/* vim: set expandtab ts=4 sw=4: */
/*
* You may redistribute this program and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation,
* either version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "crypto/CryptoAuth_pvt.h"
#include "crypto/AddressCalc.h"
#include "crypto/ReplayProtector.h"
#include "crypto/random/Random.h"
#include "benc/Dict.h"
#include "benc/List.h"
#include "benc/String.h"
#include "util/log/Log.h"
#include "memory/Allocator.h"
#include "util/Assert.h"
#include "util/AddrTools.h"
#include "util/Bits.h"
#include "util/Defined.h"
#include "util/Endian.h"
#include "util/Hex.h"
#include "util/events/Time.h"
#include "wire/Error.h"
#include "wire/Headers.h"
#include "wire/Message.h"
#include "crypto_box_curve25519xsalsa20poly1305.h"
#include "crypto_hash_sha256.h"
#include "crypto_scalarmult_curve25519.h"
#include
#include
enum Nonce {
Nonce_HELLO = 0,
Nonce_REPEAT_HELLO = 1,
Nonce_KEY = 2,
Nonce_REPEAT_KEY = 3,
Nonce_FIRST_TRAFFIC_PACKET = 4
};
static inline void printHexKey(uint8_t output[65], uint8_t key[32])
{
if (key) {
Hex_encode(output, 65, key, 32);
} else {
Bits_memcpy(output, "NULL", 5);
}
}
static inline void printHexPubKey(uint8_t output[65], uint8_t privateKey[32])
{
if (privateKey) {
uint8_t publicKey[32];
crypto_scalarmult_curve25519_base(publicKey, privateKey);
printHexKey(output, publicKey);
} else {
printHexKey(output, NULL);
}
}
/**
* Get a shared secret.
*
* @param outputSecret an array to place the shared secret in.
* @param myPrivateKey
* @param herPublicKey
* @param logger
* @param passwordHash a 32 byte value known to both ends, this must be provably pseudorandom
* the first 32 bytes of a sha256 output from hashing a password is ok,
* whatever she happens to send me in the Auth field is NOT ok.
* If this field is null, the secret will be generated without the password.
*/
static inline void getSharedSecret(uint8_t outputSecret[32],
uint8_t myPrivateKey[32],
uint8_t herPublicKey[32],
uint8_t passwordHash[32],
struct Log* logger)
{
if (passwordHash == NULL) {
crypto_box_curve25519xsalsa20poly1305_beforenm(outputSecret, herPublicKey, myPrivateKey);
} else {
union {
struct {
uint8_t key[32];
uint8_t passwd[32];
} components;
uint8_t bytes[64];
} buff;
crypto_scalarmult_curve25519(buff.components.key, myPrivateKey, herPublicKey);
Bits_memcpy(buff.components.passwd, passwordHash, 32);
crypto_hash_sha256(outputSecret, buff.bytes, 64);
}
if (Defined(Log_KEYS)) {
uint8_t myPublicKeyHex[65];
printHexPubKey(myPublicKeyHex, myPrivateKey);
uint8_t herPublicKeyHex[65];
printHexKey(herPublicKeyHex, herPublicKey);
uint8_t passwordHashHex[65];
printHexKey(passwordHashHex, passwordHash);
uint8_t outputSecretHex[65] = "NULL";
printHexKey(outputSecretHex, outputSecret);
Log_keys(logger,
"Generated a shared secret:\n"
" myPublicKey=%s\n"
" herPublicKey=%s\n"
" passwordHash=%s\n"
" outputSecret=%s\n",
myPublicKeyHex, herPublicKeyHex, passwordHashHex, outputSecretHex);
}
}
static inline void hashPassword(uint8_t secretOut[32],
struct CryptoHeader_Challenge* challengeOut,
const String* login,
const String* password,
const uint8_t authType)
{
crypto_hash_sha256(secretOut, (uint8_t*) password->bytes, password->len);
uint8_t tempBuff[32];
if (authType == 1) {
crypto_hash_sha256(tempBuff, secretOut, 32);
} else if (authType == 2) {
crypto_hash_sha256(tempBuff, (uint8_t*) login->bytes, login->len);
} else {
Assert_failure("Unsupported auth type [%u]", authType);
}
Bits_memcpy(challengeOut, tempBuff, CryptoHeader_Challenge_SIZE);
CryptoHeader_setAuthChallengeDerivations(challengeOut, 0);
challengeOut->type = authType;
challengeOut->additional = 0;
}
/**
* Search the authorized passwords for one matching this auth header.
*
* @param auth the auth header.
* @param context the CryptoAuth engine to search in.
* @return an Auth struct with a if one is found, otherwise NULL.
*/
static inline struct CryptoAuth_User* getAuth(struct CryptoHeader_Challenge* auth,
struct CryptoAuth_pvt* ca)
{
if (auth->type == 0) {
return NULL;
}
int count = 0;
for (struct CryptoAuth_User* u = ca->users; u; u = u->next) {
count++;
if (auth->type == 1 &&
!Bits_memcmp(auth, u->passwordHash, CryptoHeader_Challenge_KEYSIZE))
{
return u;
} else if (auth->type == 2 &&
!Bits_memcmp(auth, u->userNameHash, CryptoHeader_Challenge_KEYSIZE))
{
return u;
}
}
Log_debug(ca->logger, "Got unrecognized auth, password count = [%d]", count);
return NULL;
}
/**
* Decrypt and authenticate.
