/* $Id: sha2big.c 216 2010-06-08 09:46:57Z tp $ */ /* * SHA-384 / SHA-512 implementation. * * ==========================(LICENSE BEGIN)============================ * * Copyright (c) 2007-2010 Projet RNRT SAPHIR * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * ===========================(LICENSE END)============================= * * @author Thomas Pornin */ #include #include #include "sph_sha2.h" #if SPH_64 #define CH(X, Y, Z) ((((Y) ^ (Z)) & (X)) ^ (Z)) #define MAJ(X, Y, Z) (((X) & (Y)) | (((X) | (Y)) & (Z))) #define ROTR64 SPH_ROTR64 #define BSG5_0(x) (ROTR64(x, 28) ^ ROTR64(x, 34) ^ ROTR64(x, 39)) #define BSG5_1(x) (ROTR64(x, 14) ^ ROTR64(x, 18) ^ ROTR64(x, 41)) #define SSG5_0(x) (ROTR64(x, 1) ^ ROTR64(x, 8) ^ SPH_T64((x) >> 7)) #define SSG5_1(x) (ROTR64(x, 19) ^ ROTR64(x, 61) ^ SPH_T64((x) >> 6)) static const sph_u64 K512[80] = { SPH_C64(0x428A2F98D728AE22), SPH_C64(0x7137449123EF65CD), SPH_C64(0xB5C0FBCFEC4D3B2F), SPH_C64(0xE9B5DBA58189DBBC), SPH_C64(0x3956C25BF348B538), SPH_C64(0x59F111F1B605D019), SPH_C64(0x923F82A4AF194F9B), SPH_C64(0xAB1C5ED5DA6D8118), SPH_C64(0xD807AA98A3030242), SPH_C64(0x12835B0145706FBE), SPH_C64(0x243185BE4EE4B28C), SPH_C64(0x550C7DC3D5FFB4E2), SPH_C64(0x72BE5D74F27B896F), SPH_C64(0x80DEB1FE3B1696B1), SPH_C64(0x9BDC06A725C71235), SPH_C64(0xC19BF174CF692694), SPH_C64(0xE49B69C19EF14AD2), SPH_C64(0xEFBE4786384F25E3), SPH_C64(0x0FC19DC68B8CD5B5), SPH_C64(0x240CA1CC77AC9C65), SPH_C64(0x2DE92C6F592B0275), SPH_C64(0x4A7484AA6EA6E483), SPH_C64(0x5CB0A9DCBD41FBD4), SPH_C64(0x76F988DA831153B5), SPH_C64(0x983E5152EE66DFAB), SPH_C64(0xA831C66D2DB43210), SPH_C64(0xB00327C898FB213F), SPH_C64(0xBF597FC7BEEF0EE4), SPH_C64(0xC6E00BF33DA88FC2), SPH_C64(0xD5A79147930AA725), SPH_C64(0x06CA6351E003826F), SPH_C64(0x142929670A0E6E70), SPH_C64(0x27B70A8546D22FFC), SPH_C64(0x2E1B21385C26C926), SPH_C64(0x4D2C6DFC5AC42AED), SPH_C64(0x53380D139D95B3DF), SPH_C64(0x650A73548BAF63DE), SPH_C64(0x766A0ABB3C77B2A8), SPH_C64(0x81C2C92E47EDAEE6), SPH_C64(0x92722C851482353B), SPH_C64(0xA2BFE8A14CF10364), SPH_C64(0xA81A664BBC423001), SPH_C64(0xC24B8B70D0F89791), SPH_C64(0xC76C51A30654BE30), SPH_C64(0xD192E819D6EF5218), SPH_C64(0xD69906245565A910), SPH_C64(0xF40E35855771202A), SPH_C64(0x106AA07032BBD1B8), SPH_C64(0x19A4C116B8D2D0C8), SPH_C64(0x1E376C085141AB53), SPH_C64(0x2748774CDF8EEB99), SPH_C64(0x34B0BCB5E19B48A8), SPH_C64(0x391C0CB3C5C95A63), SPH_C64(0x4ED8AA4AE3418ACB), SPH_C64(0x5B9CCA4F7763E373), SPH_C64(0x682E6FF3D6B2B8A3), SPH_C64(0x748F82EE5DEFB2FC), SPH_C64(0x78A5636F43172F60), SPH_C64(0x84C87814A1F0AB72), SPH_C64(0x8CC702081A6439EC), SPH_C64(0x90BEFFFA23631E28), SPH_C64(0xA4506CEBDE82BDE9), SPH_C64(0xBEF9A3F7B2C67915), SPH_C64(0xC67178F2E372532B), SPH_C64(0xCA273ECEEA26619C), SPH_C64(0xD186B8C721C0C207), SPH_C64(0xEADA7DD6CDE0EB1E), SPH_C64(0xF57D4F7FEE6ED178), SPH_C64(0x06F067AA72176FBA), SPH_C64(0x0A637DC5A2C898A6), SPH_C64(0x113F9804BEF90DAE), SPH_C64(0x1B710B35131C471B), SPH_C64(0x28DB77F523047D84), SPH_C64(0x32CAAB7B40C72493), SPH_C64(0x3C9EBE0A15C9BEBC), SPH_C64(0x431D67C49C100D4C), SPH_C64(0x4CC5D4BECB3E42B6), SPH_C64(0x597F299CFC657E2A), SPH_C64(0x5FCB6FAB3AD6FAEC), SPH_C64(0x6C44198C4A475817) }; static const sph_u64 H384[8] = { SPH_C64(0xCBBB9D5DC1059ED8), SPH_C64(0x629A292A367CD507), SPH_C64(0x9159015A3070DD17), SPH_C64(0x152FECD8F70E5939), SPH_C64(0x67332667FFC00B31), SPH_C64(0x8EB44A8768581511), SPH_C64(0xDB0C2E0D64F98FA7), SPH_C64(0x47B5481DBEFA4FA4) }; static const sph_u64 