Plan 9

Programmer’s Manual
Volume 1

Fourth Edition
2002

Computing Science Research Center
Bell Laboratories
Lucent Technologies
Murray Hill, New Jersey

Copyright © 2002 Lucent Technologies Inc. All Rights Reserved.

Portions Copyright © 2000, 1998, 1995 Aladdin Enterprises. All Rights Reserved.
Portions Copyright © 1994 by Sun Microsystems Computer Company. All rights reserved.
Portions Copyright © 2000 Compaq Computer Corporation.

Portions Copyright © 1999, Keith Packard.

Cover Design: Gerard J. Holzmann

Trademarks referenced in this document:

Plan 9 is a trademark of Lucent Technologies Inc.
Aladdin Ghostscript is a trademark of Aladdin Enterprises.
ARM is a trademark of ARM Limited.
Avanstar is a registered trademark of Star Gate Technologies, Inc.
CGA and VGA are trademarks of International Business Machines Corporation.
Silicon Graphics, IRIS Indigo, IRIS, IRIX, Challenge, and Indigo
are registered trademarks of Silicon Graphics, Inc.
Indy and POWER Series are trademarks of Silicon Graphics, Inc.
Ethernet is a trademark of Xerox Corporation.
IBM, PS/2, and PowerPC are registered trademarks of
International Business Machines Corporation.
Intel and Pentium are registered trademarks of Intel Corporation.
8088, 80286, 80386, and 80486 are trademarks of Intel Corporation.
Lucida is a registered trademark of Bigelow & Holmes.
Pellucida is a trademark of Bigelow & Holmes.
MIPS, R3000, R4000, and R4400 are registered trademarks of MIPS Technologies, Inc.
R2000 and R6000 are trademarks of MIPS Technologies, Inc.
Microsoft, Microsoft Word and Microsoft Office, and MS-DQOS are
registered trademarks of Microsoft Corporation.
NFS is a registered trademark of Sun Microsystems, Inc.
PDP and VAX are registered trademarks of Digital Equipment Corp.
PostScript is a registered trademark of Adobe Systems Incorporated.
R2000, R6000, R4000, and R4400 are trademarks of MIPS Technologies, Inc.
SecureNet is a trademark of Digital Pathways, Inc.
Sound Blaster is a registered trademark of Creative Labs, Inc.
SPARC is a registered trademark of SPARC International, Inc.
Unicode is a registered certification mark of Unicode, Inc.
UNIX is a registered trademark in the USA and other countries licensed
exclusively through X/Open Company Limited.

Preface to the Fourth (2002) Edition

Plan 9 continues to grow and adapt. The fourth major release of the system incorpo-
rates a number of changes, but the most central is the conversion to a new version of
the 9P file system protocol. This new version was motivated by a desire to support files
with name elements longer than 27 bytes (the old NAMELEN), but the opportunity was
taken to change a number of other things about the protocol, making it more efficient,
more flexible, and easier to encapsulate. One simple but indispensable new feature
made possible by the protocol change is that the system now records the user who last
modified a file; try 1s -m to identify the culprit.

Many aspects of system security have been improved. The new security agent
factotum(4) maintains user passwords, while secstore(4) keeps them safe and enables
single sign-on to multiple domains and machines using a variety of secure protocols
and services.

Throughout the system, components have been rewritten and interfaces modified to
eliminate restrictions, improve performance, and clarify design. The full list is too long
to include here, but significant changes have occurred in a number of system calls
(wait(2), stat(2), mount(2), and errstr(2)), the thread library (thread(2)), formatted print-
ing (print(2) and fmtinstall(2)), security (many pages in section 2, including auth(2),
authsrv(2)), and many others.

The changes are sweeping and are accompanied by many new programs, tools, services,

and libraries. See the manual pages and the accompanying documents for more infor-
mation.

Bell Labs
Computing Science Research Center
Murray Hill NJ

April, 2002

Preface to the Third (2000) Edition

A great deal has happened to Plan 9 in the five years since its last release. Although
much of the system will seem familiar, hardly any aspect of it is unchanged. The kernel
has been heavily reworked; the graphical environment completely rewritten; many com-
mands added, deleted, or replaced; and the libraries greatly expanded. Underneath,
though, the same approach to computing remains: a distributed system that uses file-
like naming to access and control resources both local and remote.

Some of the changes are sweeping:

Alef is gone, a casualty of the cost of maintaining multiple languages, compilers,
and libraries in a diverse world, but its model for processes, tasks, and communi-
cation lives on in a new thread library for C.

Support for color displays is much more general, building on a new alpha-blending
graphical operator called draw that replaces the old bitblt. Plan 9 screens are
now, discreetly, colorful.

A new mechanism called plumbing connects applications together in a variety of
ways, most obviously in the support of multimedia.

The interfaces to the panoply of rotating storage devices have been unified and
extended, while providing better support for having Plan 9 coexist with other oper-
ating systems on a single disk.

Perhaps most important, this release of the system is being done under an open
source agreement, providing cost-free source-level access to the software.

Plan 9 continues to be the work of many people. Besides those mentioned in the old
preface, these people deserve particular note: Russ Cox did much of the work updating
the graphics and creating the new disk and bootstrap model as well as providing a num-
ber of new commands; David Hogan ported Plan 9 to the Dec Alpha; and Sape Mullender
wrote the new thread library.

Other new contributors include Bruce Ellis, Charles Forsyth, Eric Van Hensbergen, and
Tad Hunt.

Bell Labs
Computing Science Research Center
Murray Hill NJ

June, 2000

Preface to the Second (1995) Edition

Plan 9 was born in the same lab where Unix began. Old Unix hands will recognize
the cultural heritage in this manual, where venerable Unix commands live on, described
in the classic Unix style. Underneath, though, lies a new kind of system, organized
around communication and naming rather than files and processes.

In Plan 9, distributed computing is a central premise, not an evolutionary add-on.
The system relies on a uniform protocol to refer to and communicate with objects,
whether they be data or processes, and whether or not they live on the same machine or
even similar machines. A single paradigm (writing to named places) unifies all kinds of
control and interprocess signaling.

Name spaces can be built arbitrarily. In particular all programs available to a given
user are customarily united in a single logical directory. Temporary files and untrusted
activities can be confined in isolated spaces. When a portable machine connects to the
central, archival file system, the machine’s local name space is joined smoothly to that
of the archival file system. The architecture affords other unusual abilities, including:

Objects in name spaces imported from other machines (even from foreign systems
such as MS-DOS) are transparently accessible.

Windows appear in name spaces on a par with files and processes.

A historical file system allows one to navigate the archival file system in time as
well as in space; backup files are always at hand.

A debugger can handle simultaneously active processes on disparate kinds of hard-
ware.

The character set of Plan 9 is Unicode, which covers most of the world’s major
scripts. The system has its own programming languages: a dialect of C with simple
inheritance, a simplified shell, and a CSP-like concurrent language, Alef. An ANSI-POSIX
emulator (APE) admits unreconstructed Unix code.

Plan 9 is the work of many people. The protocol was begun by Ken Thompson;
naming was integrated by Rob Pike and networking by Dave Presotto. Phil Winterbottom
simplified the management of name spaces and re-engineered the system. They were
joined by Tom Killian, Jim McKie, and Howard Trickey in bringing the system up on vari-
ous machines and making device drivers. Thompson made the C compiler; Pike, win-
dow systems; Tom Duff, the shell and raster graphics; Winterbottom, Alef; Trickey, Duff,
and Andrew Hume, APE. Bob Flandrena ported a myriad of programs to Plan 9. Other
contributors include Alan Berenbaum, Lorinda Cherry, Bill Cheswick, Sean Dorward,
David Gay, Paul Glick, Eric Grosse, John Hobby, Gerard Holzmann, Brian Kernighan, Bart
Locanthi, Doug Mcllroy, Judy Paone, Sean Quinlan, Bob Restrick, Dennis Ritchie, Bjarne
Stroustrup, and Cliff Young.

Plan 9 is made available as is, without formal support, but substantial comments or
contributions may be communicated to the authors.

Doug Mcllroy
March, 1995

INTRO(1) INTRO(1)

NAME

intro - introduction to Plan 9

DESCRIPTION

Plan 9 is a distributed computing environment assembled from separate machines acting as termi-
nals, CPU servers, and file servers. A user works at a terminal, running a window system on a ras-
ter display. Some windows are connected to CPU servers; the intent is that heavy computing
should be done in those windows but it is also possible to compute on the terminal. A separate
file server provides file storage for terminals and CPU servers alike.

Name Spaces

In Plan 9, almost all objects look like files. The object retrieved by a given name is determined by
a mapping called the name space. A quick tour of the standard name space is in namespace(4).
Every program running in Plan 9 belongs to a process group (see rfork in fork(2)), and the name
space for each process group can be independently customized.

A name space is hierarchically structured. A full file name (also called a full path name) has the
form

/el/e2/...]en

This represents an object in a tree of files: the tree has a root, represented by the first /; the root
has a child file named el, which in turn has child e2, and so on; the descendent en is the object
represented by the path name.

There are a number of Plan 9 services available, each of which provides a tree of files. A name
space is built by binding services (or subtrees of services) to names in the name-space-so-far.
Typically, a user’s home file server is bound to the root of the name space, and other services are
bound to conventionally named subdirectories. For example, there is a service resident in the
operating system for accessing hardware devices and that is bound to /dev by convention. Ker-
nel services have names (outside the name space) that are a # sign followed by a single letter; for
example, #c is conventionally bound to /dev.

Plan 9 has union directories: directories made of several directories all bound to the same name.
The directories making up a union directory are ordered in a list. When the bindings are made (see
bind(1)), flags specify whether a newly bound member goes at the head or the tail of the list or
completely replaces the list. To look up a name in a union directory, each member directory is
searched in list order until the name is found. A bind flag specifies whether file creation is allowed
in @ member directory: a file created in the union directory goes in the first member directory in
list order that allows creation, if any.

The glue that holds Plan 9 together is a network protocol called 9P, described in section 5 of this
manual. All Plan 9 servers read and respond to 9P requests to navigate through a file tree and to
perform operations such as reading and writing files within the tree.

Booting

When a terminal is powered on or reset, it must be told the name of a file server to boot from, the
operating system kernel to boot, and a user name and password. How this dialog proceeds is
environment- and machine-dependent. Once it is complete, the terminal loads a Plan 9 kernel,
which sets some environment variables (see env(3)) and builds an initial name space. See
namespace(4), boot(8), and init(8) for details, but some important aspects of the initial name
space are:

o The environment variable $cputype is set to the name of the kernel’s CPU’s architecture:
one of alpha, mips, sparc, power (Power PC), 386 (386, 486, Pentium, ...) etc. The
environment variable $objtype is initially the same as $cputype.

. The environment variable $terminal is set to a description of the machine running the
kernel, such as generic pc. Sometimes the middle word of $terminal encodes the
file from which the kernel is booted; e.g. alpha apc axp is bootstrapped from
/alpha/bapc.

. The environment variable $service is set to terminal. (Other ways of accessing Plan
9 may set $service to one of cpu, con, or rx.)

INTRO(1) INTRO(1)

. The environment variable $usexr is set to the name of the user who booted the terminal.
The environment variable $home is set to that user’s home directory.

. /$cputype/bin and /rc/bin are unioned into /bin.

After booting, the terminal runs the command interpreter, rc(1), on

/usr/$user/1lib/profile after moving to the user’s home directory.
Here is a typical profile:

bind -a $home/bin/rc /bin

bind —-a $home/bin/$cputype /bin

bind —-c $home/tmp /tmp

font = /1lib/font/bit/pelm/euro.9.font
upas/fs

switch($service){

case terminal

plumber
prompt=(’term% ' ’ D)
exec rio -f $font

case cpu

bind /mnt/term/dev/cons /dev/cons
bind /mnt/term/dev/consctl /dev/consctl
bind -a /mnt/term/mnt/wsys /dev

prompt=(’cpu% ’ ’)
news

case con
prompt=(’cpu% ’ ’)
news

}

The first three lines replace /tmp with a tmp in the user’s home directory and union personal
bin directories with /bin, to be searched after the standard bin directories. The next starts the
mail file system; see mail(1). Then different things happen, depending on the $service environ-
ment variable, such as running the window system rio(1) on a terminal.

To do heavy work such as compiling, the cpu(1) command connects a window to a CPU server; the
same environment variables are set (to different values) and the same profile is run. The initial
directory is the current directory in the terminal window where cpu was typed. The value of
$service will be cpu, so the second arm of the profile switch is executed. The root of the
terminal’s name space is accessible through /mnt/term, so the bind is a way of making the win-
dow system’s graphics interface (see draw(3)) available to programs running on the CPU server.
The news(1) command reports current Plan 9 affairs.

The third possible service type, con, is set when the CPU server is called from a non-Plan-9
machine, such as through telnet (see con(1)).

Using Plan 9
The user commands of Plan 9 are reminiscent of those in Research Unix, version 10. There are a
number of differences, however.

The standard shell is rc(1), not the Bourne shell. The most noticeable differences appear only
when programming and macro processing.

The character-delete character is backspace, and the line-kill character is control-U; these cannot
be changed.

DEL is the interrupt character: typing it sends an interrupt to processes running in that window.
See keyboard(6) for instructions on typing characters like DEL on the various keyboards.

If a program dies with something like an address error, it enters a ‘Broken’ state. It lingers, avail-
able for debugging with db(1) or acid(1). Broke (see kill(1)) cleans up broken processes.

The standard editor is one of acme(1) or sam(1). There is a variant of sam that permits running
the file-manipulating part of sam on a non-Plan-9 system:

sam -r tcpl!kremvax

INTRO(1) INTRO(1)

For historical reasons, sam uses a tab stop setting of 8 spaces, while the other editors and window
systems use 4 spaces. These defaults can be overridden by setting the value of the environment
variable $tabstop to the desired number of spaces per tab.

Machine names may be prefixed by the network name, here tcp; and net for the system default.
Login connections and remote execution on non-Plan-9 machines are usually done by saying, for
example,
con kremvax
or
rx deepthought chess
(see con(1)).
9fs connects to file systems of remote systems (see srv(4)). For example,
9fs kremvax
sets things up so that the root of kremvax’s file tree is visible locally in /n/kremvax.
Faces(1) gives graphical notification of arriving mail.
The Plan 9 file server has an integrated backup facility. The command
9fs dump

binds to /n/dump a tree containing the daily backups on the file server. The dump tree has years
as top level file names, and month-day as next level file names. For example,
/n/dump/2000/0120 is the root of the file system as it appeared at dump time on January 20,
2000. If more than one dump is taken on the same day, dumps after the first have an extra digit.
To recover the version of this file as it was on June 15, 1999,

cp /n/dump/1999/0615/sys/man/1/0intro
or use yesterday(1).

SEE ALSO
This section for general publicly accessible commands.
Section (2) for library functions, including system calls.
Section (3) for kernel devices (accessed via bind(1)).
Section (4) for file services (accessed via mount).
Section (5) for the Plan 9 file protocol.
Section (6) for file formats.
Section (7) for databases and database access programs.
Section (8) for things related to administering Plan 9.
/sys/doc for copies of papers referenced in this manual.

4
5
6
7

The back of this volume has a permuted index to aid searches.

DIAGNOSTICS
Upon termination each program returns a string called the exit status. It was either supplied by a
call to exits(2) or was written to the command’s /proc/pid/note file (see proc(3)), causing an
abnormal termination. The empty string is customary for successful execution; a non-empty
string gives a clue to the failure of the command.

2A(1) 2A(1)

NAME

Oa, 1a, 2a, 54, 6a, 7a, 8a, ka, qa, va - assemblers
SYNOPSIS

2a [option ... 1 [name ...]

etc.
DESCRIPTION

These programs assemble the named files into object files for the corresponding architectures; see
2¢(1) for the correspondence between an architecture and the character (1, 2, etc.) that specifies
it. The assemblers handle the most common C preprocessor directives and the associated
command-line options —D and —I. Other options are:

—0 obj
Place output in file obj (allowed only if there is just one input file). Default is to take the

last element of the input path name, strip any trailing . s, and append .0, where O is first
letter of the assembler’s name.

FILES
The directory /sys/include is searched for include files after machine-dependent files in
/$objtype/include.

SOURCE

/sys/src/cmd/2a, etc.
SEE ALSO

2c¢(1), 21(1).

Rob Pike, ‘A manual for the Plan 9 assembler”
BUGS

The list of assemblers given above is only partial, not all architectures are supported on all sys-
tems, some have been retired and some are provided by third parties.

2C(1) 2C(T)

NAME

Oc, 1¢, 2c¢, 5¢, 6¢, 7c, 8¢, kc, gc, vc - C compilers
SYNOPSIS

2c [option ...][file ...]

etc.
DESCRIPTION

These commands compile the named C files into object files for the corresponding architecture. If
there are multiple C files, the compilers will attempt to keep $NPROC compilations running con-
currently. Associated with each compiler is a string objtype, for example

Oc spim little-endian MIPS 3000 family

1lc 68000 Motorola MC68000

2c 68020 Motorola MC68020

5c arm little-endian ARM

6c amd64 AMDG64 and compatibles (e.g., Intel EM64T)

7c alpha Digital Alpha APX

8c 386 Intel i386, i486, Pentium, etc.
kc sparc Sun SPARC

gc power Power PC

vc mips big-endian MIPS 3000 family

The compilers handle most preprocessing directives themselves; a complete preprocessor is avail-
able in cpp(1), which must be run separately.

Let the first letter of the compiler name be O= 0, 1, 2, 5, 6, 7, 8, k, q, or v. The output object
files end in .O. The letter is also the prefix of related programs: Oa is the assembler, O1 is the
loader. Plan 9 conventionally sets the $objtype environment variable to the objtype string
appropriate to the current machine’s type. Plan 9 also conventionally has /objtype directories,
which contain among other things: include, for machine-dependent include files; 1ib, for pub-
lic object code libraries; bin, for public programs; and mkfile, for preconditioning mk(1).

The compiler options are:

—o0 obj Place output in file obj (allowed only if there is just one input file). Default is to take the
last element of the input file name, strip any trailing . c, and append . O.

—-w Print warning messages about unused variables, etc.

-B Accept functions without a new-style ANSI C function prototype. By default, the compil-
ers reject functions used without a defined prototype, although ANSI C permits them.

—Dname=def
—Dname Define the name to the preprocessor, as if by #define. If no definition is given, the
name is defined as 1.

-F Enable type-checking of calls to print(2) and other formatted print routines. See the dis-
cussion of extensions, below.

—Idir An #include file whose name does not begin with slash or is enclosed in double
guotes is always sought first in the directory of the file argument. If this fails, the —. flag
is given or the name is enclosed in <>, it is then sought in directories named in —I
options, then in /sys/include, and finally in /$objtype/include.

—-. Suppress the automatic searching for include files in the directory of the file argument.
-N Suppress automatic registerization and optimization.

-S Print an assembly language version of the object code on standard output as well as
generating the . O file.

2C(1)

2C(1)

-T Pass type signatures on all external and global entities. The signature is based on the C
signof operator. See dynld(2).

-V By default, the compilers are non-standardly lax about type equality between void*
values and other pointers; this flag requires ANSI C conformance.

-p Invoke a standard ANSI C preprocessor before compiling.

-a Instead of compiling, print on standard output acid functions (see acid(1)) for examining
structures declared in the source files.

—aa Like —a except suppress information about structures declared in included header files.

-n When used with —a or —aa, places acid functions in file . acid for input file . c, and not

on standard output.

The compilers support several extensions to ANSI C:

A structure or union may contain unnamed substructures and subunions. The fields of the sub-
structures or subunions can then be used as if they were members of the parent structure or
union (the resolution of a name conflict is unspecified). When a pointer to the outer structure
or union is used in a context that is only legal for the unnamed substructure, the compiler pro-
motes the type and adjusts the pointer value to point at the substructure. If the unnamed
structure or union is of a type with a tag name specified by a typedef statement, the
unnamed structure or union can be explicitly referenced by <struct variable>.<tagname>.

A structure value can be formed with an expression such as
(struct S){vl, v2, v3}
where the list elements are values for the fields of struct S.

Array initializers can specify the indices of the array in square brackets, as
int a[] = { [3] 1, [10] 5 };
which initializes the third and tenth elements of the eleven-element array a.

Structure initializers can specify the structure element by using the name following a period, as
struct { int x; int y; } s =4{ .y 1, .x 5 };
which initializes elements y and then x of the structure s. These forms also accept the new
ANSI C notation, which includes an equal sign:
int a[] = { [3] = 1, [10] = 5 };
struct { int x; inty; }s={ .y =1, .x =5 };

A global variable can be dedicated to a register by declaring it extern register in all
modules and libraries.

A #pragma of the form

#pragma 1lib "libbio.a"
records that the program needs to be loaded with file /$objtype/1ib/libbio.a; such
lines, typically placed in library header files, obviate the —1 option of the loaders. To help iden-
tify files in non-standard directories, within the file names in the #pragmas the string $M rep-
resents the name of the architecture (e.g., mips) and $0 represents its identifying character
(e.g., V).

A #pragma of the form
#pragma varargck argpos error 2
tells the compiler that the second argument to error is a print-like format string (see
print(2)) that identifies the handling of subsequent arguments. The #pragma
#pragma varargck type "s" char*
says that the format verb s processes an argument of type char*. The #pragma
#pragma varargck flag ’'c’
says that c is a flag character. These #pragmas are used, if the —F option is enabled, to

type-check calls to print and other such routines.

A #pragma with any of the following forms:
#pragma incomplete type
#pragma incomplete struct tag
#pragma incomplete union tag
where type is a typedef’d name for a structure or union type, and tag is a structure or union

2C(1) 2C(1)
tag, tells the compiler that the corresponding type should have its signature calculated as an
incomplete type even if it is subsequently fully defined. This allows the type signature mecha-
nism to work in the presence of opaque types declared in header files, with their full definitions
visible only to the code which manipulates them. With some imported software it might be nec-
essary to turn off the signature generation completely for a large body of code (typically at the
start and end of a particular include file). If type is the word _off_, signature generation is
turned off; if type is the word _on_, the compiler will generate signatures.

- The C++ comment (// to end of line) is accepted as well as the normal convention of /* * /.

- The compilers accept 1long long variables as a 64-bit type. The standard header typedefs
this to vlong. Arithmetic on vlong values is usually emulated by a run-time library, though
in at least 8c, only division and modulus use the run-time library and the other operators gen-
erate in-line code (and uviong-expression divison—or-modulus (1<<constant) will turn into
in-line bit operations, as is done for shorter unsigned expressions).

EXAMPLE
For the 68020, produce a program prog from C files main. c and sub. c:
2c -FVw main.c sub.c
21 -0 prog main.2 sub.2
FILES
/sys/include system area for machine-independent #include directives.
/$objtype/include system area for machine-dependent #include directives.
SOURCE
/sys/src/cmd/cc machine-independent part
/sys/src/cmd/2c, etc. machine-dependent part
SEE ALSO
2a(1), 21(1), cpp(1), mk(1), nm(1), pcc(1), db(1), acid(1)
Rob Pike, “How to Use the Plan 9 C Compiler”
BUGS

The list of compilers given above is only partial, not all architectures are supported on all systems,
some have been retired and some are provided by third parties.

The default preprocessor only handles #define, #include, #undef, #ifdef, #1ine, and
#ifndef. For a full ANSI preprocessor, use the p option.

The default search order for include files differs to that of cpp(1).
Some features of C99, the 1999 ANSI C standard, are implemented.

switch expressions may not be either signedness of vlong on 32-bit architectures (8c at least).

The implementation of vlong assignment can use a static location and this can be disturbed by
interrupts (e.g., notes) (8c at least).

2L(T)

2L(1)

NAME

ol, 11, 21, 51, 6l, 71, 8I, kI, gl, vl - loaders
SYNOPSIS

21 [option ...] [file ...]

etc.
DESCRIPTION

These commands load the named files into executable files for the corresponding architectures;
see 2¢(1) for the correspondence between an architecture and the character (1, 2, etc.) that speci-
fies it. The files should be object files or libraries (archives of object files) for the appropriate
architecture. Also, a name like —1 ext represents the library 1libext.a in /$objtype/1lib,
where objtype is one of 68000, etc. as listed in 2¢(1). The libraries must have tables of contents
(see ar(1)).

In practice, —1 options are rarely necessary as the header files for the libraries cause their archives
to be included automatically in the load (see 2c(1)). For example, any program that includes
header file 1ibc.h causes the loader to search the C library /$objtype/lib/libc.a. Also,
the loader creates an undefined symbol _main (or _mainp if profiling is enabled) to force load-
ing of the startup linkage from the C library.

The order of search to resolve undefined symbols is to load all files and libraries mentioned explic-
itly on the command line, and then to resolve remaining symbols by searching in topological order
libraries mentioned in header files included by files already loaded. When scanning such libraries,
the algorithm is to scan each library repeatedly until no new undefined symbols are picked up,
then to start on the next library. Thus if library A needs B which needs A again, it may be neces-
sary to mention A explicitly so it will be read a second time.

The loader options are:

-1 (As a bare option.) Suppress the default loading of the startup linkage and libraries
specified by header files.

—o0 out Place output in file out. Default is O.out, where O is the first letter of the loader
name.

-p Insert profiling code into the executable output; no special action is needed during

compilation or assembly.

—-e Insert (embedded) tracing code into the executable output; no special action is needed
during compilation or assembly. The added code calls _tracein at function entries
and _traceout at function exits.

-s Strip the symbol tables from the output file.

—-a Print the object code in assembly language, with addresses.

4 Print debugging output that annotates the activities of the load.

-M ijl gnly) Generate instructions rather than calls to emulation routines for multiply and
ivide.

—Esymbol The entry point for the binary is symbol (default _main; _mainp under —p).

—x [file] Produce an export table in the executable. The optional file restricts the exported
symbols to those listed in the file. See dynld(2).

—u [file] Produce an export table, import table and a dynamic load section in the executable.
The optional file restricts the imported symbols to those listed in the file. See

dynld(2).
-t (5/'and vl only) Move strings into the text segment.
—-Hn Executable header is type n. The meaning of the types is architecture-dependent; typi-

cally type 1 is Plan 9 boot format and type 2 is the regular Plan 9 format, the default.
These are reversed on the MIPS. The Next boot format is 3. Type 4 in v/ creates a
MIPS executable for an SGI Unix system.

2L(T)

2L(1)

=Tt The text segment starts at address t.
—-Dd The data segment starts at address d.
—-Rr The text segment is rounded to a multiple of r (if ¥ is nonzero).

The numbers in the above options can begin with Ox or 0 to change the default base from decimal
to hexadecimal or octal. The defaults for the values depend on the compiler and the header type.

The loaded image has several symbols inserted by the loader: etext is the address of the end of
the text segment; bdata is the address of the beginning of the data segment; edata is the
address of the end of the data segment; and end is the address of the end of the bss segment,
and of the program.

FILES

/$objtype/lib for —1/ib arguments.
SOURCE

/sys/src/cmd/21 etc.
SEE ALSO

2¢c(1), 2a(1), ar(1), nm(1), db(1), prof(1)

Rob Pike, ‘““How to Use the Plan 9 C Compiler”
BUGS

The list of loaders given above is only partial, not all architectures are supported on all systems,
some have been retired and some are provided by third parties.

ABACO(1) ABACO(1)

NAME
abaco, readweb - browse the World-Wide Web

SYNOPSIS
abaco[-p][—c ncols] [—m mtpt] [—t charset] [url]
readweb [url]

DESCRIPTION
Abaco is a lightweight web browser with the appearance of acme(1) with ncols columns (one by
default). Given a url, it will start by displaying that page. Clicking mouse button 3 on a link opens
it in a new abaco window. —t selects an alternate character set; —m an alternate mount point for
webfs. Normally the standard error of subshells is closed, but —p prevents this.
Readweb imports the outside network, if necessary, starts webfs and webcookies and finally abaco.
FILES
/mnt/web default webfs mount point
SOURCE
/sys/src/cmd/abaco
/rc/bin/readweb
SEE ALSO
vnc(1), webcookies(4), webfs(4),
BUGS
Abaco is a work in progress; many features of giant web browsers are absent.

ACID(T) ACID(1)

NAME

acid, truss, trump - debugger

SYNOPSIS

acid [-kqgw][-1 library][—m machine] [pid][textfile]
acid -1 truss textfile
acid -1 trump [pid] [textfile]

DESCRIPTION

Acid is a programmable symbolic debugger. It can inspect one or more processes that share an
address space. A program to be debugged may be specified by the process id of a running or
defunct process, or by the name of the program’s text file (8.out by default). At the prompt,
acid will store function definitions or print the value of expressions. Options are

—-W Allow the textfile to be modified.
-q Print variable renamings at startup.
—1 library Load from library at startup; see below.

—m machine Assume instructions are for the given CPU type (one of alpha, 3886, etc., as listed
in 2¢c(1), or sunsparc or mipsco for the manufacturer-defined instruction nota-
tion for those processors) instead of using the magic number to select the CPU type.

-k Debug the kernel state for the process, rather than the user state.

At startup, acid obtains standard function definitions from the library file
/sys/lib/acid/port, architecture-dependent functions from
/sys/lib/acid/$objtype, user-specified functions from $home/lib/acid, and further
functions from —1 files. Definitions in any file may override previously defined functions. If the
function acidinit() is defined, it will be invoked after all libraries have been loaded. See 2¢(1) for
information about creating acid functions for examining data structures.

Language

Symbols of the program being debugged become integer variables whose values are addresses.
Contents of addresses are obtained by indirection. Local variables are qualified by function name,
for example main:argv. When program symbols conflict with acid words, distinguishing $
signs are prefixed. Such renamings are reported at startup if the option —q is enabled.

Variable types (integer, float, list, string) and formats are inferred from assignments. Truth values
false/true are attributed to zero/nonzero integers or floats and to empty/nonempty lists or
strings. Lists are sequences of expressions surrounded by { } and separated by commas.

Expressions are much as in C, but yield both a value and a format. Casts to complex types are
allowed. Lists admit the following operators, with subscripts counted from 0.

head list

tail list

append list, element
delete list, subscript

Format codes are the same as in db(1). Formats may be attached to (unary) expressions with \,
e.g. (32*7)\D. There are two indirection operators, * to address a core image, @ to address a
text file. The type and format of the result are determined by the format of the operand, whose
type must be integer.

Statements are

if expr then statement [el se statement]
while expr do statement

loop expr, expr do statement

defn name(args) { statement }

defn name

name (args)

builtin name(args)

local name

ACID(T) ACID(1)

return expr
whatis [name]

The statement defn name clears the definition for name. A defn may override a built-in func-
tion; prefixing a function call with builtin ignores any overriding defn, forcing the use of the
built-in function.

Here is a partial list of functions; see the manual for a complete list.

stk() Print a stack trace for current process.

1stk() Print a stack trace with values of local variables.

gpr() Print general registers. Registers can also be accessed by name, for example
*RO.

spr() Print special registers such as program counter and stack pointer.

fpr() Print floating-point registers.

regs() Same as spr() ;gpr().

fmt Cexpr, format)
Expression expr with format given by the character value of expression
format.

src (address) Print 10 lines of source around the program address.

Bsrc (address) Get the source line for the program address into a window of a running
sam(1) and select it.

line (address) Print source line nearest to the program address.

source() List current source directories.

addsrcdir(string)
Add a source directory to the list.

filepc(where) Convert a string of the form sourcefile : linenumber to a machine address.

pcfile(address) Convert a machine address to a source file name.

pcline (address) Convert a machine address to a source line number.

bptab () List breakpoints set in the current process.

bpset (address) Seta breakpointin the current process at the given address.

bpdel (address) Delete a breakpoint from the current process.

cont() Continue execution of current process and wait for it to stop.
step() Execute a single machine instruction in the current process.
func () Step repeatedly until after a function return.

stopped(pid) This replaceable function is called automatically when the given process
stops. It normally prints the program counter and returns to the prompt.
asm(address) Disassemble 30 machine instructions beginning at the given address.
mem(address , string)
Print a block of memory interpreted according to a string of format codes.
dump (address , n, string)
Like mem(), repeated for n consecutive blocks.
print(expr,...) Print the values of the expressions.
newproc (arguments)
Start a new process with arguments given as a string and halt at the first

instruction.

new() Like newproc(), but take arguments (except argv[0]) from string variable
progargs.

win() Like new(), but run the process in a separate window.

start(pid) Start a stopped process.

kill (pid) Kill the given process.

setproc(pid) Make the given process current.

rc(string) Escape to the shell, rc(1), to execute the command string.

Libraries
There are a number of acid ‘libraries’ that provide higher-level debugging facilities. Two notable
examples are truss and trump, which use acid to trace system calls (truss) and memory allocation
(trump). Both require starting acid on the program, either by attaching to a running process or by
executing new() on a binary (perhaps after setting progargs), stopping the process, and then
running truss() or trump() to execute the program under the scaffolding. The output will be
a trace of the system calls (truss) or memory allocation and free calls (trump) executed by the pro-
gram. When finished tracing, stop the process and execute untruss() or untrump()

ACID(T) ACID(1)

followed by cont () to resume execution.

EXAMPLES
Start to debug /bin/1s; set some breakpoints; run up to the first one:

% acid /bin/1ls

/bin/ls: mips plan 9 executable
/sys/lib/acid/port

/sys/lib/acid/mips

acid: new()

70094: system call _main ADD $-0x14,R29
70094 : breakpoint main+0x4 MOVW R31,0x0(R29)
acid: pid

70094

acid: argv0 = **main:argv\s

acid: whatis argv0

integer variable format s

acid: *argv0

/bin/1s

acid: bpset(ls)

acid: cont()

70094 : breakpoint 1s ADD $-0x16c8,R29
acid:

Display elements of a linked list of structures:

complex Str { 'D’ 0 val; ’X’ 4 next; };
complex Str s;
s = *headstr;
while s !'= 0 do{
print(s.val, "\n");
S = s.next;

}

Note the use of the . operator instead of —>.

Display an array of bytes declared in C as char array[].
*(array\s)

This example gives array string format, then prints the string beginning at the address (in acid
notation) *array.