*
* @param nonce a 24 byte number, may be random, cannot repeat.
* @param msg a message to encipher and authenticate.
* @param secret a shared secret.
* @return 0 if decryption is succeddful, otherwise -1.
*/
static inline Gcc_USE_RET int decryptRndNonce(uint8_t nonce[24],
struct Message* msg,
uint8_t secret[32])
{
if (msg->length < 16) {
return -1;
}
Assert_true(msg->padding >= 16);
uint8_t* startAt = msg->bytes - 16;
uint8_t paddingSpace[16];
Bits_memcpy(paddingSpace, startAt, 16);
Bits_memset(startAt, 0, 16);
if (!Defined(NSA_APPROVED)) {
if (crypto_box_curve25519xsalsa20poly1305_open_afternm(
startAt, startAt, msg->length + 16, nonce, secret) != 0)
{
return -1;
}
}
Bits_memcpy(startAt, paddingSpace, 16);
Message_shift(msg, -16, NULL);
return 0;
}
/**
* Encrypt and authenticate.
* Shifts the message by 16 bytes.
*
* @param nonce a 24 byte number, may be random, cannot repeat.
* @param msg a message to encipher and authenticate.
* @param secret a shared secret.
*/
static inline void encryptRndNonce(uint8_t nonce[24],
struct Message* msg,
uint8_t secret[32])
{
Assert_true(msg->padding >= 32);
uint8_t* startAt = msg->bytes - 32;
// This function trashes 16 bytes of the padding so we will put it back
uint8_t paddingSpace[16];
Bits_memcpy(paddingSpace, startAt, 16);
Bits_memset(startAt, 0, 32);
if (!Defined(NSA_APPROVED)) {
crypto_box_curve25519xsalsa20poly1305_afternm(
startAt, startAt, msg->length + 32, nonce, secret);
}
Bits_memcpy(startAt, paddingSpace, 16);
Message_shift(msg, 16, NULL);
}
/**
* Decrypt a packet.
*
* @param nonce a counter.
* @param msg the message to decrypt, decrypted in place.
* @param secret the shared secret.
* @param isInitiator true if we started the connection.
*/
static inline Gcc_USE_RET int decrypt(uint32_t nonce,
struct Message* msg,
uint8_t secret[32],
bool isInitiator)
{
union {
uint32_t ints[2];
uint8_t bytes[24];
} nonceAs = { .ints = {0, 0} };
nonceAs.ints[!isInitiator] = Endian_hostToLittleEndian32(nonce);
return decryptRndNonce(nonceAs.bytes, msg, secret);
}
/**
* Encrypt a packet.
*
* @param nonce a counter.
* @param msg the message to decrypt, decrypted in place.
* @param secret the shared secret.
* @param isInitiator true if we started the connection.
*/
static inline void encrypt(uint32_t nonce,
struct Message* msg,
uint8_t secret[32],
bool isInitiator)
{
union {
uint32_t ints[2];
uint8_t bytes[24];
} nonceAs = { .ints = {0, 0} };
nonceAs.ints[isInitiator] = Endian_hostToLittleEndian32(nonce);
encryptRndNonce(nonceAs.bytes, msg, secret);
}
static inline bool knowHerKey(struct CryptoAuth_Session_pvt* session)
{
return !Bits_isZero(session->pub.herPublicKey, 32);
}
static void getIp6(struct CryptoAuth_Session_pvt* session, uint8_t* addr)
{
Assert_true(knowHerKey(session));
uint8_t ip6[16];
AddressCalc_addressForPublicKey(ip6, session->pub.herPublicKey);
AddrTools_printIp(addr, ip6);
}
#define cryptoAuthDebug(wrapper, format, ...) \
do { \
if (!Defined(Log_DEBUG)) { break; } \
uint8_t addr[40] = "unknown"; \
getIp6((session), addr); \
String* dn = (session)->pub.displayName; \
Log_debug((session)->context->logger, "%p %s [%s] state[%d]: " format, (void*)(session), \
dn ? dn->bytes : "", addr, (session)->nextNonce, __VA_ARGS__); \
} while (0)
// CHECKFILES_IGNORE missing ;
#define cryptoAuthDebug0(wrapper, format) \
cryptoAuthDebug(session, format "%s", "")
static void reset(struct CryptoAuth_Session_pvt* session)
{
session->nextNonce = CryptoAuth_State_INIT;
session->isInitiator = false;
Bits_memset(session->ourTempPrivKey, 0, 32);
Bits_memset(session->ourTempPubKey, 0, 32);
Bits_memset(session->herTempPubKey, 0, 32);
Bits_memset(session->sharedSecret, 0, 32);
session->established = false;
Bits_memset(&session->pub.replayProtector, 0, sizeof(struct ReplayProtector));
}
static void resetIfTimeout(struct CryptoAuth_Session_pvt* session)
{
if (session->nextNonce == CryptoAuth_State_SENT_HELLO) {
// Lets not reset the session, we just sent one or more hello packets and
// have not received a response, if they respond after we reset then we'll
// be in a tough state.
