYPTO_malloc_init(); printf(resultFmt, passed); #endif } /*----------------------------------------------------------------------------* | wolfCrypt ASN *----------------------------------------------------------------------------*/ static void test_wc_GetPkcs8TraditionalOffset(void) { #if !defined(NO_ASN) && !defined(NO_FILESYSTEM) int length, derSz; word32 inOutIdx; const char* path = "./certs/server-keyPkcs8.der"; FILE* file; byte der[2048]; printf(testingFmt, "wc_GetPkcs8TraditionalOffset"); file = fopen(path, "rb"); AssertNotNull(file); derSz = (int)fread(der, 1, sizeof(der), file); fclose(file); /* valid case */ inOutIdx = 0; length = wc_GetPkcs8TraditionalOffset(der, &inOutIdx, derSz); AssertIntGT(length, 0); /* inOutIdx > sz */ inOutIdx = 4000; length = wc_GetPkcs8TraditionalOffset(der, &inOutIdx, derSz); AssertIntEQ(length, BAD_FUNC_ARG); /* null input */ inOutIdx = 0; length = wc_GetPkcs8TraditionalOffset(NULL, &inOutIdx, 0); AssertIntEQ(length, BAD_FUNC_ARG); /* invalid input, fill buffer with 1's */ XMEMSET(der, 1, sizeof(der)); inOutIdx = 0; length = wc_GetPkcs8TraditionalOffset(der, &inOutIdx, derSz); AssertIntEQ(length, ASN_PARSE_E); printf(resultFmt, passed); #endif /* NO_ASN */ } /*----------------------------------------------------------------------------* | wolfCrypt ECC *----------------------------------------------------------------------------*/ static void test_wc_ecc_get_curve_size_from_name(void) { #ifdef HAVE_ECC int ret; printf(testingFmt, "wc_ecc_get_curve_size_from_name"); #if !defined(NO_ECC256) && !defined(NO_ECC_SECP) ret = wc_ecc_get_curve_size_from_name("SECP256R1"); AssertIntEQ(ret, 32); #endif /* invalid case */ ret = wc_ecc_get_curve_size_from_name("BADCURVE"); AssertIntEQ(ret, -1); /* NULL input */ ret = wc_ecc_get_curve_size_from_name(NULL); AssertIntEQ(ret, BAD_FUNC_ARG); printf(resultFmt, passed); #endif /* HAVE_ECC */ } static void test_wc_ecc_get_curve_id_from_name(void) { #ifdef HAVE_ECC int id; printf(testingFmt, "wc_ecc_get_curve_id_from_name"); #if !defined(NO_ECC256) && !defined(NO_ECC_SECP) id = wc_ecc_get_curve_id_from_name("SECP256R1"); AssertIntEQ(id, ECC_SECP256R1); #endif /* invalid case */ id = wc_ecc_get_curve_id_from_name("BADCURVE"); AssertIntEQ(id, -1); /* NULL input */ id = wc_ecc_get_curve_id_from_name(NULL); AssertIntEQ(id, BAD_FUNC_ARG); printf(resultFmt, passed); #endif /* HAVE_ECC */ } static void test_wc_ecc_get_curve_id_from_params(void) { #ifdef HAVE_ECC int id; const byte prime[] = { 0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x01, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF }; const byte primeInvalid[] = { 0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x01, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x01,0x01 }; const byte Af[] = { 0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x01, 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00,0xFF,0xFF,0xFF,0xFF, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFC }; const byte Bf[] = { 0x5A,0xC6,0x35,0xD8,0xAA,0x3A,0x93,0xE7, 0xB3,0xEB,0xBD,0x55,0x76,0x98,0x86,0xBC, 0x65,0x1D,0x06,0xB0,0xCC,0x53,0xB0,0xF6, 0x3B,0xCE,0x3C,0x3E,0x27,0xD2,0x60,0x4B }; const byte order[] = { 0xFF,0xFF,0xFF,0xFF,0x00,0x00,0x00,0x00, 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 0xBC,0xE6,0xFA,0xAD,0xA7,0x17,0x9E,0x84, 0xF3,0xB9,0xCA,0xC2,0xFC,0x63,0x25,0x51 }; const byte Gx[] = { 0x6B,0x17,0xD1,0xF2,0xE1,0x2C,0x42,0x47, 0xF8,0xBC,0xE6,0xE5,0x63,0xA4,0x40,0xF2, 0x77,0x03,0x7D,0x81,0x2D,0xEB,0x33,0xA0, 0xF4,0xA1,0x39,0x45,0xD8,0x98,0xC2,0x96 }; const byte Gy[] = { 0x4F,0xE3,0x42,0xE2,0xFE,0x1A,0x7F,0x9B, 0x8E,0xE7,0xEB,0x4A,0x7C,0x0F,0x9E,0x16, 0x2B,0xCE,0x33,0x57,0x6B,0x31,0x5E,0xCE, 0xCB,0xB6,0x40,0x68,0x37,0xBF,0x51,0xF5 }; int cofactor = 1; int fieldSize = 256; printf(testingFmt, "wc_ecc_get_curve_id_from_params"); #if !defined(NO_ECC256) && !defined(NO_ECC_SECP) id = wc_ecc_get_curve_id_from_params(fieldSize, prime, sizeof(prime), Af, sizeof(Af), Bf, sizeof(Bf), order, sizeof(order), Gx, sizeof(Gx), Gy, sizeof(Gy), cofactor); AssertIntEQ(id, ECC_SECP256R1); #endif /* invalid case, fieldSize = 0 */ id = wc_ecc_get_curve_id_from_params(0, prime, sizeof(prime), Af, sizeof(Af), Bf, sizeof(Bf), order, sizeof(order), Gx, sizeof(Gx), Gy, sizeof(Gy), cofactor); AssertIntEQ(id, ECC_CURVE_INVALID); /* invalid case, NULL prime */ id = wc_ecc_get_curve_id_from_params(fieldSize, NULL, sizeof(prime), Af, sizeof(Af), Bf, sizeof(Bf), order, sizeof(order), Gx, sizeof(Gx), Gy, sizeof(Gy), cofactor); AssertIntEQ(id, BAD_FUNC_ARG); /* invalid case, invalid prime */ id = wc_ecc_get_curve_id_from_params(fieldSize, primeInvalid, sizeof(primeInvalid), Af, sizeof(Af), Bf, sizeof(Bf), order, sizeof(order), Gx, sizeof(Gx), Gy, sizeof(Gy), cofactor); AssertIntEQ(id, ECC_CURVE_INVALID); printf(resultFmt, passed); #endif } /*----------------------------------------------------------------------------* | Certficate Failure Checks *----------------------------------------------------------------------------*/ #ifndef NO_CERTS /* Use the Cert Manager(CM) API to generate the error ASN_SIG_CONFIRM_E */ static int verify_sig_cm(const char* ca, byte* cert_buf, size_t cert_sz, int type) { int ret; WOLFSSL_CERT_MANAGER* cm = NULL; switch (type) { case TESTING_RSA: #ifdef NO_RSA printf("RSA disabled, skipping test\n"); return ASN_SIG_CONFIRM_E; #else break; #endif case TESTING_ECC: #ifndef HAVE_ECC printf("ECC disabled, skipping test\n"); return ASN_SIG_CONFIRM_E; #else break; #endif default: printf("Bad function argument\n"); return BAD_FUNC_ARG; } cm = wolfSSL_CertManagerNew(); if (cm == NULL) { printf("wolfSSL_CertManagerNew failed\n"); return -1; } #ifndef NO_FILESYSTEM ret = wolfSSL_CertManagerLoadCA(cm, ca, 0); if (ret != WOLFSSL_SUCCESS) { printf("wolfSSL_CertManagerLoadCA failed\n"); wolfSSL_CertManagerFree(cm); return ret; } #else (void)ca; #endif ret = wolfSSL_CertManagerVerifyBuffer(cm, cert_buf, cert_sz, WOLFSSL_FILETYPE_ASN1); /* Let AssertIntEQ handle return code */ wolfSSL_CertManagerFree(cm); return ret; } static int test_RsaSigFailure_cm(void) { int ret = 0; const char* ca_cert = "./certs/ca-cert.pem"; const char* server_cert = "./certs/server-cert.der"; byte* cert_buf = NULL; size_t cert_sz = 0; ret = load_file(server_cert, &cert_buf, &cert_sz); if (ret == 0) { /* corrupt DER - invert last byte, which is signature */ cert_buf[cert_sz-1] = ~cert_buf[cert_sz-1]; /* test bad cert */ ret = verify_sig_cm(ca_cert, cert_buf, cert_sz, TESTING_RSA); } printf("Signature failure test: RSA: Ret %d\n", ret); if (cert_buf) free(cert_buf); return ret; } static int test_EccSigFailure_cm(void) { int ret = 0; /* self-signed ECC cert, so use server cert as CA */ const char* ca_cert = "./certs/ca-ecc-cert.pem"; const char* server_cert = "./certs/server-ecc.der"; byte* cert_buf = NULL; size_t cert_sz = 0; ret = load_file(server_cert, &cert_buf, &cert_sz); if (ret == 0) { /* corrupt DER - invert last byte, which is signature */ cert_buf[cert_sz-1] = ~cert_buf[cert_sz-1]; /* test bad cert */ ret = verify_sig_cm(ca_cert, cert_buf, cert_sz, TESTING_ECC); } printf("Signature failure test: ECC: Ret %d\n", ret); if (cert_buf) free(cert_buf); return ret; } #endif /* NO_CERTS */ #ifdef WOLFSSL_TLS13 #ifdef WOLFSSL_SEND_HRR_COOKIE static byte fixedKey[WC_SHA384_DIGEST_SIZE] = { 0, }; #endif #ifdef WOLFSSL_EARLY_DATA static const char earlyData[] = "Early Data"; static char earlyDataBuffer[1]; #endif static int test_tls13_apis(void) { int ret = 0; WOLFSSL_CTX* clientTls12Ctx; WOLFSSL* clientTls12Ssl; WOLFSSL_CTX* serverTls12Ctx; WOLFSSL* serverTls12Ssl; WOLFSSL_CTX* clientCtx; WOLFSSL* clientSsl; WOLFSSL_CTX* serverCtx; WOLFSSL* serverSsl; #ifndef NO_CERTS const char* ourCert = svrCertFile; const char* ourKey = svrKeyFile; #endif #ifdef WOLFSSL_EARLY_DATA int outSz; #endif int groups[1] = { WOLFSSL_ECC_X25519 }; int numGroups = 1; clientTls12Ctx = wolfSSL_CTX_new(wolfTLSv1_2_client_method()); clientTls12Ssl = wolfSSL_new(clientTls12Ctx); serverTls12Ctx = wolfSSL_CTX_new(wolfTLSv1_2_server_method()); #ifndef NO_CERTS wolfSSL_CTX_use_certificate_chain_file(serverTls12Ctx, ourCert); wolfSSL_CTX_use_PrivateKey_file(serverTls12Ctx, ourKey, WOLFSSL_FILETYPE_PEM); #endif