/* vim: set expandtab ts=4 sw=4: */ /* * You may redistribute this program and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation, * either version 3 of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "crypto/AddressCalc.h" #include "dht/Address.h" #include "dht/dhtcore/Node.h" #include "dht/dhtcore/NodeStore.h" #include "dht/dhtcore/NodeList.h" #include "util/AddrTools.h" #include "util/Assert.h" #include "util/Bits.h" #include "util/log/Log.h" #include "util/version/Version.h" #include "switch/NumberCompress.h" #include "switch/LabelSplicer.h" #include "util/Gcc.h" #include #include #include /** A list of DHT nodes. */ struct NodeStore_pvt { struct NodeStore pub; /** A fake link where we are both the parent and child. */ struct Node_Link* selfLink; /** A tree containing all nodes ordered by ipv6 */ struct NodeRBTree { struct Node_Two* rbh_root; } nodeTree; struct Allocator* alloc; /** The maximum number of nodes which can be allocated. TODO: make use of */ int capacity; /** * The links to be freed next time freePendingLinks() is called. */ struct Node_Link* linksToFree; /** The means for this node store to log. */ struct Log* logger; Identity }; // My memory is really bad #define A_COMES_FIRST 1 #define B_COMES_FIRST -1 static int comparePeers(const struct Node_Link* la, const struct Node_Link* lb) { Identity_check(lb); uint64_t a = la->cannonicalLabel; uint64_t b = lb->cannonicalLabel; int log2Diff = Bits_log2x64(b) - Bits_log2x64(a); if (log2Diff) { return log2Diff; } if (Bits_bitReverse64(a) < Bits_bitReverse64(b)) { return A_COMES_FIRST; } else if (a == b) { return 0; } return B_COMES_FIRST; } RB_GENERATE_STATIC(PeerRBTree, Node_Link, peerTree, comparePeers) static int compareNodes(const struct Node_Two* na, const struct Node_Two* nb) { Identity_check(nb); int ret; ret = Address_xorcmp(0, na->address.ip6.ints.one_be, nb->address.ip6.ints.one_be); if (ret) { return ret; } ret = Address_xorcmp(0, na->address.ip6.ints.two_be, nb->address.ip6.ints.two_be); if (ret) { return ret; } ret = Address_xorcmp(0, na->address.ip6.ints.three_be, nb->address.ip6.ints.three_be); if (ret) { return ret; } ret = Address_xorcmp(0, na->address.ip6.ints.four_be, nb->address.ip6.ints.four_be); return ret; } RB_GENERATE_STATIC(NodeRBTree, Node_Two, nodeTree, compareNodes) static void freeLink(struct Node_Link* link, struct NodeStore_pvt* store) { Allocator_realloc(store->alloc, link, 0); store->pub.linkCount--; } static struct Node_Link* getLink(struct NodeStore_pvt* store) { store->pub.linkCount++; return Allocator_calloc(store->alloc, sizeof(struct Node_Link), 1); } static void logLink(struct NodeStore_pvt* store, struct Node_Link* link, char* message) { #ifndef Log_DEBUG return; #endif uint8_t parent[40]; uint8_t child[40]; AddrTools_printIp(parent, link->parent->address.ip6.bytes); AddrTools_printIp(child, link->child->address.ip6.bytes); uint8_t path[20]; AddrTools_printPath(path, link->cannonicalLabel); Log_debug(store->logger, "link[%s]->[%s] [%s] %s", parent, child, path, message); } static void _checkNode(struct Node_Two* node, struct NodeStore_pvt* store, char* file, int line) { #ifndef PARANOIA return; #endif Assert_true(node->address.path == EncodingScheme_convertLabel(store->pub.selfNode->encodingScheme, node->address.path, EncodingScheme_convertLabel_convertTo_CANNONICAL)); struct Node_Link* link; for (link = node->reversePeers; link; link = link->nextPeer) { Assert_fileLine(link->child == node, file, line); Assert_fileLine(RB_FIND(PeerRBTree, &link->parent->peerTree, link) == link, file, line); } struct Node_Link* lastLink = NULL; RB_FOREACH_REVERSE(link, PeerRBTree, &node->peerTree) { Assert_fileLine(node->bestParent || link->child->bestParent != link, file, line); Assert_fileLine(link->parent == node, file, line); Assert_fileLine(link->child != node || link == store->selfLink, file, line); Assert_fileLine(!lastLink || link->cannonicalLabel != lastLink->cannonicalLabel, file, line); Assert_fileLine(link->cannonicalLabel < UINT64_MAX && link->cannonicalLabel > 0, file, line); struct Node_Link* rlink = NULL; for (rlink = link->child->reversePeers; rlink; rlink = rlink->nextPeer) { if (rlink == link) { break; } } Assert_fileLine(rlink && "child contains reverse link", file, line); lastLink = link; } if (node->bestParent) { Assert_fileLine(Node_getReach(node->bestParent->parent) > Node_getReach(node) || node == store->pub.selfNode, file, line); Assert_fileLine(node->address.path != UINT64_MAX, file, line); // Should never get as low as 512... Assert_fileLine(Node_getReach(node) > 512, file, line); struct Node_Two* nn = node; do { Assert_fileLine( LabelSplicer_routesThrough(nn->address.path, nn->bestParent->parent->address.path), file, line ); nn = nn->bestParent->parent; } while (nn != store->pub.selfNode); } else { Assert_fileLine(node->address.path == UINT64_MAX, file, line); Assert_fileLine(Node_getReach(node) == 0, file, line); } } #define checkNode(node, store) _checkNode(node, store, Gcc_SHORT_FILE, Gcc_LINE) static void _verifyNode(struct Node_Two* node, struct NodeStore_pvt* store, char* file, int line) { #ifndef PARANOIA return; #endif // #1 check the node (do the basic checks) _checkNode(node, store, file, line); // #2 make sure all of the node's outgoing links are split properly struct Node_Link* link = NULL; RB_FOREACH_REVERSE(link, PeerRBTree, &node->peerTree) { // make sure any peers of this node are split properly struct Node_Link* linkB = link; struct Node_Link* linkC = link; RB_FOREACH_REVERSE_FROM(linkB, PeerRBTree, linkC) { if (linkB == link || link == store->selfLink) { continue; } Assert_fileLine( !LabelSplicer_routesThrough(linkB->cannonicalLabel, link->cannonicalLabel), file, line ); } } // #3 make sure looking for the node by address will actually find the correct node. if (node->bestParent) { Assert_fileLine(node == NodeStore_closestNode(&store->pub, node->address.path), file, line); } } #define verifyNode(node, store) _verifyNode(node, store, Gcc_SHORT_FILE, Gcc_LINE) // Verify is more thorough than check because it makes sure all links are split properly. static void _verify(struct NodeStore_pvt* store, char* file, int line) { #ifndef PARANOIA return; #endif Assert_true(store->pub.selfNode->bestParent == store->selfLink || !store->selfLink); struct