return;
}
uint64_t nowSecs = Time_currentTimeSeconds(session->context->eventBase);
if (nowSecs - session->timeOfLastPacket < session->pub.setupResetAfterInactivitySeconds) {
return;
} else if (nowSecs - session->timeOfLastPacket < session->pub.resetAfterInactivitySeconds) {
if (session->established) { return; }
}
cryptoAuthDebug(session, "No traffic in [%d] seconds, resetting connection.",
(int) (nowSecs - session->timeOfLastPacket));
session->timeOfLastPacket = nowSecs;
reset(session);
}
static void encryptHandshake(struct Message* message,
struct CryptoAuth_Session_pvt* session,
int setupMessage)
{
Message_shift(message, CryptoHeader_SIZE, NULL);
struct CryptoHeader* header = (struct CryptoHeader*) message->bytes;
// garbage the auth challenge and set the nonce which follows it
Random_bytes(session->context->rand, (uint8_t*) &header->auth,
CryptoHeader_Challenge_SIZE + 24);
// set the permanent key
Bits_memcpy(header->publicKey, session->context->pub.publicKey, 32);
Assert_true(knowHerKey(session));
// Password auth
uint8_t* passwordHash = NULL;
uint8_t passwordHashStore[32];
if (session->password != NULL) {
hashPassword(passwordHashStore,
&header->auth,
session->login,
session->password,
session->authType);
passwordHash = passwordHashStore;
} else {
header->auth.type = session->authType;
header->auth.additional = 0;
}
// Set the session state
header->nonce = Endian_hostToBigEndian32(session->nextNonce);
if (session->nextNonce == CryptoAuth_State_INIT ||
session->nextNonce == CryptoAuth_State_RECEIVED_HELLO)
{
// If we're sending a hello or a key
// Here we make up a temp keypair
Random_bytes(session->context->rand, session->ourTempPrivKey, 32);
crypto_scalarmult_curve25519_base(session->ourTempPubKey, session->ourTempPrivKey);
if (Defined(Log_KEYS)) {
uint8_t tempPrivateKeyHex[65];
Hex_encode(tempPrivateKeyHex, 65, session->ourTempPrivKey, 32);
uint8_t tempPubKeyHex[65];
Hex_encode(tempPubKeyHex, 65, session->ourTempPubKey, 32);
Log_keys(session->context->logger, "Generating temporary keypair\n"
" myTempPrivateKey=%s\n"
" myTempPublicKey=%s\n",
tempPrivateKeyHex, tempPubKeyHex);
}
}
Bits_memcpy(header->encryptedTempKey, session->ourTempPubKey, 32);
if (Defined(Log_KEYS)) {
uint8_t tempKeyHex[65];
Hex_encode(tempKeyHex, 65, header->encryptedTempKey, 32);
Log_keys(session->context->logger,
"Wrapping temp public key:\n"
" %s\n",
tempKeyHex);
}
cryptoAuthDebug(session, "Sending %s%s packet",
((session->nextNonce & 1) ? "repeat " : ""),
((session->nextNonce < CryptoAuth_State_RECEIVED_HELLO) ? "hello" : "key"));
uint8_t sharedSecret[32];
if (session->nextNonce < CryptoAuth_State_RECEIVED_HELLO) {
getSharedSecret(sharedSecret,
session->context->privateKey,
session->pub.herPublicKey,
passwordHash,
session->context->logger);
session->isInitiator = true;
Assert_true(session->nextNonce <= CryptoAuth_State_SENT_HELLO);
session->nextNonce = CryptoAuth_State_SENT_HELLO;
} else {
// Handshake2
// herTempPubKey was set by decryptHandshake()
Assert_ifParanoid(!Bits_isZero(session->herTempPubKey, 32));
getSharedSecret(sharedSecret,
session->context->privateKey,
session->herTempPubKey,
passwordHash,
session->context->logger);
Assert_true(session->nextNonce <= CryptoAuth_State_SENT_KEY);
session->nextNonce = CryptoAuth_State_SENT_KEY;
if (Defined(Log_KEYS)) {
uint8_t tempKeyHex[65];
Hex_encode(tempKeyHex, 65, session->herTempPubKey, 32);
Log_keys(session->context->logger,
"Using their temp public key:\n"
" %s\n",
tempKeyHex);
}
}
Assert_true((session->nextNonce < CryptoAuth_State_RECEIVED_HELLO) ==
Bits_isZero(session->herTempPubKey, 32));
// Shift message over the encryptedTempKey field.
Message_shift(message, 32 - CryptoHeader_SIZE, NULL);
encryptRndNonce(header->handshakeNonce, message, sharedSecret);
if (Defined(Log_KEYS)) {
uint8_t sharedSecretHex[65];
printHexKey(sharedSecretHex, sharedSecret);
uint8_t nonceHex[49];
Hex_encode(nonceHex, 49, header->handshakeNonce, 24);
uint8_t cipherHex[65];
printHexKey(cipherHex, message->bytes);
Log_keys(session->context->logger,
"Encrypting message with:\n"
" nonce: %s\n"
" secret: %s\n"
" cipher: %s\n",
nonceHex, sharedSecretHex, cipherHex);
}
// Shift it back -- encryptRndNonce adds 16 bytes of authenticator.