serverTls12Ssl = wolfSSL_new(serverTls12Ctx); clientCtx = wolfSSL_CTX_new(wolfTLSv1_3_client_method()); clientSsl = wolfSSL_new(clientCtx); serverCtx = wolfSSL_CTX_new(wolfTLSv1_3_server_method()); #ifndef NO_CERTS wolfSSL_CTX_use_certificate_chain_file(serverCtx, ourCert); wolfSSL_CTX_use_PrivateKey_file(serverCtx, ourKey, WOLFSSL_FILETYPE_PEM); #endif serverSsl = wolfSSL_new(serverCtx); #ifdef WOLFSSL_SEND_HRR_COOKIE AssertIntEQ(wolfSSL_send_hrr_cookie(NULL, NULL, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_send_hrr_cookie(clientSsl, NULL, 0), SIDE_ERROR); AssertIntEQ(wolfSSL_send_hrr_cookie(serverTls12Ssl, NULL, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_send_hrr_cookie(serverSsl, NULL, 0), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_send_hrr_cookie(serverSsl, fixedKey, sizeof(fixedKey)), WOLFSSL_SUCCESS); #endif #ifdef HAVE_ECC AssertIntEQ(wolfSSL_UseKeyShare(NULL, WOLFSSL_ECC_SECP256R1), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_UseKeyShare(serverSsl, WOLFSSL_ECC_SECP256R1), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_UseKeyShare(clientTls12Ssl, WOLFSSL_ECC_SECP256R1), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_UseKeyShare(clientSsl, WOLFSSL_ECC_SECP256R1), WOLFSSL_SUCCESS); #elif defined(HAVE_CURVE25519) AssertIntEQ(wolfSSL_UseKeyShare(NULL, WOLFSSL_ECC_X25519), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_UseKeyShare(serverSsl, WOLFSSL_ECC_X25519), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_UseKeyShare(clientTls12Ssl, WOLFSSL_ECC_X25519), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_UseKeyShare(clientSsl, WOLFSSL_ECC_X25519), WOLFSSL_SUCCESS); #else AssertIntEQ(wolfSSL_UseKeyShare(NULL, WOLFSSL_ECC_SECP256R1), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_UseKeyShare(clientTls12Ssl, WOLFSSL_ECC_SECP256R1), NOT_COMPILED_IN); AssertIntEQ(wolfSSL_UseKeyShare(clientSsl, WOLFSSL_ECC_SECP256R1), NOT_COMPILED_IN); #endif AssertIntEQ(wolfSSL_NoKeyShares(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_NoKeyShares(serverSsl), SIDE_ERROR); AssertIntEQ(wolfSSL_NoKeyShares(clientTls12Ssl), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_NoKeyShares(clientSsl), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_CTX_no_ticket_TLSv13(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_no_ticket_TLSv13(clientCtx), SIDE_ERROR); AssertIntEQ(wolfSSL_CTX_no_ticket_TLSv13(serverTls12Ctx), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_no_ticket_TLSv13(serverCtx), 0); AssertIntEQ(wolfSSL_no_ticket_TLSv13(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_no_ticket_TLSv13(clientSsl), SIDE_ERROR); AssertIntEQ(wolfSSL_no_ticket_TLSv13(serverTls12Ssl), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_no_ticket_TLSv13(serverSsl), 0); AssertIntEQ(wolfSSL_CTX_no_dhe_psk(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_no_dhe_psk(clientTls12Ctx), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_no_dhe_psk(serverCtx), 0); AssertIntEQ(wolfSSL_CTX_no_dhe_psk(clientCtx), 0); AssertIntEQ(wolfSSL_no_dhe_psk(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_no_dhe_psk(clientTls12Ssl), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_no_dhe_psk(serverSsl), 0); AssertIntEQ(wolfSSL_no_dhe_psk(clientSsl), 0); AssertIntEQ(wolfSSL_update_keys(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_update_keys(clientTls12Ssl), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_update_keys(serverSsl), BUILD_MSG_ERROR); AssertIntEQ(wolfSSL_update_keys(clientSsl), BUILD_MSG_ERROR); #if !defined(NO_CERTS) && defined(WOLFSSL_POST_HANDSHAKE_AUTH) AssertIntEQ(wolfSSL_CTX_allow_post_handshake_auth(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_allow_post_handshake_auth(serverCtx), SIDE_ERROR); AssertIntEQ(wolfSSL_CTX_allow_post_handshake_auth(clientTls12Ctx), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_allow_post_handshake_auth(clientCtx), 