Node_Two* nn = NULL; RB_FOREACH(nn, NodeRBTree, &store->nodeTree) { _verifyNode(nn, store, file, line); } } #define verify(store) _verify(store, Gcc_SHORT_FILE, Gcc_LINE) static void _check(struct NodeStore_pvt* store, char* file, int line) { #ifndef PARANOIA return; #endif Assert_true(store->pub.selfNode->bestParent == store->selfLink || !store->selfLink); struct Node_Two* nn = NULL; RB_FOREACH(nn, NodeRBTree, &store->nodeTree) { _checkNode(nn, store, file, line); } } #define check(store) _check(store, Gcc_SHORT_FILE, Gcc_LINE) /** * Extend a route by splicing on another link. * This will modify the Encoding Form of the first Director in next section of the route to make * it's size greater than or equal to the size of the return route through the parent node in the * link. * * @param routeLabel the label for reaching the parent node * @param link the link to extend the route with * @param previousLinkEncoding the encoding used for the parent's interface back to the grandparent */ static uint64_t extendRoute(uint64_t routeLabel, struct EncodingScheme* parentScheme, uint64_t parentChildLabel, int previousLinkEncoding) { uint64_t next = parentChildLabel; int nextLinkEncoding = EncodingScheme_getFormNum(parentScheme, next); if (previousLinkEncoding > nextLinkEncoding) { next = EncodingScheme_convertLabel(parentScheme, next, previousLinkEncoding); } Assert_true(next != EncodingScheme_convertLabel_INVALID); return LabelSplicer_splice(next, routeLabel); } static void setReach(struct Node_Two* node, uint32_t newReach) { if (newReach) { Assert_true(node->bestParent); Assert_true(node->address.path < UINT64_MAX); Assert_true(newReach > 512); } else { Assert_true(!node->bestParent); Assert_true(node->address.path == UINT64_MAX); } node->reach_ro = newReach; } static void unreachable(struct Node_Two* node, struct NodeStore_pvt* store) { struct Node_Link* next = NULL; RB_FOREACH_REVERSE(next, PeerRBTree, &node->peerTree) { if (next->child->bestParent == next) { unreachable(next->child, store); } } node->bestParent = NULL; node->address.path = UINT64_MAX; setReach(node, 0); } /** * This is called when we have no idea what the reach should be for the next hop * because the path we previously used to get to it is broken and we need to use * a different one. Take a somewhat educated guess as to what it might be in a way * that will make the reach non-zero. */ static uint32_t guessReachOfChild(struct Node_Link* link) { // return 3/4 of the parent's reach if it's 1 hop, 1/2 otherwise. uint32_t r = Node_getReach(link->parent) / 2; if (r < (1<<12)) { r = Node_getReach(link->parent) - 1; } else if (r < (1<<16)) { r = Node_getReach(link->parent) - Bits_log2x64(link->cannonicalLabel); } Assert_true(r < Node_getReach(link->parent) && r != 0); return r; } static int updateBestParentCycle(struct Node_Two* node, int cycle, int limit, uint32_t nextReach, struct NodeStore_pvt* store) { Assert_always(cycle < 1000); if (cycle < limit) { int total = 0; struct Node_Link* next = NULL; RB_FOREACH_REVERSE(next, PeerRBTree, &node->peerTree) { if (next->child->bestParent == next && next->child != node) { total += updateBestParentCycle(next->child, cycle+1, limit, nextReach, store); } } return total; } struct Node_Link* newBestLink = node->bestParent; struct Node_Two* newBest = newBestLink->parent; uint64_t bestPath = extendRoute(newBest->address.path, newBest->encodingScheme, newBestLink->cannonicalLabel, newBest->bestParent->inverseLinkEncodingFormNumber); if (bestPath == UINT64_MAX) { unreachable(node, store); return 1; } /*#ifdef Log_DEBUG if (node->address.path != bestPath) { uint8_t pathStr[20]; AddrTools_printPath(pathStr, bestPath); uint8_t addrStr[40]; AddrTools_printIp(addrStr, node->address.ip6.bytes); Log_debug(store->logger, "New best path [%s@%s]", addrStr, pathStr); } #endif*/ node->address.path = bestPath; if (!limit) { setReach(node, nextReach); } checkNode(node, store); return 1; } static void updateBestParent(struct Node_Two* node, struct Node_Link* newBestParent, uint32_t nextReach, struct NodeStore_pvt* store) { check(store); node->bestParent = newBestParent; Assert_true(newBestParent); //Assert_true(nextReach > 1023); Assert_true(nextReach < Node_getReach(newBestParent->parent)); for (int i = 0; i < 10000; i++) { if (!updateBestParentCycle(node, 0, i, nextReach, store)) { check(store); return; } } Assert_true(0); } static void handleGoodNews(struct Node_Two* node, uint32_t newReach, struct NodeStore_pvt* store) { // TODO: Paths longer than 1024 will blow up, handle more gracefully Assert_always(newReach != UINT32_MAX); Assert_always(newReach > 1023); Assert_true(newReach > Node_getReach(node)); // The nodestore thinks it's unreachable, we can't very well update the reach. if (node->bestParent == NULL) { return; } if (newReach+1 > Node_getReach(node->bestParent->parent)) { handleGoodNews(node->bestParent->parent, newReach+1, store); } setReach(node, newReach); struct Node_Link* link = NULL; RB_FOREACH_REVERSE(link, PeerRBTree, &node->peerTree) { struct Node_Two* child = link->child; if (!child->bestParent || Node_getReach(child->bestParent->parent) < newReach) { uint32_t nextReach = guessReachOfChild(link); if (Node_getReach(child) > nextReach) { continue; } updateBestParent(child, link, nextReach, store); } } } /** * The news has hit (in handleBadNewsOne) and now all of the nodes in the affected zone have * been knocked down. Now lets see if there's a better path for any of them. */ static void handleBadNewsTwo(struct Node_Link* link, struct NodeStore_pvt* store) { struct Node_Link* next = NULL; RB_FOREACH_REVERSE(next, PeerRBTree, &link->child->peerTree) { if (!next) { continue; } if (next->child->bestParent != next) { continue; } if (next == store->selfLink) { continue; } handleBadNewsTwo(next, store); } // node was relinked by a recursion of this function. if (link->child->bestParent != link) { return; } struct Node_Two* node = link->child; struct Node_Link* rp = link->child->reversePeers; struct Node_Link* best = node->bestParent; while (rp) { if (Node_getReach(rp->parent) >= Node_getReach(best->parent)) { if (Node_getReach(rp->parent) > Node_getReach(best->parent) || rp->parent->address.path < best->parent->address.path) { best = rp; } } rp = rp->nextPeer; } if (best == node->bestParent) { return; } uint32_t