/* vim: set expandtab ts=4 sw=4: */
/*
* You may redistribute this program and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "crypto/Sign.h"
#include "crypto/sign/crypto_sign_ed25519.h"
#include "crypto/sign/ge.h"
#include "crypto/sign/sc.h"
Linker_require("crypto/sign/fe_0.c")
Linker_require("crypto/sign/fe_1.c")
Linker_require("crypto/sign/fe_add.c")
Linker_require("crypto/sign/fe_cmov.c")
Linker_require("crypto/sign/fe_copy.c")
Linker_require("crypto/sign/fe_frombytes.c")
Linker_require("crypto/sign/fe_invert.c")
Linker_require("crypto/sign/fe_isnegative.c")
Linker_require("crypto/sign/fe_isnonzero.c")
Linker_require("crypto/sign/fe_mul.c")
Linker_require("crypto/sign/fe_neg.c")
Linker_require("crypto/sign/fe_pow22523.c")
Linker_require("crypto/sign/fe_sq.c")
Linker_require("crypto/sign/fe_sq2.c")
Linker_require("crypto/sign/fe_sub.c")
Linker_require("crypto/sign/fe_tobytes.c")
Linker_require("crypto/sign/ge_add.c")
Linker_require("crypto/sign/ge_double_scalarmult.c")
Linker_require("crypto/sign/ge_frombytes.c")
Linker_require("crypto/sign/ge_madd.c")
Linker_require("crypto/sign/ge_msub.c")
Linker_require("crypto/sign/ge_p1p1_to_p2.c")
Linker_require("crypto/sign/ge_p1p1_to_p3.c")
Linker_require("crypto/sign/ge_p2_0.c")
Linker_require("crypto/sign/ge_p2_dbl.c")
Linker_require("crypto/sign/ge_p3_0.c")
Linker_require("crypto/sign/ge_p3_dbl.c")
Linker_require("crypto/sign/ge_p3_to_cached.c")
Linker_require("crypto/sign/ge_p3_to_p2.c")
Linker_require("crypto/sign/ge_p3_tobytes.c")
Linker_require("crypto/sign/ge_precomp_0.c")
Linker_require("crypto/sign/ge_scalarmult_base.c")
Linker_require("crypto/sign/ge_sub.c")
Linker_require("crypto/sign/ge_tobytes.c")
Linker_require("crypto/sign/sc_muladd.c")
Linker_require("crypto/sign/sc_reduce.c")
Linker_require("crypto/sign/open.c")
#include
// This is fairly streight forward, we're taking a curve25519 private key and
// interpreting it as an ed25519 key. This works in conjunction with the public
// key converter Sign_publicSigningKeyToCurve25519() which is able to re-derive
// the encryption key from a public signing key.
void Sign_signingKeyPairFromCurve25519(uint8_t keypairOut[64], uint8_t secretCryptoKey[32])
{
Bits_memcpy(keypairOut, secretCryptoKey, 32);
// The lower 3 bits are always cleared in both curve25519 and ed25519 keys before use
// see: https://crypto.stackexchange.com/a/12614
keypairOut[0] &= 248;
// You will notice that ed25519 uses &= 63 (setting bit number 354 to zero) while
// curve25519 scalarmult uses &= 127, allowing bit number 254 to be potentially 1,
// this might look as though the keys are different but since the next line flags bit
// number 254 always to 1, there is no difference here between the way curve25519
// implementations and ed25519 implementations work.
keypairOut[31] &= 63;
// Bit number 254 is always set in both curve25519 and ed25519 keys before use
// see: https://crypto.stackexchange.com/a/11818
keypairOut[31] |= 64;
// This is just doing the same thing as vanilla ed25519 crypto_sign_keypair()
// computation with the exception that we don't hash the private key before
// computation.
ge_p3 A;
ge_scalarmult_base(&A, keypairOut);
ge_p3_tobytes(&keypairOut[32], &A);
}
void Sign_publicKeyFromKeyPair(uint8_t publicSigningKey[32], uint8_t keyPair[64])
{
Bits_memcpy(publicSigningKey, &keyPair[32], 32);
}
// This function is here because cjdns traditionally did not include signing, it only
// has a key for encryption so when signing was implemented, in order not to break
// everyone who has a cjdroute.conf file already, we needed to be able to convert
// the encryption key to a signing key.
// That in itself is fairly easy, and considered to be safe, but unfortunately nacl
// and libsodium ed25519 implementations hash the private key before each use, making
// it impossible to use our private key derived from a curve25519 encryption private key.