0); AssertIntEQ(wolfSSL_allow_post_handshake_auth(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_allow_post_handshake_auth(serverSsl), SIDE_ERROR); AssertIntEQ(wolfSSL_allow_post_handshake_auth(clientTls12Ssl), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_allow_post_handshake_auth(clientSsl), 0); AssertIntEQ(wolfSSL_request_certificate(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_request_certificate(clientSsl), SIDE_ERROR); AssertIntEQ(wolfSSL_request_certificate(serverTls12Ssl), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_request_certificate(serverSsl), NOT_READY_ERROR); #endif #ifndef WOLFSSL_NO_SERVER_GROUPS_EXT AssertIntEQ(wolfSSL_preferred_group(NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_preferred_group(serverSsl), SIDE_ERROR); AssertIntEQ(wolfSSL_preferred_group(clientTls12Ssl), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_preferred_group(clientSsl), NOT_READY_ERROR); #endif AssertIntEQ(wolfSSL_CTX_set_groups(NULL, NULL, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_set_groups(clientCtx, NULL, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_set_groups(NULL, groups, numGroups), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_set_groups(clientTls12Ctx, groups, numGroups), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_set_groups(clientCtx, groups, WOLFSSL_MAX_GROUP_COUNT + 1), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_set_groups(clientCtx, groups, numGroups), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_CTX_set_groups(serverCtx, groups, numGroups), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_set_groups(NULL, NULL, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_set_groups(clientSsl, NULL, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_set_groups(NULL, groups, numGroups), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_set_groups(clientTls12Ssl, groups, numGroups), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_set_groups(clientSsl, groups, WOLFSSL_MAX_GROUP_COUNT + 1), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_set_groups(clientSsl, groups, numGroups), WOLFSSL_SUCCESS); AssertIntEQ(wolfSSL_set_groups(serverSsl, groups, numGroups), WOLFSSL_SUCCESS); #ifdef WOLFSSL_EARLY_DATA AssertIntEQ(wolfSSL_CTX_set_max_early_data(NULL, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_set_max_early_data(clientCtx, 0), SIDE_ERROR); AssertIntEQ(wolfSSL_CTX_set_max_early_data(serverTls12Ctx, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_CTX_set_max_early_data(serverCtx, 0), 0); AssertIntEQ(wolfSSL_set_max_early_data(NULL, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_set_max_early_data(clientSsl, 0), SIDE_ERROR); AssertIntEQ(wolfSSL_set_max_early_data(serverTls12Ssl, 0), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_set_max_early_data(serverSsl, 0), 0); AssertIntEQ(wolfSSL_write_early_data(NULL, earlyData, sizeof(earlyData), &outSz), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_write_early_data(clientSsl, NULL, sizeof(earlyData), &outSz), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_write_early_data(clientSsl, earlyData, -1, &outSz), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_write_early_data(clientSsl, earlyData, sizeof(earlyData), NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_write_early_data(serverSsl, earlyData, sizeof(earlyData), &outSz), SIDE_ERROR); AssertIntEQ(wolfSSL_write_early_data(clientTls12Ssl, earlyData, sizeof(earlyData), &outSz), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_write_early_data(clientSsl, earlyData, sizeof(earlyData), &outSz), WOLFSSL_FATAL_ERROR); AssertIntEQ(wolfSSL_read_early_data(NULL, earlyDataBuffer, sizeof(earlyDataBuffer), &outSz), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_read_early_data(serverSsl, NULL, sizeof(earlyDataBuffer), &outSz), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_read_early_data(serverSsl, earlyDataBuffer, -1, &outSz), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_read_early_data(serverSsl, earlyDataBuffer, sizeof(earlyDataBuffer), NULL), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_read_early_data(clientSsl, earlyDataBuffer, sizeof(earlyDataBuffer), &outSz), SIDE_ERROR); AssertIntEQ(wolfSSL_read_early_data(serverTls12Ssl, earlyDataBuffer, sizeof(earlyDataBuffer), &outSz), BAD_FUNC_ARG); AssertIntEQ(wolfSSL_read_early_data(serverSsl, earlyDataBuffer, sizeof(earlyDataBuffer), &outSz), WOLFSSL_FATAL_ERROR); #endif