H512[8] = { SPH_C64(0x6A09E667F3BCC908), SPH_C64(0xBB67AE8584CAA73B), SPH_C64(0x3C6EF372FE94F82B), SPH_C64(0xA54FF53A5F1D36F1), SPH_C64(0x510E527FADE682D1), SPH_C64(0x9B05688C2B3E6C1F), SPH_C64(0x1F83D9ABFB41BD6B), SPH_C64(0x5BE0CD19137E2179) }; /* * This macro defines the body for a SHA-384 / SHA-512 compression function * implementation. The "in" parameter should evaluate, when applied to a * numerical input parameter from 0 to 15, to an expression which yields * the corresponding input block. The "r" parameter should evaluate to * an array or pointer expression designating the array of 8 words which * contains the input and output of the compression function. * * SHA-512 is hard for the compiler. If the loop is completely unrolled, * then the code will be quite huge (possibly more than 100 kB), and the * performance will be degraded due to cache misses on the code. We * unroll only eight steps, which avoids all needless copies when * 64-bit registers are swapped. */ #define SHA3_STEP(A, B, C, D, E, F, G, H, i) do { \ sph_u64 T1, T2; \ T1 = SPH_T64(H + BSG5_1(E) + CH(E, F, G) + K512[i] + W[i]); \ T2 = SPH_T64(BSG5_0(A) + MAJ(A, B, C)); \ D = SPH_T64(D + T1); \ H = SPH_T64(T1 + T2); \ } while (0) #define SHA3_ROUND_BODY(in, r) do { \ int i; \ sph_u64 A, B, C, D, E, F, G, H; \ sph_u64 W[80]; \ \ for (i = 0; i < 16; i ++) \ W[i] = in(i); \ for (i = 16; i < 80; i ++) \ W[i] = SPH_T64(SSG5_1(W[i - 2]) + W[i - 7] \ + SSG5_0(W[i - 15]) + W[i - 16]); \ A = (r)[0]; \ B = (r)[1]; \ C = (r)[2]; \ D = (r)[3]; \ E = (r)[4]; \ F = (r)[5]; \ G = (r)[6]; \ H = (r)[7]; \ for (i = 0; i < 80; i += 8) { \ SHA3_STEP(A, B, C, D, E, F, G, H, i + 0); \ SHA3_STEP(H, A, B, C, D, E, F, G, i + 1); \ SHA3_STEP(G, H, A, B, C, D, E, F, i + 2); \ SHA3_STEP(F, G, H, A, B, C, D, E, i + 3); \ SHA3_STEP(E, F, G, H, A, B, C, D, i + 4); \ SHA3_STEP(D, E, F, G, H, A, B, C, i + 5); \ SHA3_STEP(C, D, E, F, G, H, A, B, i + 6); \ SHA3_STEP(B, C, D, E, F, G, H, A, i + 7); \ } \ (r)[0] = SPH_T64((r)[0] + A); \ (r)[1] = SPH_T64((r)[1] + B); \ (r)[2] = SPH_T64((r)[2] + C); \ (r)[3] = SPH_T64((r)[3] + D); \ (r)[4] = SPH_T64((r)[4] + E); \ (r)[5] = SPH_T64((r)[5] + F); \ (r)[6] = SPH_T64((r)[6] + G); \ (r)[7] = SPH_T64((r)[7] + H); \ } while (0) /* * One round of SHA-384 / SHA-512. The data must be aligned for 64-bit access. */ static void sha3_round(const unsigned char *data, sph_u64 r[8]) { #define SHA3_IN(x) sph_dec64be_aligned(data + (8 * (x))) SHA3_ROUND_BODY(SHA3_IN, r); #undef SHA3_IN } /* see sph_sha3.h */ void sph_sha384_init(void *cc) { sph_sha384_context *sc; sc = cc; memcpy(sc->val, H384, sizeof H384); sc->count = 0; } /* see sph_sha3.h */ void sph_sha512_init(void *cc) { sph_sha512_context *sc; sc = cc; memcpy(sc->val, H512, sizeof H512); sc->count = 0; } #define RFUN sha3_round #define HASH sha384 #define BE64 1 #include "md_helper.i" /* see sph_sha3.h */ void sph_sha384_close(void *cc, void *dst) { sha384_close(cc, dst, 6); sph_sha384_init(cc); } /* see sph_sha3.h */ void sph_sha384_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) { sha384_addbits_and_close(cc, ub, n, dst, 6); sph_sha384_init(cc); } /* see sph_sha3.h */ void sph_sha512_close(void *cc, void *dst) { sha384_close(cc, dst, 8); sph_sha512_init(cc); } /* see sph_sha3.h */ void sph_sha512_addbits_and_close(void *cc, unsigned ub, unsigned n, void *dst) { sha384_addbits_and_close(cc, ub, n, dst, 8); sph_sha512_init(cc); } /* see sph_sha3.h */ void sph_sha384_comp(const sph_u64 msg[16], sph_u64 val[8]) { #define SHA3_IN(x) msg[x] SHA3_ROUND_BODY(SHA3_IN, val); #undef SHA3_IN } #endif