*** Description ***
The wolfSSL embedded SSL library (formerly CyaSSL) is a lightweight SSL/TLS library written in ANSI C and targeted for embedded, RTOS, and resource-constrained environments - primarily because of its small size, speed, and feature set. It is commonly used in standard operating environments as well because of its royalty-free pricing and excellent cross platform support. wolfSSL supports industry standards up to the current TLS 1.3 and DTLS 1.2 levels, is up to 20 times smaller than OpenSSL, and offers progressive ciphers such as ChaCha20, Curve25519, NTRU, and Blake2b. User benchmarking and feedback reports dramatically better performance when using wolfSSL over OpenSSL.
wolfSSL is powered by the wolfCrypt library. Two versions of the wolfCrypt cryptography library have been FIPS 140-2 validated (Certificate #2425 and certificate #3389). For additional information, visit the wolfCrypt FIPS FAQ (https://www.wolfssl.com/license/fips/) or contact fips@wolfssl.com
*** Why choose wolfSSL? ***
There are many reasons to choose wolfSSL as your embedded SSL solution. Some of the top reasons include size (typical footprint sizes range from 20-100 kB), support for the newest standards (SSL 3.0, TLS 1.0, TLS 1.1, TLS 1.2, TLS 1.3, DTLS 1.0, and DTLS 1.2), current and progressive cipher support (including stream ciphers), multi-platform, royalty free, and an OpenSSL compatibility API to ease porting into existing applications which have previously used the OpenSSL package. For a complete feature list, see chapter 4 of the wolfSSL manual. (https://www.wolfssl.com/docs/wolfssl-manual/ch4/)
*** Notes, Please read ***
Note 1) wolfSSL as of 3.6.6 no longer enables SSLv3 by default. wolfSSL also no longer supports static key cipher suites with PSK, RSA, or ECDH. This means if you plan to use TLS cipher suites you must enable DH (DH is on by default), or enable ECC (ECC is on by default), or you must enable static key cipher suites with
WOLFSSL_STATIC_DH
WOLFSSL_STATIC_RSA
or
WOLFSSL_STATIC_PSK
though static key cipher suites are deprecated and will be removed from future versions of TLS. They also lower your security by removing PFS. Since current NTRU suites available do not use ephemeral keys, WOLFSSL_STATIC_RSA needs to be used in order to build with NTRU suites.
When compiling ssl.c, wolfSSL will now issue a compiler error if no cipher suites are available. You can remove this error by defining WOLFSSL_ALLOW_NO_SUITES in the event that you desire that, i.e., you're not using TLS cipher suites.
Note 2) wolfSSL takes a different approach to certificate verification than OpenSSL does. The default policy for the client is to verify the server, this means that if you don't load CAs to verify the server you'll get a connect error, no signer error to confirm failure (-188).
If you want to mimic OpenSSL behavior of having SSL_connect succeed even if verifying the server fails and reducing security you can do this by calling:
wolfSSL_CTX_set_verify(ctx, SSL_VERIFY_NONE, 0);
before calling wolfSSL_new();. Though it's not recommended.
Note 3) The enum values SHA, SHA256, SHA384, SHA512 are no longer available when wolfSSL is built with --enable-opensslextra (OPENSSL_EXTRA) or with the macro NO_OLD_SHA_NAMES. These names get mapped to the OpenSSL API for a single call hash function. Instead the name WC_SHA, WC_SHA256, WC_SHA384 and WC_SHA512 should be used for the enum name.
*** end Notes ***
If you have questions about this release, feel free to contact us on our info@ address.
Release 4.4.0 of wolfSSL embedded TLS has bug fixes and new features including:
WOLFSSL_SMALL_STACK_CACHE
.PemToDer()
call in ProcessBuffer()
to set more than ECC.wc_HmacInit()
isn't used. wc_HmacSetKey()
needs
to initialize the Hmac structure. Type is set to NONE, and checked against
NONE, not 0.wc_KeyPemToDer()
with PKCS1 and empty key.-fomit-frame-pointer
from CFLAGS in configure.ac.For fast math, use a constant time modular inverse when mapping to affine when operation involves a private key - keygen, calc shared secret, sign. Thank you to Alejandro Cabrera Aldaya, Cesar Pereida García and Billy Bob Brumley from the Network and Information Security Group (NISEC) at Tampere University for the report.
Change constant time and cache resistant ECC mulmod. Ensure points being operated on change to make constant time. Thank you to Pietro Borrello at Sapienza University of Rome.
For additional vulnerability information visit the vulnerability page at https://www.wolfssl.com/docs/security-vulnerabilities/
See INSTALL file for build instructions. More info can be found on-line at https://wolfssl.com/wolfSSL/Docs.html
*** Resources ***