Trace the system calls executed by Is(1):

% acid -1 truss /bin/1ls
/bin/1s:386 plan 9 executable

/sys/lib/acid/port
/sys/lib/acid/kernel
/sys/lib/acid/truss
/sys/lib/acid/386
acid: progargs = "-1 lib/profile"
acid: new()
acid: truss()
open("#c/pid", 0)
return value: 3
pread(3, O0x7fffeeac, 20, -1)
return value: 12
data: " 166 "

stat("lib/profile"”, 0x0000f8cc, 113)
return value: 65
open("/env/timezone", 0)
return value: 3

ACID(T)

FILES

ACID(1)

pread(3, 0x7fffd7c4, 1680, -1)
return value: 1518
data: "EST -18000 EDT -14400
9943200 25664400 41392800 57718800 73447200 89168400
104896800 ..."

close(3)

return value: 0
pwrite(l, "——rw—rw-r—— M 9 rob rob 2519 Mar 22 10:29 lib/profile
"! 54! _1)

——rw—rw—-r—— M 9 rob rob 2519 Mar 22 10:29 lib/profile
return value: 54

166: breakpoint _exits+0x5 INTB $0x40
acid: cont()

/proc/*/text
/proc/*/mem
/proc/*/ctl
/proc/*/note
/sys/lib/acid/$objtype
/sys/lib/acid/port
/sys/lib/acid/kernel
/sys/lib/acid/trump
/sys/lib/acid/truss
$home/lib/acid

SOURCE

/sys/src/cmd/acid

SEE ALSO

2a(1), 2¢(1), 2I(1), mk(1), db(1)
Phil Winterbottom, ‘“‘Acid Manual’’.

DIAGNOSTICS

At termination, kill commands are proposed for processes that are still active.

BUGS

There is no way to redirect the standard input and standard output of a new process.

Source line selection near the beginning of a file may pick an adjacent file.

With the extant stepping commands, one cannot step through instructions outside the text seg-
ment and it is hard to debug across process forks.

ACME(1) ACME(1)

NAME

acme, win, awd - interactive text windows

SYNOPSIS

acme [—ab][—c ncol] [—f varfont] [—F fixfont] [—1 loadfile | file ...]
win [command]
awd [label]

DESCRIPTION

Acme manages windows of text that may be edited interactively or by external programs. The
interactive interface uses the keyboard and mouse; external programs use a set of files served by
acme; these are discussed in acme(4).

Any named files are read into acme windows before acme accepts input. With the —1 option, the
state of the entire system is loaded from loadfile, which should have been created by a Dump com-
mand (g.v.), and subsequent file names are ignored. Plain files display as text; directories display
as columnated lists of the names of their components, as in 1s —p directory|mc except that
the names of subdirectories have a slash appended.

The —f (—F) option sets the main font, usually variable-pitch (alternate, usually fixed-pitch); the
default is /1lib/font/bit/lucidasans/euro.8.font
(.../lucm/unicode.9.font). Tab intervals are set to the width of 4 (or the value of
$tabstop) numeral zeros in the appropriate font.

Windows

Acme windows are in two parts: a one-line tag above a multi-line body. The body typically con-
tains an image of a file, as in sam(1), or the output of a program, as in an rio(1) window. The tag
contains a number of blank-separated words, followed by a vertical bar character, followed by any-
thing. The first word is the name of the window, typically the name of the associated file or direc-
tory, and the other words are commands available in that window. Any text may be added after
the bar; examples are strings to search for or commands to execute in that window. Changes to
the text left of the bar will be ignored, unless the result is to change the name of the window.

If a window holds a directory, the name (first word of the tag) will end with a slash.

Scrolling

Each window has a scroll bar to the left of the body. The scroll bar behaves much as in sam(1) or
rio(1) except that scrolling occurs when the button is pressed, rather than released, and continues
as long as the mouse button is held down in the scroll bar. For example, to scroll slowly through a
file, hold button 3 down near the top of the scroll bar. Moving the mouse down the scroll bar
speeds up the rate of scrolling.

Layout

Acme windows are arranged in columns. By default, it creates two columns when starting; this can
be overridden with the —c option. Placement is automatic but may be adjusted using the layout
box in the upper left corner of each window and column. Pressing and holding any mouse button
in the box drags the associated window or column. For windows, just clicking in the layout box
grows the window in place: button 1 grows it a little, button 2 grows it as much as it can, still leav-
ing all other tags in that column visible, and button 3 takes over the column completely, temporar-
ily hiding other windows in the column. (They will return en masse if any of them needs attention.)
The layout box in a window is normally white; when it is black in the center, it records that the file
is ‘dirty’: acme believes it is modified from its original contents.

Tags exist at the top of each column and across the whole display. Acme pre-loads them with use-
ful commands. Also, the tag across the top maintains a list of executing long-running commands.

Typing

The behavior of typed text is similar to that in rio(1) except that the characters are delivered to the
tag or body under the mouse; there is no ‘click to type’. (The experimental option —b causes typ-
ing to go to the most recently clicked-at or made window.) The usual backspacing conventions
apply. As in sam(1) but not rio, the ESC key selects the text typed since the last mouse action, a
feature particularly useful when executing commands. A side effect is that typing ESC with text
already selected is identical to a Cut command (q.v.).

ACME(1) ACME(1)

Most text, including the names of windows, may be edited uniformly. The only exception is that
the command names to the left of the bar in a tag are maintained automatically; changes to them
are repaired by acme.

When a window is in autoindent mode (see the Indent command below) and a newline character
is typed, acme copies leading white space on the current line to the new line. The option —a
causes each window to start in autoindent mode.

Directory context

Each window’s tag names a directory: explicitly if the window holds a directory; implicitly if it holds
a regular file (e.g. the directory /adm if the window holds /adm/users). This directory provides
a context for interpreting file names in that window. For example, the string users in a window
labeled /adm/ or /adm/keys will be interpreted as the file name /adm/users. The directory
is defined purely textually, so it can be a non-existent directory or a real directory associated with
a non-existent file (e.g. /adm/not—a—-file). File names beginning with a slash are assumed
to be absolute file names.

Errors
Windows whose names begin with — or + conventionally hold diagnostics and other data not
directly associated with files. A window labeled +Errors receives all diagnostics produced by
acme itself. Diagnostics from commands run by acme appear in a window named
directory/+ErTrors where directory is identified by the context of the command. These error
windows are created when needed.

Mouse button 1
Mouse button 1 selects text just as in sam(1) or rio(1), including the usual double-clicking con-
ventions.

Mouse button 2

By an action similar to selecting text with button 1, button 2 indicates text to execute as a com-
mand. If the indicated text has multiple white-space-separated words, the first is the command
name and the second and subsequent are its arguments. If button 2 is ‘clicked’—indicates a null
string—acme expands the indicated text to find a command to run: if the click is within button-1-
selected text, acme takes that selection as the command; otherwise it takes the largest string of
valid file name characters containing the click. Valid file name characters are alphanumerics and _
. —+ /. This behavior is similar to double-clicking with button 1 but, because a null command is
meaningless, only a single click is required.

Some commands, all by convention starting with a capital letter, are built—ins that are executed
directly by acme:

Cut Delete most recently selected text and place in snarf buffer.
Del Delete window. If window is dirty, instead print a warning; a second Del will succeed.

Delcol
Delete column and all its windows, after checking that windows are not dirty.

Delete
Delete window without checking for dirtiness.

Dump Write the state of acme to the file name, if specified, or $home /acme . dump by default.

Edit Treat the argument as a text editing command in the style of sam(1). The full Sam lan-
guage is implemented except for the commands k, n, g, and !. The = command is slightly
different: it includes the file name and gives only the line address unless the command is
explicitly =#. The ‘current window’ for the command is the body of the window in which
the Edit command is executed. Usually the Edit command would be typed in a tag;
longer commands may be prepared in a scratch window and executed, with Edit itself in
the current window, using the 2-1 chord described below.

Exit Exit acme after checking that windows are not dirty.

Font With no arguments, change the font of the associated window from fixed-spaced to
proportional-spaced or vice versa. Given a file name argument, change the font of the win-
dow to that stored in the named file. If the file name argument is prefixed by var (fix),
also set the default proportional-spaced (fixed-spaced) font for future use to that font.
Other existing windows are unaffected.

ACME(1) ACME(1)

Get Load file into window, replacing previous contents (after checking for dirtiness as in Del).
With no argument, use the existing file name of the window. Given an argument, use that
file but do not change the window’s file name.

ID Print window ID number (g.v.).

Incl When opening ‘include’ files (those enclosed in <>) with button 3, acme searches in direc-
tories /$objtype/include and /sys/include. Incl adds its arguments to a sup-
plementary list of include directories, analogous to the —I option to the compilers. This
list is per-window and is inherited when windows are created by actions in that window, so
Incl is most usefully applied to a directory containing relevant source. With no arguments,
Incl prints the supplementary list. This command is largely superseded by plumbing (see
plumb(6)).

Indent

Set the autoindent mode according to the argument: on and off set the mode for the cur-
rent window; ON and OFF set the mode for all existing and future windows.

Kill Send a kill note to acme-initiated commands named as arguments.

Load Restore the state of acme from a file (default $home/acme .dump) created by the Dump
command.

Local
When prefixed to a command run the command in the same file name space and environ-
ment variable group as acme. The environment of the command is restricted but is suffi-
cient to run bind(1), 9fs (see srv(4)), import(4), etc., and to set environment variables such
as $objtype.

Look Search in body for occurrence of literal text indicated by the argument or, if none is given,
by the selected text in the body.

New Make new window. With arguments, load the named files into windows.

Newcol
Make new column.

Paste
Replace most recently selected text with contents of snarf buffer.

Put Write window to the named file. With no argument, write to the file named in the tag of the
window.

Putall
Write all dirty windows whose names indicate existing regular files.

Redo Complement of Undo.
Send Append selected text or snarf buffer to end of body; used mainly with win.

Snarf
Place selected text in snarf buffer.

Sort Arrange the windows in the column from top to bottom in lexicographical order based on
their names.

Tab Set the width of tab stops for this window to the value of the argument, in units of widths
of the zero character. With no arguments, it prints the current value.

Undo Undo last textual change or set of changes.

Zerox
Create a copy of the window containing most recently selected text.

<|> If a regular shell command is preceded by a <, |, or > character, the selected text in the
body of the window is affected by the 1/O from the command. The < character causes the
selection to be replaced by the standard output of the command; > causes the selection to
be sent as standard input to the command; and | does both at once, ‘piping’ the selection
through the command and replacing it with the output.

A common place to store text for commands is in the tag; in fact acme maintains a set of com-
mands appropriate to the state of the window to the left of the bar in the tag.

ACME(1) ACME(1)

If the text indicated with button 2 is not a recognized built-in, it is executed as a shell command.
For example, indicating date with button 2 runs date(1). The standard and error outputs of com-
mands are sent to the error window associated with the directory from which the command was
run, which will be created if necessary. For example, in a window /adm/users executing pwd
will produce the output /adm in a (possibly newly-created) window labeled /adm/+Errors; in a
window containing /sys/src/cmd/sam/sam.c executing mk will run mk(1) in
/sys/src/cmd/sam, producing output in] window labeled
/sys/src/cmd/sam/+Errors. The environment of such commands contains the variable $%
with value set to the filename of the window in which the command is run, and $winid set to the
window’s id number (see acme(4)).

Mouse button 3
Pointing at text with button 3 instructs acme to locate or acquire the file, string, etc. described by
the indicated text and its context. This description follows the actions taken when button 3 is
released after sweeping out some text. In the description, text refers to the text of the original
sweep or, if it was null, the result of applying the same expansion rules that apply to button 2
actions.

If the text names an existing window, acme moves the mouse cursor to the selected text in the
body of that window. If the text names an existing file with no associated window, acme loads the
file into a new window and moves the mouse there. If the text is a file name contained in angle
brackets, acme loads the indicated include file from the directory appropriate to the suffix of the
file name of the window holding the text. (The Incl command adds directories to the standard
list.)

If the text begins with a colon, it is taken to be an address, in the style of sam(1), within the body
of the window containing the text. The address is evaluated, the resulting text highlighted, and
the mouse moved to it. Thus, in acme, one must type : /regexp or :127 not just /regexp or
127. (There is an easier way to locate literal text; see below.)

If the text is a file name followed by a colon and an address, acme loads the file and evaluates the
address. For example, clicking button 3 anywhere in the text file.c:27 will open file.c,
select line 27, and put the mouse at the beginning of the line. The rules about Error files, directo-
ries, and so on all combine to make this an efficient way to investigate errors from compilers, etc.

If the text is not an address or file, it is taken to be literal text, which is then searched for in the
body of the window in which button 3 was clicked. If a match is found, it is selected and the
mouse is moved there. Thus, to search for occurrences of a word in a file, just click button 3 on
the word. Because of the rule of using the selection as the button 3 action, subsequent clicks will
find subsequent occurrences without moving the mouse.

In all these actions, the mouse motion is not done if the text is a null string within a non-null
selected string in the tag, so that (for example) complex regular expressions may be selected and
applied repeatedly to the body by just clicking button 3 over them.

Chords of mouse buttons
Several operations are bound to multiple-button actions. After selecting text, with button 1 still
down, pressing button 2 executes Cut and button 3 executes Paste. After clicking one button,
the other undoes the first; thus (while holding down button 1) 2 followed by 3 is a Snarf that
leaves the file undirtied; 3 followed by 2 is a no-op. These actions also apply to text selected by
double-clicking because the double-click expansion is made when the second click starts, not
when it ends.

Commands may be given extra arguments by a mouse chord with buttons 2 and 1. While holding
down button 2 on text to be executed as a command, clicking button 1 appends the text last
pointed to by button 1 as a distinct final argument. For example, to search for literal text one
may execute Look text with button 2 or instead point at text with button 1 in any window,
release button 1, then execute Look, clicking button 1 while 2 is held down.

When an external command (e.g. echo(1)) is executed this way, the extra argument is passed as
expected and an environment variable $acmeaddr is created that holds, in the form interpreted
by button 3, the fully-qualified address of the extra argument.

Support programs
Win creates a new acme window and runs a command (default /bin/rc) in it, turning the window

ACME(1) ACME(1)

into something analogous to an rio(1) window. Executing text in a win window with button 2 is
similar to using Send.

Awd loads the tag line of its window with the directory in which it's running, suffixed —/label
(default rc); it is intended to be executed by a cd function for use in win windows. An example
definition is

fn cd { builtin cd $1 && awd $sysname }

Applications and guide files

In the directory /acme live several subdirectories, each corresponding to a program or set of
related programs that employ acme’s user interface. Each subdirectory includes source, binaries,
and a readme file for further information. It also includes a guide, a text file holding sample
commands to invoke the programs. The idea is to find an example in the guide that best matches
the job at hand, edit it to suit, and execute it.

Whenever a command is executed by acme, the default search path includes the directory of the
window containing the command and its subdirectory $cputype. The program directories in
/acme contain appropriately labeled subdirectories of binaries, so commands named in the guide
files will be found automatically when run. Also, acme binds the directories /acme/bin and
/acme/bin/$cputype to the beginning of /bin when it starts; this is where acme-specific
programs such as win and awd reside.

FILES
$home/acme.dump default file for Dump and Load; also where state is written if acme dies
or is killed unexpectedly, e.g. by deleting its window.
/acme/*/guide template files for applications
/acme/*/readme informal documentation for applications
/acme/*/src source for applications
/acme/*/mips MIPS-specific binaries for applications
SOURCE
/sys/src/cmd/acme
/acme/bin/source/win
/sys/src/cmd/awd. c
SEE ALSO
acme(4)
Rob Pike, Acme: A User Interface for Programmers.
BUGS

With the —1 option or Load command, the recreation of windows under control of external pro-
grams such as win is just to rerun the command; information may be lost.

ANSITIZE(1) ANSITIZE(T1)

NAME

ansitize - translate Plan 9 C to ANSI C
SYNOPSIS

ansitize [—c conf] [=TI dir]... [—p preload]... [file]
DESCRIPTION

Ansitize translates programs written in the Plan 9 C dialect into standard ANSI C programs, pre-
serving comments and formatting.

The options are:

—c conf
Read configuration information from the file conf. The format of the configuration file is

discussed below.

—TI dir Add dir to the list of directories searched for #include files. /386/include and
/sys/include are added to the list after processing the —I options.

—p preload
Before processing file, process the file preload, but do not print its translation. This option
is useful mainly for translating header files. See the examples below.

Ansitize translates many constructs from Plan 9 C, described below. It does not translate types or
other features present in the Plan 9 C environment when those features can be provided by appro-
priate program context. For example, ansitize removes long character constants and strings but
still assumes that Rune is a defined type.

Ansitize translates the following constructs.

anonymous structures or unions
Plan 9 C allows anonymous structures and unions. Ansitize gives these explicit names and trans-
lates references to reflect the new names. If a struct (or union) name is declared anony-
mously, ansitize uses _name in the new declaration. Otherwise, unions are named u, u2, etc.,
and structures are named _1, _2, etc. For example, by default ansitize translates the first struc-
ture definition into the second:

struct A { struct A { struct A {
union { union { union {
int x; int x; int x;
int y; int vy; int y;
}s }ou; } au;
struct B; struct B _B; struct B b;
}s }s };

These default names can be overridden by a configuration line rename old new, where old is a
single name or is tag . name, which restricts the renaming to the elements of struct (or union)
tag. For example, using a configuration:

rename A.u au
rename _B b
(or rename A._b b)

would produce the third structure definition above.

anonymous structure promotions
Plan 9 C allows pointers to structures with anonymous elements to be passed to functions expect-
ing pointers to the anonymous elements. For example, given the structure definition above, if a
struct A *a is passed to a function expecting a struct B¥*, the C compiler instead passes a
pointer to the B inside the A. Ansitize does the same transformation, in this case rewriting £(a)
to £(&a—>b). The same conversion applies to simple assignment of struct A* to struct
B*.

anonymous function parameters
Plan 9 C does not require unused function parameters to be named in the function definition.
Ansitize names these parameters _1, _2, etc. For example, ansitize rewrites

20

ANSITIZE(1) ANSITIZE(T1)

void main(int, char**) { }
into

void main(int _1, char** _2) { }

structure displays
Plan 9 C allows casted initializer lists as structure values, as in (Point){1,2}. Ansitize can
rewrite these into function calls, as in pt (1, 2), but only does so if directed by a configuration
line reconstruct struct-name function-name, as in reconstruct Point pt.

Unicode identifiers
Ansitize rewrites identifiers containing Unicode characters into ASCIl equivalents, replacing Greek
letters with their names and other Unicode characters with _xxxx, where xxxx is the hexadecimal
value of the character.

long character constants
Ansitize rewrites long character constants like L’\n’, L’a’, or L’ ¥’ into equivalent expressions
like "\n’, a’, or (Rune)0x00FF.

long string constants
Ansitize replaces Rune string constants like L"abc" with references to statically declared arrays
with names derived from the string data. It recognizes the special case where a Rune string is
being used to initialize a Rune array and replaces the string in that case with an array. For exam-
ple, ansitize rewrites the first program into the second:
Rune I_abc[] = {’a’,’b’,’c’,0};
L"abc"; Rune *x = L_abc;
L"def"; Rune y[] = {’d’,’e’,’£f’,0};

Rune *x
Rune yI[]

#pragma lines
Ansitize places #pragma lines inside /* */ comments. #pragma varargck lines are handled
separately and are placed inside #ifdef VARARGCK / #endif pairs. (At least one compiler
under development for Unix recognizes these #pragmas.)

integer/pointer casts
Some overeager Unix compilers complain about casts from integer to pointer, even when the
pointer is as wide as or wider than the integer. Ansitize inserts an extra (uintptr) cast to
silence these warnings: p=(void¥*)i becomes p=(void*) (uintptr)i

<ctype.h> casts
The macros defined in Plan 9’s <ctype.h> cast their arguments to uchar so that either signed
or unsigned character arguments can be passed to them. Unix’s <ctype.h> requires the use of
unsigned character arguments. Ansitize adds casts as necessary to the arguments of isalpha,
isdigit, toupper, etc

EXAMPLES

A configuration file for translating the regexp(2) library:

rename Resub.u s
rename Resub.ul e
rename Reinst.u ul
rename Reinst.ul u?2

Translate the source files:

cd /sys/src/libregexp
for(i in *.c)
ansitize —-c conf $i >%i.ansi

Translate the header file, reading <u.h> and <1ibc.h> first for context:

cd /sys/include
ansitize -p /386/include/u.h —-p libc.h regexp.h >regexp.h.ansi
SOURCE
/sys/src/cmd/ansitize

SEE ALSO
2c(1), fortune(1)

21

ANSITIZE(1) ANSITIZE(T1)

BUGS

Rob Pike, “How to use the Plan 9 C Compiler”’

Ansitize stops short of full checking of the input program. Test that they compile using 2¢(1)
before running ansitize.

Ansitize ignores #ifdef and #define, limiting the kinds of macros that can be used. In partic-
ular, macros that introduce new control flow constructs will confuse the parser. (The parser con-
tains extra grammar productions to accommodate the arg(2) macros and va_arg.)

22

AP(1) AP(1)

NAME
ap - fetch Associated Press news articles

SYNOPSIS
ap [article—name]

DESCRIPTION
ap fetches Associated Press news articles from http://www.newsday.com. Without any arguments
it provides a two column list of article keys and descriptions. When invoked with an article key it
fetches that article.

SOURCE
/rc/bin/ap

23

AR(1) AR(1)

NAME

ar - archive and library maintainer
SYNOPSIS

ar key [posname] dfile [file ...]
DESCRIPTION

Ar maintains groups of files combined into a single archive file, afile. The main use of ar is to cre-
ate and update library files for the loaders 2/(1), etc. It can be used, though, for any similar pur-
pose.

Key is one character from the set drqtpmx, optionally concatenated with one or more of
vuaibclo. The files are constituents of the archive afile. The meanings of the key characters
are:

d Delete files from the archive file.

T Replace files in the archive file, or add them if missing. Optional modifiers are
u Replace only files with modified dates later than that of the archive.
a Place new files after posname in the archive rather than at the end.
b or i Place new files before posname in the archive.

Quick. Append files to the end of the archive without checking for duplicates. Avoids qua-
dratic behavior in for (i in *.v) ar r lib.a $i.

Q

List a table of contents of the archive. If names are given, only those files are listed.
Print the named files in the archive.

Move the named files to the end or elsewhere, specified as with r.

Preserve the access and modification times of files extracted with the x command.

X O B8 ™©

Extract the named files. If no names are given, all files in the archive are extracted. In nei-
ther case does x alter the archive file.

v Verbose. Give a file-by-file description of the making of a new archive file from the old
archive and the constituent files. With p, precede each file with a name. With t, give a
long listing of all information about the files, somewhat like a listing by /s(1), showing

mode uid/gid size date name

1 Local. Normally ar places its temporary files in the directory /tmp. This option causes
them to be placed in the local directory.

When a d, r, or m key is specified and all members of the archive are valid object files for the same
architecture, ar inserts a table of contents, required by the loaders, at the front of the library. The
table of contents is rebuilt whenever the archive is modified, except when the q key is specified or
when the table of contents is explicitly moved or deleted.

EXAMPLE
ar cr lib.a *.v
Replace the contents of library 1ib. a with the object files in the current directory.

FILES

/tmp/v* temporaries
SOURCE

/sys/src/cmd/ar.c
SEE ALSO

21(1), ar(6)
BUGS

If the same file is mentioned twice in an argument list, it may be put in the archive twice.
This command predates Plan 9 and makes some invalid assumptions, for instance that user id’s
are numeric.

24

ASCII(1) ASCII(T)

NAME

ascii, unicode - interpret ASCII, Unicode characters

SYNOPSIS

ascii[—-8cnt][—-dox | -b n]]| text]
unicode hexmin—hexmax

unicode [—-t] hex[...]

unicode [—n] characters

look hex /1ib/unicode

DESCRIPTION

Ascii prints the ASCII values corresponding to characters and vice versa; under the —8 option, the
ISO Latin-1 extensions (codes 0200-0377) are included. The values are interpreted in a settable
numeric base; —o specifies octal, —d decimal, —x hexadecimal (the default), and —b n base n.

With no arguments, ascii prints a table of the character set in the specified base. Characters of
text are converted to their ASCIl values, one per line. If, however, the first text argument is a valid
number in the specified base, conversion goes the opposite way. Control characters are printed as
two- or three-character mnemonics. Other options are:

-n Force numeric output.

-C Force character output.
-t Convert from numbers to running text; do not interpret control characters or insert new-
lines.

Unicode is similar; it converts between UTF and character values from the Unicode Standard (see
utf(6)). If given a range of hexadecimal numbers, unicode prints a table of the specified Unicode
characters — their values and UTF representations. Otherwise it translates from UTF to numeric
value or vice versa, depending on the appearance of the supplied text; the —n option forces
numeric output to avoid ambiguity with numeric characters. If converting to UTF , the characters
are printed one per line unless the —t flag is set, in which case the output is a single string con-
taining only the specified characters. Unlike ascii, unicode treats no characters specially.

The output of ascii and unicode may be unhelpful if the characters printed are not available in the
current font.

The file /1ib/unicode contains a table of characters and descriptions, sorted in hexadecimal
order, suitable for look(1) on the lower case hex values of characters.

EXAMPLES

FILES

ascii —-d
Print the ASCII table base 10.

unicode p
Print the hex value of ‘p’.

unicode 2200-22f1
Print a table of miscellaneous mathematical symbols.

look 039 /lib/unicode
See the start of the Greek alphabet’s encoding in the Unicode Standard.

/1lib/unicode table of characters and descriptions.

SOURCE

/sys/src/cmd/ascii.c
/sys/src/cmd/unicode.c

SEE ALSO

look(1), tcs(1), utf(6), font(6)

25

AWK(1) AWK(T)

NAME

awk - pattern-directed scanning and processing language
SYNOPSIS

awk [-F fs][-d][-mf n][-mr n][—-safe][—v var=value] [—f progfile | prog] | file ...]
DESCRIPTION

Awk scans each input file for lines that match any of a set of patterns specified literally in prog or
in one or more files specified as —f progfile. With each pattern there can be an associated action
that will be performed when a line of a file matches the pattern. Each line is matched against the
pattern portion of every pattern-action statement; the associated action is performed for each
matched pattern. The file name — means the standard input. Any file of the form var=value is
treated as an assignment, not a file name, and is executed at the time it would have been opened
if it were a file name. The option —v followed by var=value is an assignment to be done before
the program is executed; any number of —v options may be present. —F fs option defines the
input field separator to be the regular expression fs.

An input line is normally made up of fields separated by white space, or by regular expression FS.
The fields are denoted $1, $2, ..., while $0 refers to the entire line. If FS is null, the input line is
split into one field per character.

To compensate for inadequate implementation of storage management, the —mr option can be
used to set the maximum size of the input record, and the —mf option to set the maximum num-
ber of fields.

The —safe option causes awk to run in “‘safe mode,” in which it is not allowed to run shell com-
mands or open files and the environment is not made available in the ENVIRON variable.

A pattern-action statement has the form
pattern { action }

A missing { action } means print the line; a missing pattern always matches. Pattern-action state-
ments are separated by newlines or semicolons.

An action is a sequence of statements. A statement can be one of the following:

if (expression) statement | else statement]
while (expression) statement

for (expression ; expression ; expression) statement
for(var in array) statement

do statement while (expression)

break

continue

{ [statement ...] }

expression # commonly var = expression
print [expression-list] [> expression]

printf format[, expression—list] [> expression]
return [expression]

next # skip remaining patterns on this input line
nextfile # skip rest of this file, open next, start at top
delete array[expression] # delete an array element

delete array # delete all elements of array

exit [expression] # exit immediately; status is expression

Statements are terminated by semicolons, newlines or right braces. An empty expression—list
stands for $0. String constants are quoted " ", with the usual C escapes recognized within.
Expressions take on string or numeric values as appropriate, and are built using the operators + -
* / % A (exponentiation), and concatenation (indicated by white space). The operators ! ++
— 4= = *= /= %= A= > >= < <= == = 7: are also available in expressions. Vari-
ables may be scalars, array elements (denoted x[i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric; this allows for a form of asso-
ciative memory. Multiple subscripts such as [i,],k] are permitted; the constituents are con-

catenated, separated by the value of SUBSEP.

26

AWK(1) AWK(T)

The print statement prints its arguments on the standard output (or on a file if > file or >>file is
present or on a pipe if | cmd is present), separated by the current output field separator, and ter-
minated by the output record separator. file and cmd may be literal names or parenthesized
expressions; identical string values in different statements denote the same open file. The
printf statement formats its expression list according to the format (see fprintf(2)). The built-
in function close(expr) closes the file or pipe expr. The built-in function £fflush(expr)
flushes any buffered output for the file or pipe expr. If expr is omitted or is a null string, all open
files are flushed.

The mathematical functions exp, 1log, sqrt, sin, cos, and atan?2 are built in. Other built-in
functions:

length If its argument is a string, the string’s length is returned. If its argument is an array,
the number of subscripts in the array is returned. If no argument, the length of $0 is

returned.
rand random number on (0,1)
srand sets seed for rand and returns the previous seed.
int truncates to an integer value
utf converts its numerical argument, a character number, to a UTF string

substr(s, m, n)
the n-character substring of s that begins at position m counted from 1.
index(s, t)
the position in s where the string t occurs, or 0 if it does not.
match(s, r)
the position in s where the regular expression r occurs, or 0 if it does not. The vari-
ables RSTART and RLENGTH are set to the position and length of the matched string.
split(s, a, fs)
splits the string s into array elements a[1], a[2], ..., a[n], and returns n. The sep-
aration is done with the regular expression fs or with the field separator FS if fs is not
given. An empty string as field separator splits the string into one array element per
character.
sub(r, t, s)
substitutes t for the first occurrence of the regular expression r in the string s. If s is
not given, $0 is used.
gsub same as sub except that all occurrences of the regular expression are replaced; sub
and gsub return the number of replacements.
sprintf(fmt, expr, ...)
the string resulting from formatting expr ... according to the printf format fmt
system(cmd)
executes cmd and returns its exit status
tolower(str)
returns a copy of str with all upper-case characters translated to their corresponding
lower-case equivalents.
toupper(str)
returns a copy of str with all lower-case characters translated to their corresponding
upper-case equivalents.

The ““function’” getline sets $0 to the next input record from the current input file; getline
<file sets $0 to the next record from file. getline x sets variable x instead. Finally, cmd |
getline pipes the output of cmd into getline; each call of getline returns the next line of
output from cmd. In all cases, getline returns 1 for a successful input, 0 for end of file, and -1
for an error.

Patterns are arbitrary Boolean combinations (with ! || &&) of regular expressions and relational
expressions. Regular expressions are as in regexp(6). Isolated regular expressions in a pattern
apply to the entire line. Regular expressions may also occur in relational expressions, using the

operators ~ and !~. /re/ is a constant regular expression; any string (constant or variable) may
be used as a regular expression, except in the position of an isolated regular expression in a pat-
tern.

A pattern may consist of two patterns separated by a comma; in this case, the action is performed
for all lines from an occurrence of the first pattern though an occurrence of the second.

27

AWK(1) AWK(T)

A relational expression is one of the following:

expression matchop regular—expression
expression relop expression

expression in array—name

(expr, expr,...) in array—-name

where a relop is any of the six relational operators in C, and a matchop is either ~ (matches) or !~
(does not match). A conditional is an arithmetic expression, a relational expression, or a Boolean
combination of these.

The special patterns BEGIN and END may be used to capture control before the first input line is
read and after the last. BEGIN and END do not combine with other patterns.

Variable names with special meanings:

CONVFMT conversion format used when converting numbers (default %. 6g)

FS regular expression used to separate fields; also settable by option -Ffs.
NF number of fields in the current record

NR ordinal number of the current record

ENR ordinal number of the current record in the current file

FILENAME the name of the current input file

RS input record separator (default newline)

OFS output field separator (default blank)

ORS output record separator (default newline)

OFMT output format for numbers (default %.6g)

SUBSEP separates multiple subscripts (default 034)

ARGC argument count, assignable

ARGV argument array, assignable; non-null members are taken as file names

ENVIRON array of environment variables; subscripts are names.
Functions may be defined (at the position of a pattern-action statement) thus:
function foo(a, b, c¢) { ...; return x }

Parameters are passed by value if scalar and by reference if array name; functions may be called
recursively. Parameters are local to the function; all other variables are global. Thus local vari-
ables may be created by providing excess parameters in the function definition.

EXAMPLES

length($0) > 72
Print lines longer than 72 characters.

{ print $2, $1 }
Print first two fields in opposite order.

BEGIN { FS = ", [\tl*[[\tl+" }

{ print $2, $1 }

Same, with input fields separated by comma and/or blanks and tabs.
{ s += $1 }

END { print "sum is", s, " average is", s/NR }
Add up first column, print sum and average.

/start/, /stop/
Print all lines between start/stop pairs.

BEGIN { # Simulate echo(1l)
for (i = 1; i < ARGC; i++) printf "%s ", ARGV[i]
printf "\n"
exit }
SOURCE
/sys/src/cmd/awk
SEE ALSO

sed(1), regexp(6),
A. V. Aho, B. W. Kernighan, P. J. Weinberger, The AWK Programming Language, Addison-Wesley,
1988. ISBN 0-201-07981-X

28

AWK(T1) AWK(1)

BUGS

There are no explicit conversions between numbers and strings. To force an expression to be
treated as a number add 0 to it; to force it to be treated as a string concatenate " " to it.

The scope rules for variables in functions are a botch; the syntax is worse.

UTF is not always dealt with correctly, though awk does make an attempt to do so. The split func-
tion with an empty string as final argument now copes with UTF in the string being split.

29

BASENAME(1) BASENAME(1)

NAME

basename - strip file name affixes
SYNOPSIS

basename [—d] string [suffix]
DESCRIPTION

Basename deletes any prefix ending in slash (/) and the suffix, if present in string, from string,
and prints the result on the standard output.

The —d option instead prints the directory component, that is, string up to but not including the
final slash. If the string contains no slash, a period and newline are printed.

SOURCE
/sys/src/cmd/basename.c

30

BC(1) BC(1)

NAME

bc - arbitrary-precision arithmetic language
SYNOPSIS

bc[—-cdls]| file...]
DESCRIPTION

Bc is an interactive processor for a language that resembles C but provides arithmetic on numbers
of arbitrary length with up to 100 digits right of the decimal point. It takes input from any files
given, then reads the standard input.

The —d option enables debugging output. The —1 option stands for the name of an arbitrary pre-
cision math library. The —s option suppresses the automatic display of calculation results; all out-
put is via the print command.

The following syntax for bc programs is like that of C; L means letter a-z, E means expression, S
means statement.