wolfSSL_free(serverSsl); wolfSSL_CTX_free(serverCtx); wolfSSL_free(clientSsl); wolfSSL_CTX_free(clientCtx); wolfSSL_free(serverTls12Ssl); wolfSSL_CTX_free(serverTls12Ctx); wolfSSL_free(clientTls12Ssl); wolfSSL_CTX_free(clientTls12Ctx); return ret; } #endif #ifdef HAVE_PK_CALLBACKS #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_RSA) && \ !defined(NO_WOLFSSL_CLIENT) && !defined(NO_DH) && !defined(NO_AES) && \ defined(HAVE_IO_TESTS_DEPENDENCIES) && !defined(SINGLE_THREADED) static int my_DhCallback(WOLFSSL* ssl, struct DhKey* key, const unsigned char* priv, unsigned int privSz, const unsigned char* pubKeyDer, unsigned int pubKeySz, unsigned char* out, unsigned int* outlen, void* ctx) { /* Test fail when context associated with WOLFSSL is NULL */ if (ctx == NULL) { return -1; } (void)ssl; /* return 0 on success */ return wc_DhAgree(key, out, outlen, priv, privSz, pubKeyDer, pubKeySz); }; static void test_dh_ctx_setup(WOLFSSL_CTX* ctx) { wolfSSL_CTX_SetDhAgreeCb(ctx, my_DhCallback); #ifdef WOLFSSL_AES_128 AssertIntEQ(wolfSSL_CTX_set_cipher_list(ctx, "DHE-RSA-AES128-SHA256"), WOLFSSL_SUCCESS); #endif #ifdef WOLFSSL_AES_256 AssertIntEQ(wolfSSL_CTX_set_cipher_list(ctx, "DHE-RSA-AES256-SHA256"), WOLFSSL_SUCCESS); #endif } static void test_dh_ssl_setup(WOLFSSL* ssl) { static int dh_test_ctx = 1; int ret; wolfSSL_SetDhAgreeCtx(ssl, &dh_test_ctx); AssertIntEQ(*((int*)wolfSSL_GetDhAgreeCtx(ssl)), dh_test_ctx); ret = wolfSSL_SetTmpDH_file(ssl, dhParamFile, WOLFSSL_FILETYPE_PEM); if (ret != WOLFSSL_SUCCESS && ret != SIDE_ERROR) { AssertIntEQ(ret, WOLFSSL_SUCCESS); } } static void test_dh_ssl_setup_fail(WOLFSSL* ssl) { int ret; wolfSSL_SetDhAgreeCtx(ssl, NULL); AssertNull(wolfSSL_GetDhAgreeCtx(ssl)); ret = wolfSSL_SetTmpDH_file(ssl, dhParamFile, WOLFSSL_FILETYPE_PEM); if (ret != WOLFSSL_SUCCESS && ret != SIDE_ERROR) { AssertIntEQ(ret, WOLFSSL_SUCCESS); } } #endif static void test_DhCallbacks(void) { #if !defined(NO_FILESYSTEM) && !defined(NO_CERTS) && !defined(NO_RSA) && \ !defined(NO_WOLFSSL_CLIENT) && !defined(NO_DH) && !defined(NO_AES) && \ defined(HAVE_IO_TESTS_DEPENDENCIES) && !defined(SINGLE_THREADED) WOLFSSL_CTX *ctx; WOLFSSL *ssl; tcp_ready ready; func_args server_args; func_args client_args; THREAD_TYPE serverThread; callback_functions func_cb_client; callback_functions func_cb_server; int test; printf(testingFmt, "test_DhCallbacks"); AssertNotNull(ctx = wolfSSL_CTX_new(wolfSSLv23_client_method())); wolfSSL_CTX_SetDhAgreeCb(ctx, &my_DhCallback); /* load client ca cert */ AssertIntEQ(wolfSSL_CTX_load_verify_locations(ctx, caCertFile, 0), WOLFSSL_SUCCESS); /* test with NULL arguments */ wolfSSL_SetDhAgreeCtx(NULL, &test); AssertNull(wolfSSL_GetDhAgreeCtx(NULL)); /* test success case */ test = 1; AssertNotNull(ssl = wolfSSL_new(ctx)); wolfSSL_SetDhAgreeCtx(ssl, &test); AssertIntEQ(*((int*)wolfSSL_GetDhAgreeCtx(ssl)), test); wolfSSL_free(ssl); wolfSSL_CTX_free(ctx); /* test a connection where callback is used */ #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif XMEMSET(&server_args, 0, sizeof(func_args)); XMEMSET(&client_args, 0, sizeof(func_args)); XMEMSET(&func_cb_client, 0, sizeof(callback_functions)); XMEMSET(&func_cb_server, 0, sizeof(callback_functions)); StartTCP(); InitTcpReady(&ready); #if defined(USE_WINDOWS_API) /* use RNG to get random port if using windows */ ready.port = GetRandomPort(); #endif server_args.signal = &ready; client_args.signal = &ready; server_args.return_code = TEST_FAIL; client_args.return_code = TEST_FAIL; /* set callbacks to use DH functions */ func_cb_client.ctx_ready = &test_dh_ctx_setup; func_cb_client.ssl_ready = &test_dh_ssl_setup; func_cb_client.method = wolfTLSv1_2_client_method; client_args.callbacks = &func_cb_client; func_cb_server.ctx_ready = &test_dh_ctx_setup; func_cb_server.ssl_ready = &test_dh_ssl_setup; func_cb_server.method = wolfTLSv1_2_server_method; server_args.callbacks = &func_cb_server; start_thread(test_server_nofail, &server_args, &serverThread); wait_tcp_ready(&server_args); test_client_nofail(&client_args, NULL); join_thread(serverThread); AssertTrue(client_args.return_code); AssertTrue(server_args.return_code); FreeTcpReady(&ready); #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif /* now set user ctx to not be 1 so that the callback returns fail case */ #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif XMEMSET(&server_args, 0, sizeof(func_args)); XMEMSET(&client_args, 0, sizeof(func_args)); XMEMSET(&func_cb_client, 0, sizeof(callback_functions)); XMEMSET(&func_cb_server, 0, sizeof(callback_functions)); StartTCP(); InitTcpReady(&ready); #if defined(USE_WINDOWS_API) /* use RNG to get random port if using windows */ ready.port = GetRandomPort(); #endif server_args.signal = &ready; client_args.signal = &ready; server_args.return_code = TEST_FAIL; client_args.return_code = TEST_FAIL; /* set callbacks to use DH functions */ func_cb_client.ctx_ready = &test_dh_ctx_setup; func_cb_client.ssl_ready = &test_dh_ssl_setup_fail; func_cb_client.method = wolfTLSv1_2_client_method; client_args.callbacks = &func_cb_client; func_cb_server.ctx_ready = &test_dh_ctx_setup; func_cb_server.ssl_ready = &test_dh_ssl_setup_fail; func_cb_server.method = wolfTLSv1_2_server_method; server_args.callbacks = &func_cb_server; start_thread(test_server_nofail, &server_args, &serverThread); wait_tcp_ready(&server_args); test_client_nofail(&client_args, NULL); join_thread(serverThread); AssertIntEQ(client_args.return_code, TEST_FAIL); AssertIntEQ(server_args.return_code, TEST_FAIL); FreeTcpReady(&ready); #ifdef WOLFSSL_TIRTOS fdOpenSession(Task_self()); #endif printf(resultFmt, passed); #endif } #endif /* HAVE_PK_CALLBACKS */ #ifdef HAVE_HASHDRBG static int test_wc_RNG_GenerateBlock() { int i, ret; WC_RNG rng; byte key[32]; ret = wc_InitRng(&rng); if (ret == 0) { for(i = 0; i < WC_RESEED_INTERVAL + 10; i++) { ret = wc_RNG_GenerateBlock(&rng, key, sizeof(key)); if (ret != 0) { break; } } } wc_FreeRng(&rng); return ret; } #endif /*----------------------------------------------------------------------------* | Main *----------------------------------------------------------------------------*/ void ApiTest(void) { printf(" Begin API Tests\n"); AssertIntEQ(test_wolfSSL_Init(), WOLFSSL_SUCCESS); /* wolfcrypt initialization tests */ test_wolfSSL_Method_Allocators(); #ifndef NO_WOLFSSL_SERVER test_wolfSSL_CTX_new(wolfSSLv23_server_method()); #endif test_wolfSSL_CTX_use_certificate_file(); AssertIntEQ(test_wolfSSL_CTX_use_certificate_buffer(), WOLFSSL_SUCCESS); test_wolfSSL_CTX_use_PrivateKey_file(); test_wolfSSL_CTX_load_verify_locations(); test_wolfSSL_CTX_trust_peer_cert(); test_wolfSSL_CTX_SetTmpDH_file(); test_wolfSSL_CTX_SetTmpDH_buffer(); test_server_wolfSSL_new(); test_client_wolfSSL_new(); test_wolfSSL_SetTmpDH_file(); test_wolfSSL_SetTmpDH_buffer(); test_wolfSSL_read_write(); test_wolfSSL_dtls_export(); AssertIntEQ(test_wolfSSL_SetMinVersion(), WOLFSSL_SUCCESS); AssertIntEQ(test_wolfSSL_CTX_SetMinVersion(), WOLFSSL_SUCCESS); /* TLS extensions tests */ test_wolfSSL_UseSNI(); test_wolfSSL_UseMaxFragment(); test_wolfSSL_UseTruncatedHMAC(); test_wolfSSL_UseSupportedCurve(); test_wolfSSL_UseALPN(); test_wolfSSL_DisableExtendedMasterSecret(); /* X509 tests */ test_wolfSSL_X509_NAME_get_entry(); test_wolfSSL_PKCS12(); test_wolfSSL_PKCS8(); test_wolfSSL_PKCS5(); /*OCSP Stapling. */ AssertIntEQ(test_wolfSSL_UseOCSPStapling(), WOLFSSL_SUCCESS); AssertIntEQ(test_wolfSSL_UseOCSPStaplingV2(), WOLFSSL_SUCCESS); /* Multicast */ test_wolfSSL_mcast(); /* compatibility tests */ test_wolfSSL_X509_NAME(); test_wolfSSL_DES(); test_wolfSSL_certs(); test_wolfSSL_ASN1_TIME_print(); test_wolfSSL_private_keys(); test_wolfSSL_PEM_PrivateKey(); test_wolfSSL_PEM_RSAPrivateKey(); test_wolfSSL_tmp_dh(); test_wolfSSL_ctrl(); test_wolfSSL_EVP_PKEY_new_mac_key(); test_wolfSSL_EVP_MD_hmac_signing(); test_wolfSSL_CTX_add_extra_chain_cert(); test_wolfSSL_ERR_peek_last_error_line(); test_wolfSSL_set_options(); test_wolfSSL_X509_STORE_CTX(); test_wolfSSL_msgCb(); test_wolfSSL_X509_STORE_set_flags(); test_wolfSSL_X509_LOOKUP_load_file(); test_wolfSSL_X509_NID(); test_wolfSSL_X509_STORE_CTX_set_time(); test_wolfSSL_BN(); test_wolfSSL_PEM_read_bio(); test_wolfSSL_BIO(); test_wolfSSL_ASN1_STRING(); test_wolfSSL_X509(); test_wolfSSL_RAND(); test_wolfSSL_BUF(); test_wolfSSL_set_tlsext_status_type(); test_wolfSSL_ASN1_TIME_adj(); test_wolfSSL_CTX_set_client_CA_list(); test_wolfSSL_CTX_add_client_CA(); test_wolfSSL_CTX_set_srp_username(); test_wolfSSL_CTX_set_srp_password(); test_wolfSSL_pseudo_rand(); test_wolfSSL_pkcs8(); test_wolfSSL_ERR_put_error(); test_wolfSSL_HMAC(); test_wolfSSL_OBJ(); test_wolfSSL_X509_NAME_ENTRY(); test_wolfSSL_BIO_gets(); test_wolfSSL_d2i_PUBKEY(); test_wolfSSL_BIO_write(); test_wolfSSL_SESSION(); test_wolfSSL_DES_ecb_encrypt(); test_wolfSSL_sk_GENERAL_NAME(); test_wolfSSL_MD4(); test_wolfSSL_RSA(); test_wolfSSL_verify_depth(); test_wolfSSL_HMAC_CTX(); test_wolfSSL_msg_callback(); test_wolfSSL_SHA(); test_wolfSSL_DH_1536_prime(); test_wolfSSL_AES_ecb_encrypt(); test_wolfSSL_SHA256(); test_wolfSSL_X509_get_serialNumber(); /* test the no op functions for compatibility */ test_no_op_functions(); AssertIntEQ(test_wolfSSL_Cleanup(), WOLFSSL_SUCCESS); /* wolfCrypt ASN tests */ test_wc_GetPkcs8TraditionalOffset(); /* wolfCrypt ECC tests */ test_wc_ecc_get_curve_size_from_name(); test_wc_ecc_get_curve_id_from_name(); test_wc_ecc_get_curve_id_from_params(); #ifdef WOLFSSL_TLS13 /* TLS v1.3 API tests */ test_tls13_apis(); #endif #ifndef NO_CERTS /* Bad certificate signature tests */ AssertIntEQ(test_EccSigFailure_cm(), ASN_SIG_CONFIRM_E); AssertIntEQ(test_RsaSigFailure_cm(), ASN_SIG_CONFIRM_E); #endif /* NO_CERTS */ #ifdef HAVE_PK_CALLBACKS /* public key callback tests */ test_DhCallbacks(); #endif /*wolfcrypt */ printf("\n-----------------wolfcrypt unit tests------------------\n"); AssertFalse(test_wolfCrypt_Init()); AssertFalse(test_wc_InitMd5()); AssertFalse(test_wc_Md5Update()); AssertFalse(test_wc_Md5Final()); AssertFalse(test_wc_InitSha()); AssertFalse(test_wc_ShaUpdate()); AssertFalse(test_wc_ShaFinal()); AssertFalse(test_wc_InitSha256()); AssertFalse(test_wc_Sha256Update()); AssertFalse(test_wc_Sha256Final()); AssertFalse(test_wc_InitSha512()); AssertFalse(test_wc_Sha512Update()); AssertFalse(test_wc_Sha512Final()); AssertFalse(test_wc_InitSha384()); AssertFalse(test_wc_Sha384Update()); AssertFalse(test_wc_Sha384Final()); AssertFalse(test_wc_InitSha224()); AssertFalse(test_wc_Sha224Update()); AssertFalse(test_wc_Sha224Final()); AssertFalse(test_wc_InitRipeMd()); AssertFalse(test_wc_RipeMdUpdate()); AssertFalse(test_wc_RipeMdFinal()); AssertIntEQ(test_wc_InitSha3(), 0); AssertIntEQ(testing_wc_Sha3_Update(), 0); AssertIntEQ(test_wc_Sha3_224_Final(), 0); AssertIntEQ(test_wc_Sha3_256_Final(), 0); AssertIntEQ(test_wc_Sha3_384_Final(), 0); AssertIntEQ(test_wc_Sha3_512_Final(), 0); AssertIntEQ(test_wc_Sha3_224_Copy(), 0); AssertIntEQ(test_wc_Sha3_256_Copy(), 0); AssertIntEQ(test_wc_Sha3_384_Copy(), 0); AssertIntEQ(test_wc_Sha3_512_Copy(), 0); AssertFalse(test_wc_Md5HmacSetKey()); AssertFalse(test_wc_Md5HmacUpdate()); AssertFalse(test_wc_Md5HmacFinal()); AssertFalse(test_wc_ShaHmacSetKey()); AssertFalse(test_wc_ShaHmacUpdate()); AssertFalse(test_wc_ShaHmacFinal()); AssertFalse(test_wc_Sha224HmacSetKey()); AssertFalse(test_wc_Sha224HmacUpdate()); AssertFalse(test_wc_Sha224HmacFinal()); AssertFalse(test_wc_Sha256HmacSetKey()); AssertFalse(test_wc_Sha256HmacUpdate()); AssertFalse(test_wc_Sha256HmacFinal()); AssertFalse(test_wc_Sha384HmacSetKey()); AssertFalse(test_wc_Sha384HmacUpdate()); AssertFalse(test_wc_Sha384HmacFinal()); AssertIntEQ(test_wc_InitCmac(), 0); AssertIntEQ(test_wc_CmacUpdate(), 0); AssertIntEQ(test_wc_CmacFinal(), 0); AssertIntEQ(test_wc_AesCmacGenerate(), 0); AssertIntEQ(test_wc_Des3_SetIV(), 0); AssertIntEQ(test_wc_Des3_SetKey(), 0); AssertIntEQ(test_wc_Des3_CbcEncryptDecrypt(), 