nextReach = guessReachOfChild(best); if (nextReach <= Node_getReach(node)) { return; } Assert_true(Node_getReach(node) < Node_getReach(best->parent)); check(store); updateBestParent(node, best, nextReach, store); check(store); } /** * First thing we do is knock down everybody's reach. * This way they don't all cling to eachother for safety making * endless routing loops and stupid processing. */ static uint32_t handleBadNewsOne(struct Node_Link* link, uint32_t newReach, struct NodeStore_pvt* store) { struct Node_Link* next = NULL; uint32_t highestRet = 0; RB_FOREACH_REVERSE(next, PeerRBTree, &link->child->peerTree) { if (next->child->bestParent != next) { continue; } if (next == store->selfLink) { continue; } if (Node_getReach(next->child) < newReach) { continue; } uint32_t ret = handleBadNewsOne(next, newReach, store); if (ret > highestRet) { highestRet = ret; } } if (!highestRet) { highestRet = newReach; } Assert_true(link->child != store->pub.selfNode); if (!highestRet) { unreachable(link->child, store); } else { setReach(link->child, highestRet); } if (highestRet < 1023) { highestRet = 1023; } return highestRet+1; } static void handleBadNews(struct Node_Two* node, uint32_t newReach, struct NodeStore_pvt* store) { Assert_true(newReach < Node_getReach(node)); // no bestParent implies a reach of 0 Assert_true(node->bestParent); Assert_true(node->bestParent != store->selfLink); // might be destroyed by handleBadNewsOne() struct Node_Link* bp = node->bestParent; Assert_true(!newReach || newReach > 1023); handleBadNewsOne(node->bestParent, newReach, store); // If our bad news actually improved the reach number for the node (because it was previously // 0 and that node has children) then we need to handle it as good news as well. if (node->bestParent) { if (Node_getReach(node) >= Node_getReach(node->bestParent->parent)) { handleGoodNews(node->bestParent->parent, Node_getReach(node)+1, store); } Assert_true(Node_getReach(node) < Node_getReach(node->bestParent->parent)); } check(store); handleBadNewsTwo(bp, store); check(store); } static void handleNews(struct Node_Two* node, uint32_t newReach, struct NodeStore_pvt* store) { // This is because reach is used to prevent loops so it must be 1 more for each hop closer // to the root. if (newReach > (UINT32_MAX - 1024)) { newReach = (UINT32_MAX - 1024); } if (newReach < 1024) { newReach = 1024; } check(store); if (newReach < Node_getReach(node)) { handleBadNews(node, newReach, store); check(store); } else if (newReach > Node_getReach(node)) { handleGoodNews(node, newReach, store); check(store); } } static void unlinkNodes(struct Node_Link* link, struct NodeStore_pvt* store) { struct Node_Two* child = Identity_check(link->child); struct Node_Two* parent = Identity_check(link->parent); check(store); // Change the best parent and path if necessary if (child->bestParent == link) { handleBadNews(child, 0, store); } if (child->bestParent == link) { unreachable(child, store); } check(store); // Remove the entry from the reversePeers struct Node_Link* current = child->reversePeers; struct Node_Link** currentP = &child->reversePeers; while (current) { if (current == link) { *currentP = current->nextPeer; break; } currentP = &(current->nextPeer); current = *currentP; } Assert_true(current); // Remove the RBTree entry Assert_ifParanoid(link == RB_FIND(PeerRBTree, &parent->peerTree, link)); RB_REMOVE(PeerRBTree, &parent->peerTree, link); link->nextPeer = store->linksToFree; store->linksToFree = link; // prevent double-free of link. link->parent = NULL; link->child = NULL; check(store); } static void update(struct Node_Link* link, int64_t linkStateDiff, struct NodeStore_pvt* store) { /** TODO: Link state is not taken into account yet if (linkStateDiff + link->linkState > UINT32_MAX) { link->linkState = UINT32_MAX; logLink(store, link, "link state set to maximum"); } else if (linkStateDiff + link->linkState < 0) { link->linkState = UINT32_MAX; logLink(store, link, "link state set to zero"); } else { link->linkState += linkStateDiff; } */ } /** * Link two nodes in the graph together. * If a parent of the child node is also a parent of the parent node, they are * unlinked (the link is split and the child is inserted in the middle). * * @param parent the current end of the graph * @param child the new node to extend the graph * @param cannonicalLabel the label for getting from the parent to the child. * @param linkStateDiff how much to change the link state for this link. * @param store */ static struct Node_Link* linkNodes(struct Node_Two* parent, struct Node_Two* child, uint64_t cannonicalLabel, int64_t linkStateDiff, int inverseLinkEncodingFormNumber, uint64_t discoveredPath, struct NodeStore_pvt* store) { check(store); #ifdef Log_DEBUG uint8_t parentIp[40]; uint8_t childIp[40]; AddrTools_printIp(parentIp, parent->address.ip6.bytes); AddrTools_printIp(childIp, child->address.ip6.bytes); uint8_t printedLabel[20]; AddrTools_printPath(printedLabel, cannonicalLabel); Log_debug(store->logger, "Linking [%s] with [%s] with label fragment [%s]", parentIp, childIp, printedLabel); #endif // It's ok to link a node with itself via some loopey route. // in practice it should never actually be used and it might yield some interesting // information when the link is split, self-routes are not allowed unless the self // link is being set up :) Assert_true(cannonicalLabel != 1 || store->selfLink == NULL); #ifdef PARANOIA uint64_t definitelyCannonical = EncodingScheme_convertLabel(parent->encodingScheme, cannonicalLabel, EncodingScheme_convertLabel_convertTo_CANNONICAL); Assert_true(definitelyCannonical == cannonicalLabel); #endif struct Node_Link* link; RB_FOREACH_REVERSE(link, PeerRBTree, &parent->peerTree) { Identity_check(link); if (link->child == child) { if (link->cannonicalLabel != cannonicalLabel) { // multiple paths between A and B are ok because they // will have divergent paths following the first director. continue; } else if (link->inverseLinkEncodingFormNumber != inverseLinkEncodingFormNumber) { logLink(store, link, "Relinking nodes with different encoding form"); // This can happen when C renumbers but B->C is the same because B did // not renumber, EG: if C restarts. link->inverseLinkEncodingFormNumber = inverseLinkEncodingFormNumber; } update(link, linkStateDiff, store); return