Lexical
comments are enclosed in /* */
newlines end statements
Names
simple variables: L
array elements: L[E]
The words ibase, obase, and scale
Other operands
arbitrarily long numbers with optional sign and decimal point.
(B
sqrt(E)
length(E)
number of significant decimal digits
scale(E)
number of digits right of decimal point
LCE,..,BE)
function call
Operators
+ - * / % A (%isremainder; A is power)

= <= >= | = < >
+= —_= *= /= %: A=
Statements

while (E) S
for (CE; E; E)S
null statement
break
quit
"text"

Function definitions
defineL (L, .. ,L){
autolL, ... , L
S; ... ;S
return E
¥

Functions in —1 math library
s(x) sine
c(x) cosine

31

BC(1) BC(1)

e(x) exponential
1(x) log
a(x) arctangent
JCn, x)
Bessel function
All function arguments are passed by value.

The value of an expression at the top level is printed unless the main operator is an assignment or
the —s command line argument is given. Text in quotes, which may include newlines, is always
printed. Either semicolons or newlines may separate statements. Assignment to scale influ-
ences the number of digits to be retained on arithmetic operations in the manner of dc(1). Assign-
ments to i1base or obase set the input and output number radix respectively.

The same letter may be used as an array, a function, and a simple variable simultaneously. All
variables are global to the program. Automatic variables are pushed down during function calls.
In a declaration of an array as a function argument or automatic variable empty square brackets
must follow the array name.

Bc is actually a preprocessor for dc(1), which it invokes automatically, unless the —c (compile only)
option is present. In this case the dc input is sent to the standard output instead.

EXAMPLE
Define a function to compute an approximate value of the exponential. Use it to print 10 values.
(The exponential function in the library gives better answers.)

scale = 20
define e(x) {
auto a, b, c, i, s

a=1
b=1
s =1
for(i=1; 1; i++) {
a *= x
b *= i
c = a/b
if(c == 0) return s
S += cC
}
}
for(i=1; i<=10; i++) print e(i)
FILES
/sys/1lib/bclib mathematical library
SOURCE
/sys/src/cmd/bc.y
SEE ALSO
dc(1), hoc(1)
BUGS

No &&, | |, or ! operators.
A for statement must have all three Es.

A quit is interpreted when read, not when executed.

32

BIND(1) BIND(1)

NAME

bind, mount, unmount - change name space

SYNOPSIS

bind [option ... 1 new old
mount [option ...] servename old [spec]

unmount [new] old

DESCRIPTION

Bind and mount modify the file name space of the current process and other processes in the same
name space group (see fork(2)). For both calls, old is the name of an existing file or directory in
the current name space where the modification is to be made.

For bind, new is the name of another (or possibly the same) existing file or directory in the current
name space. After a successful bind, the file name old is an alias for the object originally named
by new; if the modification doesn’t hide it, new will also still refer to its original file. The evalua-
tion of new (see intro(2)) happens at the time of the bind, not when the binding is later used.

The servename argument to mount is the name of a file that, when opened, yields an existing con-
nection to a file server. Almost always, servename will be a file in /srv (see srv(3)). In the discus-
sion below, new refers to the file named by the new argument to bind or the root directory of the
service available in servename after a mount. Either both old and new files must be directories, or
both must not be directories.

Options control aspects of the modification to the name space:

(none) Replace the old file by the new one. Henceforth, an evaluation of old will be translated
to the new file. If they are directories (for mount, this condition is true by definition),
old becomes a union directory consisting of one directory (the new file).

-b Both files must be directories. Add the new directory to the beginning of the union
directory represented by the old file.

—-a Both files must be directories. Add the new directory to the end of the union directory
represented by the old file.

—C This can be used in addition to any of the above to permit creation in a union directory.
When a new file is created in a union directory, it is placed in the first element of the
union that has been bound or mounted with the —c flag. If that directory does not have
write permission, the create fails.

-C (Only in mount.) By default, file contents are always retrieved from the server. With this
option, the kernel may instead use a local cache to satisfy read(5) requests for files
accessible through this mount point. The currency of cached data for a file is verified at
each open(5) of the file from this client machine.

—-q Exit silently if the bind or mount operation fails.

Mount takes two additional options. The first, —k keypattern, constrains the set of factotum(4)
keys used for an authenticated mount. The second, —n, causes mount to skip authentication
entirely.

The spec argument to mount is passed in the attach(5) message to the server, and selects among
different file trees served by the server.

The srv(3) service registry device, normally bound to /srvV, is a convenient rendezvous point for
services that can be mounted. After bootstrap, the file /srv/boot contains the communications
port to the file system from which the system was loaded.

The effects of bind and mount can be undone with the unmount command. If two arguments are
given to unmount, the effect is to undo a bind or mount with the same arguments. If only one
argument is given, everything bound to or mounted upon old is unmounted.

EXAMPLES

To compile a program with the C library from July 16, 1992:

33

BIND(1) BIND(1)

mount /srv/boot /n/dump dump
bind /n/dump/1992/0716/mips/l1lib/libc.a /mips/lib/libc.a
mk

SOURCE
/sys/src/cmd/bind.c
/sys/src/cmd/mount.c
/sys/src/cmd/unmount.c

SEE ALSO
bind(2), open(2), srv(3), srv(4)

34

BITSYLOAD(1) BITSYLOAD(1)

NAME

bitsyload, light, pencal, keyboard, params, prompter - bitsy-specific utilities

SYNOPSIS

bitsy/bitsyloadk|r]| file]
bitsy/light [intensity]
bitsy/params [-f]
bitsy/pencal
bitsy/keyboard|[-n]
bitsy/prompter [-n] file

DESCRIPTION

Bitsyload erases a section of flash memory on the Bitsy (iPAQ 3650 or 3830) and copies new infor-
mation into it, using the format required by the Compaq boot loader. The required first argument
is the destination, either k for /dev/flash/kernel or r for /dev/flash/ramdisk. The
optional second argument is the name of the file to load. The default kernel file is
/sys/src/9/bitsy/9bitsy and the default ramdisk file is
/sys/src/9/bitsy/ramdisk.

Light sets the intensity of the display backlight. The values for intensity are:

on set intensity to maximum, the default
off turn off backlight
n sets the intensity to n, where nis a value between 0 and 128. Intensity 0 doesn’t turn off

the backlight, it just sets it to the dimmest value.

Pencal calibrates the display with the touch screen on a Bitsy. It loops prompting the user with
crosses whose center that the user must touch with the stylus. After a consistent set of touches, it
writes the calibration both to the kernel and to standard out. It is normally called by the bitsy’s
/bin/cpurc.

Params copies the contents of the file /dev/tmpparams, into the flash partition,
/dev/flash/params, or if the —f flag it set copies in the opposite direction.

Keyboard creates a virtual on-screen keyboard and, unless the —n option is specified, a scribble
area. A user inputs characters by tapping the keys or by drawing characters in the scribble area
(see scribble(2)). It is usually run as the keyboard command for rio(1) using rio’s —k option.

Prompter is a small editor used to configure parameters when a Bitsy boots. It displays the file
and starts up a keyboard and scribble pad for input. Clicking with the stylus in the text selects
where input characters will go. Pressing Button 5 (top left side of the Bitsy) or typing the Esc key
on the keyboard causes prompter to write back the updated file and exit; Del causes prompter to
exit without writing the file. The —n flag suppresses the scribble area.

EXAMPLE

Prompter, params, and calibrate are used in only one place, the Bitsy’s /rc/bin/cpurc:

set variables

ramfs

bitsy/params —-f

if(! grep —-s ’'Acalibrate=’ /tmp/tmpparams)
bitsy/pencal >>/tmp/tmpparams

if not {
eval ‘{grep ’'Acalibrate=’ /tmp/tmpparams}
echo calibrate $calibrate > ’'#m/mousectl’

+
bitsy/prompter /tmp/tmpparams
bitsy/params

SOURCE

/sys/src/cmd/bitsy

35

BUNDLE(1) BUNDLE(1)

NAME

bundle - collect files for distribution
SYNOPSIS

bundle file ...
DESCRIPTION

Bundle writes on its standard output a shell script for rc(1) or a Bourne shell which, when exe-
cuted, will recreate the original files. Its main use is for distributing small numbers of text files by
mail(1).

Although less refined than standard archives from ar(1) or tar(1), a bundle file is self-
documenting and complete; little preparation is required on the receiving machine.

EXAMPLES
bundle mkfile *.[ch] | mail kremvax!boris
Send a makefile to Boris together with related .c and .h files. Upon receiving the mail,
Boris may save the file sans postmark, say in gift/horse, then do

cd gift; rc horse; mk

SOURCE
/rc/bin/bundle

SEE ALSO
ar(1), tar(1), mail(1)

BUGS
Bundle will not create directories and is unsatisfactory for non-text files.

Beware of gift horses.

36

CAL(1)

NAME

CAL(1)

cal - print calendar

SYNOPSIS

cal [month] [year]

DESCRIPTION

Cal prints a calendar. Month is either a number from 1 to 12, a lower case month name, or a lower
case three-letter prefix of a month name. Year can be between 1 and 9999. If either month or
year is omitted, the current month or year is used. If only one argument is given, and it is a num-
ber larger than 12, a calendar for all twelve months of the given year is produced; otherwise a cal-
endar for just one month is printed. The calendar produced is that for England and her colonies.

Try
cal sep 1752

SOURCE

BUGS

/sys/src/cmd/cal.c

The year is always considered to start in January even though this is historically naive.

Beware that cal 90 refers to the early Christian era, not the 20th century.

37

CALENDAR(1) CALENDAR(T)

NAME

calendar - print upcoming events
SYNOPSIS

calendar [-dy][—-p days]| file ...]
DESCRIPTION

Calendar reads the named files, default /usr/$user/lib/calendar, and writes to standard
output any lines containing today’s or tomorrow’s date. Examples of recognized date formats are
"4/11", "April 11", "Apr 11", "11 April", and "11 Apr". A special form may be used to represent

weekly and monthly events: "Every Tuesday" "The third Wednesday" All comparisons are case insen-
sitive.

If the —y flag is given, an attempt is made to match on year too. In this case, dates of the forms
listed above will be accepted if they are followed by the current year (or last two digits thereof) or
not a year — digits not followed by white space or non-digits.

If the —p flag is given, its argument is the number of days ahead to match dates. This flag is not
repeatable, and it performs no special processing at the end of the week.

The —d flag enables debugging output.
On Friday and Saturday, events through Monday are printed.
To have your calendar mailed to you every day, use cron(8).

FILES
/usr/$user/lib/calendar personal calendar

SOURCE
/sys/src/cmd/calendar.c

38

CAT(1) CAT(1)
NAME

cat, read - catenate files
SYNOPSIS

cat | file ...]

read[-m][—-n nline]| file...]

DESCRIPTION

Cat reads each file in sequence and writes it on the standard output. Thus
cat file

prints a file and
cat filel file2 >file3

concatenates the first two files and places the result on the third.

If no file is given, cat reads from the standard input. Output is buffered in blocks matching the
input.

Read copies to standard output exactly one line from the named file, default standard input. It is
useful in interactive rc(1) scripts.

The —m flag causes it to continue reading and writing multiple lines until end of file; —n causes it
to read no more than nline lines.

Read always executes a single write for each line of input, which can be helpful when preparing
input to programs that expect line-at-a-time data. It never reads any more data from the input
than it prints to the output.

SOURCE

/sys/src/cmd/cat.c
/sys/src/cmd/read.c

SEE ALSO

cp(1)

DIAGNOSTICS

BUGS

Read exits with status eof on end of file or, in the —n case, if it doesn’t read nlines lines.

Beware of cat a b >aand cat a b >b, which destroy input files before reading them.

39

CB(1) CB(1)

NAME
cb - C program beautifier

SYNOPSIS
cb[—-3js][—1 length]] file ...]

DESCRIPTION
Cb reads syntactically correct C programs from from its input or the given files, and writes them to
its stdout with a more visually pleasing spacing and indentation. Cb understands no C++ syntax
bar newline-terminated comments; and by default all user new-lines are preserved in the output.

The options are:
-] Join split lines.
-s Print code in the so-called K&R style used in The C Programming Language.

-1 length
Split lines that are longer than length.

SOURCE
/sys/src/cmd/cb

BUGS
Cb does not reformat structure initializers.
Punctuation hidden in macros can cause indentation errors.

40

CHGRP(1) CHGRP(1)

NAME

chgrp - change file group
SYNOPSIS

chgrp [—ou] group file ...

DESCRIPTION
The group of each named file is changed to group, which should be a name known to the server
holding the file.

A file’s group can be changed by the file’s owner, if the owner is a member of the new group, or
by the leader of both the file’s current group and the new group.

The —o and —u option are synonyms; they specify that the owner is to be set, rather than the
group. They are ineffectual unless the file server is in the bootstrap state that permits changing
file ownership.

SOURCE
/sys/src/cmd/chgrp.c

SEE ALSO
Is(1), chmod(1), stat(2)

41

CHMOD(1) CHMOD(1)

NAME

chmod - change mode
SYNOPSIS

chmod mode file ...
DESCRIPTION

The mode of each named file is changed according to mode, which may be an octal number or a
symbolic change to the existing mode. A mode is an octal number constructed from the OR of the
following modes.

0400 read by owner
0200 write by owner
0100 execute (search in directory) by owner
0070 read, write, execute (search) by group
0007 read, write, execute (search) by others

A symbolic mode has the form:
[who] op permission

The who part is a combination of the letters u (for user’s permissions), g (group) and o (other).
The letter a stands for ugo. If who is omitted, the default is a.

Op can be + to add permission to the file’s mode, — to take away permission, and = to assign
permission absolutely (all other bits will be reset).

Permission is any combination of the letters r (read), w (write), X (execute), a (append only), 1
(exclusive access), and t (temporary file).

Only the owner of a file or the group leader of its group may change the file’s mode.

SOURCE
/sys/src/cmd/chmod.c

SEE ALSO
Is(1), stat(2), stat(5)

42

CLEANNAME(T) CLEANNAME(1)

NAME

cleanname - clean a path name
SYNOPSIS

cleanname [—d pwd] names ...
DESCRIPTION

For each file name argument, cleanname, by lexical processing only, prints the shortest equivalent
string that names the same (possibly hypothetical) file. It eliminates multiple and trailing slashes,
and it lexically interprets . and . . directory components in the name. If the —d option is present,
unrooted names are prefixed with pwd/ before processing.

SOURCE
/sys/src/cmd/cleanname.c

SEE ALSO
cleanname(2).

43

CMP(1) CMP(1)

NAME
cmp - compare two files

SYNOPSIS
cmp [—1Ls] filel file2 [offset] [offset2]]

DESCRIPTION
Cmp compares the two files and prints a message if the contents differ.
The options are:
-1 Print the byte number (decimal) and the differing bytes (hexadecimal) for each difference.
-L Print the line number of the first differing byte.
-s Print nothing for differing files, but set the exit status.
If offsets are given, comparison starts at the designated byte position of the corresponding file.
Offsets that begin with Ox are hexadecimal; with 0, octal; with anything else, decimal.
SOURCE
/sys/src/cmd/cmp.c
SEE ALSO
diff(1)

DIAGNOSTICS
If a file is inaccessible or missing, the exit status is open. If the files are the same, the exit status
is empty (true). If they are the same except that one is longer than the other, the exit status is

EOF. Otherwise cmp reports the position of the first disagreeing byte and the exit status is
differ.

44

COL(1) COL(1)

NAME
col - column alignment

SYNOPSIS
col [-bfx]

DESCRIPTION
Col overlays lines to expunge reverse line feeds (ESC-7) and half line feeds (ESC-9 and ESC-8) as
produced by nroff for .2C in ms(6) or man(6) and for tbI(1). Col is a pure filter. It normally emits
only full line feeds; option —f (fine) allows half line feeds too. Option —b removes backspaces,
printing just one of each pile of overstruck characters. Col normally converts white space to tabs;
option —x overrides this feature. Other escaped characters and non-printing characters are
ignored.

EXAMPLES
tbl file | nroff -ms | col | p
Format some tables for printing on typewriters; use col to remove reverse line feeds, and
paginate the output.

SEE ALSO
pr(1)

BUGS
Col can’t back up more than 128 lines or handle more than 800 characters per line, and under-

stands VT (013) as reverse line feed.

45

COLORS(1) COLORS(1)

NAME

getmap, colors - display color map

SYNOPSIS

colors|[—-rx]
getmap [colormap]

DESCRIPTION

FILES

Colors presents a grid showing the colors in the current color map. If the display is true color,
colors shows a grid of the RGBV color map (see color(6)).

Clicking mouse button 1 over a color in the grid will display the map index for that color, its red,
green, and blue components, and the 32-bit hexadecimal color value as defined in allocimage(2).
If the —x option is specified, the components will also be listed in hexadecimal.

The —r option instead shows, in the same form, a grey-scale ramp.
A menu on mouse button 3 contains a single entry, to exit the program.

On 8-bit color-mapped displays, getmap loads the display’s color map (default rgbv). The
named colormap can be a file in the current directory or in the standard repository /1ib/cmap.
It can also be a string of the form gamma or gammaN, where N is a floating point value for the
gamma, defining the contrast for a monochrome map. Similarly, rgamma and rgammaN define a
reverse-video monochrome map. Finally, the names screen or display or vga are taken as
synonyms for the current color map stored in the display hardware.

/1ib/cmap directory of color map files

SOURCE

/sys/src/cmd/colors.c

SEE ALSO

color(6)

46

COMM(T) COMM(T1)

NAME

comm - select or reject lines common to two sorted files
SYNOPSIS

comm [—123] filel file2
DESCRIPTION

Comm reads filel and file2, which are in lexicographical order, and produces a three column out-
put: lines only in filel; lines only in file2; and lines in both files. The file name — means the stan-
dard input.

Flag 1, 2, or 3 suppresses printing of the corresponding column.

EXAMPLE
comm —-12 filel file2

Print lines common to two sorted files.

SOURCE
/sys/src/cmd/comm.cC

SEE ALSO
sort(1), cmp(1), diff(1), uniq(1)

47

CON(1) CON(1)

NAME con, telnet, rx, hayes, xms, xmr - remote login, execution, and XMODEM file transfer
SYNOPSIS
con|[—-CdnrRsTv][-b baud]l[-1 [user]1][=S svc]|[—c cmd] [net!l machine
telnet [-dCrn][—s svc] [net!lmachine
rx [—eTr][—1 user] [net] machine [command-word ...]
hayes [—pv] number [device]
xms [—1p] file
xmr file
DESCRIPTION

Con connects to the computer whose network address is net! machine and logs in if possible. With
no options, the account name used on the remote system is the same as that on the local system.
Standard input and output go to the local machine.

Options are:
-b sets the baud rate of a dial-up connection to baud.

-n if the input is a file or pipe, do not hang up the connection when EOF is received, but
instead wait for the remote end to hang up.

-1 with an argument causes user to be used as the account name on the remote system when
performing BSD rlogin authentication. Without an argument this option disables automatic
login and a normal login session ensues.

-C forces cooked mode, that is, local echo.
—C runs cmd as if it had been typed as a command from the escape mode.

-V (verbose mode) causes information about connection attempts to be output to standard
error. This can be useful when trying to debug network connectivity.

—d causes debugging information to be output to standard error.

-r suppresses printing of any carriage return followed by a new line. This is useful since car-
riage return is a printable character in Plan 9.

-R translates newlines to carriage returns and vice versa.
=T translates incoming carriage returns to newlines.
—-s strips received characters to 7 bits to forestall misinterpretation of ASCIl with parity as UTF.

=S Post a pipe as /srv/svc and connect it to standard input and output. This can be used
with —n to create a standing connection that consolefs(4), for example, can then open. For
telnet, this option is —s.

The control-\ character is a local escape. It prompts with >>>. Legitimate responses to the
prompt are

i Send a quit [sic] signal to the remote machine.

a Exit.

b Send a break.

. Return from the escape.

'emd Run the command with the network connection as its standard input and standard output.
Standard error will go to the screen. This is useful for transmitting and receiving files over
the connections using programs such as xms.

r Toggle printing of carriage returns.

Telnet is similar to con, but uses the telnet protocol to communicate with the remote machine. It
shares con’s —C, —d, —n, and —x options.

Rx executes one shell command on the remote machine as if logged in there, but with local stan-
dard input and output. A rudimentary shell environment is provided. If the target is a Plan 9
machine, $service there will be rx. Options are:

48

CON(1) CON(1)

-e a zero length message will not be written to the connection when standard input is closed.
-1 runs as user on the remote machine if the remote is a BSD machine.

-r same as for con

-T same as for con

Network addresses for both con and rx have the form network ! machine. Supported networks are
those listed in /net.

Hayes dials number on a Hayes-compatible modem, device. Under —p, it uses pulse dialing. Upon
connecting, bytes are copied bidirectionally between the connection and standard input and out-
put.

The commands xms and xmr respectively send and receive a single file using the XMODEM proto-
col. They use standard input and standard output for communication and are intended for use
with con. The —1 option to xms causes it to use kilobyte packet size of 1024 bytes. The —p option
causes it to print a progress message every ten kilobytes.

EXAMPLES
rx kremvax cat filel >file2
Copy remote filel to local file2.

rx kremvax cat filel ’'>file2’
Copy remote filel to remote file2.

egn paper | rx kremvax troff -ms | rx deepthought 1lp
Parallel processing: do each stage of a pipeline on a different machine.

SOURCE
/sys/src/cmd/rx.c
/sys/src/cmd/ip/telnet.c
/sys/src/cmd/con for all other commands

SEE ALSO
cpu(1), ssh(l), telco(4)
BUGS
Con and telnet are merely obsolescent; the other commands are obsolete and deprecated.

Under rx, a program that should behave specially towards terminals may not: e.g., remote shells
will not prompt. Also under rx, the remote standard error and standard output are combined and
go inseparably to the local standard output. Rx will consume its standard input by copying it to
the remote system, so redirect it from /dev/null if that’s not what you want.

49

CP(1) CP(1)

NAME
cp, fcp, mv - copy, move files

SYNOPSIS
cp [—gux] filel file2
cp [—gux] file ... directory

fcp [—gux] filel file2
fcp [—gux] file ... directory

mv filel file2
mv file ... directory

DESCRIPTION
In the first form filel is any name and file2 is any name except an existing directory. In the second
form the commands copy or move one or more files into a directory under their original file
names, as if by a sequence of commands in the first form. Thus cp f1 £2 dir is equivalent to
cp f1 dir/fl1; cp f2 dir/f2.

Cp copies the contents of plain filel to file2. The mode and owner of file2 are preserved if it
already exists; the mode of filel is used otherwise. The —x option sets the mode and modified
time of file2 from filel; —g sets the group id; and —u sets the group id and user id (which is usu-
ally only possible if the file server is in an administrative mode).

Fcp behaves like cp but transfers multiple blocks in parallel while copying; it is noticeably faster
than cp when the files involved are stored on servers connected over long-distance lines. It is only
appropriate to use fcp with file servers that respect the offset in read(5) and write messages. This
includes the disk-based file systems and ramfs but excludes most device file systems.

Mv moves filel to file2. If the files are in the same directory, filel is just renamed; otherwise mv
behaves like cp —x followed by rm filel. Mv will rename directories, but it refuses to move a direc-
tory into another directory.
SOURCE
/sys/src/cmd/cp.c
/sys/src/cmd/fcp.c
/sys/src/cmd/mv.c
SEE ALSO
cat(1), dircp in tar(1), stat(2), read(5)

DIAGNOSTICS
Cp, fcp, and mv refuse to copy or move files onto themselves.

50

CPP(1)

NAME

CPP(1)

cpp - C language preprocessor

SYNOPSIS

cpp [option ... 1 [ifile [ofile]]

DESCRIPTION

FILES

Cpp interprets ANSI C preprocessor directives and does macro substitution. The input ifile and
output ofile default to standard input and standard output respectively.

The options are:

—Dname
—D name=def
—TIdir Same as in 2¢(1): add dir to the search for directives.

-M Generate no output except a list of include files in a form suitable for specifying dependen-
cies to mk(1). Use twice to list files in angle brackets.

—-N Turn off default include directories. All must be specified with —I, or in the environment
variable include. Without this option, /$objtype/include and /sys/include
are used as the last two searched directories for include directives, where $objtype is
read from the environment.

-V Print extra debugging information.

-P Do not insert “#1ine” directives into the output.

—+ Understand C++ comments.

—-. Inhibit include search in the source’s directory.

-1 Print the list of directories searched when #include is found. Last listed are searched first.

In the absence of the —P option, the processed text output is sprinkled with lines that show the
original input line numbering:

#1ine linenumber " ifile"

The command reads the environment variable include and adds its (blank-separated) list of direc-
tories to the standard search path for directives. They are looked at before any directories speci-
fied with —I, which are looked at before the default directories.

The input language is as described in the ANSI C standard. The standard Plan 9 C compilers do
not use cpp; they contain their own simple but adequate preprocessor, so cpp is usually superflu-
ous.

/sys/include directory for machine-independent include files
/$objtype/include directory for machine-dependent include files

SOURCE

/sys/src/cmd/cpp

SEE ALSO

2¢(1)

51

CPU(1) CPU(1)

NAME
cpu - connection to CPU server

SYNOPSIS
cpu [—h server 1 [—u user][—a auth-method] [—P patternfile] [—e encryption—hash—-algs] [
—k keypattern][—c cmd args ...]

cpu[-R|-0]

DESCRIPTION
Cpu starts an rc(1) running on the server machine, or the machine named in the $cpu environ-
ment variable if there is no —h option. Rc’s standard input, output, and error files will be
/dev/cons in the name space where the cpu command was invoked. Normally, cpu is run in an
rio(1) window on a terminal, so rc output goes to that window, and input comes from the key-
board when that window is current. Rc’s current directory is the working directory of the cpu com-
mand itself.

The name space for the new rc is an analogue of the name space where the cpu command was
invoked: it is the same except for architecture-dependent bindings such as /bin and the use of
fast paths to file servers, if available.

If a —u argument is present, cpu uses the argument as the remote user id.

If a —c argument is present, the remainder of the command line is executed by rc on the server,
and then cpu exits.

If a —P argument is present, the patternfile is passed to exportfs(4) to control how much of the
local name space will be exported to the remote system.

The —a command allows the user to specify the authentication mechanism used when connecting
to the remote system. The two possibilities for auth—-method are:

19)¢) This is the default. Authentication is done using the standard Plan 9 mechanisms, (see
authsrv(6)). No user interaction is required.

netkey Authentication is done using challenge/response and a hand held authenticator or the
netkey program (see passwd(1)). The user must encrypt the challenge and type the
encryption back to cpu. This is used if the local host is in a different protection domain
than the server or if the user wants to log into the server as a different user.

The —e option specifies an encryption and/or hash algorithm to use for the connection. If both
are specified, they must be space separated and comprise a single argument, so they must be
quoted if in a shell command. The default is rc4_256 encryption and shal hashing. See ss/(3)
for details on possible algorithms. The argument clear specifies no encryption algorithm and
can be used to talk to older versions of the cpu service.

The —k flag specifies a key pattern to use to restrict the keys selected by the auth_proxy call used
for authentication.

The name space is built by running /usr/$user/1ib/profile with the root of the invoking
name space bound to /mnt/term. The service environment variable is set to cpu; the
cputype and objtype environment variables reflect the server’s architecture.

The —R flag causes cpu to run the server (remote) side of the protocol. It is run from service files
such as /bin/service/tcpl7010. The -0 flag is similar but simulates the pre-9P2000 ver-
sion of the cpu protocol.

FILES
The name space of the terminal side of the cpu command is mounted, via exportfs(4), on the CPU
side on directory /mnt/term. The files such as /dev/cons are bound to their standard loca-
tions from there.

SOURCE
/sys/src/cmd/cpu.c

SEE ALSO

rc(1), rio(1), exportfs(4)

52

CPU(T) CPU(1)

BUGS
Binds and mounts done after the terminal 1ib/profile is run are not reflected in the new name
space.

When using the —a option to ‘log in’ as another user, be aware that resources in the local name
space will be made available to that user.

53

CROP(1) CROP(1)

NAME

crop, iconv - frame, crop, and convert image

SYNOPSIS

crop [—b red green blue] [—c red green blue] [—1i n | —r minx miny maxx maxy | —x dx | —y
dyll—t txtyl[—b red green blue] | file]

iconv[—u]l[—c chandesc]| file]

DESCRIPTION

Crop reads an image(6) file (default standard input), crops it, and writes it as a compressed
image(6) file to standard output. There are two ways to specify a crop, by color value or by geom-
etry. They may be combined in a single run of crop, in which case the color value crop will be
done first.

The —c option takes a red-green-blue triplet as described in color(2). (For example, white is 255
255 255.) The corresponding color is used as a value to be cut from the outer edge of the pic-
ture; that is, the image is cropped to remove the maximal outside rectangular strip in which every
pixel has the specified color.

The —1i option insets the image rectangle by a constant amount, n, which may be negative to gen-
erate extra space around the image. The —x and —y options are similar, but apply only to the x or
y coordinates of the image.

The —r option specifies an exact rectangle.

The —t option specifies that the image’s coordinate system should be translated by tx, ty as the
last step of processing.

The —b option specifies a background color to be used to fill around the image if the cropped
image is larger than the original, such as if the —i option is given a negative argument. This can
be used to draw a monochrome frame around the image. The default color is black.

Iconv changes the format of pixels in the image file (default standard input) and writes the result-
ing image to standard output. Pixels in the image are converted according to the channel descrip-
tor chandesc, (see image(6)). For example, to convert a 4-bit-per-pixel grey-scale image to an 8-
bit-per-pixel color-mapped image, chandesc should be m8. If chandesc is not given, the format is
unchanged. The output image is by default compressed; the —u option turns off the compression.

EXAMPLE

To crop white edges off the picture and add a ten-pixel pink border,
crop —-c 255 255 255 —-i -10 -b 255 150 150 imagefile > cropped

SOURCE

/sys/src/cmd/crop.c

SEE ALSO

BUGS

image(6), color(2)

Iconv should be able to do Floyd-Steinberg error diffusion or dithering when converting to small
image depths.

54

DATE(1) DATE(1)

NAME
date, clock - date and time
SYNOPSIS
date [option] [seconds]
clock

DESCRIPTION
Print the date, in the format

Tue Aug 16 17:03:52 CDT 1977
The options are
-u Report Greenwich Mean Time (GMT) rather than local time.
-n Report the date as the number of seconds since the epoch, 00:00:00 GMT, January 1, 1970.

The conversion from Greenwich Mean Time to local time depends on the $timezone environ-
ment variable; see ctime(2).

If the optional argument seconds is present, it is used as the time to convert rather than the real
time.

Clock draws a simple analog clock in its window.

FILES
/env/timezone Current timezone name and adjustments.
/adm/timezone A directory containing timezone tables.
/adm/timezone/local Default timezone file, copied by init(8) into /env/timezone.
SOURCE
/sys/src/cmd/date.c
/sys/src/cmd/clock.c

55

DB(1)

NAME

DB(1)

db - debugger

SYNOPSIS

db [option ...][textfile] [pid]

DESCRIPTION

Db is a general purpose debugging program. It may be used to examine files and to provide a
controlled environment for the execution of Plan 9 programs.

A textfile is a file containing the text and initialized data of an executable program. A memifile is
the memory image of an executing process. It is usually accessed via the process id (pid) of the
process in /proc/pid/mem. A memfile contains the text, data, and saved registers and process
state. A map associated with each textfile or memfile supports accesses to instructions and data in
the file; see ‘Addresses’.

An argument consisting entirely of digits is assumed to be a process id; otherwise, it is the name
of a textfile. When a textfile is given, the textfile map is associated with it. If only a pid is given,
the textfile map is associated with /proc/pid/text. When a pid is given, the memfile map is
associated with /proc/pid /mem; otherwise it is undefined and accesses to the memfile are not
permitted.

Commands to db are read from the standard input and responses are to the standard output. The
options are

-k Use the kernel stack of process pid to debug the executing kernel process. If textfile is not
specified, file / $cputype /9 type is used, where type is the second word in $terminal.

—-w Create textfile and memfile if they don’t exist; open them for writing as well as reading.

—Ipath
Directory in which to look for relative path names in $< and $<< commands.

—mmachine
Assume instructions are for the given CPU type (any standard architecture name, such as
alpha or 386, plus mipsco and sunsparc, which cause disassembly to the
manufacturer’s syntax) instead of using the magic number to select the CPU type.

Most db commands have the following form:
[address] [, count] [command]

If address is present then the current position, called ‘dot’, is set to address. Initially dot is set to
0. Most commands are repeated count times with dot advancing between repetitions. The default
countis 1. Address and count are expressions. Multiple commands on one line must be separated
by ;.

Expressions

Expressions are evaluated as long ints.

The value of dot.
+ The value of dot incremented by the current increment.
A The value of dot decremented by the current increment.

The last address typed.

integer
A number, in decimal radix by default. The prefixes 0 and 0o and 0O (zero oh) force inter-
pretation in octal radix; the prefixes Ot and OT force interpretation in decimal radix; the
prefixes 0x, 0X, and # force interpretation in hexadecimal radix. Thus 020, 0020, 0t16,
and #10 all represent sixteen.

integer . fraction
A single-precision floating point number.

c The 16-bit value of a character. \ may be used to escape a

<name
The value of name, which is a register name. The register names are those printed by the

56

DB(1) DB(1)

$r command.

symbol
A symbol is a sequence of upper or lower case letters, underscores or digits, not starting
with a digit. \ may be used to escape other characters. The location of the symbol is cal-
culated from the symbol table in textfile.

routine . name
The address of the variable name in the specified C routine. Both routine and name are
symbols. If name is omitted the value is the address of the most recently activated stack
frame corresponding to routine; if routine is omitted, the active procedure is assumed.

file : integer
The address of the instruction corresponding to the source statement at the indicated line
number of the file. If the source line contains no executable statement, the address of the
instruction associated with the nearest executable source line is returned. Files begin at
line 1. If multiple files of the same name are loaded, an expression of this form resolves to
the first file encountered in the symbol table.

Cexp)
The value of the expression exp.

Monadic operators
*exp The contents of the location addressed by exp in memfile.
@exp The contents of the location addressed by exp in textfile.
—exp Integer negation.
~exp Bitwise complement.

%exp When used as an address, exp is an offset into the segment named ublock; see
‘Addresses’.

Dyadic operators are left-associative and are less binding than monadic operators.
el+e2 Integer addition.
el—e2 Integer subtraction.
el *e2 Integer multiplication.
el%eZ2 Integer division.
el &e2 Bitwise conjunction.
el | e2 Bitwise disjunction.
el#e2 EI rounded up to the next multiple of e2.