0); AssertIntEQ(test_wc_Des3_CbcEncryptDecryptWithKey(), 0); AssertIntEQ(test_wc_IdeaSetKey(), 0); AssertIntEQ(test_wc_IdeaSetIV(), 0); AssertIntEQ(test_wc_IdeaCipher(), 0); AssertIntEQ(test_wc_IdeaCbcEncyptDecrypt(), 0); AssertIntEQ(test_wc_Chacha_SetKey(), 0); AssertIntEQ(test_wc_Chacha_Process(), 0); AssertIntEQ(test_wc_ChaCha20Poly1305_aead(), 0); AssertIntEQ(test_wc_CamelliaSetKey(), 0); AssertIntEQ(test_wc_CamelliaSetIV(), 0); AssertIntEQ(test_wc_CamelliaEncryptDecryptDirect(), 0); AssertIntEQ(test_wc_CamelliaCbcEncryptDecrypt(), 0); AssertIntEQ(test_wc_RabbitSetKey(), 0); AssertIntEQ(test_wc_RabbitProcess(), 0); AssertIntEQ(test_wc_Arc4SetKey(), 0); AssertIntEQ(test_wc_Arc4Process(), 0); AssertIntEQ(test_wc_AesSetKey(), 0); AssertIntEQ(test_wc_AesSetIV(), 0); AssertIntEQ(test_wc_AesCbcEncryptDecrypt(), 0); AssertIntEQ(test_wc_AesCtrEncryptDecrypt(), 0); AssertIntEQ(test_wc_AesGcmSetKey(), 0); AssertIntEQ(test_wc_AesGcmEncryptDecrypt(), 0); AssertIntEQ(test_wc_GmacSetKey(), 0); AssertIntEQ(test_wc_GmacUpdate(), 0); AssertIntEQ(test_wc_InitRsaKey(), 0); AssertIntEQ(test_wc_RsaPrivateKeyDecode(), 0); AssertIntEQ(test_wc_RsaPublicKeyDecode(), 0); AssertIntEQ(test_wc_RsaPublicKeyDecodeRaw(), 0); AssertIntEQ(test_wc_MakeRsaKey(), 0); AssertIntEQ(test_wc_SetKeyUsage (), 0); AssertIntEQ(test_wc_RsaKeyToDer(), 0); AssertIntEQ(test_wc_RsaKeyToPublicDer(), 0); AssertIntEQ(test_wc_RsaPublicEncryptDecrypt(), 0); AssertIntEQ(test_wc_RsaPublicEncryptDecrypt_ex(), 0); AssertIntEQ(test_wc_RsaEncryptSize(), 0); AssertIntEQ(test_wc_RsaSSL_SignVerify(), 0); AssertIntEQ(test_wc_RsaFlattenPublicKey(), 0); AssertIntEQ(test_RsaDecryptBoundsCheck(), 0); AssertIntEQ(test_wc_AesCcmSetKey(), 0); AssertIntEQ(test_wc_AesCcmEncryptDecrypt(), 0); AssertIntEQ(test_wc_Hc128_SetKey(), 0); AssertIntEQ(test_wc_Hc128_Process(), 0); AssertIntEQ(test_wc_InitDsaKey(), 0); AssertIntEQ(test_wc_DsaSignVerify(), 0); AssertIntEQ(test_wc_DsaPublicPrivateKeyDecode(), 0); AssertIntEQ(test_wc_MakeDsaKey(), 0); AssertIntEQ(test_wc_DsaKeyToDer(), 0); AssertIntEQ(test_wc_DsaImportParamsRaw(), 0); AssertIntEQ(test_wc_DsaExportParamsRaw(), 0); AssertIntEQ(test_wc_DsaExportKeyRaw(), 0); #ifdef OPENSSL_EXTRA /*wolfSSS_EVP_get_cipherbynid test*/ test_wolfSSL_EVP_get_cipherbynid(); test_wolfSSL_EC(); #endif #ifdef HAVE_HASHDRBG AssertIntEQ(test_wc_RNG_GenerateBlock(), 0); #endif AssertIntEQ(test_wc_ed25519_make_key(), 0); AssertIntEQ(test_wc_ed25519_init(), 0); AssertIntEQ(test_wc_ed25519_sign_msg(), 0); AssertIntEQ(test_wc_ed25519_import_public(), 0); AssertIntEQ(test_wc_ed25519_import_private_key(), 0); AssertIntEQ(test_wc_ed25519_export(), 0); AssertIntEQ(test_wc_ed25519_size(), 0); AssertIntEQ(test_wc_ed25519_exportKey(), 0); AssertIntEQ(test_wc_ecc_make_key(), 0); AssertIntEQ(test_wc_ecc_init(), 0); AssertIntEQ(test_wc_ecc_check_key(), 0); AssertIntEQ(test_wc_ecc_size(), 0); AssertIntEQ(test_wc_ecc_signVerify_hash(), 0); AssertIntEQ(test_wc_ecc_shared_secret(), 0); AssertIntEQ(test_wc_ecc_export_x963(), 0); AssertIntEQ(test_wc_ecc_export_x963_ex(), 0); AssertIntEQ(test_wc_ecc_import_x963(), 0); AssertIntEQ(ecc_import_private_key(), 0); AssertIntEQ(test_wc_ecc_export_private_only(), 0); AssertIntEQ(test_wc_ecc_rs_to_sig(), 0); AssertIntEQ(test_wc_ecc_import_raw(), 0); AssertIntEQ(test_wc_ecc_sig_size(), 0); AssertIntEQ(test_wc_ecc_ctx_new(), 0); AssertIntEQ(test_wc_ecc_ctx_reset(), 0); AssertIntEQ(test_wc_ecc_ctx_set_peer_salt(), 0); AssertIntEQ(test_wc_ecc_ctx_set_info(), 0); AssertIntEQ(test_wc_ecc_encryptDecrypt(), 0); AssertIntEQ(test_wc_ecc_del_point(), 0); AssertIntEQ(test_wc_ecc_pointFns(), 0); AssertIntEQ(test_wc_ecc_shared_secret_ssh(), 0); AssertIntEQ(test_wc_ecc_verify_hash_ex(), 0); AssertIntEQ(test_wc_ecc_mulmod(), 0); AssertIntEQ(test_wc_ecc_is_valid_idx(), 0); test_wc_PKCS7_Init(); test_wc_PKCS7_InitWithCert(); test_wc_PKCS7_EncodeData(); test_wc_PKCS7_EncodeSignedData(); test_wc_PKCS7_VerifySignedData(); test_wc_PKCS7_EncodeDecodeEnvelopedData(); test_wc_PKCS7_EncodeEncryptedData(); printf(" End API Tests\n"); }