Message_shift(message, CryptoHeader_SIZE - 32 - 16, NULL);
}
/** @return 0 on success, -1 otherwise. */
int CryptoAuth_encrypt(struct CryptoAuth_Session* sessionPub, struct Message* msg)
{
struct CryptoAuth_Session_pvt* session =
Identity_check((struct CryptoAuth_Session_pvt*) sessionPub);
// If there has been no incoming traffic for a while, reset the connection to state 0.
// This will prevent "connection in bad state" situations from lasting forever.
// this will reset the session if it has timed out.
resetIfTimeout(session);
// If the nonce wraps, start over.
if (session->nextNonce >= 0xfffffff0) {
reset(session);
}
Assert_true(!((uintptr_t)msg->bytes % 4) || !"alignment fault");
// nextNonce 0: sending hello, we are initiating connection.
// nextNonce 1: sending another hello, nothing received yet.
// nextNonce 2: sending key, hello received.
// nextNonce 3: sending key again, no data packet recieved yet.
// nextNonce >3: handshake complete
//
// if it's a blind handshake, every message will be empty and nextNonce will remain
// zero until the first message is received back.
if (session->nextNonce <= CryptoAuth_State_RECEIVED_KEY) {
if (session->nextNonce < CryptoAuth_State_RECEIVED_KEY) {
encryptHandshake(msg, session, 0);
return 0;
} else {
cryptoAuthDebug0(session, "Doing final step to send message. nonce=4");
Assert_ifParanoid(!Bits_isZero(session->ourTempPrivKey, 32));
Assert_ifParanoid(!Bits_isZero(session->herTempPubKey, 32));
getSharedSecret(session->sharedSecret,
session->ourTempPrivKey,
session->herTempPubKey,
NULL,
session->context->logger);
}
}
Assert_true(msg->length > 0 && "Empty packet during handshake");
Assert_true(msg->padding >= 36 || !"not enough padding");
encrypt(session->nextNonce, msg, session->sharedSecret, session->isInitiator);
Message_push32(msg, session->nextNonce, NULL);
session->nextNonce++;
return 0;
}
/** Call the external interface and tell it that a message has been received. */
static inline void updateTime(struct CryptoAuth_Session_pvt* session, struct Message* message)
{
session->timeOfLastPacket = Time_currentTimeSeconds(session->context->eventBase);
}
static inline enum CryptoAuth_DecryptErr decryptMessage(struct CryptoAuth_Session_pvt* session,
uint32_t nonce,
struct Message* content,
uint8_t secret[32])
{
// Decrypt with authentication and replay prevention.
if (decrypt(nonce, content, secret, session->isInitiator)) {
cryptoAuthDebug0(session, "DROP authenticated decryption failed");
return CryptoAuth_DecryptErr_DECRYPT;
}
if (!ReplayProtector_checkNonce(nonce, &session->pub.replayProtector)) {
cryptoAuthDebug(session, "DROP nonce checking failed nonce=[%u]", nonce);
return CryptoAuth_DecryptErr_REPLAY;
}
return 0;
}
static bool ip6MatchesKey(uint8_t ip6[16], uint8_t key[32])
{
uint8_t calculatedIp6[16];
AddressCalc_addressForPublicKey(calculatedIp6, key);
return !Bits_memcmp(ip6, calculatedIp6, 16);
}
static enum CryptoAuth_DecryptErr decryptHandshake(struct CryptoAuth_Session_pvt* session,
const uint32_t nonce,
struct Message* message,
struct CryptoHeader* header)
{
if (message->length < CryptoHeader_SIZE) {
cryptoAuthDebug0(session, "DROP runt");
return CryptoAuth_DecryptErr_RUNT;
}
// handshake
// nextNonce 0: recieving hello.
// nextNonce 1: recieving key, we sent hello.
// nextNonce 2: recieving first data packet or duplicate hello.
// nextNonce 3: recieving first data packet.
// nextNonce >3: handshake complete
Assert_true(knowHerKey(session));
if (Bits_memcmp(session->pub.herPublicKey, header->publicKey, 32)) {
cryptoAuthDebug0(session, "DROP a packet with different public key than this session");
return CryptoAuth_DecryptErr_WRONG_PERM_PUBKEY;
}
Assert_true((session->nextNonce < CryptoAuth_State_RECEIVED_HELLO) ==
Bits_isZero(session->herTempPubKey, 32));
struct CryptoAuth_User* userObj = getAuth(&header->auth, session->context);
uint8_t* restrictedToip6 = NULL;
uint8_t* passwordHash = NULL;
if (userObj) {
passwordHash = userObj->secret;
if (userObj->restrictedToip6[0]) {
restrictedToip6 = userObj->restrictedToip6;
if (!ip6MatchesKey(restrictedToip6, session->pub.herPublicKey)) {
cryptoAuthDebug0(session, "DROP packet with key not matching restrictedToip6");
return CryptoAuth_DecryptErr_IP_RESTRICTED;
}
}
}
if (session->requireAuth && !userObj) {
cryptoAuthDebug0(session, "DROP message because auth was not given");
return CryptoAuth_DecryptErr_AUTH_REQUIRED;
}
if (!userObj && header->auth.type != 0) {
cryptoAuthDebug0(session, "DROP message with unrecognized authenticator");
return CryptoAuth_DecryptErr_UNRECOGNIZED_AUTH;
}
// What the nextNonce will become if this packet is valid.