//
// The reason why nacl hashes the private key is to expand 32 bytes of entropy into 64
// bytes, half of which is used as the actual signing key and half of which is used as
// a secret random value which when combined with the hash of the message creates a
// value r that is unpredictable and different for each message signed. It's important
// to note that if r is the same for two different messages then there is a way for an
// attacker to mathmatically derive the private key.
//
// What we do here instead is take the hash of the actual private key used to sign with
// plus some random "belt and suspenders" bytes. Generally speaking, we should consider
// that there is no more dissernable relationship between the public key and the sha512
// of the private key than there is between the public key and the second half of the
// same sha512 which produces the private key, but this is walking off of the beaten path
// and throwing in a little bit of random each message should not make the situation any
// worse.
void Sign_signMsg(uint8_t keyPair[64], struct Message* msg, struct Random* rand)
{
// az is set to the secret key followed by another secret value
// which since we don't have a secret seed in this algorithm is just the
// hash of the secret key and 32 bytes of random
uint8_t az[64];
uint8_t r[64];
ge_p3 R;
uint8_t hram[64];
// First we need to derive a unique random value, we'll do this by hashing the secret
// key plus 32 bytes of random, whereas crypto_sign() achieves this by taking half of
// the hash of the secret key that is input to it.
Bits_memcpy(az, keyPair, 32);
Random_bytes(rand, &az[32], 32);
crypto_hash_sha512(az,az,64);
// Ok, now az contains 64 bytes of unique random value, the upper 32 bytes needs to
// be set to the actual secret key that we're going to use for signing.
Bits_memcpy(az, keyPair, 32);
// The reason for these numbers being masked off is explained above, but this is no
// different from crypto_sign()
az[0] &= 248;
az[31] &= 63;
az[31] |= 64;
// hash message + secret number, this is the same as crypto_sign()
// If there isn't enough space in the message, we abort the process
Er_assert(Message_epush(msg, &az[32], 32));
crypto_hash_sha512(r, msg->msgbytes, Message_getLength(msg));
// Replace secret number with public key, this is the same as crypto_sign()
Bits_memcpy(msg->msgbytes, &keyPair[32], 32);
// Now we scalar multiply the hash of the message + unique secret and push that
// to the message, nothing different from crypto_sign()
sc_reduce(r);
ge_scalarmult_base(&R,r);
// If there isn't enough space in the message, we abort the process
Er_assert(Message_eshift(msg, 32));
ge_p3_tobytes(msg->msgbytes,&R);
// This final step is the same as crypto_sign()
// Overwrite the public key which the verifier will replace in order to recompute
// the hash.
crypto_hash_sha512(hram, msg->msgbytes, Message_getLength(msg));
sc_reduce(hram);
sc_muladd(&msg->msgbytes[32], hram, az, r);
}
// For verify, we're just using the normal sign_open() function, nothing special here.
int Sign_verifyMsg(uint8_t publicSigningKey[32], struct Message* msg)
{
if (Message_getLength(msg) < 64) { return -1; }
struct Allocator* alloc = Allocator_child(Message_getAlloc(msg));
uint8_t* buff = Allocator_malloc(alloc, Message_getLength(msg));
unsigned long long ml = Message_getLength(msg);
int ret = crypto_sign_ed25519_open(buff, &ml, msg->msgbytes, Message_getLength(msg), publicSigningKey);
Allocator_free(alloc);
if (ret) {
return -1;
}
Er_assert(Message_epop(msg, NULL, 64));
return 0;
}
// This is a copy of libsodium's implementation:
// https://github.com/jedisct1/libsodium/blob/eae4add8de435a7fad08eab4f6e7cbfa9209a692/
// src/libsodium/crypto_sign/ed25519/ref10/keypair.c#L45
// Note that in newer versions Libsodium added a checks
// * ge25519_has_small_order - refusing signatures made with weak public keys
// * ge25519_is_on_main_subgroup - refusing signatures from keys on different subgroups
// These additions are specific to Libsodium, they not in the original NACL ed25519
// implementation, nor in tweetnacl.
int Sign_publicSigningKeyToCurve25519(uint8_t curve25519keyOut[32], uint8_t publicSigningKey[32])
{
ge_p3 A;
fe x;
fe one_minus_y;
if (ge_frombytes_negate_vartime(&A, publicSigningKey) != 0) {
return -1;
}
fe_1(one_minus_y);
fe_sub(one_minus_y, one_minus_y, A.Y);
fe_invert(one_minus_y, one_minus_y);
fe_1(x);
fe_add(x, x, A.Y);
fe_mul(x, x, one_minus_y);
fe_tobytes(curve25519keyOut, x);
return 0;
}