Commands
Most commands have the following syntax:

?f Locations starting at address in textfile are printed according to the format f.
/f Locations starting at address in memfile are printed according to the format f.
=f The value of address itself is printed according to the format f.

A format consists of one or more characters that specify a style of printing. Each format character
may be preceded by a decimal integer that is a repeat count for the format character. If no format
is given then the last format is used.

Most format letters fetch some data, print it, and advance (a local copy of) dot by the number of
bytes fetched. The total number of bytes in a format becomes the currentincrement.

Print two-byte integer in octal.

Print four-byte integer in octal.

Print two-byte integer in signed octal.
Print four-byte integer in signed octal.
Print two-byte integer in decimal.
Print four-byte integer in decimal.

oo OO0

57

DB(1)

DB(1)

Print eight-byte integer in decimal.

Print eight-byte integer in unsigned decimal.

Print two-byte integer in hexadecimal.

Print four-byte integer in hexadecimal.

Print eight-byte integer in hexadecimal.

Print two-byte integer in unsigned decimal.

Print four-byte integer in unsigned decimal.

Print as a single-precision floating point number.

Print double-precision floating point.

Print the addressed byte in hexadecimal.

Print the addressed byte as an ASCIl character.

Print the addressed byte as a character. Printable ASCIl characters are represented

normally; others are printed in the form \xnn.

Print the addressed characters, as a UTF string, until a zero byte is reached.

Advance dot by the length of the string, including the zero terminator.

S Print a string using the escape convention (see C above).

T Print as UTF the addressed two-byte integer (rune).

R Print as UTF the addressed two-byte integers as runes until a zero rune is reached.

Advance dot by the length of the string, including the zero terminator.

Print as machine instructions. Dot is incremented by the size of the instruction.

As i above, but print the machine instructions in an alternate form if possible:

sunsparc and mipsco reproduce the manufacturers’ syntax.

Print the addressed machine instruction in a machine-dependent hexadecimal form.

Print the value of dot in symbolic form. Dot is unaffected.

Print the value of dot in hexadecimal. Dot is unaffected.

Print the function name, source file, and line number corresponding to dot (textfile

only). Dot is unaffected.

Print the addressed value in symbolic form. Dot is advanced by the size of a

machine address.

t When preceded by an integer, tabs to the next appropriate tab stop. For example,
8t moves to the next 8-space tab stop. Dot is unaffected.

n Print a newline. Dot is unaffected.

. Print the enclosed string. Dot is unaffected.

A Dot is decremented by the current increment. Nothing is printed.

+ Dot is incremented by 1. Nothing is printed.

- Dot is decremented by 1. Nothing is printed.

M - w NOTHHRSES KXX NI

N> 2

o

Other commands include:

newline
Update dot by the current increment. Repeat the previous command with a count of 1.

[?/11 value mask
Words starting at dot are masked with mask and compared with value until a match is
found. If 1 is used, the match is for a two-byte integer; L. matches four bytes. If no match
is found then dot is unchanged; otherwise dot is set to the matched location. If mask is
omitted then ~0 is used.

[? /1w value ...
Write the two-byte value into the addressed location. If the command is W, write four
bytes.

[?/Imsbef[?]
New values for (b, e, f) in the segment named s are recorded. Valid segment names are
text, data, or ublock. If less than three address expressions are given, the remaining
parameters are left unchanged. If the list is terminated by ? or / then the file (textfile or
memifile respectively) is used for subsequent requests. For example, /m? causes / to refer
to textfile.

>name
Dot is assigned to the variable or register named.

! The rest of the line is passed to rc(1) for execution.

58

DB(1)

$ modifier

DB(1)

Miscellaneous commands. The available modifiers are:

<f Read commands from the file f. If this command is executed in a file, further com-
mands in the file are not seen. If fis omitted, the current input stream is termi-
nated. If a countis given, and is zero, the command is ignored.

<<f Similar to < except it can be used in a file of commands without causing the file to
be closed. There is a (small) limit to the number of << files that can be open at
once.

>f Append output to the file f, which is created if it does not exist. If fis omitted, out-
put is returned to the terminal.

? Print process id, the condition which caused stopping or termination, the registers
and the instruction addressed by pc. This is the default if modifier is omitted.

T Print the general registers and the instruction addressed by pc. Dot is set to pc.

R Like $r, but include miscellaneous processor control registers and floating point
registers.

f Print floating-point register values as single-precision floating point numbers.

F Print floating-point register values as double-precision floating point numbers.

b Print all breakpoints and their associated counts and commands. ‘B’ produces the
same results.

C Stack backtrace. If address is given, it specifies the address of a pair of 32-bit val-
ues containing the sp and pc of an active process. This allows selecting among
various contexts of a multi-threaded process. If C is used, the names and (long)
values of all parameters, automatic and static variables are printed for each active
function. If count is given, only the first count frames are printed.

a Attach to the running process whose pid is contained in addvress.

e The names and values of all external variables are printed.

w Set the page width for output to address (default 80).

q Exit from db.

m Print the address maps.

k Simulate kernel memory management.

Mmachine
Set the machine type used for disassembling instructions.

: modifier

Manage a subprocess. Available modifiers are:

h Halt an asynchronously running process to allow breakpointing. Unnecessary for
processes created under db, e.g. by : .

bc Set breakpoint at address. The breakpoint is executed count-1 times before causing
a stop. Also, if a command cis given it is executed at each breakpoint and if it sets
dot to zero the breakpoint causes a stop.

d Delete breakpoint at address.

T Run textfile as a subprocess. If address is given the program is entered at that
point; otherwise the standard entry point is used. Count specifies how many break-
points are to be ignored before stopping. Arguments to the subprocess may be
supplied on the same line as the command. An argument starting with < or >
causes the standard input or output to be established for the command.

cs The subprocess is continued. If s is omitted or nonzero, the subprocess is sent the
note that caused it to stop. If 0 is specified, no note is sent. (If the stop was due to
a breakpoint or single-step, the corresponding note is elided before continuing.)
Breakpoint skipping is the same as for r.

sSs As for c except that the subprocess is single stepped for count machine instruc-
tions. If a note is pending, it is received before the first instruction is executed. If
there is no current subprocess then textfile is run as a subprocess as for r. In this
case no note can be sent; the remainder of the line is treated as arguments to the
subprocess.

Ss Identical to s except the subprocess is single stepped for count lines of C source.

In optimized code, the correspondence between C source and the machine instruc-
tions is approximate at best.

59

DB(1)

DB(1)
X The current subprocess, if any, is released by db and allowed to continue executing
normally.
k The current subprocess, if any, is terminated.
nc Display the pending notes for the process. If cis specified, first delete c’th pending
note.

Addresses

The location in a file or memory image associated with an address is calculated from a map associ-
ated with the file. Each map contains one or more quadruples (t, b, e, f), defining a segment
named t (usually, text, data, or ublock) mapping addresses in the range b through e to the part of
the file beginning at offset f. The memory model of a Plan 9 process assumes that segments are
disjoint. There can be more than one segment of a given type (e.g., a process may have more than
one text segment) but segments may not overlap. An address a is translated to a file address by
finding a segment for which b<a<e; the location in the file is then address+ f-b.

Usually, the text and initialized data of a program are mapped by segments called text and data.
Since a program file does not contain bss, stack or ublock data, these data are not mapped by the
data segment. The text segment is mapped similarly in a normal (i.e., non-kernel) memfile. How-
ever, the segment called data maps memory from the beginning of the program’s data space to
the base of the ublock. This region contains the program’s static data, the bss, the heap and the
stack. A segment called ublock maps the page containing its registers and process state.

Sometimes it is useful to define a map with a single segment mapping the region from 0 to
OXFFFFFFFF; a map of this type allows the entire file to be examined without address translation.

Registers are saved at a machine-dependent offset in the ublock. It is usually not necessary to
know this offset; the $T, $R, $f, and $F commands calculate it and display the register contents.

The $m command dumps the currently active maps. The ?m and /m commands modify the seg-
ment parameters in the textfile and memfile maps, respectively.

EXAMPLES

FILES

To set a breakpoint at the beginning of write () in extant process 27:

% db 27
:h
write:b
IC
To examine the Plan 9 kernel stack for process 27:
% db -k 27
$C

Similar, but using a kernel named test:

% db -k test 27
$C

To set a breakpoint at the entry of function parse when the local variable argc in main is equal
to 1:

parse:b *main.argc-1=X
This prints the value of argc—1 which as a side effect sets dot; when argc is one the breakpoint
will fire. Beware that local variables may be stored in registers; see the BUGS section.
Debug process 127 on remote machine kremvax:

% import kremvax /proc
% db 127
$C

/proc/*/text
/proc/*/mem
/proc/*/ctl
/proc/*/note

60

DB(1) DB(1)

SEE ALSO
acid(1), nm(1), proc(3)
SOURCE
/sys/src/cmd/db
DIAGNOSTICS
Exit status is null, unless the last command failed or returned non-null status.

BUGS
Examining a local variable with routine.name returns the contents of the memory allocated for the
variable, but with optimization (suppressed by the —N compiler flag) variables often reside in regis-
ters. Also, on some architectures, the first argument is always passed in a register.

Variables and parameters that have been optimized away do not appear in the symbol table,
returning the error bad local variable when accessed by db.

Because of alignment incompatibilities, Motorola 68000 series machines can not be debugged
remotely from a processor of a different type.

Breakpoints should not be set on instructions scheduled in delay slots. When a program stops on
such a breakpoint, it is usually impossible to continue its execution.

61

DC(1)

NAME

DC(1)

dc - desk calculator

SYNOPSIS

dc [file]

DESCRIPTION

Dc is an arbitrary precision desk calculator. Ordinarily it operates on decimal integers, but one
may specify an input base, output base, and a number of fractional digits to be maintained. The
overall structure of dc is a stacking (reverse Polish) calculator. If an argument is given, input is
taken from that file until its end, then from the standard input. The following constructions are
recognized:

number

S X
Sx

1x
Lx

QoK

<X
>X
=X

The value of the number is pushed on the stack. A number is an unbroken string of the
digits 0—9A—F or 0—9a-f. A hexadecimal number beginning with a lower case letter
must be preceded by a zero to distinguish it from the command associated with the letter.
It may be preceded by an underscore _ to input a negative number. Numbers may contain
decimal points.

/ * % A

Add +, subtract —, multiply *, divide /, remainder %, or exponentiate A the top two values
on the stack. The two entries are popped off the stack; the result is pushed on the stack in
their place. Any fractional part of an exponent is ignored.

Pop the top of the stack and store into a register named x, where x may be any character.
Under operation S register x is treated as a stack and the value is pushed on it.

Push the value in register x onto the stack. The register x is not altered. All registers start
with zero value. Under operation L register x is treated as a stack and its top value is
popped onto the main stack.

Duplicate the top value on the stack.

Print the top value on the stack. The top value remains unchanged. P interprets the top of
the stack as an text string, removes it, and prints it.

Print the values on the stack.

Exit the program. If executing a string, the recursion level is popped by two. Under opera-
tion Q the top value on the stack is popped and the string execution level is popped by that
value.

Treat the top element of the stack as a character string and execute it as a string of dc
commands.

Replace the number on the top of the stack with its scale factor.

]

Put the bracketed text string on the top of the stack.

Pop and compare the top two elements of the stack. Register x is executed if they obey the
stated relation.

Replace the top element on the stack by its square root. Any existing fractional part of the
argument is taken into account, but otherwise the scale factor is ignored.

Interpret the rest of the line as a shell command.
Clear the stack.
The top value on the stack is popped and used as the number base for further input.

62

DC(1)

EXAMPLES

?

DC(1)

Push the input base on the top of the stack.

The top value on the stack is popped and used as the number base for further output. In
bases larger than 10, each ‘digit’ prints as a group of decimal digits.

Push the output base on the top of the stack.

Pop the top of the stack, and use that value as a non-negative scale factor: the appropriate
number of places are printed on output, and maintained during multiplication, division,
and exponentiation. The interaction of scale factor, input base, and output base will be
reasonable if all are changed together.

Push the stack level onto the stack.
Replace the number on the top of the stack with its length.
A line of input is taken from the input source (usually the terminal) and executed.

Used by bc for array operations.

The scale factor set by k determines how many digits are kept to the right of the decimal point. If
s is the current scale factor, sa is the scale of the first operand, sb is the scale of the second, and b
is the (integer) second operand, results are truncated to the following scales.

+,— max(sa,sb)

* min(sa+sb , max(s,sa,sb))

/ s

% so that dividend = divisor*quotient + remainder; remainder has sign of dividend
A min(sax|b|, max(s,sa))

v max(s,sa)

Print the first ten values of n!

SOURCE
/sys/src/cmd/dc.c

SEE ALSO

DIAGNOSTICS

BUGS

[lal+dsa*plalO>y]sy
Osal
lyx

bc(1), hoc(1)

xis unimplemented, where xis an octal number: an internal error.
‘Out of headers’ for too many numbers being kept around.
‘Nesting depth’ for too many levels of nested execution.

When the input base exceeds 16, there is no notation for digits greater than F.

Past its time.

63

DD(1) DD(1)

NAME
dd - convert and copy a file

SYNOPSIS
dd [option value] ...

DESCRIPTION
Dd copies the specified input file to the specified output with possible conversions. The standard
input and output are used by default. The input and output block size may be specified to take
advantage of raw physical I/O. The options are

—if f Open file ffor input.

—of f Open file f for output.

—ibs n Setinput block size to n bytes (default 512).
—obs n Set output block size (default 512).

-bs n Set both input and output block size, superseding ibs and obs. If no conversion is
specified, preserve the input block size instead of packing short blocks into the output
buffer. This is particularly efficient since no in-core copy need be done.

—cbs n Set conversion buffer size.

—skip n Skip ninput records before copying.

—iseek n
Seek n records forward on input file before copying.
—files n
Catenate n input files (useful only for magnetic tape or similar input device).
—oseek n
Seek n records from beginning of output file before copying.
—count n
Copy only n input records.
—trunc n
By default, dd truncates the output file when it opens it; —trunc 0 opens it without
truncation.
—quiet n
By default, dd prints the number of blocks read and written once it is finished.
—quiet 1 silences this summary.
—conv ascii Convert EBCDIC to ASCII.
ebcdic Convert ASCII to EBCDIC.
ibm Like ebcdic but with a slightly different character map.
block Convert variable length ASCII records to fixed length.
unblock Convert fixed length ASCII records to variable length.
lcase Map alphabetics to lower case.
ucase Map alphabetics to upper case.
swab Swap every pair of bytes.
noerror Do not stop processing on an error.
sync Pad every input record to ibs bytes.

Where sizes are specified, a number of bytes is expected. A number may end with k or b to spec-
ify multiplication by 1024 or 512 respectively; a pair of numbers may be separated by x to indicate
a product. Multiple conversions may be specified in the style: —conv ebcdic,ucase.

Cbs is used only if ascii, unblock, ebcdic, ibm, or block conversion is specified. In the
first two cases, n characters are copied into the conversion buffer, any specified character mapping
is done, trailing blanks are trimmed and new-line is added before sending the line to the output.
In the latter three cases, characters are read into the conversion buffer and blanks are added to
make up an output record of size n. If cbs is unspecified or zero, the ascii, ebcdic, and ibm
options convert the character set without changing the block structure of the input file; the
unblock and block options become a simple file copy.

64

DD(1)

SOURCE
/sys/src/cmd/dd.c

SEE ALSO
cp(1)

DIAGNOSTICS
Dd reports the number of full + partial input and output blocks handled.

65

DD(1)

DELKEY (1) DELKEY (1)

NAME

delkey - delete keys from factotum
SYNOPSIS

delkey [—f] pattern
DESCRIPTION

Delkey shows the user each key stored in factotum(4) and matching the pattern, prompting for
whether the key should be deleted. At each prompt, typing a response beginning with y deletes
the key, typing a response beginning with q aborts the listing, and any other response skips over
the key.

The —f option disables the prompting; all keys matching the pattern are deleted.

When run on a CPU server, delkey uses the terminal’s factotum, if present, instead of the server’s
factotum.

FILES
/mnt/term/mnt/factotum
First choice for factotum to use

/mnt/factotum
Second choice

SOURCE
/rc/bin/delkey

66

DEROFF(1) DEROFF(1)

NAME

deroff, delatex - remove formatting requests

SYNOPSIS

deroff [option ...] file ...
delatex file

DESCRIPTION

Deroff reads each file in sequence and removes all nroff and troff(1) requests and non-text argu-
ments, backslash constructions, and constructs of preprocessors such as eqn(1), pic(1), and tb/(1).
Remaining text is written on the standard output. Deroff follows files included by .so and .nx
commands; if a file has already been included, a . so for that file is ignored and a . nx terminates
execution. If no input file is given, deroff reads from standard input.

The options are

—w Output a word list, one ‘word’ (string of letters, digits, and properly embedded ampersands
and apostrophes, beginning with a letter) per line. Other characters are skipped. Other-
wise, the output follows the original, with the deletions mentioned above.

- Like —w, but consider underscores to be alphanumeric rather than punctuation.

—-1i Ignore . so and .nx requests.

-ms

—mm Remove titles, attachments, etc., as well as ordinary troff constructs, from ms(6) or mm
documents.

—-ml Same as —mm, but remove lists as well.
Delatex does for tex and latex (see tex(1)) files what deroff —wi does for troff files.

SOURCE

/sys/src/cmd/deroff.c
/sys/src/cmd/tex/local/delatex.c

SEE ALSO

BUGS

troff(1), tex(1), spell(1)
These filters are not complete interpreters of troff or tex. For example, macro definitions contain-

ing \'$ cause chaos in deroff when the popular $$ delimiters for egn are in effect.
Text inside macros is emitted at place of definition, not place of call.

67

DIFF(1)

NAME

DIFF(1)

diff - differential file comparator

SYNOPSIS

DESCRI

FILES

SOURC

diff [—-abcefmnrw] filel ... file2

PTION

Diff tells what lines must be changed in two files to bring them into agreement. If one file is a
directory, then a file in that directory with basename the same as that of the other file is used. If
both files are directories, similarly named files in the two directories are compared by the method
of diff for text files and cmp(1) otherwise. If more than two file names are given, then each argu-
ment is compared to the last argument as above. The —r option causes diff to process similarly
named subdirectories recursively. When processing more than one file, diff prefixes file differ-
ences with a single line listing the two differing files, in the form of a diff command line. The —m
flag causes this behavior even when processing single files.

The normal output contains lines of these forms:

nl a n3,n4
ni,n2d n3
nl,n2 c n3,n4

These lines resemble ed commands to convert filel into file2. The numbers after the letters pertain
to file2. In fact, by exchanging ‘a’ for ‘d’ and reading backward one may ascertain equally how to
convert file2 into filel. As in ed, identical pairs where n1 = n2 or n3 = n4 are abbreviated as a sin-
gle number.

Following each of these lines come all the lines that are affected in the first file flagged by ‘<’, then
all the lines that are affected in the second file flagged by ‘>’.

The —b option causes trailing blanks (spaces and tabs) to be ignored and other strings of blanks to
compare equal. The —w option causes all white-space to be removed from input lines before
applying the difference algorithm.

The —n option prefixes each range with file: and inserts a space around the a, c, and d verbs.
The —e option produces a script of a, c and d commands for the editor ed, which will recreate file2
from filel. The —f option produces a similar script, not useful with ed, in the opposite order. It
may, however, be useful as input to a stream-oriented post-processor.

The —c option includes three lines of context around each change, merging changes whose con-
texts overlap. In this mode, diff prints — and + instead of < and > because the former are easier
to distinguish when mixed. The —a flag displays the entire file as context.

Except in rare circumstances, diff finds a smallest sufficient set of file differences.

/tmp/diff[12]

E
/sys/src/cmd/diff

SEE ALSO

cmp(1), comm(1), ed(1), idiff(1)

DIAGNOSTICS

BUGS

Exit status is the empty string for no differences, some for some, and error for trouble.

Editing scripts produced under the —e or —f option are naive about creating lines consisting of a
single ‘.’.

When running diff on directories, the notion of what is a text file is open to debate.

68

DOC2TXT(1) DOC2TXT(1)

NAME
doc2txt, doc2ps, wdoc2txt, xIs2txt, olefs, mswordstrings, msexceltables - extract printable text
from Microsoft documents

SYNOPSIS
doc2txt [file.doc]
doc2ps | file.doc]
wdoc2txt [file.doc]
x1s2txt [file.xls]
aux/olefs [—-m mtpt] file.doc
aux/mswordstrings mtpt/WordDocument
aux/msexceltables [—qaDnt] [—d delim] [—c column—-range 1 [—w worksheet—range]
mtpt/Workbook

DESCRIPTION
Doc2txt is an rc(1) script that uses olefs and mswordstrings to extract the printable text from the
body of a Microsoft Word document and write it on the standard output. Doc2ps is similar, but
emits PostScript corresponding to the document. Wdoc2txt is similar to doc2txt, but uses
plumb(1) to send the output to a new acme(1) window instead. X/s2txt performs a similar function
for Microsoft Excel documents.

Microsoft Office documents are stored in OLE (Object Linking and Embedding) format, which is a
scaled down version of Microsoft’s FAT file system. Olefs presents the contents of an MS Office
document as a file system on mtpt, which defaults to /mnt/doc. Mswordstrings or
msexceltables may then be used to parse the files inside, extracting a text stream. Msexceltables
may be given options to control the formatting of its output.

-a Attempt conversion of non-tabular sheets in the workbook (charts).
—d delim Sets the inter-field delimiter to the string delim, by default a single space.
-D Enables debugging output.

—cC range Range is a comma-separated list of column numbers and ranges. Ranges are sepa-
rated by dashes. Limit processing to just those columns named; by default all columns

are output.
-n Disables field padding to column width.
-q Disable quoting of textural fields (see quote(2).)
-t Truncate fields to the column width.

—w range Range is a comma-separated list of worksheet numbers and ranges, this limits the
sheets output using the same syntax as the —c option above. Suppressed chart pages
are always included in the sheet count.

EXAMPLE
Extract pieces of an MS Excel spreadsheet.
aux/olefs report.xls
msexceltables -q -w 1,7,9-14 -c 3-5 -n -d '@’ /mnt/doc/Workbook > rpt.txt
unmount /mnt/doc

SOURCE
/rc/bin doc2txt, doc2ps, wdoc2txt, and x1s2txt
/sys/src/cmd/aux the others

SEE ALSO

strings(1)

““Microsoft Word 97 Binary File Format’’, at Microsoft’s developer (MSDN) home page.
“LAOLA Binary Structures’”’, http://user.cs.tu-berlin.de/~schwartz/pmh
““OpenOffice.Org’s Excel Documentation”’,
http://sc.openoffice.org/excelfileformat.pdf

69

DOCTYPE(1) DOCTYPE(1)

NAME

doctype - intuit command line for formatting a document
SYNOPSIS

doctype [—n][-Tdev]]|file] ...
DESCRIPTION

Doctype examines a troff(1) input file to deduce the appropriate text formatting command and
prints it on standard output. Doctype recognizes input for troff(1), related preprocessors like
eqn(1), and the ms(6) and mm macro packages.

Option —n invokes nroff instead of troff. The —T option is passed to troff.

EXAMPLES
eval ‘{doctype chapter.?} | 1lp
Typeset files named chapter.0, chapter.1, ...

SOURCE
/rc/bin/doctype

SEE ALSO
troff(1), eqn(1), tbl(1), pic(1), grap(1), ms(6), man(6)

BUGS
In true A.l. style, its best guesses are inspired rather than accurate.

70

DU(1)

NAME

DU(1)

du - disk usage

SYNOPSIS

du [—aefhnqgstu] [—b size] [—p Sl-prefix 1] file ...]

DESCRIPTION

Du gives the number of Kbytes allocated to data blocks of named files and, recursively, of files in
named directories. It assumes storage is quantized in units of 1024 bytes (Kbytes) by default.
Other values can be set by the —b option; size is the number of bytes, optionally suffixed k to
specify multiplication by 1024. If file is missing, the current directory is used. The count for a
directory includes the counts of the contained files and directories.

The —a option prints the number of blocks for every file in a directory. Normally counts are
printed only for contained directories.

The —f option suppresses the printing of warning messages.
The —n option prints the size in bytes and the name of each file; it sets —a.

The —t option prints, in the format of du —n, the modified time of each file rather than the size.
If the options —tu are specified then the accessed time is printed.

The —q option prints, in the format of du —n, the QID path of each file rather than the size.

The —s option causes du to descend the hierarchy as always, but to print only a summary line for
each file.

The —e option causes du to print values (sizes, times or QID paths) in ‘scientific notation’ via
print(2)’s %g.

The —h option causes du to print values (sizes, times or QID paths) in scientific notation, scaled to
less than 1024, and with a suitable SI prefix (e.g., G for binary gigabytes).

The —p option causes du to print values (sizes, times or QID paths) in units of S/-prefix. Case is
ignored when looking up S/-prefix. An empty Sl-prefix corresponds to a scale factor of 1 (e.g.,
print sizes in bytes).

EXAMPLES

Print the size of /tmp in fractional binary gigabytes:

% du —sepg /tmp
.6960154 /tmp

Print the size of /tmp in bytes and in scientific notation:

% du —sep '’ /tmp
7.473408e+08 /tmp

SOURCE

/sys/src/cmd/du.c

71

ECHO(1) ECHO(1)

NAME
echo - print arguments
SYNOPSIS
echo[-nl[arg...]
DESCRIPTION

Echo writes its arguments separated by blanks and terminated by a newline on the standard out-
put. Option —n suppresses the newline.

SOURCE
/sys/src/cmd/echo.c

DIAGNOSTICS
If echo draws an error while writing to standard output, the exit status is write error. Other-
wise the exit status is empty.

72

ECP(1) ECP(1)

NAME
ecp - fast copy, handling errors

SYNOPSIS
ecp [-bcprvZ] [-B block-size] [-e max—errors] [-1 issect] [-0 ossect] [-s sector-size]
sectors input output

DESCRIPTION
Ecp copies sectors disk sectors of the specified input file to the specified output file. Ecp copies
multiple sectors (a ‘block’) at a time for speed. When ecp encounters an 1/0 error, it transfers the
current block again, assuming the file is seekable, one sector at a time, prints the sector number(s)
of the error(s), and continues copying.

Options are:

-b reblock input on short reads; this was used mainly when reading a pipe on standard input on
4.2+BSD systems.

-B sets the block size (16,384 bytes by default) to block-size.
-c ask for confirmation on /dev/cons before starting the copy.

-e sets a maximum number of consecutive 1/O errors to permit at the beginning of the copy
before quitting to max—errors. Lots of consecutive errors may indicate a deeper problem, such
as missing media. By default there is no limit.

-i seeks to sector issect (assuming zero-origin) before beginning input.
-0 seeks to sector ossect (assuming zero-origin) before beginning output.
-p print reassuring progress reports; helpful mainly when dealing with cranky hardware.

-T copy sector groups in reverse order, assuming the files are seekable; this is most useful when
input and output overlap.

-s sets the sector size (512 bytes by default) to sector-size.

-v verify the copy by rereading the input and output files after copying all sectors. This is
intended to force the disk to deliver the actual data written on it rather than some cached
copy. The locations of any differences are printed.

-Z ‘Swizzle’ the input: stir the bits around in some fashion. Intended for diagnosing bad disks by
copying a disk to itself a few times with swizzling on (to defeat caching in operating systems
or disk controllers).

SEE ALSO
fep in cp(1), dd(1), dup(3)

BUGS
-i, -0, -, -v and error retries only work on devices capable of seeking.

The set of options reflects decades of experience dealing with troublesome hardware.

If the input file is a tape and the last record on the tape before a file mark is less than blocksize
bytes long, then ecp will read through past the file mark and into the next file.

73

ED(1)

NAME

ED(1)

ed - text editor

SYNOPSIS

ed[—-]1[-o]l[file]

DESCRIPTION

Ed is a venerable text editor.

If a file argument is given, ed simulates an e command (see below) on that file: it is read into ed’s
buffer so that it can be edited. The options are

- Suppress the printing of character counts by e, r, and w commands and of the confirming
I by ! commands.

) (for output piping) Write all output to the standard error file except writing by w com-
mands. If no file is given, make /fd/1 the remembered file; see the e command below.

Ed operates on a ‘buffer’, a copy of the file it is editing; changes made in the buffer have no effect
on the file until a w (write) command is given. The copy of the text being edited resides in a tem-
porary file called the buffer.

Commands to ed have a simple and regular structure: zero, one, or two addresses followed by a
single character command, possibly followed by parameters to the command. These addresses
specify one or more lines in the buffer. Missing addresses are supplied by default.

In general, only one command may appear on a line. Certain commands allow the addition of text
to the buffer. While ed is accepting text, it is said to be in input mode. In this mode, no commands
are recognized; all input is merely collected. Input mode is left by typing a period . alone at the
beginning of a line.

Ed supports the regular expression notation described in regexp(6). Regular expressions are used
in addresses to specify lines and in one command (see s below) to specify a portion of a line which
is to be replaced. If it is desired to use one of the regular expression metacharacters as an ordi-
nary character, that character may be preceded by ‘\’. This also applies to the character bounding
the regular expression (often /) and to \ itself.

To understand addressing in ed it is necessary to know that at any time there is a current line.
Generally, the current line is the last line affected by a command; however, the exact effect on the
current line is discussed under the description of each command. Addresses are constructed as
follows.

1. The character ., customarily called ‘dot’, addresses the current line.

2 The character $ addresses the last line of the buffer.

3. A decimal number n addresses the n-th line of the buffer.

4 ’x addresses the line marked with the name x, which must be a lower-case letter. Lines

are marked with the k command.

5. A regular expression enclosed in slashes (/) addresses the line found by searching forward
from the current line and stopping at the first line containing a string that matches the reg-
ular expression. If necessary the search wraps around to the beginning of the buffer.

6. A regular expression enclosed in queries ? addresses the line found by searching backward
from the current line and stopping at the first line containing a string that matches the reg-
ular expression. If necessary the search wraps around to the end of the buffer.

7. An address followed by a plus sign + or a minus sign — followed by a decimal number
specifies that address plus (resp. minus) the indicated number of lines. The plus sign may
be omitted.

8. An address followed by + (or —) followed by a regular expression enclosed in slashes speci-

fies the first matching line following (or preceding) that address. The search wraps around
if necessary. The + may be omitted, so 0/x/ addresses the first line in the buffer with an
x. Enclosing the regular expression in ? reverses the search direction.

74

ED(1)

ED(1)

9. If an address begins with + or — the addition or subtraction is taken with respect to the cur-
rent line; e.g. —5 is understood to mean .—5.

10. If an address ends with + or —, then 1 is added (resp. subtracted). As a consequence of

this rule and rule 9, the address — refers to the line before the current line. Moreover, trail-
ing + and — characters have cumulative effect, so —— refers to the current line less 2.

11. To maintain compatibility with earlier versions of the editor, the character A in addresses is
equivalent to —.

Commands may require zero, one, or two addresses. Commands which require no addresses
regard the presence of an address as an error. Commands which accept one or two addresses
assume default addresses when insufficient are given. If more addresses are given than a com-
mand requires, the last one or two (depending on what is accepted) are used.

Addresses are separated from each other typically by a comma ,. They may also be separated by
a semicolon ;. In this case the current line is set to the previous address before the next address
is interpreted. If no address precedes a comma or semicolon, line 1 is assumed; if no address fol-
lows, the last line of the buffer is assumed. The second address of any two-address sequence
must correspond to a line following the line corresponding to the first address.

In the following list of ed commands, the default addresses are shown in parentheses. The paren-
theses are not part of the address, but are used to show that the given addresses are the default.
‘Dot’ means the current line.

(.)a

<text>
Read the given text and append it after the addressed line. Dot is left on the last line input,
if there were any, otherwise at the addressed line. Address O is legal for this command;
text is placed at the beginning of the buffer.

(., .)b[+-]lpagesize][plnl]
Browse. Print a ‘page’, normally 20 lines. The optional + (default) or — specifies whether
the next or previous page is to be printed. The optional pagesize is the number of lines in
a page. The optional p, n, or 1 causes printing in the specified format, initially p. Page-
size and format are remembered between b commands. Dot is left at the last line dis-
played.

(.,.)c

<text>
Change. Delete the addressed lines, then accept input text to replace these lines. Dot is
left at the last line input; if there were none, it is left at the line preceding the deleted lines.

(.,.)d
Delete the addressed lines from the buffer. Dot is set to the line following the last line
deleted, or to the last line of the buffer if the deleted lines had no successor.

e filename
Edit. Delete the entire contents of the buffer; then read the named file into the buffer. Dot
is set to the last line of the buffer. The number of characters read is typed. The file name
is remembered for possible use in later e, r, or w commands. If filename is missing, the
remembered name is used.

E filename
Unconditional e; see ‘q’ below.

f filename
Print the currently remembered file name. If filename is given, the currently remembered
file name is first changed to filename.

(1,9%)g/regular expression/command list

(1,9%)g/regular expression/

(1, $)g/regular expression
Global. First mark every line which matches the given regularexpression. Then for every
such line, execute the command list with dot initially set to that line. A single command or
the first of multiple commands appears on the same line with the global command. All
lines of a multi-line list except the last line must end with \. The ‘.’ terminating input

75

ED(1)

ED(1)

mode for an a, i, ¢ command may be omitted if it would be on the last line of the com-
mand list. The commands g and v are not permitted in the command list. Any character
other than space or newline may be used instead of / to delimit the regular expression.
The second and third forms mean g/ regular expression/p.

(.)1i

<text>
Insert the given text before the addressed line. Dot is left at the last line input, or, if there
were none, at the line before the addressed line. This command differs from the a com-
mand only in the placement of the text.

(.,.+1)J
Join the addressed lines into a single line; intermediate newlines are deleted. Dot is left at
the resulting line.

(.)kx Mark the addressed line with name x, which must be a lower-case letter. The address form
> x then addresses this line.

(.,.)1
List. Print the addressed lines in an unambiguous way: a tab is printed as \t, a backspace
as \b, backslashes as \\\, and non-printing characters as a backslash, an x, and four hex-
adecimal digits. Long lines are folded, with the second and subsequent sub-lines indented
one tab stop. If the last character in the line is a blank, it is followed by \n. An 1 may be
appended, like p, to any non-1/O command.

(.,.)ma
Move. Reposition the addressed lines after the line addressed by a. Dot is left at the last
moved line.