link; } } struct Node_Link dummy = { .cannonicalLabel = cannonicalLabel }; link = Identity_ncheck(RB_FIND(PeerRBTree, &parent->peerTree, &dummy)); if (link) { logLink(store, link, "Attempted to create alternate link with same label!"); Assert_true(0); return link; } link = getLink(store); // set it up link->cannonicalLabel = cannonicalLabel; link->inverseLinkEncodingFormNumber = inverseLinkEncodingFormNumber; link->child = child; link->parent = parent; link->discoveredPath = discoveredPath; Identity_set(link); // reverse link link->nextPeer = child->reversePeers; child->reversePeers = link; // forward link Assert_ifParanoid(!RB_FIND(PeerRBTree, &parent->peerTree, link)); RB_INSERT(PeerRBTree, &parent->peerTree, link); if (!child->bestParent) { if (parent->bestParent) { updateBestParent(child, link, guessReachOfChild(link), store); } else { unreachable(child, store); } } // update the child's link state and possibly change it's preferred path update(link, linkStateDiff, store); check(store); return link; } /** * Find the closest node to the given path. * Pay especially close attention to the comments in this function, they're critical to * understanting what it actually does. * * @param path the path to the node which we want the closest node to. * @param output a pointer to be set to the link to the closest node. * @param hops a pointer to an integer which is initially the limit on the number of allowed hops. * If there are more than this number of hope in the label, the search will terminate * early. At the end this will be set to the actual number of hops until the find. * @param store * @return the label fragment linking outputNode with the given path. */ #define findClosest_INVALID (~((uint64_t)0)) static uint64_t findClosest(const uint64_t path, struct Node_Link** output, uint32_t* hops, struct Node_Link* parentLink, struct NodeStore_pvt* store) { struct Node_Link tmpl = { // The path from us is always cannonical .cannonicalLabel = path }; struct Node_Link* nextLink; struct Node_Link* link = parentLink; uint32_t actualHops = 0; for (; !hops || actualHops < *hops; actualHops++) { // Then we cannoicalize the child's Director if (link != parentLink) { // First we splice off the parent's Director leaving the child's Director. tmpl.cannonicalLabel = LabelSplicer_unsplice(tmpl.cannonicalLabel, link->cannonicalLabel); int formNum = EncodingScheme_getFormNum(link->child->encodingScheme, tmpl.cannonicalLabel); // Check that they didn't send us an obviously invalid route. if (formNum < link->inverseLinkEncodingFormNumber) { Assert_ifTesting(!"invalid route"); Log_info(store->logger, "Invalid route"); return findClosest_INVALID; } uint64_t cannonical = EncodingScheme_convertLabel(link->child->encodingScheme, tmpl.cannonicalLabel, EncodingScheme_convertLabel_convertTo_CANNONICAL); // Check that they didn't waste space by sending an oversize encoding form. if (formNum > link->inverseLinkEncodingFormNumber && cannonical != tmpl.cannonicalLabel) { Assert_ifTesting(!"wasting space"); Log_info(store->logger, "Wasted space"); return findClosest_INVALID; } tmpl.cannonicalLabel = cannonical; } Assert_true(tmpl.cannonicalLabel != EncodingScheme_convertLabel_INVALID); // Then we search for the next peer in the path nextLink = Identity_ncheck(RB_NFIND(PeerRBTree, &link->child->peerTree, &tmpl)); while (nextLink && !LabelSplicer_routesThrough(tmpl.cannonicalLabel, nextLink->cannonicalLabel)) { //logLink(store, nextLink, "GETTING NEXT LINK"); nextLink = Identity_ncheck(RB_NEXT(PeerRBTree, NULL, nextLink)); } if (!nextLink || nextLink == store->selfLink) { // ignore the comments, they're mostly wrong anyway break; } Identity_check(nextLink); Assert_true(nextLink->child->encodingScheme); if (tmpl.cannonicalLabel == nextLink->cannonicalLabel) { //logLink(store, nextLink, "Exact match"); tmpl.cannonicalLabel = 1; *output = nextLink; if (hops) { *hops = actualHops; } return 1; } if (!LabelSplicer_routesThrough(tmpl.cannonicalLabel, nextLink->cannonicalLabel)) { // child of next link is not in the path, we reached the end. break; } /*#ifdef Log_DEBUG uint8_t labelA[20]; uint8_t labelB[20]; uint8_t searchingFor[20]; AddrTools_printPath(labelA, tmpl.cannonicalLabel); AddrTools_printPath(searchingFor, path); AddrTools_printPath(labelB, link->cannonicalLabel); Log_debug(store->logger, "[%s] is behind [%s] searching for [%s]", labelA, labelB, searchingFor); #endif*/ link = nextLink; } /*#ifdef Log_DEBUG uint8_t labelA[20]; uint8_t labelB[20] = "NONE"; uint8_t labelC[20]; AddrTools_printPath(labelA, tmpl.cannonicalLabel); if (nextLink) { AddrTools_printPath(labelB, nextLink->cannonicalLabel); } AddrTools_printPath(labelC, link->cannonicalLabel); Log_debug(store->logger, "[%s] is not behind [%s] closest: [%s]", labelA, labelB, labelC); #endif*/ Assert_true(tmpl.cannonicalLabel);/// TODO remove this *output = link; if (hops) { *hops = actualHops; } return tmpl.cannonicalLabel; } static struct Node_Two* nodeForIp(struct NodeStore_pvt* store, uint8_t ip[16]) { struct Node_Two fakeNode; Identity_set(&fakeNode); Bits_memcpyConst(fakeNode.address.ip6.bytes, ip, 16); return Identity_ncheck(RB_FIND(NodeRBTree, &store->nodeTree, &fakeNode)); } static bool isAncestorOf(struct NodeStore_pvt* store, struct Node_Two* maybeAncestor, struct Node_Two* maybeDecendent) { struct Node_Link* parent = maybeDecendent->bestParent; for (int i = 0; i < 1000; i++) { if (!maybeDecendent->bestParent) { return false; } if (store->pub.selfNode == parent->parent) { return false; } if (maybeAncestor == parent->parent) { return true; } parent = parent->parent->bestParent; } Assert_always(0); } static void freePendingLinks(struct NodeStore_pvt* store) { struct Node_Link* link; while ((link = store->linksToFree)) { store->linksToFree = link->nextPeer; freeLink(link, store); } } static struct Node_Link* discoverLink(struct NodeStore_pvt* store, struct Node_Link* closestKnown, uint64_t pathKnownParentChild, struct Node_Two* child, uint64_t discoveredPath, int inverseLinkEncodingFormNumber) { // Make sure this link cannot be split before beginning. struct Node_Link* closest = NULL; uint64_t pathParentChild = findClosest(pathKnownParentChild, &closest, NULL, closestKnown, store); if (pathParentChild == findClosest_INVALID) { return