uint32_t nextNonce;
// The secret for decrypting this message.
uint8_t sharedSecret[32];
if (nonce < Nonce_KEY) { // HELLO or REPEAT_HELLO
if (nonce == Nonce_HELLO) {
cryptoAuthDebug(session, "Received a hello packet, using auth: %d",
(userObj != NULL));
} else {
Assert_true(nonce == Nonce_REPEAT_HELLO);
cryptoAuthDebug0(session, "Received a repeat hello packet");
}
getSharedSecret(sharedSecret,
session->context->privateKey,
session->pub.herPublicKey,
passwordHash,
session->context->logger);
nextNonce = CryptoAuth_State_RECEIVED_HELLO;
} else {
if (nonce == Nonce_KEY) {
cryptoAuthDebug0(session, "Received a key packet");
} else {
Assert_true(nonce == Nonce_REPEAT_KEY);
cryptoAuthDebug0(session, "Received a repeat key packet");
}
if (!session->isInitiator) {
cryptoAuthDebug0(session, "DROP a stray key packet");
return CryptoAuth_DecryptErr_STRAY_KEY;
}
// We sent the hello, this is a key
getSharedSecret(sharedSecret,
session->ourTempPrivKey,
session->pub.herPublicKey,
passwordHash,
session->context->logger);
nextNonce = CryptoAuth_State_RECEIVED_KEY;
}
// Shift it on top of the authenticator before the encrypted public key
Message_shift(message, 48 - CryptoHeader_SIZE, NULL);
if (Defined(Log_KEYS)) {
uint8_t sharedSecretHex[65];
printHexKey(sharedSecretHex, sharedSecret);
uint8_t nonceHex[49];
Hex_encode(nonceHex, 49, header->handshakeNonce, 24);
uint8_t cipherHex[65];
printHexKey(cipherHex, message->bytes);
Log_keys(session->context->logger,
"Decrypting message with:\n"
" nonce: %s\n"
" secret: %s\n"
" cipher: %s\n",
nonceHex, sharedSecretHex, cipherHex);
}
// Decrypt her temp public key and the message.
if (decryptRndNonce(header->handshakeNonce, message, sharedSecret)) {
// just in case
Bits_memset(header, 0, CryptoHeader_SIZE);
cryptoAuthDebug(session, "DROP message with nonce [%d], decryption failed", nonce);
return CryptoAuth_DecryptErr_HANDSHAKE_DECRYPT_FAILED;
}
if (Bits_isZero(header->encryptedTempKey, 32)) {
// we need to reject 0 public keys outright because they will be confused with "unknown"
cryptoAuthDebug0(session, "DROP message with zero as temp public key");
return CryptoAuth_DecryptErr_WISEGUY;
}
if (Defined(Log_KEYS)) {
uint8_t tempKeyHex[65];
Hex_encode(tempKeyHex, 65, header->encryptedTempKey, 32);
Log_keys(session->context->logger,
"Unwrapping temp public key:\n"
" %s\n",
tempKeyHex);
}
Message_shift(message, -32, NULL);
// Post-decryption checking
if (nonce == Nonce_HELLO) {
// A new hello packet
if (!Bits_memcmp(session->herTempPubKey, header->encryptedTempKey, 32)) {
// possible replay attack or duped packet
cryptoAuthDebug0(session, "DROP dupe hello packet with same temp key");
return CryptoAuth_DecryptErr_INVALID_PACKET;
}
} else if (nonce == Nonce_KEY && session->nextNonce >= CryptoAuth_State_RECEIVED_KEY) {
// we accept a new key packet and let it change the session since the other end might have
// killed off the session while it was in the midst of setting up.
// This is NOT a repeat key packet because it's nonce is 2, not 3
if (!Bits_memcmp(session->herTempPubKey, header->encryptedTempKey, 32)) {
Assert_true(!Bits_isZero(session->herTempPubKey, 32));
cryptoAuthDebug0(session, "DROP dupe key packet with same temp key");
return CryptoAuth_DecryptErr_INVALID_PACKET;
}
} else if (nonce == Nonce_REPEAT_KEY && session->nextNonce >= CryptoAuth_State_RECEIVED_KEY) {
// Got a repeat key packet, make sure the temp key is the same as the one we know.
if (Bits_memcmp(session->herTempPubKey, header->encryptedTempKey, 32)) {
Assert_true(!Bits_isZero(session->herTempPubKey, 32));
cryptoAuthDebug0(session, "DROP repeat key packet with different temp key");
return CryptoAuth_DecryptErr_INVALID_PACKET;
}
}
// If Alice sent a hello packet then Bob sent a hello packet and they crossed on the wire,
// somebody has to yield and the other has to stand firm otherwise they will either deadlock
// each believing their hello packet is superior or they will livelock, each switching to the
// other's session and never synchronizing.