(.,.)n

Number. Perform p, prefixing each line with its line number and a tab. An n may be
appended, like p, to any non-1/0 command.

(.,.)p
Print the addressed lines. Dot is left at the last line printed. A p appended to any non-1/0
command causes the then current line to be printed after the command is executed.

(.,.)P
This command is a synonym for p.

q Quit the editor. No automatic write of a file is done. A g or e command is considered to
be in error if the buffer has been modified since the last w, q, or e command.

Q Quit unconditionally.

($)r filename
Read in the given file after the addressed line. If no filename is given, the remembered file
name is used. The file name is remembered if there were no remembered file name
already. If the read is successful, the number of characters read is printed. Dot is left at
the last line read from the file.

(., .)sn/regular expression/replacement/
(., .)sn/regular expression/replacement/g
(., .)sn/regular expression/replacement

Substitute. Search each addressed line for an occurrence of the specified regular expres-
sion. On each line in which n matches are found (n defaults to 1 if missing), the nth
matched string is replaced by the replacement specified. If the global replacement indica-
tor g appears after the command, all subsequent matches on the line are also replaced. It
is an error for the substitution to fail on all addressed lines. Any character other than
space or newline may be used instead of / to delimit the regular expression and the
replacement. Dot is left at the last line substituted. The third form means
sn/ regular expression / replacement/p. The second / may be omitted if the replacement
is empty.

An ampersand & appearing in the replacement is replaced by the string matching the regu-
lar expression. The characters \ n, where n is a digit, are replaced by the text matched by
the n-th regular subexpression enclosed between (and). When nested parenthesized

76

ED(1) ED(1)

subexpressions are present, n is determined by counting occurrences of (starting from
the left.

A literal &, /, \ or newline may be included in a replacement by prefixing it with \.

(.,.)ta
Transfer. Copy the addressed lines after the line addressed by a. Dot is left at the last line
of the copy.

(.,.)u
Undo. Restore the preceding contents of the first addressed line (sic), which must be the
last line in which a substitution was made (double sic).

(1,9%)v/regular expression/command list
This command is the same as the global command g except that the command list is exe-
cuted with dot initially set to every line except those matching the regular expression.
(1,9%)w filename
Write the addressed lines to the given file. If the file does not exist, it is created with mode
666 (readable and writable by everyone). If no filename is given, the remembered file
name, if any, is used. The file name is remembered if there were no remembered file name
already. Dot is unchanged. If the write is successful, the number of characters written is
printed.
(1, %)W filename
Perform w, but append to, instead of overwriting, any existing file contents.

($)= Print the line number of the addressed line. Dot is unchanged.

! shell command
Send the remainder of the line after the ! to rc(1) to be interpreted as a command. Dot is
unchanged.

(.+1) <newline>
An address without a command is taken as a p command. A terminal / may be omitted
from the address. A blank line alone is equivalent to .+1p; it is useful for stepping
through text.

If an interrupt signal (DEL) is sent, ed prints a ? and returns to its command level.
When reading a file, ed discards NUL characters and all characters after the last newline.

FILES

/tmp/e*

ed.hup work is saved here if terminal hangs up
SOURCE

/sys/src/cmd/ed.c
SEE ALSO

sam(1), sed(1), regexp(6)

DIAGNOSTICS
? name for inaccessible file; ?TMP for temporary file overflow; ? for errors in commands or other
overflows.

77

EMACS(1)

NAME
emacs - editor macros

SYNOPSIS
emacs [options]

DESCRIPTION

This page intentionally left blank.

SOURCE
MIT

SEE ALSO
sam(1), vi(1)

BUGS
Yes.

78

EMACS(1)

EQN(1) EQN(1)

NAME

egn - typeset mathematics

SYNOPSIS

eqn [option ... 1 [file ...]

DESCRIPTION

Egn is a troff(1) preprocessor for typesetting mathematics on a typesetter. Usage is almost always
egn file ... | troff

If no files are specified, eqn reads from the standard input. Egn prepares output for the typesetter
named in the —Tdest option (default —Tutf; see troff(1)). When run with other preprocessor fil-
ters, eqn usually comes last.

A line beginning with .EQ marks the start of an equation; the end of an equation is marked by a
line beginning with .EN. Neither of these lines is altered, so they may be defined in macro pack-
ages to get centering, numbering, etc. It is also possible to set two characters as ‘delimiters’; text
between delimiters is also egn input. Delimiters may be set to characters x and y with the option
—dxy or (more commonly) with delim xy between .EQ and .EN. Left and right delimiters may
be identical. (They are customarily taken to be 3). Delimiters are turned off by delim off.
All text that is neither between delimiters nor between .EQ and .EN is passed through
untouched.

Tokens within egn are separated by spaces, tabs, newlines, braces, double quotes, tildes or cir-
cumflexes. Braces {} are used for grouping; generally speaking, anywhere a single character like x
could appear, a complicated construction enclosed in braces may be used instead. Tilde ~ repre-
sents a full space in the output, circumflex A half as much.

Subscripts and superscripts are produced with the keywords sub and sup. Thus x suzb 2i
makes x;,, a sub i sup 2 produces a?,and e sup {xX sup 2 + y sup 2} gives eX 'V,

a

Over makes fractions: a over b yields 5

Sqgrt produces square roots: 1 over sqrt {ax sup 2 +bx+c} resultsin

axZ+bx+c
n
The keywords from and to introduce lower and upper limits on arbitrary things: lim 3 x; is made
n— o 0

with 1im from {n —-> inf} sum from 0 to n x sub i.
Left and right brackets, braces, etc., of the right height are made with 1eft and right: left [

O 20
X sup 2 + y sup 2 over alpha right] ~=~1 produces x2+Y_ 0= 1. The

o %0
right clause is optional. Legal characters after 1left and right are braces, brackets, bars, c
and £ for ceiling and floor, and "" for nothing at all (useful for a right-side-only bracket).

Vertical piles of things are made with pile, 1pile, cpile, and rpile: pile {a above b
a
above c} produces b. There can be an arbitrary number of elements in a pile. 1pile left-

c

justifies, pile and cpile center, with different vertical spacing, and rpile right justifies.

Matrices are made with matrix: matrix { lcol { x sub i above y sub 2 } ccol
x; 1

{ 1 above 2 } } produces v, 2 In addition, there is rcol for a right-justified column.

Diacritical marks are made with prime, dot, dotdot, hat, tilde, bar, under, vec, dyad,
and under: x sub 0 sup prime = f(t) bar + g(t) under is xp=f(D)+g(1), and x
vec = y dyadis x=Y.

Sizes and fonts can be changed with prefix operators size n, size +n, fat, roman, italic,
bold, or font n. Size and fonts can be changed globally in a document by gsize nand gfont
n, or by the command-line arguments —sn and —fn.

Normally subscripts and superscripts are reduced by 3 point sizes from the previous size; this may
be changed by the command-line argument —pn.

79

EQN(1) EQN(1)

Successive display arguments can be lined up. Place mark before the desired lineup point in the
first equation; place 1ineup at the place that is to line up vertically in subsequent equations.

Shorthands may be defined or existing keywords redefined with define: define thing %
replacement % defines a new token called thing which will be replaced by replacement whenever it
appears thereafter. The % may be any character that does not occur in replacement.

Keywords like sum (3), int (f), inf (o), and shorthands like >= (=), —> (=), and != (#)
are recognized. Greek letters are spelled out in the desired case, as in alpha or GAMMA. Mathe-
matical words like sin, cos, log are made Roman automatically. Troff(1) four-character
escapes like \ (1h (=) can be used anywhere. Strings enclosed in double quotes " " are passed
through untouched; this permits keywords to be entered as text, and can be used to communicate
with troff when all else fails.

FILES
/sys/lib/troff/font/devutf font descriptions for PostScript
SOURCE
/sys/src/cmd/eqgn
SEE ALSO
troff(1), tbl(1)
J. F. Ossanna and B. W. Kernighan, “Troff User’s Manual’’.
B. W. Kernighan and L. L. Cherry, “Typesetting Mathematics—User’s Guide”’, Unix Research System
Programmer’s Manual, Tenth Edition, Volume 2.
BUGS

To embolden digits, parens, etc., it is necessary to quote them, as in bold "12.3".

80

EXPECT(1) EXPECT(1)

NAME
at, drain, expect, pass - dialer scripting tools

SYNOPSIS
dial/at[—-q][—t seconds] atcommand
dial/expect [—-iq][—t seconds] goodstring [badstring...]
dial/drain
dial/pass|[—q]

DESCRIPTION
These commands are used to write telephone dialing scripts, mostly for PPP sessions. They all
expect standard input and output to be connected to a communications device, e.g, a serial line to
a modem. They communicate with the user using /dev/cons.

At sends atcommand to the modem prefixed with the string at. It then reads from the modem
expecting an AT response. At will return success if it gets and OK of CONNECT response. Other-
wise it will return the response as an error status. The options are:

-t set the timeout to seconds. The default is 300.

-q don’t write to /dev/cons what is read from standard in. The default is to copy every-
thing through.

Expect reads standard input looking for one of the strings given as arguments. Reading the first
string causes a successul exit status. Reading any of the others causes an exit status equal to the
string. The command also terminates on a timeout. The options are:

-t set the timeout to seconds. The default is 300.
-1 ignore case when doing the matches.

—-q don’t write to /dev/cons what is read from standard in. The default is to copy every-
thing through.

Pass copies input from /dev/cons to standard output. It terminates on a newline. The only flag
is —q and means the same as it does for expect.

Drain discards any input waiting on standard input. It is used to sync up the stream at the start of
dialing or after an error.

EXAMPLE
The following rc script dials out through a Hayes compatible modem on /dev/eial and lets the
user type in a user name and password before starting ppp.
#!/bin/rc
dev=/dev/eial
telno=18005551212

fn initfn {

dial/drain
echo +++
dial/at zhO
}
fn dialfn {
dial/drain
dial/at dtA$telno
i3
{

set up uart
if(test —e $devActl){
echo —-n bA$baud

echo —n ml # cts/rts flow control
echo —-n 64000 # big buffer

echo -n nl # nonblocking writes
echo -n ril # rts on

81

EXPECT(1)

echo —n dl1
echo —n cl
} > $devActl

dtr on
handup when we lose dcd

get the modem’s attention

while(! dnitfn)
sleep 1

dial
while(! dialfn)
sleep 30

if(! dial/expect —-it 60
echo can’’t connect
exit connect

}

dial/pass

if(! dial/expect —-it 60
echo can’’t connect
exit connect

}
dial/pass

if(! dial/expect -t 60 ’

echo can’’t connect
exit connect

+
echo ppp

’username:’){
>[1=2]

"password:’){
>[1=2]

ppp or telnet:’){
>[1=2]

dial/expect —t 5 something

echo connected >[1=2]

start ppp
ip/ppp $primary -f

} < $dev > $dev

FILES

/rc/bin/ipconf/* example dialer scripts for ppp

SOURCE

/sys/src/cmd/dial/*.c

SEE ALSO

ppp(8), telco(4)

82

EXPECT(1)

FACES(1) FACES(1)

NAME

faces, seemail, vwhois - mailbox interface

SYNOPSIS

faces [—-ih][—m maildir]
seemail
vwhois person ...

DESCRIPTION

FILES

The faces command monitors incoming mail and displays in its window a representation of the
user’s mail box using a small image for each message. The image is typically a portrait of the
sender. Which image to display is determined by two directories /usr/$user/lib/face and /lib/face.
Entries in /usr/$user/lib/face take priority over those in /lib/face. See face(6), for how these direc-
tories are organised.

If the user is running plumber(4), faces reacts to plumb messages to the seemail port, typically
from upas/fs, and is thus notified of message additions and deletions.

Right-clicking on a message icon causes that message to be ‘plumbed’ to showmail. A typical
plumb action will be to display the message, such as by the rule

plumb start window mail -s $0
The acme(1) mail reader listens to the showmail port automatically.

If the user is not running plumber, faces reads the log file and right-clicking has no effect.

If arrows are visible, clicking on them will scroll the display. Middle-clicking on the arrows scrolls
to the end.

Starting faces with the —i flag causes faces to read the messages in /mail/fs/mbox — or
the mailboxes specified with the —m flag — upon startup.

The —m option directs faces to watch for messages arriving in maildir instead of
/mail/fs/mbox. Multiple —m flags may be used to watch multiple mailboxes.

The —h flag causes a different, venerable behavior in which the window displays the history of
messages received rather than the current state of the mail box. In particular, faces are not
removed from the screen when messages are deleted. Also, in this mode clicking button 1 in the
display will clear the window.

Seemail is an rc(1) script that invokes faces —h.
Vwhois tells faces to display the icons of the named persons, without sending a message.

/mail/fs/mbox mail directory.

SOURCE

/sys/src/cmd/faces
/rc/bin/seemail
/rc/bin/vwhois

SEE ALSO

mail(1), marshal(1), nedmail(1), plumber(4), face(6), plumb(6)

83

FACTOR(1) FACTOR(1)

NAME
factor, primes - factor a number, generate large primes

SYNOPSIS
factor [number]

primes start | finish]

DESCRIPTION
Factor prints number and its prime factors, each repeated the proper number of times. The num-
ber must be positive and less than 2°4 (about 1.8><1016).

If no number is given, factor reads a stream of numbers from the standard input and factors them.
It exits on any input not a positive integer. Maximum running time is proportional to vn.

Primes prints the prime numbers ranging from start to finish, where start and finish are positive
numbers less than 2°°. If finish is missing, primes prints without end; if start is missing, it reads
the starting number from the standard input.

SOURCE
/sys/src/cmd/factor.c
/sys/src/cmd/primes.c

84

FEDEX(1) FEDEX(1)

NAME
fedex, ups, usps - track shipments

SYNOPSIS
fedex tracking—number
ups tracking—-number
usps tracking—-number

DESCRIPTION
Fedex writes available shipment details for the given Federal Express 12-digit tracking—number on
the standard output. Ups is similar, but takes a United Parcel Service 18-digit tracking—number .
Usps takes a US Post Office tracking—number .

SOURCE
/rc/bin

BUGS
Redesigns of the source website can break these programs.

85

FILE(1)

NAME

FILE(T)

file - determine file type

SYNOPSIS

file [-m][file ...]

DESCRIPTION

File performs a series of tests on its argument files in an attempt to classify their contents by lan-
guage or purpose. If no arguments are given, the classification is performed on standard input.

If the —m flag is given, file outputs an appropriate MIME Content—Type specification describing
the type and subtype of each file.

The file types it looks for include directory, device file, zero-filled file, empty file, Plan 9 exe-
cutable, PAC audio file, cpio archive, tex dvi file, archive symbol table, archive, rc script, sh
script, PostScript, troff output file for various devices, mail box, GIF, FAX, object code, C and
Alef source, assembler source, compressed files, encrypted file, English text, compressed image,
image, subfont, and font.

If a file has no apparent format, file looks at the character set it uses to classify it according to
ASCIl, extended ASCII, Latin ASCII, or UTF holding one or more of the following blocks of the Unicode
Standard: Extended Latin, Greek, Cyrillic, Armenian, Hebrew, Arabic, Devanagari, Bengali, Gur-
mukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam, Thai, Lao, Tibetan, Georgian, Japanese,
Chinese, or Korean.

If all else fails, file decides its input is binary.

SOURCE

BUGS

/sys/src/cmd/file.c

It can make mistakes.

86

FILTER(1) FILTER(1)

NAME

filter, list, deliver, token, vf - filtering mail

SYNOPSIS

upas/filter [-bh] rcvr mailbox [regexp file] ...
upas/list [—d] add | check patternfile addressfile ...
upas/deliver recipient fromfile mbox

upas/token key [tokenfile]

upas/vf [-r][—s savefile]

DESCRIPTION

A user may filter all incoming mail by creating a world readable/executable file
/mail/box/username/pipeto. |If the file is a shell script, it can use the commands
described here to implement a filter.

Filter provides simple mail filtering. The first two arguments are the recipient’s address and mail-
box, that is, the same arguments provided to pipeto. The remaining arguments are all pairs of
a regular expression and a file name. With no flags, the sender’s address is matched against each
regular expression starting with the first. If the expression matches, then the message is delivered
to the file whose name follows the expression. The file must be world writable and should be
append only. A message that matches none of the expressions is delivered into the user’s stan-
dard mail box.

By default, filter matches each regular expression against the message’s sender. The —h flag
causes filter to match against the entire header, and the —b flag causes filter to match against the
entire message (header and body).

For example, to delete any messages of precedence bulk, place in your pipeto file:
/bin/upas/filter -h $1 $2 ’'Precedence: bulk’ /dev/null

Three other commands exist which, combined by an rc(1) script, allow you to build your own filter.

List takes two verbs; check and add. Check directs list to check each address contained in the

addressfiles against a list of patterns in patternfile. Patterns come in four forms:

~regular—expression If any address matches the regular expression, list returns successfully.

=string. If any address exactly matches string, list returns successfully.

I ~regular—expression If any address matches the regular expression and no other address
matches a non ‘!’ rule, list returns error status "Imatch".

I =string If any address exactly matches string and no other address matches a non
‘" rule, list returns error status "!match".

If no addresses match a pattern, list returns "no match".
The pattern file may also contain lines of the form
#include filename

to allow pattern files to include other pattern files. All pattern matches are case insensitive. List
searches the pattern file (and its includes) in order. The first matching pattern determines the
action.

List add directs list to add a pattern to patternfile for each address in the addressfiles that doesh’t
already match a pattern.

Token, with only one argument, prints to standard output a unique token created from the current
date and key. With two arguments, it checks token against tokens created over the last 10 days
with key. If a match is found, it returns successfully.

Deliver delivers into mail box mbox the message read from standard input. It obeys standard mail
file locking and logging conventions.

/sys/src/cmd/upas/filterkit/pipeto.sample is a sample pipeto using the filter
kit.

87

FILTER(1) FILTER(1)

FILES

A sample pipefrom, /sys/src/cmd/upas/filterkit/pipefrom. sample, is provided
which adds all addresses of your outgoing mail to your pattern file. You should copy it into a
directory that normally gets bound by your profile onto /bin.

Vf (virus filter) takes a mail message as standard input and searches for executable MIME attach-
ments, either rewriting them to be non-executable or rejecting the message. The behavior
depends on the attachment’s file name extension and MIME content type.
/sys/lib/mimetype contains the list of known extensions and MIME content types. The fifth
field of each line specifies the safety of a particular file type: y (yes), m (maybe; treated same as
yes), n (no), p (previous), or r (reject). Vf allows attachments with safety y or m to pass through
unaltered. Attachments with safety n both are wrapped in extra MIME headers and have
.suspect appended to their file names, to avoid automatic execution by mail readers. Attach-
ments with safety r (currently, .bat, .com, .exe, and .scr, all Microsoft executable exten-
sions) are taken as cause for the entire message to be rejected. A safety of p (used for the
X—gunzip mime type) causes the previous extension to be tested, so that x.tar.gz is treated
the same as x. tar.

If /mail/lib/validateattachment exists and is executable, v runs it on all attachments
with safety n (attachments it would normally sanitize). If validateattachment’s exit status contains
the string discard, vf rejects the entire message. If the status contains the string accept, vf
does not sanitize the attachment. Otherwise, vf sanitizes the attachment as before. The standard
validateattachment uses file(1) to determine the file type. It accepts text and image files and dis-
cards messages containing executables or zip (see gzip(1)) archives of executables.

The —r option causes vf not to sanitize MIME attachments, but instead to reject messages it deter-
mines to be viruses. The —s option causes vf to log all attachments of safety r in the mail box
savefile.

/mail/box/*/pipeto mail filter
/sys/lib/mimetype MIME content types
/mail/lib/validateattachment attachment checker

SOURCE

/sys/src/cmd/upas/send
/sys/src/cmd/upas/filterkit
/sys/src/cmd/upas/vf

SEE ALSO

aliasmail(8), faces(1), mail(1), marshal(1), mimgr(1), nedmail(1), qer(8), rewrite(6), send(8),
smtp(8), upasfs(4)

88

FMT(1)

NAME

FMT(1)

fmt, htmlfmt - simple text formatters

SYNOPSIS

fmt [option ... 1] file ...]
htmlfmt[-a][—c charset] [—u url]]| file ...]

DESCRIPTION

SOURC

BUGS

Fmt copies the given files (standard input by default) to its standard output, filling and indenting
lines. The options are

—1 n Output line length is n, including indent (default 70).
—w n A synonym for —1.

—i n Indent n spaces (default 0).

-Jj Do not join short lines: only fold long lines.

Empty lines and initial white space in input lines are preserved. Empty lines are inserted between
input files.

Fmt is idempotent: it leaves already formatted text unchanged.

Htmlfmt performs a similar service, but accepts as input text formatted with HTML tags. It accepts
fmt's —1 and —w flags and also:

-a Normally htmlfmt suppresses the contents of form fields and anchors (URLs and image
files); this flag causes it to print them, in square brackets.

—C charset
change the default character set from iso-8859-1 to charset. This is the character set
assumed if there isn’t one specified by the html itself in a <meta> directive.

—u url Use url as the base URL for the document when displaying anchors; sets —a.

E
/sys/src/cmd/fmt.c

/sys/src/cmd/htmlfmt

Htmlfmt makes no attempt to render the two-dimensional geometry of tables; it just treats the
table entries as plain, to-be-formatted text.

89

FORTUNE(1) FORTUNE(1)

NAME

fortune - sample lines from a file
SYNOPSIS

fortune [file]
DESCRIPTION

Fortune prints a one-line aphorism chosen at random. If a file is specified, the saying is taken
from that file; otherwise it is selected from /sys/games/1ib/fortunes.

FILES
/sys/games/1lib/fortunes
/sys/games/lib/fortunes.index fastlookup table, maintained automatically

SOURCE
/sys/src/cmd/fortune.c

90

FREQ(T1) FREQ(1)

NAME

freq - print histogram of character frequencies
SYNOPSIS

freq [—cdorx]| file...]
DESCRIPTION

Freq reads the given files (default standard input) and prints histograms of the character frequen-
cies. By default, freq counts each byte as a character; under the —r option it instead counts UTF
sequences, that is, runes.

Each non-zero entry of the table is printed preceded by the byte value, in decimal, octal, hex, and
Unicode character (if printable). If any options are given, the —d, —x, —o, —c flags specify a sub-
set of value formats: decimal, hex, octal, and character, respectively.

SOURCE
/sys/src/cmd/freq.c

SEE ALSO
utf(6), wc(l)

91

GAMES(1)

NAME

GAMES(1)

4s, 5s, festoon, juggle, life, mahjongg, memo, sokoban, sudoku - time wasters

SYNOPSIS
games/4s
games/5s

games/festoon [—pet][sentences [percent—invented—nouns 1]
games/juggle [—d delay] [—h hands][start] pattern

games/1ife startfile

games/mahjongg [—c][—f][—b background][—t tileset] [—1 layout]
games/memo [—h]

games/sokoban [level]

games/sudoku

DESCRIPTION

There are a few games in /bin/games:

4s, 5s

festoon

juggle

life

mahjongg

memo

sokoban

Try to fill complete rows using 4-square or 5-square tiles. Move tiles left or right
by moving the mouse. Rotate tiles with buttons 1 and 3. Drop tiles for more points
with button 2 or the space bar. Keys a and j move left, s and k rotate left, d and
1 rotate right, £ and ; move right. z, p and Esc toggle suspend/resume. g, Del
and control-D quit.

Generate an official-looking but utterly nonsensical bureaucratic report as pic |
egn | tbl | troff —mm input. Options —p, —e and —t add gibberish dia-
grams, equations and tables.

Display the juggling pattern using the optional initial start pattern. The number of
hands involved (default 2) can be specified with —h, and delay can be used to speed
up or slow down the action (default is 20). Try the pattern 333333441333333 or
333353505151512333333 or YWUSQOMKIGECA (see
http://seehuhn.de/jong/theory.html).

Play the game of Life, given an initial position. There is a library of interesting ini-
tial positions; the library is consulted if startfile cannot be found.

Remove all tiles from the board. Click on tiles with the same face that are not
blocked by others. A blocked tile is one that is partially or fully covered on top or
has neighbouring tiles to the left and right. The game finishes when either all tiles
are gone or there are no more moves left. The arguments are for changing back-
ground (-b), tile (-t) and layout (1) images; —-c selects a true-color buffer image, for
use with drawterm or in case selecting a tile obscures it completely; -f causes
mahjongg to indicate non-blocked tiles on mouse-over. The N key will generate a
new level, R restarts the current one. Q and Del quit, H gives a hint, either trying to
match the currently selected tile, or if no tile is selected finding out the first avail-
able tile. U and Bksp undo the last move, C tries to solve the level.

Remove all tiles from the board. At first, pictures of various Bell Labs employees,
Lucent Technologies’ logo, and Glenda will appear. Memorize the sequence, then
click to hide them and begin. Use the mouse to select two tiles. If they are the
same, the tiles will disappear, otherwise the tiles will flip back and you will get a
chance to try again. Button 3 generates a memu allowing you to restart, switch
between easy and hard modes, and exit. The —h option sets the game to hard
mode. Once the game has been completed, a message pops up with how long it
took to win. Use the button 3 menu to choose a mode, or click to play again.

Guide Glenda through a room full of walls, pebbles and holes to put the pebbles in.
Your goal is to arrange all pebbles into holes by pushing them around, but you can
only push a pebble if there is no wall or another pebble blocking the way. Arrow
keys move Glenda up-down-left-right. N and P keys switch between the next and
previous levels, R restarts the current level. Del and Q quit. Button 3 invokes a
menu to restart the current level, load different level sets, and en- and disable ani-
mation of multi-step moves. Button 2 lets you change between levels. Button 1 lets

92

GAMES(1) GAMES(1)

you do multi-step moves and pushes, by clicking it on the destination where you
want Glenda to go. Glenda will only move if it can reach the destination. For a
multi-step push the pebble must be next to Glenda, the destination must be on the
same row or column, and there must be a free place next to the destination where
the pebble can be pushed to. Otherwise, if possible, Glenda will walk to the desti-
nation without pushing the pebble. Sokoban accepts a level file as its argument.

sudoku Sudoku is a puzzle game from Japan. The goal of the game is to fill the numbers 1
to 9 in all squares of the 9x9 board following a few simple rules: no digit should
repeat on the same row and column, and no digit should repeat in the same 3x3
boxes outlined with thicker lines. The board is initially filled with a partial solution
which can be used for inferring digits for the empty squares. The top row of the
board contains the digits 1 through 9, clicking on one of those digits selects that
number for placement on the board, clicking it again will deselect that digit. Click-
ing on an empty square will then affix the square with the selected digit or, if no
digit is selected empty the square.

Button 3 presents a menu with the following options:
New autogenerate a new, random board
Check mark in red any digits not placed according to the rules
Solve present the board’s solution
Clear clear the board to its starting (or last loaded) state

Save save the current board to /tmp/sudoku—save
Load load the last saved board from /tmp/sudoku—save
Print print the current board and solution in a format suitable for addition in

the sudoku library to /tmp/sudoku—-board
Offline pretty-print the board for off-line solving to /tmp/sudoku—print
Exit quit the game

Button 2 presents a list of sudoku boards of varying degrees of difficulty from
/sys/games/1ib/sudoku/boards.

Pressing the Q key quits sudoku.

FILES
/sys/games/1ib/[45]scores score files of 4s and 5s
/sys/games/1lib/life/* interesting starting positions
/sys/games/lib/mahjongg/* image sprites, levels and backgrounds used by mahjongg
/1lib/face/* tiles for memo
/sys/games/1lib/sokoban/* image sprites and levels used by sokoban
/sys/games/1lib/sudoku/* images and boards used by sudoku

SOURCE
/sys/src/games

BUGS

In 45 and 5s, mouse warping (when the game is resumed, and when a new tile appears) does not
happen when the mouse cursor is outside the game window. Those who prefer to use the key-
board without the mouse cursor blocking the view (or being warped all the time) may consider this
a feature.

93

GRAP(1

NAME

) GRAP(1)

grap - pic preprocessor for drawing graphs

SYNOPSIS

grap | file ...]

DESCRIPTION

Grap is a pic(1) preprocessor for drawing graphs on a typesetter. Graphs are surrounded by the
troff ‘commands’ .G1 and .G2. Data are scaled and plotted, with tick marks supplied automati-
cally. Commands exist to modify the frame, add labels, override the default ticks, change the plot-
ting style, define coordinate ranges and transformations, and include data from files. In addition,
grap provides the same loops, conditionals, and macro processing that pic does.

frame ht ewid e top dotted ...: Set the frame around the graph to specified ht and wid,
default is 2 by 3 (inches). The line styles (dotted, dashed, invis, solid (default)) of the
sides (top, bot, 1left, right) of the frame can be set independently.

label side "a label" "as a set of strings" adjust: Place label on specified side;
default side is bottom. adjust is up (or down left right) expr to shift default position;
width expr sets the width explicitly.

ticks side in at optname expr, expr, Put ticks on side at expr, ..., and label with "expr". If
any expr is followed by "...", label tick with "...", and turn off all automatic labels. If "..." contains
%f’s, they will be interpreted as printf formatting instructions for the tick value. Ticks point in
or out (default out). Tick iterator: instead of at ..., use from expr to expr by op expr where op
is optionally +—* / for additive or multiplicative steps. by can be omitted, to give steps of size 1.
If no ticks are requested, they are supplied automatically; suppress this with ticks off. Auto-

matic ticks normally leave a margin of 7% on each side; set this to anything by margin = expr.

grid side linedesc at optname expr, expr, ...: Draw grids perpendicular to side in style linedesc at
expr, lterators and labels work as with ticks.

coord optname x min, max y min, max log x 1log vV: Set range of coords and optional log
scaling on either or both. This overrides computation of data range. Default value of optname is
current coordinate system (each coord defines a new coordinate system).

plot "str" at point; "str" at point: Put str at point. Text position can be qualified with rjust,
1ljust, above, below after "...".

line from point to point linedesc: Draw line from here to there. arrow works in place of
line.

next optname at point linedesc: Continue plot of data in optname to point; default is current.

draw optname linedesc ...: Set mode for next: use this style from now on, and plot "..." at each
point (if given).

new optname linedesc ...: Set mode for next, but disconnect from previous.

A list of numbers x yI1 y2 y3 ... is treated as plot bullet at x,yl; plot bullet at x,y2;
etc., or as next at x,yl etc., if draw is specified. Abscissae of 1,2,3,... are provided if there is
only one input number per line.

A point optname expr, expr maps the point to the named coordinate system. A linedesc is one of
dot dash invis solid optionally followed by an expression.

define name { whatever}: Define a macro. There are macros already defined for standard plot-
ting symbols like bullet, circle, star, plus, etc., in /sys/1lib/grap.defines, which
is included if it exists.

*

var = expr: Evaluate an expression. Operators are + — * and /. Functions are 1og and exp
(both base 10), sin, cos, sqrt; rand returns random number on [0,1); max(e,e),
min(e,e), int(e).

print expr; print "...": As a debugging aid, print expr or string on the standard error.

copy "file name": Include this file right here.

94

GRAP(1) GRAP(1)

copy thru macro: Pass rest of input (until .G2) through macro, treating each field (non-blank,

or "...") as an argument. macro can be the name of a macro previously defined, or the body of one
in place, like /plot $1 at $2,%$3/.

copy thru macrountil "string": Stop copy when input is string (left-justified).
pic remainder of line: Copy to output with leading blanks removed.

graph Name pic-position: Start a new frame, place it at specified position, e.g., graph Thing?2
with .sw at Thingl.se + (0.1,0). Name must be capitalized to keep pic happy.

. anything at beginning of line: Copied verbatim.

sh %anything %: Pass everything between the %'s to the shell; as with macros, % may be any char-
acter and anything may include newlines.

anything: A comment, which is discarded.

Order is mostly irrelevant; no category is mandatory. Any arguments on the .G1 line are placed
on the generated . PS line for pic.

EXAMPLES

FILES

.G1

frame ht 1 top invis right invis
coord x 0, 10 vy 1, 3 log vy

ticks left in at 1 "bottommost tick", 2,3 "top tick"
ticks bot in from 0 to 10 by 2
label bot "silly graph”

label left "left side label" "here"
grid left dashed at 2.5

copy thru / circle at $1,%2 /

11

.5

RNR

.5
0 3
.G2

o w N

top tick

left side label

here

bottommost tick \ \ \ | |

0 2 4 6 8 10

silly graph

/sys/lib/grap.defines definitions of standard plotting characters, e.g., bullet

SOURCE

/sys/src/cmd/grap

SEE ALSO

pic(1), troff(1)
J. L. Bentley and B. W. Kernighan, ““GRAP—A Language for Typesetting Graphs’’, Unix Research Sys-
tem Programmer’s Manual, Tenth Edition, Volume 2.

95

GRAPH(1)

NAME

GRAPH(1)

graph - draw a graph

SYNOPSIS

graph [option ...]

DESCRIPTION

Graph with no options takes pairs of numbers from the standard input as abscissas (x-values) and
ordinates (y-values) of a graph. Successive points are connected by straight lines. The graph is
encoded on the standard output for display by plot(1) filters.

If an ordinate is followed by a nonnumeric string, that string is printed as a label beginning on the

point. Labels may be surrounded with quotes

in which case they may be empty or contain

blanks and numbers; labels never contain newlines.

The following options are recognized, each as a separate argument.

Supply abscissas automatically; no x-values appear in the input. Spacing is given by the
next argument (default 1). A second optional argument is the starting point for automatic
abscissas (default 0, or 1 with a log scale in x, or the lower limit given by —x).

Break (disconnect) the graph after each label in the input.
Character string given by next argument is default label for each point.
Next argument is grid style, 0 no grid, 1 frame with ticks, 2 full grid (default).

Next argument is a legend to title the graph. Grid ranges are automatically printed as part
of the title unless a —s option is present.

Next argument is mode (style) of connecting lines: 0 disconnected, 1 connected. Some
devices give distinguishable line styles for other small integers. Mode -1 (default) begins
with style 1 and rotates styles for successive curves under option —o.

(Overlay.) The ordinates for n superposed curves appear in the input with each abscissa
value. The next argument is n.

Next argument is one or more of the characters bcgkmrwy, choosing pen colors by their
initial letter, as in plot(6). Successive curves will cycle through the colors in the given order.

Save screen; no new page for this graph.

If 1 is present, x-axis is logarithmic. Next 1 (or 2) arguments are lower (and upper) x lim-
its. Third argument, if present, is grid spacing on x axis. Normally these quantities are
determined automatically.

Similarly for y.

Make automatically determined x and y scales equal.