NULL; } struct Node_Two* parent = closest->child; #ifdef Log_DEBUG { uint8_t parentStr[40]; uint8_t childStr[40]; uint8_t pathStr[20]; AddrTools_printIp(parentStr, parent->address.ip6.bytes); AddrTools_printIp(childStr, child->address.ip6.bytes); AddrTools_printPath(pathStr, pathParentChild); Log_debug(store->logger, "discoverLink( [%s]->[%s] [%s] )", parentStr, childStr, pathStr); } #endif if (parent == child) { if (pathParentChild == 1) { // Link is already known. update(closest, 0, store); //Log_debug(store->logger, "Already known"); return closest; } Log_debug(store->logger, "Loopey route"); // lets not bother storing this link, a link with the same parent and child is // invalid according to verify() and it's just going to take up space in the store // we'll return closest which is a perfectly valid path to the same node. return closest; } while (pathParentChild == 1) { logLink(store, closest, "Node at end of path appears to have changed"); // This should never happen for a direct peer or for a direct decendent in // a split link. Assert_always(closestKnown != closest); unlinkNodes(closest, store); pathParentChild = findClosest(pathKnownParentChild, &closest, NULL, closestKnown, store); if (pathParentChild != findClosest_INVALID) { // TODO: handle this in some way other than just failing to install the route. logLink(store, closestKnown, "Apparently the reverse link encoding scheme for " "link has changed."); return NULL; } parent = closest->child; check(store); } // link parent to child // TODO: linking every node with 0 link state, this can't be right. struct Node_Link* parentLink = linkNodes(parent, child, pathParentChild, 0, inverseLinkEncodingFormNumber, discoveredPath, store); if (!RB_FIND(NodeRBTree, &store->nodeTree, child)) { checkNode(child, store); RB_INSERT(NodeRBTree, &store->nodeTree, child); store->pub.nodeCount++; } check(store); // Check whether the parent is already linked with a node which is "behind" the child. // previous appears to be a "sibling link" to the closest->node link but in reality the // previous link should be split and node should be inserted in the middle. struct Node_Link* splitLink = RB_MIN(PeerRBTree, &parent->peerTree); while (splitLink) { if (splitLink->cannonicalLabel <= pathParentChild) { if (splitLink->cannonicalLabel == pathParentChild) { Assert_true(splitLink->child == child); splitLink = PeerRBTree_RB_NEXT(splitLink); continue; } else { // Since they're in order, definitely not found. break; } } if (!LabelSplicer_routesThrough(splitLink->cannonicalLabel, pathParentChild)) { splitLink = PeerRBTree_RB_NEXT(splitLink); continue; } struct Node_Two* grandChild = splitLink->child; // unsplice and cannonicalize so we now have a path from child to grandchild uint64_t childToGrandchild = LabelSplicer_unsplice(splitLink->cannonicalLabel, pathParentChild); childToGrandchild = EncodingScheme_convertLabel(child->encodingScheme, childToGrandchild, EncodingScheme_convertLabel_convertTo_CANNONICAL); // just so we're on the same page here Assert_true(splitLink->parent == parent); Assert_true(childToGrandchild < UINT64_MAX); #ifdef Log_DEBUG { uint8_t parentStr[40]; uint8_t childStr[40]; uint8_t pathStr[20]; AddrTools_printIp(parentStr, splitLink->parent->address.ip6.bytes); AddrTools_printIp(childStr, splitLink->child->address.ip6.bytes); AddrTools_printPath(pathStr, splitLink->cannonicalLabel); Log_debug(store->logger, "Splitting link [%s]->[%s] [%s]", parentStr, childStr, pathStr); AddrTools_printIp(parentStr, splitLink->parent->address.ip6.bytes); AddrTools_printIp(childStr, child->address.ip6.bytes); AddrTools_printPath(pathStr, pathParentChild); Log_debug(store->logger, "New parent [%s]->[%s] [%s]", parentStr, childStr, pathStr); AddrTools_printIp(parentStr, child->address.ip6.bytes); AddrTools_printIp(childStr, splitLink->child->address.ip6.bytes); AddrTools_printPath(pathStr, childToGrandchild); Log_debug(store->logger, "New child [%s]->[%s] [%s]", parentStr, childStr, pathStr); } #endif if (child == grandChild) { // There's an existing link from the parent to the child and it loops // it takes a detour over to some other nodes and then comes back to the grandChild Log_debug(store->logger, "replace existing link which contains a loop..."); goto done; } if (grandChild->bestParent == splitLink && Node_getReach(child) <= Node_getReach(grandChild)) { // We know that the grandchild decends from the parent because splitLink is parent-->gc // Two possibilities: // someRoute-->child-->parent // someRoute-->parent-->child check(store); if (Node_getReach(parent) >= Node_getReach(child)) { // Parent definitely does not decend from child. Assert_true(Node_getReach(grandChild) < UINT32_MAX); updateBestParent(child, parentLink, Node_getReach(child), store); } else { // Child definitely does not decend from parent // Parent may decend from child, if it does we cannot safely re-root child // if not then we could but if we believe the reach of the child is better, // we might as well use the route which goes via the child rather than re-rooting // it anyway. } handleGoodNews(child, Node_getReach(grandChild)+1, store); // Node_getReach(parent) is by definition higher than Node_getReach(grandChild) // so if child is a decendent of grandChild then it should have been switched. Assert_true(Node_getReach(child) > Node_getReach(grandChild)); check(store); } Assert_true(splitLink->cannonicalLabel != pathParentChild); Assert_true(childToGrandchild != 1); struct Node_Link* lcg = discoverLink(store, parentLink, childToGrandchild, grandChild, discoveredPath, splitLink->inverseLinkEncodingFormNumber); // so... // There is a chance... that in the recursion, the link we JUST CREATED (parentLink) // was split and unlinked. If that is so, we really should just return because // everything we were planning to do here has been done for us. if (!parentLink->child) { // return that last link along pathParentChild. struct Node_Link* link = NULL; findClosest(pathParentChild, &link, NULL, closest, store); Assert_always(link); return link; } if (grandChild->bestParent != splitLink) { // The link has been created and we don't care much about it because it's not // the best path. goto done; } if (!lcg) { // The path is probably broken... TODO: log or something goto done; } if (!lcg->parent->bestParent) { // The path is probably too long so it can't be represented, unreachable... goto done; } // Normally we would expect lcg->parent to be equal to child but because of the // findClosest() call at the beginning of the discoverLink() function, that is not // necessarily true. One or more nodes along the path childToGrandchild might // already be known, in which case lcg->parent will be the last known node along // that path. // // Worse, lcg->parent->bestParent might actually be grandChild or a decendent // thereof. Consider a path looking like this: // parent<-child<-Alice<-Bob Charlie->Dave->grandChild // // The best path to grandChild is obviously via child and therefor Charlie and Dave // are mistaken and this is a phantom loop. if (Node_getReach(lcg->parent) <= Node_getReach(grandChild)) { // I know, I repeat myself... Assert_true(Node_getReach(child) > Node_getReach(grandChild)); if (isAncestorOf(store, grandChild, lcg->parent)) { // Again, just making dead sure that the child is not a decendent of the // grandChild, this should not be possible at this point Assert_true(parentLink->child != lcg->parent); // Now we're going to walk the path, when we encounter a node which decends from // grandChild, we're going to switch it to decend from the previous node along the // path. struct Node_Link* link = NULL; for (int limit = 1; ; limit++) { int limitCpy = limit; link = NULL; findClosest(childToGrandchild, &link, &limitCpy, parentLink, store); Assert_always(link); if (link->child == grandChild) { break; } // We should never get here because the if statement below should have // handled this in the previous round. Assert_true(Node_getReach(link->parent) >= Node_getReach(grandChild)); if (Node_getReach(link->child) <= Node_getReach(grandChild)) { // Ok we're found a node whose pathQuality is less than grandChild's // and this node is in the best path *to* the grandChild so it's quality // needs to be increased and we need to swap it's bestParent so that we're // sure it doesn't decend from grandChild. if (link->child->bestParent != link) { if (Node_getReach(link->parent) <= Node_getReach(grandChild)+1) { handleGoodNews(link->parent, Node_getReach(grandChild)+2, store); } Assert_true(Node_getReach(link->parent) > Node_getReach(grandChild)); updateBestParent(link->child, link, Node_getReach(grandChild)+1, store); } if (Node_getReach(link->child) <= Node_getReach(grandChild)) { handleGoodNews(link->child, Node_getReach(grandChild)+1, store); } Assert_true(Node_getReach(link->child) > Node_getReach(grandChild)); } } // Guess what! // grandChild *might* just show up MULTIPLE times in the path (phantom loop), // of so, link is now the first instance of grandChild and lcg is the final // instance (end of the path). We don't care much about the path beyond the first // instance of grandChild so we're just going to quietly swap the lcg for link // if it happens that they are not the same. lcg = link; Assert_true(Node_getReach(lcg->parent) > Node_getReach(grandChild)); } else { handleGoodNews(lcg->parent, Node_getReach(grandChild)+1, store); Assert_true(Node_getReach(lcg->parent) > Node_getReach(grandChild)); } Assert_true(Node_getReach(lcg->parent) > Node_getReach(grandChild)); updateBestParent(grandChild, lcg, Node_getReach(grandChild), store); } // pfew done: check(store); // be careful! // splitLink might have been unlinked by the recursive discoverLink() call. if (splitLink->parent) { unlinkNodes(splitLink, store); } // link RB_NEXT might have also been freed by a recursive call to discoverLink() // so we'll just start over from the beginning and walk the list of links. splitLink = RB_MIN(PeerRBTree, &parent->peerTree); } check(store); return parentLink; } static struct Node_Two* whichIsWorse(struct Node_Two* one, struct Node_Two* two, struct NodeStore_pvt* store) { if (one->address.protocolVersion != two->address.protocolVersion) { if (one->address.protocolVersion < Version_CURRENT_PROTOCOL) { if (two->address.protocolVersion >= Version_CURRENT_PROTOCOL) { return one; } } else if (two->address.protocolVersion < Version_CURRENT_PROTOCOL) { if (one->address.protocolVersion >= Version_CURRENT_PROTOCOL) { return two; } } } if (Address_closest(&store->pub.selfNode->address, &one->address, &two->address) > 0) { return one; } return two; } /** * We define the worst node as either node which is furthest in address space * from us which is either unreachable or, if no nodes are unreachable, has no * nodes for which it is the bestParent. * This metric will take into account both reach and address distance, although * reach is not directly fed into the function but rather the function relies on * the structure of the store which is affected by the reach. * O(2n) */ static struct Node_Two* getWorstNode(struct NodeStore_pvt* store) { struct Node_Two* worst = NULL; struct Node_Two* nn = NULL; RB_FOREACH(nn, NodeRBTree, &store->nodeTree) { // first cycle we clear all markings as we go and set markings // so markings remain if they are behind us nn->marked = 0; if (nn->bestParent) { nn->bestParent->parent->marked = 1; } else if (!worst || whichIsWorse(nn, worst, store) == nn) { // this time around we're only addressing nodes which are unreachable. worst = nn; } } if (worst) { return worst; } RB_FOREACH(nn, NodeRBTree, &store->nodeTree) { // second cycle we set the markings as we go but if they are behind the // node which would have marked them, they are already set. if (nn->bestParent) { nn->bestParent->parent->marked = 1; } if (nn->marked) { continue; } if (!worst || whichIsWorse(nn, worst, store) == nn) { worst = nn; } } // somebody has to be at the end of the line, not *everyone* can be someone's best parent! Assert_true(worst); return worst; } static void destroyNode(struct Node_Two* node, struct NodeStore_pvt* store) { struct Node_Link* link; RB_FOREACH(link, PeerRBTree, &node->peerTree) { Identity_check(link); unlinkNodes(link, store); } // optimization #ifndef PARANOIA node->bestParent = NULL; node->address.path = UINT64_MAX; #endif link = node->reversePeers; while (link) { struct Node_Link* nextLink = link->nextPeer; unlinkNodes(link, store); link = nextLink; } Assert_true(!node->bestParent); Assert_ifParanoid(node == RB_FIND(NodeRBTree, &store->nodeTree, node)); RB_REMOVE(NodeRBTree, &store->nodeTree, node); store->pub.nodeCount--; Allocator_free(node->alloc); } struct Node_Link* NodeStore_discoverNode(struct NodeStore* nodeStore, struct Address* addr, struct EncodingScheme* scheme, int inverseLinkEncodingFormNumber, uint32_t reach) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); verify(store); struct Node_Two* child = nodeForIp(store, addr->ip6.bytes); #ifdef Log_DEBUG uint8_t printedAddr[60]; Address_print(printedAddr, addr); Log_debug(store->logger, "Discover node [%s]", printedAddr); #endif struct Allocator* alloc = NULL; if (!child) { alloc = Allocator_child(store->alloc); child = Allocator_calloc(alloc, sizeof(struct Node_Two), 1); child->alloc = alloc; Bits_memcpyConst(&child->address, addr, sizeof(struct Address)); child->encodingScheme = EncodingScheme_clone(scheme, child->alloc); Identity_set(child); } // False if someone just updated. //Assert_true(child->address.protocolVersion); //Assert_true(EncodingScheme_equals(scheme, child->encodingScheme));//TODO struct Node_Link* link = discoverLink(store, store->selfLink, addr->path, child, addr->path, inverseLinkEncodingFormNumber); if (!link) { if (alloc) { Allocator_free(alloc); } verify(store); Log_debug(store->logger, "Invalid path"); return NULL; } if (link->parent == store->pub.selfNode && !link->child->bestParent) { updateBestParent(link->child, link, reach, store); } handleNews(link->child, reach, store); freePendingLinks(store); while (store->pub.nodeCount >= store->pub.nodeCapacity || store->pub.linkCount >= store->pub.linkCapacity) { struct Node_Two* worst = getWorstNode(store); #ifdef Log_DEBUG uint8_t worstAddr[60]; Address_print(worstAddr, &worst->address); Log_debug(store->logger, "store full, removing worst node: [%s] nodes [%d] links [%d]", worstAddr, store->pub.nodeCount, store->pub.linkCount); #endif destroyNode(worst, store); freePendingLinks(store); } verify(store); return link; } struct Node_Two* NodeStore_nodeForAddr(struct NodeStore* nodeStore, uint8_t addr[16]) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); struct Node_Two* n = nodeForIp(store, addr); if (n && n->address.path == UINT64_MAX) { #ifdef Log_DEBUG uint8_t addrStr[40]; AddrTools_printIp(addrStr, n->address.ip6.bytes); Log_debug(store->logger, "No way to represent path to [%s]", addrStr); #endif return NULL; } return n; } struct Node_Two* NodeStore_closestNode(struct NodeStore* nodeStore, uint64_t path) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); struct Node_Link* out = NULL; findClosest(path, &out, NULL, store->selfLink, store); if (!out) { return NULL; } return Identity_check(out->child); } struct Node_Two* NodeStore_nodeForPath(struct NodeStore* nodeStore, uint64_t path) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); struct Node_Link* out = NULL; uint64_t pathParentChild = findClosest(path, &out, NULL, store->selfLink, store); if (pathParentChild != 1) { return NULL; } return Identity_check(out->child); } struct Node_Link* NodeStore_getLinkOnPath(struct NodeStore* nodeStore, uint64_t routeLabel, uint32_t hopNum) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); struct Node_Link* link = NULL; uint32_t num = hopNum; uint64_t path = findClosest(routeLabel, &link, &num, store->selfLink, store); if (path == findClosest_INVALID || num < hopNum) { return NULL; } return link; } struct Node_Link* NodeStore_getLink(struct Node_Two* parent, uint32_t linkNum) { struct Node_Link* link = NULL; RB_FOREACH_REVERSE(link, PeerRBTree, &parent->peerTree) { if (!linkNum--) { return link; } } return NULL; } char* NodeStore_getRouteLabel_strerror(uint64_t returnVal) { switch (returnVal) { case NodeStore_getRouteLabel_PARENT_NOT_FOUND: return "NodeStore_getRouteLabel_PARENT_NOT_FOUND"; case NodeStore_getRouteLabel_CHILD_NOT_FOUND: return "NodeStore_getRouteLabel_CHILD_NOT_FOUND"; default: return NULL; } } uint64_t NodeStore_getRouteLabel(struct NodeStore* nodeStore, uint64_t pathToParent, uint64_t pathParentToChild) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); struct Node_Link* linkToParent; if (findClosest(pathToParent, &linkToParent, NULL, store->selfLink, store) != 1) { return NodeStore_getRouteLabel_PARENT_NOT_FOUND; } logLink(store, linkToParent, "NodeStore_getRouteLabel() PARENT"); struct Node_Link* linkToChild = NULL; RB_FOREACH_REVERSE(linkToChild, PeerRBTree, &linkToParent->child->peerTree) { if (pathParentToChild == linkToChild->cannonicalLabel) { if (linkToParent == store->selfLink) { return linkToChild->cannonicalLabel; } return extendRoute(pathToParent, linkToChild->parent->encodingScheme, linkToChild->cannonicalLabel, linkToParent->inverseLinkEncodingFormNumber); } } return NodeStore_getRouteLabel_CHILD_NOT_FOUND; } uint64_t NodeStore_optimizePath(struct NodeStore* nodeStore, uint64_t path) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); struct Node_Link* linkToParent; uint64_t next = findClosest(path, &linkToParent, NULL, store->selfLink, store); if (next == findClosest_INVALID) { return NodeStore_optimizePath_INVALID; } if (linkToParent == store->selfLink) { if (next == 1) { return 1; } return path; } if (next == 1) { return linkToParent->child->address.path; } if (linkToParent->child->bestParent) { linkToParent = linkToParent->child->bestParent; } uint64_t optimized = extendRoute(linkToParent->child->address.path, linkToParent->child->encodingScheme, next, linkToParent->inverseLinkEncodingFormNumber); if (optimized < UINT64_MAX) { return optimized; } return path; } uint32_t NodeStore_linkCount(struct Node_Two* node) { uint32_t i = 0; struct Node_Link* link; RB_FOREACH_REVERSE(link, PeerRBTree, &node->peerTree) { i++; } return i; } /** See: NodeStore.h */ struct NodeStore* NodeStore_new(struct Address* myAddress, const uint32_t capacity, struct Allocator* allocator, struct Log* logger) { struct Allocator* alloc = Allocator_child(allocator); struct NodeStore_pvt* out = Allocator_clone(alloc, (&(struct NodeStore_pvt) { .pub = { .nodeCapacity = NodeStore_DEFAULT_NODE_CAPACITY, .linkCapacity = NodeStore_DEFAULT_LINK_CAPACITY }, .capacity = capacity, .logger = logger, .alloc = alloc })); Identity_set(out); // Create the self node struct Node_Two* selfNode = Allocator_calloc(alloc, sizeof(struct Node_Two), 1); Bits_memcpyConst(&selfNode->address, myAddress, sizeof(struct