// In this event whoever has the lower permanent public key wins.
// If we receive a (possibly repeat) key packet
if (nextNonce == CryptoAuth_State_RECEIVED_KEY) {
Assert_true(nonce == Nonce_KEY || nonce == Nonce_REPEAT_KEY);
switch (session->nextNonce) {
case CryptoAuth_State_INIT:
case CryptoAuth_State_RECEIVED_HELLO:
case CryptoAuth_State_SENT_KEY: {
cryptoAuthDebug0(session, "DROP stray key packet");
return CryptoAuth_DecryptErr_STRAY_KEY;
}
case CryptoAuth_State_SENT_HELLO: {
Bits_memcpy(session->herTempPubKey, header->encryptedTempKey, 32);
break;
}
case CryptoAuth_State_RECEIVED_KEY: {
if (nonce == Nonce_KEY) {
Bits_memcpy(session->herTempPubKey, header->encryptedTempKey, 32);
} else {
Assert_true(!Bits_memcmp(session->herTempPubKey, header->encryptedTempKey, 32));
}
break;
}
default: {
Assert_true(!session->established);
if (nonce == Nonce_KEY) {
Bits_memcpy(session->herTempPubKey, header->encryptedTempKey, 32);
cryptoAuthDebug0(session, "New key packet, recalculating shared secret");
Assert_ifParanoid(!Bits_isZero(session->ourTempPrivKey, 32));
Assert_ifParanoid(!Bits_isZero(session->herTempPubKey, 32));
getSharedSecret(session->sharedSecret,
session->ourTempPrivKey,
session->herTempPubKey,
NULL,
session->context->logger);
} else {
Assert_true(!Bits_memcmp(session->herTempPubKey, header->encryptedTempKey, 32));
}
nextNonce = session->nextNonce + 1;
cryptoAuthDebug0(session, "New key packet but we are already sending data");
}
}
} else if (nextNonce == CryptoAuth_State_RECEIVED_HELLO) {
Assert_true(nonce == Nonce_HELLO || nonce == Nonce_REPEAT_HELLO);
if (Bits_memcmp(session->herTempPubKey, header->encryptedTempKey, 32)) {
// fresh new hello packet, we should reset the session.
switch (session->nextNonce) {
case CryptoAuth_State_SENT_HELLO: {
if (Bits_memcmp(session->pub.herPublicKey,
session->context->pub.publicKey, 32) < 0)
{
// It's a hello and we are the initiator but their permant public key is
// numerically lower than ours, this is so that in the event of two hello
// packets crossing on the wire, the nodes will agree on who is the
// initiator.
cryptoAuthDebug0(session,
"Incoming hello from node with lower key, resetting");
reset(session);
Bits_memcpy(session->herTempPubKey, header->encryptedTempKey, 32);
break;
} else {
// We are the initiator and thus we are sending HELLO packets, however they
// have sent a hello to us and we already sent a HELLO
// We accept the packet (return 0) but we do not alter the state because
// we have our own state and we will respond with our (key) packet.
cryptoAuthDebug0(session,
"Incoming hello from node with higher key, not resetting");
return 0;
}
}
case CryptoAuth_State_INIT: {
Bits_memcpy(session->herTempPubKey, header->encryptedTempKey, 32);
break;
}
default: {
cryptoAuthDebug0(session, "Incoming hello packet resetting session");
reset(session);
Bits_memcpy(session->herTempPubKey, header->encryptedTempKey, 32);
break;
}
}
} else {
// received a hello packet with the same key as the session we already know...
switch (session->nextNonce) {
case CryptoAuth_State_RECEIVED_HELLO:
case CryptoAuth_State_SENT_KEY: {
nextNonce = session->nextNonce;
break;
}
default: {
cryptoAuthDebug0(session, "DROP Incoming repeat hello");
// We already know the key which is being used for this hello packet and
// our state has advanced past RECEIVED_HELLO or SENT_KEY or perhaps we
// are the initiator of this session and they're sending us what should
// be a key packet but is marked as hello, it's all invalid.
return CryptoAuth_DecryptErr_INVALID_PACKET;
}
}
}
} else {
Assert_failure("should never happen");
}
// Nonces can never go backward and can only "not advance" if they're 0,1,2,3,4 session state.
Assert_true(session->nextNonce < nextNonce ||
(session->nextNonce <= CryptoAuth_State_RECEIVED_KEY && nextNonce == session->nextNonce)
);
session->nextNonce = nextNonce;
Bits_memset(&session->pub.replayProtector, 0, sizeof(struct ReplayProtector));
return 0;
}
/** @return 0 on success, -1 otherwise. */
enum CryptoAuth_DecryptErr CryptoAuth_decrypt(struct CryptoAuth_Session* sessionPub,
struct Message* msg)
{
struct CryptoAuth_Session_pvt* session =
Identity_check((struct CryptoAuth_Session_pvt*) sessionPub);
struct CryptoHeader* header = (struct CryptoHeader*) msg->bytes;
if (msg->length < 20) {
cryptoAuthDebug0(session, "DROP runt");
return CryptoAuth_DecryptErr_RUNT;
}
Assert_true(msg->padding >= 12 || "need at least 12 bytes of padding in incoming message");
Assert_true(!((uintptr_t)msg->bytes % 4) || !"alignment fault");
Assert_true(!(msg->capacity % 4) || !"length fault");
Message_shift(msg, -4, NULL);
uint32_t nonce = Endian_bigEndianToHost32(header->nonce);
if (!session->established) {
if (nonce >= Nonce_FIRST_TRAFFIC_PACKET) {
if (session->nextNonce < CryptoAuth_State_SENT_KEY) {
// This is impossible because we have not exchanged hello and key messages.