Next argument is fraction of space for height.

Similarly for width.

Next argument is fraction of space to move right before plotting.

Similarly to move up before plotting.

Transpose horizontal and vertical axes. (Option —a now applies to the vertical axis.)

If a specified lower limit exceeds the upper limit, the axis is reversed.

SOURCE

/sys/src/cmd/graph

SEE ALSO

plot(1), grap(1)

BUGS

Segments that run out of bounds are dropped, not windowed. Logarithmic axes may not be
reversed. Option —e actually makes automatic limits, rather than automatic scaling, equal.

96

GREP(1) GREP(1)

NAME
grep - search a file for a pattern

SYNOPSIS
grep [—bchillnsv][—e] pattern | —f patternfile [file ...]

DESCRIPTION
Grep searches the input files (standard input default) for lines that match the pattern, a regular
expression as defined in regexp(6) with the addition of a newline character as an alternative (sub-
stitute for |) with lowest precedence. Normally, each line matching the pattern is ‘selected’, and
each selected line is copied to the standard output. The options are

—-C Print only a count of matching lines.

-h Do not print file name tags (headers) with output lines.

—e The following argument is taken as a pattern. This option makes it easy to specify patterns
that might confuse argument parsing, such as —n.

—-i Ignore alphabetic case distinctions. The implementation folds into lower case all letters in
the pattern and input before interpretation. Matched lines are printed in their original
form.

-1 (ell) Print the names of files with selected lines; don’t print the lines.

-L Print the names of files with no selected lines; the converse of —1.

-n Mark each printed line with its line number counted in its file.

-s Produce no output, but return status.

-V Reverse: print lines that do not match the pattern.

—f The pattern argument is the name of a file containing regular expressions one per line.
-b Don’t buffer the output: write each output line as soon as it is discovered.

Output lines are tagged by file name when there is more than one input file. (To force this tag-
ging, include /dev/null as a file name argument.)

Care should be taken when using the shell metacharacters $*[A| ()=\ and newline in pattern; it
is safest to enclose the entire expression in single quotes ’...’. An expression starting with ’*’
will treat the rest of the expression as literal characters.

SOURCE
/sys/src/cmd/grep

SEE ALSO
ed(1), awk(1), sed(1), sam(1), regexp(6)

DIAGNOSTICS
Exit status is null if any lines are selected, or non-null when no lines are selected or an error
occurs.

97

GS(1)

NAME

GS(1)

gs - Aladdin Ghostscript (PostScript and PDF language interpreter)

SYNOPSIS

gs [options 1| files] ...

DESCRIPTION

Ghostscript is a programming language similar to Adobe Systems’ PostScript and PDF languages,
which are in turn similar to Forth. Gs reads files in sequence and executes them as Ghostscript
programs. After doing this, it reads further input from the standard input. If the file — is named,
however, it represents the standard input, which is read in order and not after the files on the com-
mand line. Each line is interpreted separately. The ‘quit’ command, or end-of-file, exits the inter-
preter.

The interpreter recognizes several switches described below, which may appear anywhere in the
command line and apply to all files thereafter.

The —h or —7 options give help and list the available devices; the default is plan9, which pro-
duces compressed image files suitable for viewing with page(1) (but note that page(1) will invoke
gs automatically; see its manual).

Ghostscript may be built with multiple output devices. Ghostscript normally opens the first one
and directs output to it. To use device xyz as the initial output device, include the switch

—sDEVICE=xyz
in the command line. This switch must precede the first PostScript file and only its first invocation
has any effect. Output devices can also be selected by the word selectdevice in the input lan-
guage, or by setting the environment variable GS_DEVICE. The order of precedence for these
alternatives, highest to lowest, is:

selectdevice

(command line)

GS_DEVICE

plan9

Normally, output goes directly to a scratch file. To send the output to a series of files fool.xyz,
foo2.xyz, etc., use the switch

—sOutputFile=foo%d.xyz
The %d may be any printf (see fprintf(2)) format specification. Each file will receive one page of
output. If the file name begins with a pipe character, the output will be sent as standard input to
the following pipeline. For example,

—sOutputFile=|1lp
Specifying the file — will send the files to standard output; this also requires enabling the —q
option.

Initialization files

When looking for the initialization files (gs_* . ps), the files related to fonts, or the file for the
run operator, Ghostscript first looks for the file (if it doesn’t start with a slash) in the current
directory, then in these directories in the following order:

1. Any directories specified by —I switches in the command line (see below);
Any directories specified by the GS_LIB environment variable;

3. The directories /sys/lib/ghostscript, /sys/lib/ghostscript/font, and
/sys/lib/postscript/font.

The GS_LIB or —I parameters may be a single directory or a colon-separated list.

Options

—— filename arg] ...
Take the next argument as a file name as usual, but take all remaining arguments (even if
they have the syntactic form of switches) and define the name ARGUMENTS in userdict (not
systemdict) as an array of those strings, before running the file. When Ghostscript finishes
executing the file, it exits back to the shell.

—Dname=token

98

GS(1)

GS(1)

—d name=token
Define a name in systemdict with the given definition. The token must be exactly one
token (as defined by the ‘token’ operator) and must not contain any white space.

—Dname
—d name
Define a name in systemdict with value=null.

—Sname=string
—Ss name=string
Define a name in systemdict with a given string as value. This is different from —d. For
example, —dname=35 is equivalent to the program fragment
/name 35 def
whereas —sname=35 is equivalent to
/name (35) def

-q Quiet startup: suppress normal startup messages, and also do the equivalent of —dQUIET.

—gnumber1xnumber2
Equivalent to —dDEVICEWIDTH=numberl and —dDEVICEHEIGHT=number2. This is
for the benefit of devices, such as windows, that allow width and height to be specified.

—Tr number

—rnumberi1xnumber2
Equivalent to —dDEVICEXRESOLUTION=numberl and —dDEVICEYRESOLUTION=
number2. This is for the benefit of devices, such as printers, that support multiple X and Y
resolutions. If only one number is given, it is used for both X and Y resolutions.

—Idirectories
Adds the designated list of directories at the head of the search path for library files.

Note that gs_init.ps makes systemdict read-only, so the values of names defined with -D/d/S/s
cannot be changed (although, of course, they can be superseded by definitions in userdict or other
dictionaries.)

Special names

—dBATCH
Exit after the last file has been processed. This is equivalent to listing quit.ps at the end of
the list of files.

—dDISKFONTS
Causes individual character outlines to be loaded from the disk the first time they are
encountered. (Normally Ghostscript loads all the character outlines when it loads a font.)
This may allow loading more fonts into RAM, at the expense of slower rendering.

—dNOCACHE
Disables character caching. Only useful for debugging.

—dNOBIND
Disables the ‘bind’ operator. Only useful for debugging.

—dNODISPLAY
Suppresses the normal initialization of the output device. This may be useful when debug-
ging.

—dNOPAUSE

Disables the prompt and pause at the end of each page. This may be desirable for applica-
tions where another program (e.g. page(1)) is ‘driving’ Ghostscript.

—dSAFER
Disables the deletefile and renamefile operators, and the ability to open files in
any mode other than read-only. This may be desirable for spoolers or other sensitive envi-
ronments. Files in the /fd directory may still be opened for writing.

—dWRITESYSTEMDICT
Leaves systemdict writable. This is necessary when running special utility programs such
as font2c and pcharstr, which must bypass normal PostScript access protection.

99

GS(1) GS(1)

—sDEVICE=device
Selects an alternate initial output device, as described above.

—sOutputFile=filename
Selects an alternate output file (or pipe) for the initial output device, as described above.

FILES
/sys/lib/ghostscript/*
Startup-files, utilities, examples, and basic font definitions.
/sys/lib/ghostscript/fonts/*
Additional font definitions.
SOURCE
/sys/src/cmd/gs
SEE ALSO
page(1), ps2pdf(1)
The Ghostscript document files in doc and man subdirectories of the source directory.

BUGS
The treatment of standard input is non-standard.

100

GVIEW(T) GVIEW(1)

NAME

gview - interactive graph viewer

SYNOPSIS

gview [-mp][-1 logfile] [files]

DESCRIPTION

Gview reads polygonal lines or a polygonal line drawing from an ASCITI input file (which defaults
to standard input), and views it interactively, with commands to zoom in and out, perform simple
editing operations, and display information about points and polylines. (Multiple input files are
allowed if you want to overlay several line drawings.) The editing commands can change the color
and thickness of the polylines, delete (or undelete) some of them, and optionally rotate and move
them. It is also possible to generate an output file that reflects these changes and is in the same
format as the input.

Since the move and rotate commands are undesirable when just viewing a graph, they are only
enabled if gview is invoked with the —m option.

The —p option plots only the vertices of the polygons.

Clicking on a polyline with button 1 displays the coordinates and a t value that tells how far along
the polyline. (t=0 at the first vertex, t=1 at the first vertex, t=1.5 halfway between the second
and third vertices, etc.) The —1 option generates a log file that lists all points selected in this man-
ner.

The most important interactive operations are to zoom in by sweeping out a rectangle, or to zoom
out so that everything currently being displayed shrinks to fit in the swept-out rectangle. Other
options on the button 3 menu are unzoom which restores the coordinate system to the default
state where everything fits on the screen, recenter which takes a point and makes it the center of
the window, and square up which makes the horizontal and vertical scale factors equal.

To take a graph of a function where some part is almost linear and see how it deviates from a
straight line, select two points on this part of the graph (i.e., select one with button 1 and then
select the other) and then use the slant command on the button 3 menu. This slants the coordi-
nate system so that the line between the two selected points appears horizontal (but vertical still
means positive y). Then the zoom in command can be used to accentuate deviations from horizon-
tal. There is also an unslant command that undoes all of this and goes back to an unslanted coor-
dinate system.

There is a recolor command on button 3 that lets you select a color and change everything to have
that color, and a similar command on button 2 that only affects the selected polyline. If the input
file uses the Multi (. ..) feature explained below, either flavor of recolor allows you to type a
digit in lieu of selecting a color.

The thick or thin command on button 2 changes the thickness of the selected polyline and there is
also an undo command for such edits. Finally, button 3 has commands to read a new input file
and display it on top of everything else, restack the drawing order (in case lines of different color
are drawn on top of each other), write everything into an output file, or exit the program.

Each polyline in an input or output file is a space-delimited x y coordinate pair on a line by itself,
and the polyline is a sequence of such vertices followed by a label. The label could be just a blank
line or it could be a string in double quotes, or virtually any text that does not contain spaces and
is on a line by itself. The label at the end of the last polyline is optional. It is not legal to have
two consecutive labels, since that would denote a zero-vertex polyline and each polyline must
have at least one vertex. (One-vertex polylines are useful for scatter plots.) Under the —1 option,
a newline causes the selected polyline’s label to appear in the log file (where it could be seen by
invoking tail —f in another window).

If the label after a polyline contains the word Thick or a color name (Red, Pink, Dkred,
Orange, Yellow, Dkyellow, Green, Dkgreen, Cyan, Blue, Ltblue, Magenta,
Violet, Gray, Black, White), whichever color name comes first will be used to color the
polyline. Alternatively, labels can contain Multi followed by single-letter versions of these
names: (R, P, r,0,Y,vy,G, g, C, B, b, M, V, A, K, W, each optionally preceded by T). Then
recolor followed by a nonzero digit n selects the nth alternative for each polyline.

101

GVIEW(T) GVIEW(1)

EXAMPLE
To see a graph of the function y=sin(x)/x generate input with an awk script and pipe it into gview:
awk 'BEGIN{for(x=.1;x<500;x+=.1)print x,sin(x)/x}’ | gview
SOURCE
/sys/src/cmd/gview.c
SEE ALSO

awk(1), tail(1)

BUGS

The user interface for the slant command is counter-intuitive. Perhaps it would be better to have a
scheme for sweeping out a parallelogram.

The —p option makes the interactive point selection feature behave strangely, and is unnecessary
since extra blank lines in the input achieve essentially the same effect.

102

GZIP(1) GZIP(1)

NAME

gzip, gunzip, bzip2, bunzip2, compress, uncompress, zip, unzip - compress and expand data

SYNOPSIS

gzip [-cvD[1-9]] [file . . .]

gunzip [-ctTvD] [file . . .]

bzip2 [-cvD[1-9]] [file . . .]

bunzip?2 [-cvD] [file . . .]
compress[—cv]|[file...]
uncompress[—cv]|[file...]

zip [—-avD[1-9]] [-f zipfile] file[. . .]
unzip [-cistTvD] [-f zipfile] [file . . .]

DESCRIPTION

Gzip encodes files with a hybrid Lempel-Ziv 1977 and Huffman compression algorithm known as
deflate. Most of the time, the resulting file is smaller, and will never be much bigger. Output
files are named by taking the last path element of each file argument and appending . gz; if the
resulting name ends with .tar.gz, it is converted to .tgz instead. Gunzip reverses the pro-
cess. Its output files are named by taking the last path element of each file argument, converting
.tgz to .tar.gz, and stripping any . gz; the resulting name must be different from the original
name.

Bzip2 and bunzip2 are similar in interface to gzip and gunzip, but use a modified Burrows-Wheeler
block sorting compression algorithm. The default suffix for output files is .bz2, with . tar.bz2
becoming .tbz. Bunzip2 recognizes the extension .tbz2 as a synonym for . tbz.

Compress and uncompress are similar in interface to gzip and gunzip, but use the Lempel-Ziv-
Welch compression algorithm. The default suffix for output files is .Z. Compress is one of the
oldest widespread Unix compression programs.

Zip encodes the named files and places the results into the archive zipfile, or the standard output
if no file is given. Unzip extracts files from an archive created by zip. If no files are named as
arguments, all of files in the archive are extracted. A directory’s name implies all recursively con-
tained files and subdirectories. Zip is the de facto standard for compression on Microsoft operat-
ing systems.

None of these programs removes the original files. If the process fails, the faulty output files are
removed.

The options are:

—-a Automaticialy creates directories as needed, needed for zip files created by broken
implementations which omit directories.

—C Write to standard output rather than creating an output file.

-1 Convert all archive file names to lower case.

-s Streaming mode. Looks at the file data adjacent to each compressed file rather than

seeking in the central file directory. This is the mode used by unzip if no zipfile is speci-
fied. If —s is given, —T is ignored.

-t List matching files in the archive rather than extracting them.
-T Set the output time to that specified in the archive.

—1 .. -9 Sets the compression level. —1 is tuned for speed, —9 for minimal output size. The best
compromise is —6, the default.

-V Produce more descriptive output. With —t, adds the uncompressed size in bytes and the
modification time to the output. Without —t, prints the names of files on standard error
as they are compressed or decompressed.

-D Produce debugging output.

103

GZIP(1) GZIP(1)

SOURCE
/sys/src/cmd/gzip
/sys/src/cmd/bzip?2
/sys/src/cmd/compress

SEE ALSO
tar(1)
"A Technique for High Performance Data Compression”, Terry A. Welch, IEEE Computer, vol. 17,
no. 6 June 1984), pp. 8-19.

BUGS
Unzip can only extract files which are uncompressed or compressed with the deflate compres-

sion scheme. Recent zip files fall into this category. Very recent zip files may have tables of con-
tents that unzip cannot read. Such files are still readable by invoking unzip with the —s option.

104

HGET(1) HGET(1)

NAME

hget - retrieve a web page corresponding to a url

SYNOPSIS

hget [-dhv][-o ofile] [—=p body][—x netmntpt] [—x header] url

DESCRIPTION

Hget retrieves the web page specified by the URL url and writes it, absent the —o option, to stan-
dard output. The known URL types are: http and ftp.

If urlis of type HTTP and the —p option is specified, then an HTTP POST is performed with body as
the data to be posted.

The —o option is used to keep a local file in sync with a web page. If the web page has been modi-
fied later than the file, it is copied into the file. If the file is up to date but incomplete, hget will
fetch the missing bytes.

Option —h causes HTTP headers to be printed to standard output in addition to the transferred
web page.

Option —r sends an arbitrary HTTP header.
Option —d turns on debugging written to standard error.

Normally, hget uses the IP stack mounted under /net. The —x option can be used to specify the
mount point of a different IP stack to use.

Option —v writes progress lines to standard error once a second. Each line contains two numbers,
the bytes transferred so far and the total length to be transferred.

If the environment variable httpproxy is set, it is used as a URL denoting an HTTP proxy server.
All HTTP accesses use this server to get the page instead of calling the destination server.

SOURCE

/sys/src/cmd/hget.c

SEE ALSO

ftpfs(4)

105

HISTORY (1) HISTORY (1)

NAME

history - print file names from the dump
SYNOPSIS

history [—-Dabcemnw][—fuv][—d dumpfilesystem][—s yyyymmdd] files ...
DESCRIPTION

History prints the names, dates, and sizes, and modifier of all versions of the named files, looking
backwards in time, stored in the dump file system. If the file exists in the main tree, the first line
of output will be its current state. For example,

history /adm/users
produces

May 14 15:29:18 EDT 2001 /adm/users 10083 [adm]

May 14 15:29:18 EDT 2001 /n/dump/2001/0515/adm/users 10083 [adm]
May 11 17:26:24 EDT 2001 /n/dump/2001/0514/adm/users 10481 [adm]
May 10 16:40:51 EDT 2001 /n/dump/2001/0511/adm/users 10476 [adm]

When presented with a path of the form /n/fs/ path, history will use fsdump as the name of the
dump file system, and will print a history of path.

The —v option enables verbose debugging printout.

The —D option causes diff(1) to be run for each adjacent pair of dump files. The options
—abcemnw are passed through to diff; the little-used diff option —f is replaced by the functional-
ity described below, and the —r option is disallowed.

The —u option causes times to be printed in GMT (UT) rather than local time.
The —d option selects some other dump file system such as /n/bootesdump.

The —f option forces the search to continue even when the file in question does not exist (useful
for files that only exist intermittently).

Finally, the —s option sets the starting (most recent) date for the output.

EXAMPLES
Check how often a user has been logged in.

history /usr/ches/tmp

FILES
/n/dump

SOURCE
/sys/src/cmd/history.c

SEE ALSO
fs(4)
yesterday(1)

106

HOC(1) HOC(1)

NAME

hoc - interactive floating point language

SYNOPSIS

hoc [—e expression] | file ...]

DESCRIPTION

Hoc interprets a simple language for floating point arithmetic, at about the level of BASIC, with C-
like syntax and functions.

The named files are read and interpreted in order. If no file is given or if file is — hoc interprets the
standard input. The —e option allows input to hoc to be specified on the command line, to be
treated as if it appeared in a file.

Hoc input consists of expressions and statements. Expressions are evaluated and their results
printed. Statements, typically assignments and function or procedure definitions, produce no out-
put unless they explicitly call print.

Variable names have the usual syntax, including _; the name _ by itself contains the value of the
last expression evaluated. The variables E, PI, PHI, GAMMA and DEG are predefined; the last is
59.25..., degrees per radian.

Expressions are formed with these C-like operators, listed by decreasing precedence.

A exponentiation
I - ++ —

:‘:/%

+ —

> >= < <= == |=
&&

|l

= 4= —= *= /= %=

Built in functions are abs, acos, asin, atan (one argument), cos, cosh, exp, int, log,
logl0, sin, sinh, sqrt, tan, and tanh. The function read(x) reads a value into the vari-
able x and returns 0 at EOF; the statement print prints a list of expressions that may include
string constants such as "hello\n".

Control flow statements are if-else, while, and for, with braces for grouping. Newline ends
a statement. Backslash-newline is equivalent to a space.

Functions and procedures are introduced by the words func and proc; return is used to
return with a value from a function.

EXAMPLES

func gcd(a, b) {
temp = abs(a) % abs(b)
if(temp == 0) return abs(b)
return gcd(b, temp)

ks

for(i=1; i<12; i++) print gcd(i,12)
SOURCE

/sys/src/cmd/hoc
SEE ALSO

BUGS

be(1), dc(1)
B. W. Kernighan and R. Pike, The Unix Programming Environment, Prentice-Hall, 1984

Error recovery is imperfect within function and procedure definitions.

107

HTMLROFF (1) HTMLROFF (1)

NAME
htmlroff - HTML formatting and typesetting
SYNOPSIS
htmlroff[—-iuv][-mnamel[-r aN]]| file...]
DESCRIPTION
Htmlroff accepts troff(1) input in the named files and formats it as HTML for viewing in a web
browser.

If no file argument is given, htmlroff reads the standard input. An argument consisting of a single
minus (—) is taken to be a file name corresponding to the standard input. The options are:

—1i Read standard input after the input files are exhausted.

—mname
Process the macro file /sys/1lib/tmac/tmac . name before the input files.

—raN Set register a (one character name) to N.

—u Generate UTF output. By default, htmlroff converts Unicode runes into the corresponding
HTML entity sequences (α, , and so on). Htmlroff invokes tcs(1) for the
conversion.

-V Generate debugging output and warnings about suspicious input.

Most troff input files, especially those using the ms(6) macros, can be used unaltered. In general,
the macro file tmac.html should be processed after processing other standard macro files, as in
htmlroff -ms —mhtml.

Htmlroff(6) describes the changes to the input language.
Mhtml(6) describes the new macros.

EXAMPLES
Format the Plan 9 web page:

cd /usr/web/plan9
htmlroff -mhtml index.tr >index.html

Format a paper:

cd /sys/doc
pic auth.ms | tbl | egn | htmlroff —-ms —-mhtml >auth.html

FILES
/sys/lib/troff/font/devutf/utfmap
Mapping from troff two-character names like \ (*a to Unicode characters like «.

SOURCE
/sys/src/cmd/htmlroff

SEE ALSO
tes(1), troff(1), htmlroff(6), mhtml(6)

108

IDIFF(1) IDIFF(1)

NAME
idiff - interactive diff

SYNOPSIS
idiff [-bw] filel file2
DESCRIPTION
Idiff interactively merges filel and file2 onto standard output. Wherever filel and file2 differ, idiff

displays the differences in the style of ‘“‘diff —n’’ on standard error and prompts the user to
select a chunk. Valid responses are:

< Use the chunk from filel.
> Use the chunk from file2.
= Use the diff output itself.
a<, g>, g=

Use the given response for all future questions.
! cmd Execute cmd and prompt again.
Idiff invokes diff(1) to compare the files. The —b and —w flags, if passed, are passed to diff.

FILES
/tmp/idiff.*

SOURCE
/sys/src/cmd/idiff.c

SEE ALSO
diff(1)

Kernighan and Pike, The Unix Programming Environment, Prentice-Hall, 1984.

109

JOIN(T) JOIN(T)

NAME

join - relational database operator

SYNOPSIS

join [options] filel file2

DESCRIPTION

Join forms, on the standard output, a join of the two relations specified by the lines of filel and
file2. If one of the file names is —, the standard input is used.

Filel and file2 must be sorted in increasing ASCII collating sequence on the fields on which they are
to be joined, normally the first in each line.

There is one line in the output for each pair of lines in filel and file2 that have identical join fields.
The output line normally consists of the common field, then the rest of the line from filel, then the
rest of the line from file2.

Input fields are normally separated spaces or tabs; output fields by space. In this case, multiple
separators count as one, and leading separators are discarded.

The following options are recognized, with POSIX syntax.

—a n In addition to the normal output, produce a line for each unpairable line in file n, where n
is 1 or 2.

—v n Like —a, omitting output for paired lines.
—e s Replace empty output fields by string s.

-1m
—2 m Join on the mth field of filel or file2.
—Jjnm

Archaic equivalent for —n m.
—ofields

Each output line comprises the designated fields. The comma-separated field designators
are either 0, meaning the join field, or have the form n.m, where n is a file number and m
is a field number. Archaic usage allows separate arguments for field designators.

—tc Use character c as the only separator (tab character) on input and output. Every appear-
ance of cin a line is significant.

EXAMPLES

sort —t: +1 /adm/users | join -t: -1 2 —-a 1 -e — bdays
Add birthdays to the /adm/users file, leaving unknown birthdays empty. The layout of
/adm/users is given in users(6); bdays contains sorted lines like
ken:Feb 4, 1953.

tr : ' ’ </adm/users | sort -k 3 3 >temp
join -1 3 -2 3 -0 1.1,2.1 temp temp | awk ’$1 < $2’
Print all pairs of users with identical userids.

SOURCE

/sys/src/cmd/join.c

SEE ALSO

BUGS

sort(1), comm(1), awk(1)
With default field separation, the collating sequence is that of sort -b —ky, y;, with —t, the

sequence is that of sort —-tx-ky,y.
One of the files must be randomly accessible.

110

JPG(1) JPG(T)

NAME
jpg, gif, png, ppm, bmp, v210, yuv, ico, togif, toppm, topng, toico - view and convert pictures

SYNOPSIS
jpg [-39cdefFkIrtv]] file ...]
gif [-39cdektv]]file...]
png [—39cdektv]| file...]
ppm [—39cdektv]]| file ...]
bmp [file]
v210 [—39cdektv]| file...]
yuv [file]

togif [—c comment] [—1 loopcount] [—d msec][—t transindex] | file ... [—d msec] file ...]
toppm [—c comment] | file]
topng [—c comment] [[—g gamma] [file]

ico | file]
toico| file...]

DESCRIPTION
These programs read, display, and write image files in public formats. Jpg, gif, png, ppm, bmp,
v210, and yuv read files in the corresponding formats and, by default, display them in the current
window; options cause them instead to convert the images to Plan 9 image format and write them
to standard output. Togif, Toppm, and topng read Plan 9 images files, convert them to GIF, PPM,
or PNG, and write them to standard output.

The default behavior of jpg, gif, and ppm is to display the file, or standard input if no file is
named. Once a file is displayed, typing a character causes the program to display the next image.
Typing a g, DEL, or control-D exits the program. For a more user-friendly interface, use page(1),
which invokes these programs to convert the images to standard format, displays them, and offers
scrolling, panning, and menu-driven navigation among the files.

These programs share many options:

—e Disable Floyd-Steinberg error diffusion, which is used to improve the appearance of images
on color-mapped displays, typically with 8 bits per pixel. Primarily useful for debugging; if
the display has true RGB color, the image will be displayed in full glory.

-k Convert and display the image as a black and white (really grey-scale) image.
-V Convert the image to an RGBV color-mapped image, even if the display has true RGB color.
—d Suppress display of the image; this is set automatically by any of the following options:

—-C Convert the image to a Plan 9 representation, as defined by image(6), and write it to stan-
dard output.

-9 Like —c, but produce an uncompressed image. This saves processing time, particularly
when the output is being piped to another program such as page(1), since it avoids com-
pression and decompression.

-t Convert the image, if it is in color, to a true color RGB image.
-3 Like —t, but force the image to RGB even if it is originally grey-scale.
Jpg has two extra options used to process the output of the LML video card:

—-f Merge two adjacent images, which represent the two fields of a video picture, into a single
image.

—F The input is a motion JPEG file, with multiple images representing frames of the movie.
Sets —f.

The togif and toppm programs go the other way: they convert from Plan 9 images to GIF and PPM,
and have no display capability. Both accept an option —c to set the comment field of the resulting
file. If there is only one input picture, togif converts the image to GIF format. If there are many
files, though, it will assemble them into an animated GIF file. The options control this process:

111

JPG(1)

JPG(1)

—1 loopcount
By default, the animation will loop forever; loopcount specifies how many times to loop. A
value of zero means loop forever and a negative value means to stop after playing the
sequence once.

—d msec
By default, the images are displayed as fast as they can be rendered. This option specifies
the time, in milliseconds, to pause while displaying the next named file.

Gif translates files that contain a ‘transparency’ index by attaching an alpha channel to the con-
verted image.

Ico displays a Windows icon (.ico) file. If no file is specified, ico reads from standard input. Icon
files contain sets of icons represented by an image and a mask. Clicking the right button pops up
a menu that lets you write any icon’s image as a Plan 9 image (widthxheightimage), write any
icon’s mask as a Plan 9 image (widthxheight.mask), or exit. Selecting one of the write menu items
yields a sight cursor. Move the sight over the icon and right click again to write.

Toico takes a list of Plan 9 image files (or standard input) and creates a single icon file. The masks
in the icon file will be the white space in the image. The icon file is written to standard output.

SOURCE

/sys/src/cmd/jpg

SEE ALSO

BUGS

page(1), image(6).
http://www.w3.0org/Graphics/JPEG/itu—-t81.pdf
http://www.w3.0rg/Graphics/GIF/spec—gif89a.txt
http://www.w3.0rg/TR/2003/REC-PNG-20031110
http://netpbm.sourceforge.net/doc/ppm.html
http://en.wikipedia.org/wiki/Windows_bitmap
http://en.wikipedia.org/wiki/Yuv

Writing an animated GIF using togif is a clumsy undertaking.

112

KBMAP(1) KBMAP(1)

NAME

kbmap - show a list of available keyboard maps and switch between them.
SYNOPSIS

kbmap | file...]
DESCRIPTION

Kbmap shows a single column consisting of the names of keyboard maps for different alphabets
available on the system. With no arguments kbmap will look for files in /sys/1ib/kbmap.

Clicking the right mouse button will highlight the entry and force the keyboard mapping defined in
the corresponding file to become current for the system; typing 'q’ quits.

Kbmap requires that the file /dev/kbmap served by kbmap(3) exists and is writable.
SOURCE
/sys/src/cmd/kbmap.c

SEE ALSO
kbmap(3)

BUGS
Not all keyboards map the entire set of characters, so one has to switch back to the default map

before changing to another.

113

KILL(T) KILL(1)

NAME
kill, slay, broke - print commands to kill processes

SYNOPSIS
kill name ...

slay name ...
broke [user]

DESCRIPTION
Kill prints commands that will cause all processes called name and owned by the current user to be
terminated. Use the send command of rio(1), or pipe the output of kill into rc(1) to execute the
commands.

Kill suggests sending a kill note to the process; the same message delivered to the process’s
ctl file (see proc(3)) is a surer, if heavy handed, kill, but is necessary if the offending process is
ignoring notes. The slay command prints commands to do this.

Broke prints commands that will cause all processes in the Broken state and owned by user (by
default, the current user) to go away. When a process dies because of an error caught by the sys-
tem, it may linger in the Broken state to allow examination with a debugger. Executing the com-
mands printed by broke lets the system reclaim the resources used by the broken processes.

SOURCE
/rc/bin/kill
/rc/bin/broke

SEE ALSO
ps(1), stop(1), notify(2), proc(3)

114

KTRACE(1) KTRACE(1)

NAME

ktrace - interpret kernel stack dumps

SYNOPSIS

ktrace [—i] kernel pc sp [link]

DESCRIPTION

Ktrace translates a hexadecimal kernel stack dump into a sequence of acid(1) commands to show
the points in the call trace. The kernel argument should be the path of the kernel being debugged,
and pc and sp are the PC and SP values given in the stack dump. For MIPS kernels, the contents of
the link register must also be supplied.

A stack trace consists of a ktrace command followed by a series of lines containing fields of the
form location=contents:

ktrace /kernel/path 80105bcl 8048el74

8048e114=80105ac6 8048e120=80140bb4 8048e134=8010031c
8048e16c=80137e45 8048e170=80105bcl 8048e178=80137e62

The trace can be edited to provide the correct kernel path and then pasted into a shell window. If
the —i option is present, ktrace instead prompts for the contents of the memory locations in
which it is interested; this is useful when the stack trace is on a screen rather than in a machine
readable form.

SOURCE

/sys/src/cmd/ktrace.c

SEE ALSO

BUGS

acid(1), rdbfs(4)

When examining a kernel trace resulting from an interrupt on top of other interrupts, only the top-
most call trace is printed.

115

LEAK(T) LEAK(1)

NAME

leak, kmem, umem - help find memory leaks

SYNOPSIS

leak [—-abcds][—f binary][—r res][—x width] pid ...
kmem [kernel]

umem pid [textfile]

DESCRIPTION

Leak examines the named processes, which should be sharing their data and bss segments, for
memory leaks. It uses a mark and sweep-style algorithm to determine which allocated blocks are
no longer reachable from the set of root pointers. The set of root pointers is created by looking
through the shared bss segment as well as each process’s registers.

Unless directed otherwise, leak prints, for each block, a line with seven space-separated fields: the
string block, the address of the block, the size of the block, the first two words of the block, and
the function names represented by the first two words of the block. Usually, the first two words of
the block contain the malloc and realloc tags (see malloc(2)), useful for finding who allocated the
leaked blocks.

If the —s or the —c option is given, leak will instead present a sequence of acid(1) commands that
show each leaky allocation site. With —s a comment appears next to each command to indicate
how many lost blocks were allocated at that point in the program. With —c the comments are
extended to indicate also the total number of bytes lost at that point in the program, and an addi-
tional comment line gives the overall total number of bytes.

If the —a option is given, leak will print information as decribed above, but for all allocated blocks,
not only leaked ones. If the —d option is given, leak will print information as decribed above, but
for all free blocks, i.e. those freed, or those that are not yet in use (fragmentation?). The —a and
—d options can be combined.

If the —b option is given, leak will print a Plan 9 image file graphically summarizing the memory
arenas. In the image, each pixel represents res (default 8) bytes. The color code is:

dark blue Completely allocated.

bright blue Contains malloc headers.

bright red Contains malloc headers for leaked memory.
dark red Contains leaked memory.

yellow Completely free

white Padding to fill out the image. The bright pixels representing headers help in counting
the number of blocks. Magnifying the images with lens(1) is often useful.

If given a name rather than a list of process ids, leak echoes back a command-line with process
ids of every process with that name.

The —f option specifies a binary to go on the acid(1) command-line used to inspect the processes,
and is only necessary when inspecting processes started from stripped binaries.

Umem prints a summary of all allocated blocks in the process with id pid. Each line of the sum-
mary gives the count and total size of blocks allocated at an allocation point. The list is sorted by
count in decreasing order. Umem prints summarizes all allocations, not just memory leaks, but it
is faster and requires less memory than leak .

Kmem is like umem but prints a summary for the running kernel.

EXAMPLES

List lost blocks in 8.out. This depends on the fact that there is only once instance of 8.out running;
if there were more, the output of 1leak —s 8.out would need editing before sending to the
shell.

% leak —s 8.out
leak —-s 229 230
% leak —-s 8.out | rc

116

LEAK(T) LEAK(1)

src(0x0000bflb); // 64
src(0x000016f5); // 7
src(0x0000a988); // 7
%

View the memory usage graphic for the window system.
% leak —-b rio | rc | page
List the top allocation points in the kernel, first by count and then by total size:

% kmem | sed 10q
% kmem | sort —nr +1 | sed 10q

SOURCE
/sys/lib/acid/leak
/sys/src/cmd/aux/acidleak.c
/rc/bin/leak
/rc/bin/kmem
/rc/bin/umem

SEE ALSO
getcallerpc(2), setmalloctag in malloc(2)

BUGS
Leak and kmem depend on the internal structure of the libc pool memory allocator (see pool(2)).
Since the ANSI/POSIX environment uses a different allocator, leak will not work on APE programs.