Address)); selfNode->encodingScheme = NumberCompress_defineScheme(alloc); selfNode->alloc = alloc; Identity_set(selfNode); out->pub.selfNode = selfNode; selfNode->bestParent = linkNodes(selfNode, selfNode, 1, 0xffffffffu, 0, 1, out); selfNode->address.path = 1; setReach(selfNode, UINT32_MAX); out->selfLink = selfNode->reversePeers; RB_INSERT(NodeRBTree, &out->nodeTree, selfNode); out->pub.selfAddress = &out->selfLink->child->address; return &out->pub; } ////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// /** * Dump the table, one node at a time. */ struct Node_Two* NodeStore_dumpTable(struct NodeStore* nodeStore, uint32_t index) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); // TODO: Schlameil the painter uint32_t i = 0; struct Node_Two* nn = NULL; RB_FOREACH(nn, NodeRBTree, &store->nodeTree) { if (i++ == index) { return nn; } } return NULL; } static struct Node_Two* getBestCycleB(struct Node_Two* node, struct Address* target, struct NodeStore_pvt* store) { uint32_t targetPfx = Address_getPrefix(target); uint32_t ourDistance = Address_getPrefix(store->pub.selfAddress) ^ targetPfx; struct Node_Link* next = NULL; RB_FOREACH_REVERSE(next, PeerRBTree, &node->peerTree) { if (next->child->bestParent != next || next == store->selfLink) { continue; } if (next->child->address.path == UINT64_MAX) { continue; } if ((Address_getPrefix(&next->child->address) ^ targetPfx) >= ourDistance) { continue; } return next->child; } return NULL; } static int getBestCycle(struct Node_Two* node, struct Address* target, struct Node_Two** output, int limit, int cycle, struct NodeStore_pvt* store) { Assert_always(cycle < 1000); if (cycle < limit) { int total = 0; struct Node_Link* next = NULL; RB_FOREACH_REVERSE(next, PeerRBTree, &node->peerTree) { if (*output) { return total; } if (next->child->bestParent != next || next == store->selfLink) { continue; } total += getBestCycle(next->child, target, output, limit, cycle+1, store); } return total; } *output = getBestCycleB(node, target, store); return 1; } struct Node_Two* NodeStore_getBest(struct Address* targetAddress, struct NodeStore* nodeStore) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); struct Node_Two* n = NodeStore_nodeForAddr(nodeStore, targetAddress->ip6.bytes); if (n && n->bestParent) { return n; } for (int i = 0; i < 10000; i++) { int ret = getBestCycle(store->pub.selfNode, targetAddress, &n, i, 0, store); if (n || !ret) { return n; } } return NULL; } struct NodeList* NodeStore_getPeers(uint64_t label, const uint32_t max, struct Allocator* allocator, struct NodeStore* nodeStore) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); // truncate the label to the part which this node uses... label &= Bits_maxBits64(NumberCompress_bitsUsedForLabel(label)); struct NodeList* out = Allocator_calloc(allocator, sizeof(struct NodeList), 1); out->nodes = Allocator_calloc(allocator, sizeof(char*), max); struct Node_Link* next = NULL; RB_FOREACH_REVERSE(next, PeerRBTree, &store->pub.selfNode->peerTree) { uint64_t p = next->child->address.path; if (p > (((uint64_t)1)<<63)) { continue; } int j; for (j = 0; j < (int)max; j++) { if (out->nodes[j] && (out->nodes[j]->address.path ^ label) < (p ^ label)) { break; } } switch (j) { default: Bits_memmove(out->nodes, &out->nodes[1], (j - 1) * sizeof(char*)); case 1: out->nodes[j - 1] = next->child; case 0:; } } out->size = 0; for (int i = 0; i < (int)max; i++) { if (out->nodes[i]) { out->nodes = &out->nodes[i]; out->size = max - i; break; } } for (int i = 0; i < (int)out->size; i++) { Identity_check(out->nodes[i]); checkNode(out->nodes[i], store); Assert_true(out->nodes[i]->address.path); Assert_true(out->nodes[i]->address.path < (((uint64_t)1)<<63)); out->nodes[i] = Allocator_clone(allocator, out->nodes[i]); } return out; } static bool isOkAnswer(struct Node_Two* node, uint32_t compatVer, struct NodeStore_pvt* store) { if (node->address.path == UINT64_MAX) { // (very) unreachable return false; } if (!Version_isCompatible(compatVer, node->address.protocolVersion)) { return false; } if (node == store->pub.selfNode) { return false; } return true; } /** See: NodeStore.h */ struct NodeList* NodeStore_getClosestNodes(struct NodeStore* nodeStore, struct Address* targetAddress, const uint32_t count, uint32_t compatVer, struct Allocator* allocator) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); struct NodeList* out = Allocator_malloc(allocator, sizeof(struct NodeList)); out->nodes = Allocator_calloc(allocator, count, sizeof(char*)); out->size = count; struct Node_Two fakeNode = { .marked = 0 }; Bits_memcpyConst(&fakeNode.address, targetAddress, sizeof(struct Address)); struct Node_Two* next = Identity_ncheck(RB_NFIND(NodeRBTree, &store->nodeTree, &fakeNode)); if (!next) { out->size = 0; return out; } struct Node_Two* prev = Identity_ncheck(NodeRBTree_RB_PREV(next)); int idx = out->size-1; while (idx > -1) { if (prev && (!next || Address_closest(targetAddress, &next->address, &prev->address) > 0)) { if (isOkAnswer(prev, compatVer, store)) { out->nodes[idx--] = prev; } prev = Identity_ncheck(NodeRBTree_RB_PREV(prev)); continue; } if (next && (!prev || Address_closest(targetAddress, &next->address, &prev->address) < 0)) { if (isOkAnswer(next, compatVer, store)) { out->nodes[idx--] = next; } next = Identity_ncheck(NodeRBTree_RB_NEXT(next)); continue; } break; } out->nodes = &out->nodes[idx+1]; out->size -= idx+1; for (int i = 0; i < (int)out->size; i++) { Identity_check(out->nodes[i]); Assert_true(out->nodes[i]->address.path); Assert_true(out->nodes[i]->address.path < (((uint64_t)1)<<63)); out->nodes[i] = Allocator_clone(allocator, out->nodes[i]); } return out; } void NodeStore_updateReach(struct NodeStore* nodeStore, struct Node_Two* node, uint32_t newReach) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); handleNews(node, newReach, store); } void NodeStore_brokenPath(uint64_t path, struct NodeStore* nodeStore) { struct NodeStore_pvt* store = Identity_check((struct NodeStore_pvt*)nodeStore); verify(store); #ifdef Log_DEBUG uint8_t pathStr[20]; AddrTools_printPath(pathStr, path); Log_debug(store->logger, "NodeStore_brokenPath(%s)", pathStr); #endif struct Node_Two* nn = NodeStore_nodeForPath(nodeStore, path); if (nn && Node_getReach(nn) > 0) { handleBadNews(nn, 0, store); } verify(store); }