cryptoAuthDebug0(session, "DROP Received a run message to an un-setup session");
return CryptoAuth_DecryptErr_NO_SESSION;
}
cryptoAuthDebug(session, "Trying final handshake step, nonce=%u\n", nonce);
uint8_t secret[32];
Assert_ifParanoid(!Bits_isZero(session->ourTempPrivKey, 32));
Assert_ifParanoid(!Bits_isZero(session->herTempPubKey, 32));
getSharedSecret(secret,
session->ourTempPrivKey,
session->herTempPubKey,
NULL,
session->context->logger);
enum CryptoAuth_DecryptErr ret = decryptMessage(session, nonce, msg, secret);
if (!ret) {
cryptoAuthDebug0(session, "Final handshake step succeeded");
Bits_memcpy(session->sharedSecret, secret, 32);
// Now we're in run mode, no more handshake packets will be accepted
session->established = true;
session->nextNonce += 3;
updateTime(session, msg);
return 0;
}
cryptoAuthDebug0(session, "DROP Final handshake step failed");
return ret;
}
Message_shift(msg, 4, NULL);
return decryptHandshake(session, nonce, msg, header);
} else if (nonce >= Nonce_FIRST_TRAFFIC_PACKET) {
Assert_ifParanoid(!Bits_isZero(session->sharedSecret, 32));
enum CryptoAuth_DecryptErr ret = decryptMessage(session, nonce, msg, session->sharedSecret);
if (!ret) {
updateTime(session, msg);
return 0;
} else {
cryptoAuthDebug(session, "DROP Failed to [%s] message",
((ret == CryptoAuth_DecryptErr_REPLAY) ? "replay check" : "decrypt"));
return ret;
}
} else if (nonce <= Nonce_REPEAT_HELLO) {
cryptoAuthDebug(session, "hello packet during established session nonce=[%d]", nonce);
Message_shift(msg, 4, NULL);
return decryptHandshake(session, nonce, msg, header);
} else {
cryptoAuthDebug(session, "DROP key packet during established session nonce=[%d]", nonce);
return CryptoAuth_DecryptErr_KEY_PKT_ESTABLISHED_SESSION;
}
Assert_failure("unreachable");
}
/////////////////////////////////////////////////////////////////////////////////////////////////
struct CryptoAuth* CryptoAuth_new(struct Allocator* allocator,
const uint8_t* privateKey,
struct EventBase* eventBase,
struct Log* logger,
struct Random* rand)
{
struct CryptoAuth_pvt* ca = Allocator_calloc(allocator, sizeof(struct CryptoAuth_pvt), 1);
Identity_set(ca);
ca->allocator = allocator;
ca->eventBase = eventBase;
ca->logger = logger;
ca->rand = rand;
if (privateKey != NULL) {
Bits_memcpy(ca->privateKey, privateKey, 32);
} else {
Random_bytes(rand, ca->privateKey, 32);
}
crypto_scalarmult_curve25519_base(ca->pub.publicKey, ca->privateKey);
if (Defined(Log_KEYS)) {
uint8_t publicKeyHex[65];
printHexKey(publicKeyHex, ca->pub.publicKey);
uint8_t privateKeyHex[65];
printHexKey(privateKeyHex, ca->privateKey);
Log_keys(logger,
"Initialized CryptoAuth:\n myPrivateKey=%s\n myPublicKey=%s\n",
privateKeyHex,
publicKeyHex);
}
return &ca->pub;
}
int CryptoAuth_addUser_ipv6(String* password,
String* login,
uint8_t ipv6[16],
struct CryptoAuth* cryptoAuth)
{
struct CryptoAuth_pvt* ca = Identity_check((struct CryptoAuth_pvt*) cryptoAuth);
struct Allocator* alloc = Allocator_child(ca->allocator);
struct CryptoAuth_User* user = Allocator_calloc(alloc, sizeof(struct CryptoAuth_User), 1);
user->alloc = alloc;
Identity_set(user);
if (!login) {
int i = 0;
for (struct CryptoAuth_User* u = ca->users; u; u = u->next) { i++; }
user->login = login = String_printf(alloc, "Anon #%d", i);
} else {
user->login = String_clone(login, alloc);
}
struct CryptoHeader_Challenge ac;
// Users specified with a login field might want to use authType 1 still.