Leak is not speedy, and acidleak can consume more memory than the process(es) being examined.

These commands require /sys/src/libc/port/pool.acid to be present and generated
from pool.c.

117

LENS(T) LENS(1)

NAME

lens - interactive screen magnifier

SYNOPSIS

lens

DESCRIPTION

Lens presents a magnified view in its window of an arbitrary area on the screen. The default mag-
nification is 4 (showing each pixel as a 4x4 pixel block in lens’s window). This may be changed by
typing a digit on the keyboard (with O standing for 10), or by using the + and — keys to increase or
decrease the magnification by one unit. The lower limit is x1; the upper x16.

The interface to indicate what area to magnify is dictated by the mouse multiplexing rules of
rio(1). Start by pressing mouse button 1 in the lens window and dragging, with the button pressed,
to the center of the area to magnify. Lens will update the display as the mouse moves. Releasing
the button freezes the lens display. The magnified view is static—a snapshot, not a movie—but
typing a space or . key in the lens window will refresh the display, as will changing the magnifica-
tion.

To make counting pixels easier, typing a g toggles whether a checkerboard grid is imposed on the
magnified area.

Button 3 brings up a menu of actions.

SOURCE

BUGS

/sys/src/cmd/lens.c

There should be an easier way to indicate what to magnify.

118

LEX(1) LEX(1)

NAME

lex - generator of lexical analysis programs
SYNOPSIS

lex[—-tvn9]/ file...]
DESCRIPTION

Lex generates programs to be used in simple lexical analysis of text. The input files (standard
input default) contain regular expressions to be searched for and actions written in C to be exe-
cuted when expressions are found.

A C source program, 1lex.yy.c is generated. This program, when run, copies unrecognized por-
tions of the input to the output, and executes the associated C action for each regular expression
that is recognized.

The options have the following meanings.

-t Place the result on the standard output instead of in file lex.yy.c.
-V Print a one-line summary of statistics of the generated analyzer.

-n Opposite of —v; —n is default.

-9 Adds code to be able to compile through the native C compilers.

EXAMPLES
This program converts upper case to lower, removes blanks at the end of lines, and replaces multi-
ple blanks by single blanks.
%%
[A-Z] putchar(yytext[0]+’a’-"A’);
[1+$%
[1+ putchar(’ ’);
FILES
lex.yy.c output
/sys/lib/lex/ncform template
SEE ALSO
yacc(1), sed(1)
M. E. Lesk and E. Schmidt, ‘LEX—Lexical Analyzer Generator’, Unix Research System Programmer’s
Manual, Tenth Edition, Volume 2.
SOURCE
/sys/src/cmd/lex
BUGS
Cannot handle UTF.

The asteroid to kill this dinosaur is still in orbit.

119

LOCK(1) LOCK(1)

NAME
lock - run a command under lock

SYNOPSIS
lock [—w] lockfile [command [argument ... 1]

DESCRIPTION
Lock runs command (default rc) with arguments while holding lockfile open and (over)writing at
least one byte each minute to keep the exclusive-access lock alive. If lockfile doesn’t already have
the exclusive-access bit set in its mode, the exclusive-access bits are set in its mode and
qid. type.

Under —w, lock waits for exclusive access to lockfile instead of just trying once.
Lock sets /env/prompt to contain the name of the lock file.

EXAMPLES
Build a replica(1) database while preventing collisions with other occurrences.

cd /sys/lib/dist
lock scan.lock replica/scan $dist/sources.replica

SOURCE
/sys/src/cmd/lock.c

SEE ALSO
intro(5), stat(5)

120

LOOK(1) LOOK(1)

NAME
look - find lines in a sorted list

SYNOPSIS
look [-dfnixtc]][string] | file]

DESCRIPTION
Look consults a sorted file and prints all lines that begin with string. It uses binary search.

The following options are recognized. Options dfnt affect comparisons as in sort(1).

-1 Interactive. There is no string argument; instead look takes lines from the standard input
as strings to be looked up.

-X Exact. Print only lines of the file whose key matches string exactly.

—d ‘Directory’ order: only letters, digits, tabs and blanks participate in comparisons.

—-f Fold. Upper case letters compare equal to lower case.

-n Numeric comparison with initial string of digits, optional minus sign, and optional decimal
point.
—t[c] Character c terminates the sort key in the file. By default, tab terminates the key. If c is
missing the entire line comprises the key.
If no file is specified, /1ib/words is assumed, with collating sequence df.
FILES
/1lib/words
SOURCE
/sys/src/cmd/look.c
SEE ALSO
sort(1), grep(1)

DIAGNOSTICS
The exit status is “not found’ if no match is found, and ‘“‘no dictionary” if file or the
default dictionary cannot be opened.

121

LP(1)

NAME

LP(1)

Ip - printer output

SYNOPSIS

1p [option ... 1] file ...]

DESCRIPTION

Lp is a generalized output printing service. It can be used to queue files for printing, check a
queue, or kill jobs in a queue. The options are:

—d dest Select the destination printer. If dest is ?, list the currently available printers. In the

-k

absence of —d, the destination is taken from the environment variable LPDEST. Desti-
nation stdout is the standard output. Destination safari is /dev/1ptldata line
printer port on a 386 machine, assumed to be connected to a PostScript printer. Desti-
nations hpdeskjet and bjc2401 are also /dev/1ptldata but assumed to be con-
nected to an HP Deskjet 670 or Canon BJC-240. Lp can print to any printer supported by
Ghostscript using syntax gs!device where device is a Ghostscript output device. See
gs(1) and the canonbjc2401 entry in /sys/lib/1p/devices.

Kill the job(s) given as subsequent arguments, instead of file names, for the given desti-
nation.

—p proc The given processor is invoked. The default processor is generic, which tries to do

-q
-R

the right thing for regular text, troff(1) output, or tex(1) output. If no processing is
desired noproc may be specified.

Print the queue for the given destination. For some devices, include printer status.

Stops and restarts the printer daemon. If the printer is wedged, it is often useful to cycle
the power on the printer before running this command.

The remaining options may be used to affect the output at a given device. These options may not
be applicable to all devices.

—-Ccn
—f font
-H
—-in

-1n
-L
-m v
-nn
—o list

XV
EXAMPLES

Print n copies.

Set the font (default CW.11).

Suppress printing of header page.

Select paper input tray. n may be a number 0-9, the word man for the manual feed slot,
and/or simplex or duplex to get single or double sided output. Multiple input tray
options may be specified if they are separated by commas.

Set the number of lines per page to n.

Print pages in landscape mode (i.e. turned 90 degrees).

Set magnification to v.

Print n logical pages per physical page.

Print only pages whose page numbers appear in the comma-separated list of numbers
and ranges. A range n—m means pages n through m; a range —n means from the begin-
ning to page n; a range n— means from page n to the end.

Reverse the order of page printing.

Set the horizontal offset of the print image, measured in inches.

Set the vertical offset of the print image, measured in inches.

egn paper | troff -ms | lp —-dsafari
Typeset and print a paper containing equations.

pr —-1100 file | 1p -1100 —-fCWw.8
Print a file in a small font at 100 lines per page.

lp —-dstdout /dev/windows/3/window > doc.ps
Convert an image to a postscript file.

SOURCE

/rc/bin/lp
/sys/src/cmd/1p

SEE ALSO
Ip(8)

P. Glick, ““A Guide to the Lp Printer Spooler’.

122

LP(1)

BUGS

Not all options work with all output devices. Any user can kill any job.

123

LP(1)

LS(1) LS(T)

NAME
Is, Ic - list contents of directory

SYNOPSIS
1s [—-dlmnpgrstuFQT] name ...

lc [-dlmngrstuFQT] name ...

DESCRIPTION
For each directory argument, Is lists the contents of the directory; for each file argument, Is
repeats its name and any other information requested. When no argument is given, the current
directory is listed. By default, the output is sorted alphabetically by name.

Lcis the same as Is, but sets the —p option and pipes the output through mc(1).
There are a number of options:
—-d If argument is a directory, list it, not its contents.

-1 List in long format, giving mode (see below), file system type (e.g., for devices, the # code
letter that names it; see intro(3)), the instance or subdevice number, owner, group, size in
bytes, and time of last modification for each file.

-m List the name of the user who most recently modified the file.

-n Don’t sort the listing.

-p Print only the final path element of each file name.

-q List the gid (see stat(2)) of each file; the printed fields are in the order path, version, and
type.

-r Reverse the order of sort.

-s Give size in Kbytes for each entry.

-t Sort by time modified (latest first) instead of by name.

—u Under —t sort by time of last access; under —1 print time of last access.

-F Add the character / after all directory names and the character * after all executable files.

-T Print the character t before each file if it has the temporary flag set, and — otherwise.

-Q By default, printed file names are quoted if they contain characters special to rc(1). The —Q
flag disables this behavior.

The mode printed under the —1 option contains 11 characters, interpreted as follows: the first
character is

d if the entry is a directory;

a if the entry is an append-only file;

- if the entry is a plain file.

The next letter is 1 if the file is exclusive access (one writer or reader at a time).

The last 9 characters are interpreted as three sets of three bits each. The first set refers to owner
permissions; the next to permissions to others in the same user-group; and the last to all others.
Within each set the three characters indicate permission respectively to read, to write, or to exe-
cute the file as a program. For a directory, ‘execute’ permission is interpreted to mean permission
to search the directory for a specified file. The permissions are indicated as follows:

r if the file is readable;

if the file is writable;

if the file is executable;

if none of the above permissions is granted.

I X =

SOURCE
/sys/src/cmd/ls.c
/rc/bin/lc

124

LS(1)

SEE ALSO
stat(2), mc(1)

125

LS(T)

MAIL(1) MAIL(1)

NAME

mail, go.fishing - mail and mailboxes

SYNOPSIS

mail [arg...]
go.fishing

DESCRIPTION

Mail is a shell script that invokes nedmail(1), the mail reader, when no recipients appear on the
command line and marshal(1), the mail preparer, otherwise. All command line options are passed
through. See the man pages for those two commands for more details.

Incoming mail for a user username is put in the file /mail /box/username/mbox unless either
the file /mail/box/username/forward or /mail/box/username/pipeto exists. The
mailbox must have append-only and exclusive-access mode (see chmod(1)). A user must create
his or her own mailbox using the —c option of nedmail(1). Mailboxes are created writable
(append-only) but not readable by others.

If the file /mail/box/username/forward exists and is readable by everyone, incoming mail
will be forwarded to the addresses contained in the first line of the file. The file may contain multi-
ple addresses. Forwarding loops are caught and resolved by local delivery.

If the file /mail/box/username/pipeto exists and is readable and executable by everyone, it
will be run for each incoming message for the user. The message will be piped to it rather than
appended to his/her mail box. The file is run as user none. Its two arguments are the with argu-
ments of the destination address (e.g., local! gremlin) and the user’s mail box path (e.g.,
/mail/box/gremlin/mbox)

Auto—-answer

To use mail as an answering machine while you are away, run go.fishing, which will create
/mail/box/$user/gone.fishing as a flag for pipeto processing, and truncate
/mail/box/$user/gone.addrs. Any existing pipeto file that uses
/mail/lib/pipeto.lib will invoke the gone.fishing machinery when it calls spool or
spool-tagged—spam.

If /mail/box/$user/gone.msg exists, it will be sent (just once) to everyone who sends you
mail that lists your address in a To or Cc header; if not, /mail/1lib/gone.msg will be sent.
Upon your return, remove /mail/box/$user/gone.fishing to stop automatic responses.

FILES
/sys/log/mail mail log file
/mail /box/* mail directories
/mail/box/*/mbox mailbox files
/mail /box/*/forward forwarding address(es)
/mail/box/*/pipeto mail filter
/mail/box/*/L.reading mutual exclusion lock for multiple mbox readers
/mail/box/*/L.mbox mutual exclusion lock for altering mbox
/1lib/face/48x48x"? directories of icons for seemail
/mail/lib/pipeto.lib helper functions for pipeto files
/mail/lib/gone.msg default vacation message
/mail/lib/gone.fishing auto-responder as pipeto script
/mail/box/$user/gone.fishing flag to active gone processing
/mail/box/$user/gone.addrs list of senders answered by gone.fishing
SOURCE
/rc/bin/mail
/rc/bin/go.fishing
SEE ALSO

aliasmail(8), faces(1), filter(1), marshal(1), mimgr(1), nedmail(1), qer(8), rewrite(6), send(8),
smtp(8), upasfs(4)

126

MAILCMD(1) MAILCMD(1)

NAME

mailcmd - mail the output of a failed command
SYNOPSIS

mailcmd [—m addr]... command line
DESCRIPTION

Mailcmd runs the command line using rc(1). If the command exits with an error status, mailcmd
mails the command’s output to the named addresses (by default, the current user).

Mailcmd is typically used to run automatic scripts such as those started by cron(8).

SOURCE
/rc/bin/mailcmd

SEE ALSO
cron(8)

127

MAN(T) MAN(1)

NAME

man, lookman, sig - print or find pages of this manual

SYNOPSIS

man [—bnpPStw] [section ...] title ...
lookman key ...

sig function ...

DESCRIPTION

FILES

Man locates and prints pages of this manual named title in the specified sections. Title is given in
lower case. Each section is a number; pages marked (2S), for example, belong to chapter 2. If no
section is specified, pages in all sections are printed. Any name from the NAME section at the top
of the page will serve as a title.

The options are:

-n (Default) Print the pages on the standard output using nroff.

-b Print the pages using nroff and send them to plumber(4) for display in the editor.
-p Run proof(1) on the specified man pages.

-P Run page(1) on the specified man pages.

=S Do not search the manual indices for the names. Only print pages whose file names match
the names.

-t Run troff(1) and send its output to standard output.
—-w Print the names of the man page source files.

Lookman prints the names of all manual sections that contain all of the key words given on the
command line.

Sig prints the signature (i.e. C definition) of the functions given on the command line.

/sys/man/?/*
troff source for manual; this page is /sys/man/1/man

/sys/man/?/INDEX
indices searched to find pages corresponding to titles

/sys/lib/man/secindex
command to make an index for a given section

/sys/lib/man/lookman/index
index for lookman

SOURCE

/rc/bin/man
/rc/bin/lookman

SEE ALSO

BUGS

page(1), proof(1)

The manual was intended to be typeset; some detail is sacrificed on text terminals.
There is no automatic mechanism to keep the indices up to date.
Except for special cases, man doesn’t recognize things that should be run through tb/ and/or egn.

128

MARSHAL(1) MARSHAL(1)

NAME

marshal - formatting and sending mail

SYNOPSIS

upas/marshal [—[aA] attachment] [—C copyaddr][—nrx#][—R reply—-msg] [—s subject]
[—t mime-type] [mailaddr ...]

DESCRIPTION

FILES

Marshal builds a mail message from standard input and passes it, if the body is non-empty, for
transmission or delivery to /mail/box/username/pipefrom if it exists, otherwise to
/bin/upas/send. The message format is both RFC 822 and MIME conformant, so marshal
adds any required headers not already in the message, prefixed by the contents of
/mail/box/username/headers. This allows the addition of personal headers like From:
lines with a full name or a different return address. Command line options direct marshal to add a
subject line and append attachments. The arguments to marshal are the addresses of the recipi-
ents.

When running in a rio(1) window, marshal automatically puts the window into hold mode (see
rio(1)); this means that the message can be edited freely, because nothing will be sent to marshal
until the ESC key is hit to exit hold mode.

The options are:

—afile directs marshal to append file as a mime attachment. Unless explicitly specified by
the —t option, the type of the attachment is determined by running the file(1) com-
mand.

—Afile is like —a but the message disposition is marked as inline directing any mail reader

to display the attachment (if it can) when the mail message is read.

—Ccopyaddr adds a Cc : header with copyaddr and also adds copyaddr as a recipient.

-n intentionally no standard input

—#xr are all passed as command line options to the send that marshal invokes.

—Rreplymsg tells marshal what message this one is in reply to. Replymsg is an upasfs(4) directory
containing the message. Marshal uses any message id in this message in its
In—-Reply-To field. It also passes the directory to
/mail/box/username/pipefrom in the replymsg environment variable.
Thus, pipefrom can alter the message to somehow match the reply to the message
it is replying to.

—ssubject adds a Subject: header line to the message if one does not already exist.

—t type sets the content type for the attachments from all subsequent —a and —A options.

Marshal also expands any user mail aliases contained in /mail/box/username/names. The
format of the alias file is the same as that for system aliases, see aliasmail(8).

Marshal uses the login name as the reply address. This can be overriden using the environment
variable upasname. Its value will become both the envelope and From: mailbox name. For
example:

upasname=natasha@kremvax.com upas/mail boris@squirrel.com

/mail/box/*/dead.letter

SOURCE

/sys/src/cmd/upas/marshal

SEE ALSO

aliasmail(8), faces(1), filter(1), mail(1), mimgr(1), nedmail(1), ger(8), rewrite(6), send(8), smtp(8),
upasfs(4)

129

MC(1) MC(T)

NAME
mc - multicolumn print
SYNOPSIS
mc[—-]1[-N][file...]
DESCRIPTION

Mc splits the input into as many columns as will fit in N print positions. If run in a rio(1) or
acme(1) window, the default N is the number of blanks that will fit across the window; otherwise
the default Nis 80. Under option — each input line ending in a colon : is printed separately.

SOURCE
/sys/src/cmd/mc.c

SEE ALSO
rio(1), acme(1), acme(4), pr(1), Icin Is(1)

130

MK(1)

NAME

MK(1)

mk, membername - maintain (make) related files

SYNOPSIS

mk [—f mkfile] ... [option ...][target ...]
membername aggregate ...

DESCRIPTION

Mk uses the dependency rules specified in mkfile to control the update (usually by compilation) of
targets (usually files) from the source files upon which they depend. The mkfile (default mkfile)
contains a rule for each target that identifies the files and other targets upon which it depends and
an rc(1) script, a recipe, to update the target. The script is run if the target does not exist or if it
is older than any of the files it depends on. Mkfile may also contain meta—rules that define actions
for updating implicit targets. If no target is specified, the target of the first rule (not meta-rule) in
mkfile is updated.

The environment variable $NPROC determines how many targets may be updated simultaneously;
Plan 9 sets $NPROC automatically to the number of CPUs on the current machine.

Options are:

—-a Assume all targets to be out of date. Thus, everything is updated.
—d[egp] Produce debugging output (p is for parsing, g for graph building, e for execution).
—e Explain why each target is made.

—-i Force any missing intermediate targets to be made.

-k Do as much work as possible in the face of errors.

-n Print, but do not execute, the commands needed to update the targets.

-s Make the command line arguments sequentially rather than in parallel.

-t Touch (update the modified date of) file targets, without executing any recipes.

—wtargetl , target?2,...
Pretend the modify time for each target is the current time; useful in conjunction with
—n to learn what updates would be triggered by modifying the targets.

The rc(1) script membername extracts member names (see ‘Aggregates’ below) from its argu-
ments.

The mkfile

A mkfile consists of assignments (described under ‘Environment’) and rules. A rule contains
targets and a tail. A target is a literal string and is normally a file name. The tail contains zero or
more prerequisites and an optional recipe, which is an rc script. Each line of the recipe must
begin with white space. A rule takes the form

target: prereql prereq?
rc recipe using prereql, prereq?2 tobuild target

When the recipe is executed, the first character on every line is elided.
After the colon on the target line, a rule may specify attributes, described below.

A meta-rule has a target of the form A%B where A and B are (possibly empty) strings. A meta-rule
acts as a rule for any potential target whose name matches A%B with % replaced by an arbitrary
string, called the stem. In interpreting a meta-rule, the stem is substituted for all occurrences of %
in the prerequisite names. In the recipe of a meta-rule, the environment variable $ stem contains
the string matched by the %. For example, a meta-rule to compile a C program using 2c¢(1) might
be:

% : %.cC
2c $stem.c
21 -0 $stem $stem.?2

Meta-rules may contain an ampersand & rather than a percent sign %. A % matches a maximal
length string of any characters; an & matches a maximal length string of any characters except
period or slash.

The text of the mkfile is processed as follows. Lines beginning with < followed by a file name are
replaced by the contents of the named file. Lines beginning with <| followed by a file name are

131

MK(1)

MK(1)

replaced by the output of the execution of the named file. Blank lines and comments, which run
from unquoted # characters to the following newline, are deleted. The character sequence
backslash-newline is deleted, so long lines in mkfile may be folded. Non-recipe lines are pro-
cessed by substituting for ‘ { command} the output of the command when run by rc. References
to variables are replaced by the variables’ values. Special characters may be quoted using single
quotes ’ 7 as in rc(1).

Assignments and rules are distinguished by the first unquoted occurrence of : (rule) or = (assign-
ment).

A later rule may modify or override an existing rule under the following conditions:

- If the targets of the rules exactly match and one rule contains only a prerequisite clause
and no recipe, the clause is added to the prerequisites of the other rule. If either or both
targets are virtual, the recipe is always executed.

- If the targets of the rules match exactly and the prerequisites do not match and both rules
contain recipes, mk reports an ‘‘ambiguous recipe’’ error.

- If the target and prerequisites of both rules match exactly, the second rule overrides the
first.

Environment

Rules may make use of rc environment variables. A legal reference of the form $O0BJ is
expanded as in rc(1). A reference of the form ${name: A%B=C%D}, where A, B, C, D are (possi-
bly empty) strings, has the value formed by expanding $name and substituting C for A and D for B
in each word in $name that matches pattern A%B.

Variables can be set by assignments of the form
var=[attr=]value

Blanks in the value break it into words, as in rc but without the surrounding parentheses. Such
variables are exported to the environment of recipes as they are executed, unless U, the only legal
attribute attr, is present. The initial value of a variable is taken from (in increasing order of prece-
dence) the default values below, mk’s environment, the mkfiles, and any command line assign-
ment as an argument to mk. A variable assignment argument overrides the first (but not any sub-
sequent) assignment to that variable.

The variable MKFLAGS contains all the option arguments (arguments starting with — or containing
=) and MKARGS contains all the targets in the call to mk.

It is recommended that mkfiles start with
</$objtype/mkfile

to set CC, LD, AS, O, YACC, and MK to values appropriate to the target architecture (see the exam-
ples below).

Execution

During execution, mk determines which targets must be updated, and in what order, to build the
names specified on the command line. It then runs the associated recipes.

A target is considered up to date if it has no prerequisites or if all its prerequisites are up to date
and it is newer than all its prerequisites. Once the recipe for a target has executed, the target is
considered up to date.

The date stamp used to determine if a target is up to date is computed differently for different
types of targets. If a target is virtual (the target of a rule with the V attribute), its date stamp is ini-
tially zero; when the target is updated the date stamp is set to the most recent date stamp of its
prerequisites. Otherwise, if a target does not exist as a file, its date stamp is set to the most
recent date stamp of its prerequisites, or zero if it has no prerequisites. Otherwise, the target is
the name of a file and the target’s date stamp is always that file’s modification date. The date
stamp is computed when the target is needed in the execution of a rule; it is not a static value.

Nonexistent targets that have prerequisites and are themselves prerequisites are treated specially.
Such a target t is given the date stamp of its most recent prerequisite and if this causes all the tar-
gets which have t as a prerequisite to be up to date, t is considered up to date. Otherwise, t is
made in the normal fashion. The —i flag overrides this special treatment.

132

MK(1)

MK(1)

Files may be made in any order that respects the preceding restrictions.

A recipe is executed by supplying the recipe as standard input to the command

/bin/rc —-e -I
(the —e is omitted if the E attribute is set). The environment is augmented by the following vari-
ables:

$alltarget
all the targets of this rule.

$newprereq
the prerequisites that caused this rule to execute.

$newmember
the prerequisites that are members of an aggregate that caused this rule to execute.
When the prerequisites of a rule are members of an aggregate, $newprereq con-
tains the name of the aggregate and out of date members, while $newmember con-
tains only the name of the members.

$nproc the process slot for this recipe. It satisfies 0<$nproc<$NPROC.
$pid the process id for the mk executing the recipe.
$prereq all the prerequisites for this rule.

$stem if this is a meta-rule, $stem is the string that matched % or & Otherwise, it is
empty. For regular expression meta-rules (see below), the variables stemO, ...,
stem9 are set to the corresponding subexpressions.

$target the targets for this rule that need to be remade.
These variables are available only during the execution of a recipe, not while evaluating the mkfile.

Unless the rule has the Q attribute, the recipe is printed prior to execution with recognizable envi-
ronment variables expanded. Commands returning nonempty status (see intro(1)) cause mk to
terminate.

Recipes and backquoted rc commands in places such as assignments execute in a copy of mk’s
environment; changes they make to environment variables are not visible from mk.

Variable substitution in a rule is done when the rule is read; variable substitution in the recipe is
done when the recipe is executed. For example:

bar=a.c
foo: $bar

$CC —o foo $bar
bar=b.c

will compile b. c into foo, if a. c is newer than foo.

Aggregates

Names of the form a(b) refer to member b of the aggregate a. Currently, the only aggregates sup-
ported are ar(1) archives.

Attributes

The colon separating the target from the prerequisites may be immediately followed by attributes
and another colon. The attributes are:

D If the recipe exits with a non-null status, the target is deleted.

E Continue execution if the recipe draws errors.

N If there is no recipe, the target has its time updated.

n The rule is a meta-rule that cannot be a target of a virtual rule. Only files match the pat-

tern in the target.

P The characters after the P until the terminating : are taken as a program name. It will be
invoked as rc —c prog ’'argl’ ’arg?2’ and should return a null exit status if and
only if arg1 is up to date with respect to arg2. Date stamps are still propagated in the nor-
mal way.

133

MK(1) MK(1)

Q The recipe is not printed prior to execution.

R The rule is a meta-rule using regular expressions. In the rule, % has no special meaning.
The target is interpreted as a regular expression as defined in regexp(6). The prerequisites
may contain references to subexpressions in form \ n, as in the substitute command of
sam(1).

U The targets are considered to have been updated even if the recipe did not do so.

Vv The targets of this rule are marked as virtual. They are distinct from files of the same
name.

EXAMPLES

A simple mkfile to compile a program:

</$objtype/mkfile

prog: a.$0 b.$0 c.$0
$LD $LDFLAGS -o $target $prereq

%.%$0: %.cC
$CC $CFLAGS $stem.c

Override flag settings in the mkfile:
% mk target ’'CFLAGS=-S —w’
Maintain a library:

libc.a(%.$0):N: %.$0
libc.a: libc.a(abs.$0) libc.a(access.$0) libc.a(alarm. $0)
ar r libc.a $newmember

String expression variables to derive names from a master list:

NAMES=alloc arc bquote builtins expand main match mk var word
OBJ=${NAMES :%=%. $0}

Regular expression meta-rules:

C(IA/1*)/C.*)\.$0:R: \1/\2.c
cd $steml; $CC $CFLAGS $stem2.c

A correct way to deal with yacc(1) grammars. The file 1ex. c includes the file x.tab.h rather
than y.tab.h in order to reflect changes in content, not just modification time.

lex. $0: x.tab.h
x.tab.h: y.tab.h
cmp —s x.tab.h y.tab.h || cp y.tab.h x.tab.h

y.tab.c y.tab.h: gram.y
$YACC -d gram.y

The above example could also use the P attribute for the x.tab.h rule:

x.tab.h:Pcmp —-s: y.tab.h
cp y-tab.h x.tab.h

SOURCE
/sys/src/cmd/mk

SEE ALSO
rc(1), regexp(6)

A. Hume, ““Mk: a Successor to Make’’.
Andrew G. Hume and Bob Flandrena, ““Maintaining Files on Plan 9 with Mk’’.

BUGS
Identical recipes for regular expression meta-rules only have one target.

Seemingly appropriate input like CFLAGS=—DHZ=60 is parsed as an erroneous attribute; correct
it by inserting a space after the first =.

134

MK(1) MK(1)

The recipes printed by mk before being passed to rc for execution are sometimes erroneously
expanded for printing. Don’t trust what’s printed; rely on what rc does.

135

MKDIR(T) MKDIR(T1)

NAME

mkdir - make a directory
SYNOPSIS

mkdir [—-p][—m mode] dirname ...
DESCRIPTION

Mkdir creates the specified directories. It requires write permission in the parent directory.

If the —p flag is given, mkdir creates any necessary parent directories and does not complain if the
target directory already exists.

The —m flag sets the permissions to be used when creating the directory. The default is 0777.
SEE ALSO

rm(1)
cd in rc(1)

SOURCE
/sys/src/cmd/mkdir.c

DIAGNOSTICS
Mkdir returns null exit status if all directories were successfully made. Otherwise it prints a diag-

nostic and returns "error" status.

136

MLMGR(T) MLMGR(1)

NAME

ml, mImgr, mlowner - unmoderated mailing lists

SYNOPSIS

upas/mlmgr -c listname
upas/mlmgr —ar listname address
upas/ml [—r replyto—address | addressfile listname

upas/mlowner addressfile listname

DESCRIPTION

Mimgr creates and updates unmoderated mailing lists. The —c option creates mail directories for
both listname and listname—owner, each containing a pipeto file. Messages mailed to listname
are sent to all members of the mailing list. Any Reply—to: and Precedence: fields are
removed from the messages and new ones are added directing replies to listname and specifying
bulk precedence. The envelope address for error replies is set to /dev/null.

The mailing list membership is the file /mail/box/listname/address—1ist. This file is an
add/remove log. Each line represents a single address. Lines beginning with a hash (#) are com-
ments. Lines beginning with an exclamation point (!) are removals. All other lines are additions.

Addition and removal entries can be appended using the —a and —r options to m/mgr. However,
they are normally appended as a consequence of user requests.

To be added or removed from the list, a user may send a message to listname—owner containing
a key word in the header or body. The key words are:

subscribe - add my From: address to the list
remove - remove my From: address from the list
unsubscribe - remove my From: address from the list

Addition and removal events cause notification messages to be sent to the added/removed
address. In the case of addition, the message describes how to be removed.

Ml and mlowner are the programs that receive messages for listname and listhname—owner
respectively. Appropriate calls to them are inserted in the pipeto files created by mimgr.

MI's —r option sets the Reply—to: field in the mail sent out by ml.

FILES
/mail /box/<listname> list’s mailbox directory
/mail/box/<listname>—owner owner’s mailbox directory
/mail/box/<listname>/address—1ist log of mailing list deletions and additions
SOURCE
/sys/src/cmd/upas/ml
SEE ALSO

aliasmail(8), faces(1), filter(1), mail(1), marshal(1), nedmail(1), qer(8), rewrite(6), send(8),
smtp(8), upasfs(4)

137

MP3DEC(1) MP3DEC(1)

NAME

mp3dec - decode audio MPEG files (layers 1, 2 and 3)
SYNOPSIS

mp3dec [—o outfile] [file ...]
DESCRIPTION

Mp3dec decodes one or more MPEG audio files, writing 16-bit stereo linear PCM sample data to
outfile (default /dev/audio). If no files are named, mp3dec reads standard input.

In the absence of the —o option, mp3dec also opens /dev/volume and sets the sample rate for
playback to match the audio stream. When writing to outfile, mp3dec prints a warning to standard
error if the stream rate is not 44100 Hz.

SOURCE
/sys/src/games/mp3dec

SEE ALSO
mp3enc(1), juke(7), playlistfs(7)
http://www.underbit.com/products/mad/

BUGS
It’s another GNU behemoth, lightly tamed.

138

MP3ENC(T)

NAME

MP3ENC(1)

mp3enc - create mp3 audio files

SYNOPSIS

games/mp3enc [—hprv][—b bitrate] [—B bitrate] [-m mode 1 [—q q][—s sfreql [-V g1l

long or silly options]

DESCRIPTION
Mp3enc compresses audio on standard input, normally PCM-encoded, and produces MP3-encoded
audio on standard output. By default, the MP3 file will use ‘constant bit-rate’ (CBR) encoding, but
that can be changed via ——abr (average bitrate desired, ABR) or —v (variable bitrate, VBR).

Options
-b

-B
-h
—m

-b

-q
-r
-s
-V
-V

set minimum allowed bitrate in Kb/s for VBR, default 32Kb/s. For CBR, set the exact bitrate
in Kb/s, which defaults to 128Kb/s.

set maximum allowed bitrate in Kb/s for VBR, default 256Kb/s.

same as —q 2.

mode may be (s)tereo, (j)oint, (f)orce or (m)ono (default j). force forces mid/side stereo on
all frames.

add CRC error protection (adds an additional 16 bits per frame to the stream). This seems
to break playback.

sets output quality to g (see —V).

input is raw pcm

set sampling frequency of input file (in KHz) to sfreq, default is 44.1.

use variable bitrate (VBR) encoding

set quality setting for VBR to g. Default g is 4; 0 produces highest-quality and largest files,
and 9 produces lowest-quality and smallest files.

Long options
——abr bitrate sets average bitrate desired in Kb/s, instead of setting quality, and gener-

ates ABR encoding.

——Tresample sfreq set sampling frequency of output file (in KHz) to sfreq, default is input sfreq.
——mp3input input is an MP3 file

Silly options

-f

same as —q 7. Such a deal.

-0 mark as non-original (i.e. do not set the original bit)

—C mark as copyright

-k disable sfb=21 cutoff

—e emp de-emphasis n/5/c (default n)

—d allow channels to have different blocktypes

-t disable Xing VBR informational tag

-a autoconvert from stereo to mono file for mono encoding
-X force byte-swapping of input (see dd(1) instead)

=S don’t print progress report, VBR histograms

——athonly only use the ATH for masking
——nohist disable VBR histogram display
——voice experimental voice mode

EXAMPLES

Encode a .wav file as highest-quality MP3.

games/mp3enc —q 0 —-b 320

Create a fixed 128Kb/s MP3 file from a .wav file.

games/mp3enc —-h <foo.wav >foo.mp3

Streaming from stereo 44.1KHz raw PCM data, encoding mono at 16KHz (you may not need dd):

SOURCE

dd -conv swab | games/mp3enc —a -r -m m ——resample 16 -b 24

/sys/src/games/mp3enc

139

MP3ENC(T) MP3ENC(1)

SEE ALSO
dd(1), mp3dec(1), audio(3), cdfs(4), audio(7), juke(7), playlistfs(7)
http://www.sulaco.org/mp3

BUGS
Quality is much better than encoders based on the ISO routines, but still not as good as the FhG

encoder.
It’s a GNU behemoth, lightly rehabilitated. There are zillions of undocumented options.