hashPassword(user->secret, &ac, login, password, 2);
Bits_memcpy(user->userNameHash, &ac, CryptoHeader_Challenge_KEYSIZE);
hashPassword(user->secret, &ac, NULL, password, 1);
Bits_memcpy(user->passwordHash, &ac, CryptoHeader_Challenge_KEYSIZE);
for (struct CryptoAuth_User* u = ca->users; u; u = u->next) {
if (Bits_memcmp(user->secret, u->secret, 32)) {
} else if (!login) {
} else if (String_equals(login, u->login)) {
Allocator_free(alloc);
return CryptoAuth_addUser_DUPLICATE;
}
}
if (ipv6) {
Bits_memcpy(user->restrictedToip6, ipv6, 16);
}
// Add the user to the *end* of the list
for (struct CryptoAuth_User** up = &ca->users; ; up = &(*up)->next) {
if (!*up) {
*up = user;
break;
}
}
return 0;
}
int CryptoAuth_removeUsers(struct CryptoAuth* context, String* login)
{
struct CryptoAuth_pvt* ca = Identity_check((struct CryptoAuth_pvt*) context);
int count = 0;
struct CryptoAuth_User** up = &ca->users;
struct CryptoAuth_User* u = *up;
while ((u = *up)) {
if (!login || String_equals(login, u->login)) {
*up = u->next;
Allocator_free(u->alloc);
count++;
} else {
up = &u->next;
}
}
if (!login) {
Log_debug(ca->logger, "Flushing [%d] users", count);
} else {
Log_debug(ca->logger, "Removing [%d] user(s) identified by [%s]", count, login->bytes);
}
return count;
}
List* CryptoAuth_getUsers(struct CryptoAuth* context, struct Allocator* alloc)
{
struct CryptoAuth_pvt* ca = Identity_check((struct CryptoAuth_pvt*) context);
List* users = List_new(alloc);
for (struct CryptoAuth_User* u = ca->users; u; u = u->next) {
List_addString(users, String_clone(u->login, alloc), alloc);
}
return users;
}
struct CryptoAuth_Session* CryptoAuth_newSession(struct CryptoAuth* ca,
struct Allocator* alloc,
const uint8_t herPublicKey[32],
const bool requireAuth,
char* displayName)
{
struct CryptoAuth_pvt* context = Identity_check((struct CryptoAuth_pvt*) ca);
struct CryptoAuth_Session_pvt* session =
Allocator_calloc(alloc, sizeof(struct CryptoAuth_Session_pvt), 1);
Identity_set(session);
session->context = context;
session->requireAuth = requireAuth;
session->pub.displayName = displayName ? String_new(displayName, alloc) : NULL;
session->timeOfLastPacket = Time_currentTimeSeconds(context->eventBase);
session->alloc = alloc;
session->pub.resetAfterInactivitySeconds = CryptoAuth_DEFAULT_RESET_AFTER_INACTIVITY_SECONDS;
session->pub.setupResetAfterInactivitySeconds =
CryptoAuth_DEFAULT_SETUP_RESET_AFTER_INACTIVITY_SECONDS;
Assert_true(herPublicKey);
Bits_memcpy(session->pub.herPublicKey, herPublicKey, 32);
uint8_t calculatedIp6[16];
AddressCalc_addressForPublicKey(calculatedIp6, herPublicKey);
Bits_memcpy(session->pub.herIp6, calculatedIp6, 16);
return &session->pub;
}
void CryptoAuth_setAuth(const String* password,
const String* login,
struct CryptoAuth_Session* caSession)
{
struct CryptoAuth_Session_pvt* session =
Identity_check((struct CryptoAuth_Session_pvt*)caSession);
if (!password && (session->password || session->authType)) {
session->password = NULL;
session->authType = 0;
} else if (!session->password || !String_equals(session->password, password)) {
session->password = String_clone(password, session->alloc);
session->authType = 1;
if (login) {
session->authType = 2;
session->login = String_clone(login, session->alloc);
}
} else {
return;
}
reset(session);
}
enum CryptoAuth_State CryptoAuth_getState(struct CryptoAuth_Session* caSession)
{
struct CryptoAuth_Session_pvt* session =
Identity_check((struct CryptoAuth_Session_pvt*)caSession);
if (session->nextNonce <= CryptoAuth_State_RECEIVED_KEY) {
return session->nextNonce;
}
return (session->established) ? CryptoAuth_State_ESTABLISHED : CryptoAuth_State_RECEIVED_KEY;
}
void CryptoAuth_resetIfTimeout(struct CryptoAuth_Session* caSession)
{
struct CryptoAuth_Session_pvt* session =
Identity_check((struct CryptoAuth_Session_pvt*)caSession);
resetIfTimeout(session);
}
void CryptoAuth_reset(struct CryptoAuth_Session* caSession)
{
struct CryptoAuth_Session_pvt* session =
Identity_check((struct CryptoAuth_Session_pvt*)caSession);
reset(session);
}
// For testing:
void CryptoAuth_encryptRndNonce(uint8_t nonce[24], struct Message* msg, uint8_t secret[32])
{
encryptRndNonce(nonce, msg, secret);
}
int CryptoAuth_decryptRndNonce(uint8_t nonce[24], struct Message* msg, uint8_t secret[32])
{
return decryptRndNonce(nonce, msg, secret);
}