140

MS2HTML(1) MS2HTML(1)

NAME
ms2html, html2ms - convert between troff’s ms macros and html
SYNOPSIS
ms2html [—q] [—b basename][—d delims][—t title]
html2ms
DESCRIPTION

Ms2html converts the ms(6) source on standard input into HTML and prints it to standard output.
If the source contains th/(1) or egn input, you must first pipe the text through those preproces-
sors. Postscript images, equations, and tables will be converted to gif files. If the document has a
. TL entry, its contents will be used as the title; otherwise ms2html will look for a ._T macro,
unknown to ms(6), and take its value. Options are:

g suppresses warnings about malformed input;
b sets the HTML base name to basename;

d sets the eqn(1) delimiters to delim,;

t sets the HTML title to title.

HtmlI2ms reads HTML from standard input and converts it to ms(6) source on standard output.

SOURCE
/sys/src/cmd/ms2html.c
/sys/src/cmd/html2ms.c

SEE ALSO
htmlroff(1), ms(6)

BUGS
Ms2html doesn’t understand a number of troff commands. It does handle macros and defined
strings.

Html2ms doesn’t understand html tables.

141

MSGS(1) MSGS(1)

NAME
Msgs, mail2fs, M, Mg, mspool, mailplumb, msgs, Arch, Spam, Reply, Send, Post, Delmesg, Save -
file based mail reader

SYNOPSIS
mail2fs [—acDnor][—-d mdir] [mbox]

msgs [—aD][—s runes] [mdir][monthdir]
Mcmd [dir ... 1]

Mg [-h][regexp]

mspool
mailplumb [—dho] [mdir]
Msgs [—a] [mdir [monthdir]]
Arch/ file . ..]
Spam | file . . .]

Reply

Send

Delmesg | file . ..]

Post

Save file

mlist

DESCRIPTION
These programs cooperate to provide mail reading and delivering facilities by using files from a
shared file server. Msgs are stored in a convenient way to read or process them just by browsing
files, using a Plan B mail box format.

Mail box format

In Plan B, msgs for users are parsed and decoded first, and then stored in a file hierarchy where
these and other tools can be used to process them. A mailbox is a directory, usually under
/mail/box/$user/, that contains one directory per month (e.g., 200603/ for msgs pro-
cessed on March 2006). In these diretories there is one directory per message. The convention is
that (message directory) names starting with a. correspond to archived messages not to be usu-
ally shown to the user. Names starting with s. correspond to messages that seem to be spam (not
usually shown either). Names starting with d. correspond to deleted messages not yet removed
from the file system. Any other rune can be used instead of a , s or d as a convenience (the
meaning would be up to the user). But for this optional prefix, messages use a serial message
number as their directory name.

The directory for a message contains at least two files: text and raw. The text file has the
mail headers and body already processed for reading, and raw has the original mail headers with-
out any processing, including the UNIX header line (for debugging and also for obtaining message
ids when replying to msgs). As an option, raw may contain the entire original mail without pro-
cessing and not just the headers. Any attachment in the mail is kept stored in a separate file (pos-
sibly with the file name indicated in the MIME headers) ready to be used, that is, decoded. When
the attachment is a mail, the message is stored in a subdirectory following the same conventions
stated above. For msgs with attachments, the text file contains additional text indicating the rel-
ative path names (from the mail’s directory) that can be used to open the attachments. This is con-
venient to plumb(1) them while reading.

Because all these files have been already processed for reading, the usual file handling tools can
be used to read, edit, copy, or remove them.

The mailbox used by defaultis /mail/box/$user/msgs, and corresponds to the inbox.

A Plan B mail box also contains two files: seq and digest. Messages are given sequence num-
bers as added to the mail box. The file seq contains the sequence number for the last message
(or zero) and is DMEXCL to provide locking for multiple programs using the mail box. The file

142

MSGS(1) MSGS(1)

digest contains digests for msgs added to the mailbox using mail2fs (and not for those added
by hand using file tools). When a message has a digest that was already seen in the past the mes-
sage is silently discarded as a dupplicate.

Programs described below are parsimonious enough in the format of the mail box so that they will
work even if messages are edited by hand, other files are created, or some of them are removed.

Virtual mail folders may be created by storing text files with mail lists that contain a mail descrip-
tion per line starting with the path for each mail. Copying the text shown for some messages in a
mail listing into another text file would ‘“‘save’ such messages into that file. The program mlist
writes to standard output a clean listing for messages with paths found in the standard input.

A file (a virtual folder) named like a per-month directory with .1 or .1la appended is considered a
cache of the listing for that directory. But only if the directory has not been modified after the file.
For example, a text file named 200909 .1 (containing a mail listing in the format shown by msgs
) will be used to list msgs on September 2009, instead of the 200909 directory and its contents.
This file will be ignored for mailbox listings if the directory is modified after the file and the cache
is, therefore, out of date. A file named 200909 . 1a behaves like before, but is known to contain
only archived msgs. It is, therefore, ignored when listing non-archived msgs. The msgs program
automatically renames .1 files to 1a when the file lists only archived mail.

Reading mail
Mail is converted from a Plan 9 mailbox into a Plan B mailbox using mail2fs. This program may be
run using cron(8) or directly from the pipeto file described in mail(1). It uses upas/fs,
described in upasfs(4), to parse the Plan 9 mail box.

By default /mail/box/$user/mbox is the source (Plan 9) mail box. Messages found on it are
moved into (in Plan B mailbox format). The argument mbox specifies another mail source, to be
used instead of the default. Option —d changes the destination to mdir.

Messages are deleted from the Plan 9 mailbox unless flag —n is given. The Plan B mailbox is cre-
ated if it does not exist only if flag —c is given.

Flag —a makes mail2fs add new messages as archived to the Plan B mailbox. This is useful to add
messages to a mailbox for further reference, not for listing when asking the mail index for the
mailbox. For example, to archive outgoing mail in the default mail box.

Flag —o asks mail2fs to use the date from the mail to determine where to archive it, instead of
using today’s. See the examples section.

Flag —r asks mail2fs to store the entire original message in the raw file, and not just message
headers.

Flag —D (accepted by mail2fs and other programs) enables debug diagnostics.

The program msgs is a convenience tool for reading mail. It generates a mail index. Flag —a gener-
ates a list for all msgs in the mailbox, archived or not. This may take some time if the mailbox is is
big enough. Flag —s can be used to include in the list msgs starting with any rune in runes, for
example, s for spam. The mailbox is the standard msgs inbox unless a different one is supplied
as an argument. As an option, both the mail box path and the name of a per-month directory can
be indicated, to ask for a list of msgs for just one month. This is useful to generate per-month
mail lists that can be used to quickly browse existing msgs without going through all msgs in the
box. See the Month script supplied as an example.

As an aid for other programs, msgs places a list of the directories for the msgs listed at
/tmp/msgs. $user, which can be useful for retrieve the paths for the msgs the user is working
with.

Programs just described are the basic toolkit to handle msgs. Other programs described here are
a convenience for the user. Users are encouraged to customize them and/or to write their own ver-
sions.

M is a script that applies the operation indicated by cmd to one or more msgs. It applies cmd to all
msgs last listed by msgs, (as described by the paths in /tmp/msgs . $user), when no mail direc-
tories are given as arguments. Arguments selecting msgs only need to mention paths to the mail
directories, but may refer to particular files within them, as a convenience, to permit using names
from somewhere else without editing. Cmd may be any of the following:

143

MSGS(1) MSGS(1)

arch To archive the msgs as read.

spam To archive the msgs as spam.

inbox To archive the msgs as unread.

rm To print commands to remove the msgs.
print To print the text of the msgs.

list To list the directories for the msgs.
mime To list the attachments for the msgs.
reply To plumb a reply message to the editor.

The single letters a, s, i, d, p, 1, m, and r can be used instead of the full cmd name (in the same
order). Note that the letter is the initial for the command, but for deletion.

Mg is not strictly necessary, but is supplied as a convenience script to call grep(1) to locate msgs
containing the expression given as an argument. Flag —h makes it search only in headers. Like the
previous program, Mg only considers msgs listed in /tmp/msgs. $user.

Mailplumb is used to send plumb(1) messages to maintain faces(1) and other programs aware of
msgs in the user’s Plan B mailbox, or in mdir when supplied. Flag —h makes the program notify
existing msgs as new ones. Flag —o makes mailplumb post events for the Octopus, using ports(4)
instead of plumber(4).

Reading mail in Acme
The program Msgs (see /acme/msgs) is an Acme interface for reading mail. Its arguments are
the same of msgs . Executing Msgs within Acme displays a window with the default (or indicated)
mailbox. It understands both the standard mailbox format (described above) and the virtual folder
format (a text file, see above).

The program listens to plumber events for mail and tries to maintain the mail list up to date.

To read a mail simply click button-3 on the mail file name shown in the mail list. Archiving, mark-
ing a spam, replying, and deleting messages is achieved by executing the scripts Arch, Spam,
Reply and Delmesg respectivelly. Most of them may be used either from a message window or to
process standard input (usually at the mail box directory). Some of them also accept message
paths as arguments. For example, to archive a series of msgs, select them in the mail list and exe-
cute |Arch in that window.

Msgs can be sent using Reply and Post as described later.
Save archives one or more messages, adding them to the named file.

Reading mail in O/live
In general, reading mail in olive(1) is similar to reading mail in Acme. The main difference is that
there is no need for a mail listing command. That is, there is no Msgs program.

Executing !'Msgs at /mail/box/$user/msgs produces an initial list of msgs. This list can be
refreshed by executing ,<Msgs for the panel containing the mail list. To read a mail just click
(button-3) on the mail path.

To select msgs according to text shown in the mail index use the Sam command language. For
example, ,x/9fans/+—p produces a mail index for msgs comming from 9fans.

To archive a set of msgs send their index text as standard input to Arch. For example, ,>Arch
archives all msgs listed in the panel. In the same way, Spam flags msgs as spam.

As in Acme, most scripts can be used for a panel showing a single message, for standard input, or
for messages given as argument.

Sending mail
Mspool is a program that takes text files from /mail /box/$user/out reprensenting msgs to
be sent, and sends them. It only operates on files whose names are numbers. To send a mail, the
user creates a file with a randomized name like /mail/box/$user/out/Out. 3452, edits it,
and renames the file to just the random number.

The file format is similar to that used by the acme(1) mail composition window. It includes one
text line per header, a blank line, and the body. Attachments are added by lines starting with
Attach: in the header. Inline attachments are added by lines starting with Include: in the
header. Replies to other msgs should contain a Replying: header containing the path to the
mail being replied to (its raw file in a Plan B mailbox).

144

MSGS(1) MSGS(1)

Messages are sent using marshal(1).

The script Reply is available to send messages from either olive(1) or acme(1). Similar to Arch and
Spam, it replies to the mail shown when executed in a message window (or panel); it replies to the
mail listed in its standard input otherwise. For example, selecting a mail in the index and execut-
ing .>Reply in Olive or >Reply in Acme would reply to it.

When uncertain regarding the mail to reply to, it creates a window to edit and send a new mail.

Mail is delivered by writing the panel created by Reply and then executing either Send or Post.
The former spools the message using mspool , the latter attempts to immediatelly deliver the mes-
sage.

EXAMPLES
Users are expected to customize the scripts supplied to their needs. All of them are to be consid-
ered examples of how to use the mail system.

Move all msgs from the Plan 9 mailbox to the Plan B one, and creates the later if it does not exist.
; mail2fs —c

List msgs:

; mSgs omsgs

200712/4/text Ralph Corderoy Re: [9fans] Hi
200712/3/text Juan Manuel Se Re: reunion
200712/2/text "Raquel Martin Re: [Diet] reunion
200712/1/text "Fco. J. Balle zreunion

From now on, /tmp/msgs. $user contains a list of mail directories for M to work with. For
example, display them.

s M p

/mail/box/nemo/msgs/200712/4

To: 9fans@cse.psu.edu

From: Ralph Corderoy <ralph@inputplus.co.uk>

Subject: Re: [9fans] Hi together | a few newbie questions

Sender: 9fans—admin@cse.psu.edu

List their directories and plumb all PDF attachments:
i M1

/mail/box/nemo/msgs/200712/4
/mail/box/nemo/msgs/200712/3
/mail/box/nemo/msgs/200712/2
/mail/box/nemo/msgs/200712/1

; plumb ‘{M 13}A*.pdf

Reply to the second, mark the first as spam, and archive the others.

; M r 200712/3

; M s 200712/4/text

; M a

Prepare to use the script M (like above) but only for messages from december 2007 that contain
PDF attachments and are kept in the omsgs mailbox:

; 1s /mail/box/nemo/omsgs/200712/*/*.pdf >/tmp/msgs.nemo
Use mailplumb to see in faces messages in the Plan B mailbox:

; plumber

; mailplumb

; faces —-m /mail/box/$user/msgs

This is a guide for reading mail using olive(1):

IMsgs # ask for mail index
lArch # archive this mail
ISpam # mark this mail as spam

X/text/D # delete all panels showing msgs

145

MSGS(1)

FILES
/mail /box/$user/mbox Standard Plan 9 mail box.
/mail/box/$user/msgs/ Standard Plan B mail box.
/tmp/msgs. $user List of msgs being processed by the user.
SOURCE
/sys/src/cmd/upas/mail2fs and /acme/msgs
SEE ALSO

, <Msgs # update mail index
, >Arch # archive all msgs listed
, x/9fans/+-p # list all 9fans messages shown

MSGS(T1)

The script /sys/src/cmd/mail2fs/Month is an example of a per-month cleanup script.
Usually the directory for the last month is declared as DMTEMP and this permission is cleared
when all spam has been dealt with. The script also creates cached listings for all but the current

month.

Add msgs from the UNIX-format oldmbox to the standard msgs folder, honoring their dates and

inserting them as archived, and produce a listing for them kept at newfolder
; mail2fs —aon oldmbox > /tmp/archived
; mlist </tmp/archived >newfolder

Create a cache for September, 2009, to be used by tools listing msgs.
; cd /mail/box/$user/msgs
; msgs —a msgs 200909 > 200909.1

mail(1).

146

MTIME(1)

NAME
mtime - print file modification time

SYNOPSIS
mtime file ...

DESCRIPTION

Mtime prints the modification time (in seconds since the epoch) and name of each file.

SOURCE
/sys/src/cmd/mtime.c

147

MTIME(1)

MUG(1) MUG(1)

NAME
mug - convert an image to a face icon

SYNOPSIS
mug [file]
DESCRIPTION
Mug reads a Plan 9 image(6) from file (or standard input if there is no file) and displays a working

version of the icon a gray ramp, and a larger image (the ‘crop box’), all derived from file. Selecting
Write from the button-3 menu will write the icon in face(6) format to standard output.

Imagine a 3x3 grid on the crop box. You can move an edge or corner of the box by putting the
mouse in the corresponding section of the grid and dragging. Dragging in the middle box in the
grid translates the crop box. The mouse cursor changes to tell you where you are.

The bar in the gray ramp controls the map from picture gray levels to the output levels. The val-
ues along the bar are mapped to 0 through 255 in the output. You can move the bar vertically by
grabbing the midsection or adjust the width by grabbing an endpoint.

The current icon is shown in the bottom left corner, surrounded by eight small empty boxes. You
can save the settings as they are by dragging the current icon into one of the other boxes. You
can restore the settings by dragging an icon from one of the periphery boxes into the middle.

EXAMPLES
Convert a JPEG image into a face icon.

jpg —c plus.jpg | mug >plus.1l

SEE ALSO
faces(1), jpg(1), face(6), image(6)

148

NEDMAIL(1) NEDMAIL(1)

NAME

nedmail - reading mail

SYNOPSIS

upas/nedmail [-nr] [—f mailfile] [—s mailfile]
upas/nedmail —c dir

DESCRIPTION

Nedmail edits a mailbox. The default mailbox is /mail /box/username/mbox. The —f com-
mand line option specifies an alternate mailbox. Unrooted path names are interpreted relative to
/mail /box/ username. If the mailfile argument is omitted, the name defaults to stored.

The options are:

—c dir Create a mailbox. |If dir is specified, the new mailbox is created in
/mail /box/username/ dir/mbox. Otherwise, the default mailbox is cre-
ated.

-r Reverse: show messages in first-in, first-out order; the default is last-in, first-
out.

-n Make the message numbers the same as the file names in the mail box direc-
tory. This implies the —r option.

—f mailfile Read messages from the specified file (see above) instead of the default mail-
box.

—s mailfile Read a single message file mailfile, as produced by fs, and treat it as an entire

mailbox. This is provided for use in plumbing rules; see faces(1).

Nedmail starts by reading the mail box, printing out the number of messages, and then prompting
for commands from standard input. Commands, as in ed(1), are of the form ‘[range]l command
[arguments]’. The command is applied to each message in the (optional) range.

The address range can be:

address to indicate a single message header

address , address to indicate a range of contiguous message headers

g/ expression/ to indicate all messages whose headers match the regular expression.
g%expression% to indicate all messages whose contents match the regular expression.

The addresses can be:

number to indicate a particular message

address . number to indicate a subpart of a particular message

/ expression / to indicate the next message whose header matches expression
%expression% to indicate the next message whose contents match expression
empty or . to indicate the current message

—address to indicate backwards search or movement

Since messages in MIME are hierarchical structures, in nedmail all the subparts are individually
addressable. For example if message 2 contains 3 attachments, the attachments are numbered
2.1, 2.2, and 2.3.

The commands are:

a args Reply to all addresses in the To:, From:, and Cc: header lines. Marshal is
used to format the reply and any arguments the user specifies are added to the
command line to marshal before the recipient. The possibility of making a fool
of yourself is very high with this command.

args Like a but with the message appended to the reply.

Print the headers for the next ten messages.

Mark message to be deleted upon exiting nedmail.

Append the message to the file /mail/box/username/sendername where
sendername is the account name of the sender.

Print the disposition, size in characters, reception time, sender, and subject of
the message.

Print the MIME structure of the message.

= 5 oo w»

149

NEDMAIL(1)

FILES

help
m person ...
M person ...

p
T args

R args
rf

Rf

s mfile

q
EOT (control-D)
w file

NoW e

| command
| | command
I command

NEDMAIL(1)

Print a summary of the commands.

Forward the message as a mime attachment to the named persons.

Like m but allow the user to type in text to be included with the forwarded mes-
sage.

Print message.An interrupt stops the printing.

Reply to the sender of the message. Marshal is used to format the reply. If and
optional Args are specified, they are added to the command line to marshal
before the recipient’s address.

Like r but with the original message included as an attachment.

Like 1 but append the message and the reply to the file
/mail /box/ username/ sendername where sendername is the account name
of the sender.

Like R but append the message and the reply to the file
/mail /box/ username/ sendername where sendername is the account name
of the sender.

Append the message to the specified mailbox. If mfile doesn’t start with a ‘/’, it
is interpreted relative to the directory in which the mailbox resides. If mfile is a
directory then the destination is a file in that directry. If the MIME header speci-
fies a file name, that one is used. Otherwise, one is generated using mktemp(2)
and the string att . XXXXXXXXXXX

Put undeleted mail back in the mailbox and stop.

Same as g.

Same as s with the mail header line(s) stripped. This can be used to save binary
mail bodies

Remove mark for deletion.

Exit, without changing the mailbox file

Synchronize with the mail box. Any deleted messages are purged and any new
messages read. This is equivalent to quiting nedmail and restarting.

Run the command with the message body as standard input.

Run the command with the whole message as standard input.

Escape to the shell to do command.

Print the number of the current message.

Here’s an example of a mail session that looks at a summary of the mail messages, saves away an
html file added as an attachment to a message and then deletes the message:

% mail
7 messages
,h

1 H 2129 07/22 12:30 noone@madeup.net "Add Up To 2000 free miles"
2 504 07/22 11:43 Jjmk
3 H 784 07/20 09:05 presotto
4 822 07/11 09:23 xxx@yyy.net "You don’t call, you don’t write...
5 193 07/06 16:55 presotto
6 529 06/01 19:42 Jjmk
7 798 09/02 2000 howard
: 1H
1 multipart/mixed 2129 from=noone@madeup.net
1.1 text/plain 115
1.2 text/html 1705 filename=northwest.htm

1.2w /tmp/northwest.html
Isaved in /tmp/northwest.html

1.2: d
1: q

!l message deleted

%

Notice that the delete of message 1.2 deleted the entire message and not just the attachment.

/mail/box/*

mail directories

150

NEDMAIL(1)

/mail/box/*/mbox
/mail/box/*/forward
/mail/box/*/pipeto
/mail/box/*/L.reading
/mail/box/*/L.mbox
SOURCE
/sys/src/cmd/upas/ned

SEE ALSO

NEDMAIL(1)

mailbox files

forwarding address(es)

mail filter

mutual exclusion lock for multiple mbox readers
mutual exclusion lock for altering mbox

mail(1), aliasmail(8), filter(1), marshal(1), mimgr(1), nedmail(1), upasfs(4), smtp(8), faces(1),

rewrite(6)

151

NETSTAT(1) NETSTAT(1)

NAME

netstat - summarize network connections
SYNOPSIS

netstat[—-in] [—p proto] [netmtpt]
DESCRIPTION

Netstat prints information about network mounted at netmtpt, default /net. For IP connections,
netstat reports the protocol, connection number, user, connection state, local port, remote port
and remote address.

The options are:

—-i Instead of the usual listing, print one line per network interface. Each line gives the device,
MTU, local address, mask, remote address, packets in, packets out, errors in, and errors
out for this interface.

-n By default, netstat looks up port numbers and addresses in the network databases to print
symbolic names if possible. This option disables such translation.

-p Show only connections with the given protocol.

FILES
/net/*/*

SOURCE
/sys/src/cmd/netstat.c

SEE ALSO
ipconfig(8)

152

NEWS(1) NEWS(1)

NAME
news - print news items
SYNOPSIS
news|[—-al[-n]|[item...]
DESCRIPTION

When invoked without options, this simple local news service prints files that have appeared in
/1ib/news since last reading, most recent first, with each preceded by an appropriate header.
The time of reading is recorded. The options are

—-a Print all items, regardless of currency. The recorded time is not changed.

-n Report the names of the current items without printing their contents, and without chang-
ing the recorded time.

Other arguments select particular news items.
To post a news item, create a file in /1ib/news.

You may arrange to receive news automatically by registering your mail address in
/sys/lib/subscribers. A daemon mails recent news to all addresses on the list.

Empty news items, and news items named core or dead.letter are ignored.

FILES
/1lib/news/* articles
$HOME/1lib/newstime modify time is time news was last read
/sys/lib/subscribers who gets news mailed to them
SOURCE

/sys/src/cmd/news.c

153

NM(1) NM(1)

NAME
nm - name list (symbol table)

SYNOPSIS
nm [—aghnsTu] file ...

DESCRIPTION
Nm prints the name list of each executable or object file in the argument list. If the file is an
archive (see ar(1)), the name list of each file in the archive is printed. If more than one file is given
in the argument list, the name of each file is printed at the beginning of each line.

Each symbol name is preceded by its hexadecimal value (blanks if undefined) and one of the let-
ters

text segment symbol

static text segment symbol

leaf function text segment symbol
static leaf function text segment symbol
data segment symbol

static data segment symbol

bss segment symbol

static bss segment symbol
automatic (local) variable symbol
function parameter symbol
source file name

source file line offset

source file name components

FHhNNTOOEWAOHE+H

The output is sorted alphabetically.
Options are:

—-a Print all symbols; normally only user-defined text, data, and bss segment symbols are
printed.

-g Print only global (T, L, D, B) symbols.

-h Do not print file name headers with output lines.
-n Sort according to the address of the symbols.

-s Don’t sort; print in symbol-table order.

-T Prefix each line with the symbol’s type signature.
—-u Print only undefined symbols.

SOURCE
/sys/src/cmd/nm.c

SEE ALSO
ar(1), 21(1), db(1), acid(1), a.out(6)

154

NS(1) NS(1)

NAME
ns - display name space

SYNOPSIS
ns[-r][pid]

DESCRIPTION
Ns prints a representation of the file name space of the process with the named pid, or by default
itself. The output is in the form of an rc(1) script that could, in principle, recreate the name space.
The output is produced by reading and reformatting the contents of /proc/pid/ns.
By default, ns rewrites the names of network data files to represent the network address that data
file is connected to, for example replacing /net/tcp/82/data with tcp!123.122.121.9.
The —r flag suppresses this rewriting.

FILES
/proc/*/ns
SOURCE
/sys/src/cmd/ns.c
SEE ALSO
ps(1), proc(3), namespace(4), namespace(6)

BUGS
The names of files printed by ns will be inaccurate if a file or directory it includes has been

renamed.

155

P(1) P(1)

NAME
p - paginate
SYNOPSIS
p [—number] | file ...]

DESCRIPTION
P copies its standard input, or the named files if given, to its standard output, stopping at the end
of every 22nd line, and between files, to wait for a newline from the user. The option sets the
number of lines on a page.

While waiting for a newline, p interprets the commands:
! Pass the rest of the line to the shell as a command.
q Quit.

SOURCE
/sys/src/cmd/p.c

156

PAGE(1) PAGE(1)

NAME

page - view FAX, image, graphic, PostScript, PDF, and typesetter output files

SYNOPSIS

page [—abirPRvVw][—p ppi] | file...]

DESCRIPTION

Page is a general purpose document viewer. It can be used to display the individual pages of a
PostScript, PDF, or tex(1) or troff(1) device independent output file. Tex or troff output is simply
converted to PostScript in order to be viewed. It can also be used to view any number of graphics
files (such as a FAX page, a Plan 9 image(6) file, an Inferno bitmap file, or other common format).
Page displays these in sequence. In the absence of named files, page reads one from standard
input.

By default, page runs in the window in which it is started and leaves the window unchanged. The
—R option causes page to grow the window if necessary to display the page being viewed. The —w
option causes page to create a new window for itself. The newly created window will grow as
under the —R option. If being used to display multipage documents, only one file may be specified
on the command line.

The —p option sets the resolution for PostScript and PDF files, in pixels per inch. The default is
100 ppi. The —r option reverses the order in which pages are displayed.

When viewing a document, page will try to guess the true bounding box, usually rounding up from
the file’s bounding box to 8%2x11 or A4 size. The —b option causes it to respect the bounding
box given in the file. As a more general problem, some PostScript files claim to conform to
Adobe’s Document Structuring Conventions but do not. The —P option enables a slightly slower
and slightly more skeptical version of the PostScript processing code. Unfortunately, there are
PostScript documents that can only be viewed with the —P option, and there are PostScript docu-
ments that can only be viewed without it.

When viewing images with page, it listens to the image plumbing channel (see plumber(4)) for
more images to display. The —i option causes page to not load any graphics files nor to read
from standard input but rather to listen for ones to load from the plumbing channel.

The —v option turns on extra debugging output, and the —V option turns on even more debugging
output. The —a option causes page to call abort(2) rather than exit cleanly on errors, to facilitate
debugging.

Pressing and holding button 1 permits panning about the page.

Button 2 raises a menu of operations on the current image or the entire set. The image transfor-
mations are non-destructive and are valid only for the currently displayed image. They are lost as
soon as another image is displayed. The button 2 menu operations are:

Orig size
Restores the image to the original. All modifications are lost.

Zoom Prompts the user to sweep a rectangle on the image which is expanded proportionally
to the rectangle.

Fit window
Resizes the image so that it fits in the current window.

Rotate 90
Rotates the image 90 degrees clockwise

Upside down
Toggles whether images are displayed upside-down.

Next Displays the next page.

Prev Displays the previous page.

Zerox Displays the current image in a new page window. Useful for selecting important pages
from large documents.

Reverse Reverses the order in which pages are displayed.

Write Writes the image to file.

Button 3 raises a menu of the pages to be selected for viewing in any order.

157

PAGE(1) PAGE(1)

Typing a q or control-D exits the program. Typing a u toggles whether images are displayed
upside-down. (This is useful in the common case of mistransmitted upside-down faxes). Typing
a T reverses the order in which pages are displayed. Typing a w will write the currently viewed
page to a new file as a compressed image(6) file. When possible, the filename is of the form
basename.pagenum.bit. Typing a d removes an image from the working set.

To go to a specific page, one can type its number followed by enter. Typing left arrow, backspace,
or minus displays the previous page. Typing right arrow, space, or enter displays the next page.
The up and down arrow pan up and down one half screen height, changing pages when panning
off the top or bottom of the page.

Page calls gs(1) to draw each page of PostScript and PDF files. It also calls a variety of conversion
programs, such as those described in jpg(1), to convert the various raster graphics formats into
Inferno bitmap files. Pages are converted ‘‘on the fly,”” as needed.

EXAMPLES

page /sys/src/cmd/gs/examples/tiger.eps
Display a color PostScript file.

page /usr/inferno/icons/*.bit
Browse the Inferno bitmap library.

man -t page | page —w
Preview this manual in a new window.

SEE ALSO

gs(1), jpg(1), tex(1), troff(1)

SOURCE

/sys/src/cmd/page

DIAGNOSTICS

BUGS

The mouse cursor changes to an arrow and ellipsis when page is reading or writing a file.

Page supports reading of only one document file at a time, and the user interface is clumsy when
viewing very large documents.

When viewing multipage PostScript files that do not contain “%%Page’ comments, the button 3
menu only contains ‘‘this page’” and ‘‘next page’’: correctly determining page boundaries in
Postscript code is not computable in the general case.

If page has trouble viewing a Postscript file, it might not be exactly conforming: try viewing it with
the —P option.

The interface to the plumber is unsatisfactory. In particular, document references cannot be sent
via plumbing messages.

There are too many keyboard commands.

158

PASSWD (1) PASSWD(1)

NAME

passwd, netkey - change or verify user password
SYNOPSIS

passwd [username[@ domain]]

netkey
DESCRIPTION

Passwd changes the invoker’s Plan 9 password and/or APOP secret. The Plan 9 password is used
to login to a terminal while the APOP secret is used for a number of external services: POP3, IMAP,
and VPN access. The optional argument specifies the user name and authentication domain to use
if different than the one associated with the machine passwd is run on.

The program first prompts for the old Plan 9 password in the specified domain to establish iden-
tity. It then prompts for changes to the password and the secret. New passwords and secrets
must be typed twice, to forestall mistakes. New passwords must be sufficiently hard to guess.
They may be of any length greater than seven characters.

Netkey prompts for a password to encrypt network challenges. It is a substitute for a SecureNet
box.

These commands may be run only on a terminal, to avoid transmitting clear text passwords over
the network.

SOURCE

/sys/src/cmd/auth/passwd.c
/sys/src/cmd/auth/netkey.c

SEE ALSO

BUGS

readnvram in authsrv(2), encrypt(2), cons(3), auth(8), securenet(8)

Robert Morris and Ken Thompson, “UNIX Password Security,” AT&T Bell Laboratories Technical
Journal Vol 63 (1984), pp. 1649-1672

Now that cpu connections are always encrypted, the only good reason to require that these com-
mands be run only on terminals is concern that the CPU server might be subverted.

159

PATCH(T1) PATCH(1)

NAME
patch - simple patch creation and tracking system

SYNOPSIS
patch/create name email files ... [< description]
patch/list [name ...]
patch/diff name
patch/apply name
patch/undo name
patch/note name [< note]

DESCRIPTION
These scripts are a simple patch submission and tracking system used to propose additions or
changes to Plan 9. There is no guarantee that any patch will be accepted, nor that it will be
accepted verbatim. Each patch has a name (lowercase letters, numbers, dash, dot, and underscore
only) and is stored in /n/sources/patch/name.

Patch/create creates a new patch consisting of the changes to the listed files from the distribution,
reading a description of the patch from standard input: please provide an explanation of what the
change is supposed to do, some context, and a rationale for the change. Test data or pointers to
same to verify that the fix works are also welcome. When sending a patch, follow these guidelines:

o Before preparing the patch, run replica/pull and base your patch on current distribution source
code.

o |If this is a bug fix, explain the bug clearly. Don’t assume the bug is obvious from the fix.
e |If this is a new feature, explain it clearly. Don’t assume it is obvious from the change.

e Make the new code look as much like the old code as possible: don’t make gratuitous changes,
and do follow the style of the old code. See style(6) for the canonical Plan 9 coding style.

e If your patch changes externally-visible behaviour, update the manual page.

The email address, if not —, will be sent notification messages when the patch is applied, rejected,
or commented on. If rejected, the e-mail will contain a note explaining why and probably listing
suggested changes and encouraging you to resubmit.

Patch/list displays information about the named patches, or all currently pending patches if none
are specified.

Patch/diff shows a patch as diffs between the original source files and the patched source files.

Patch/apply applies the patch to the current source tree. It is intended to be run by the Plan 9
developers with pie as their root file system. If the source has changed since the patch was cre-
ated, apply will report the conflict and not change any files. Before changing any files, patch/apply
makes backup copies of the current source tree’s files. The backups are stored in the patch direc-
tory.

Patch/undo will copy the backups saved by patch/apply back into the source tree. It will not
restore a backup if the file being replaced is not byte-identical to the one created by patch/apply.

EXAMPLES
Propose a change to pwd, which you have modified locally:

% patch/create pwd—-errors user@host.dom /sys/src/cmd/pwd.c
Fix pwd to print errors to fd 2 rather than 1.

AD

%

Then the developers at Bell Labs run
patch/diff pwd-errors

to inspect the change (possibly viewing /n/sources/patch/pwd—errors/pwd. c to see the
larger context). To make the change, they run

160

PATCH(T1) PATCH(1)

patch/apply pwd—-errors
Otherwise they run

% patch/note pwd-errors

Pwd should definitely print errors to fd 1 because
AD

%
to add a note to the /n/sources/pwd—errors/notes file.
FILES
/n/sources/patch
SOURCE
/rc/bin/patch
SEE ALSO
diff(1)
http://plan9.bell-labs.com/wiki/plan9/How_to_contribute

161

PCC(1)

NAME

PCC(1)

pcc - APE C compiler driver

SYNOPSIS

pcc [option ... 1 [name ...]

DESCRIPTION

Pcc compiles and loads C programs, using APE (ANSI C/POSIX) include files and libraries. Named
files ending with .c are preprocessed with cpp(1), then compiled with one of the compilers
described in 2c¢(1), as specified by the environment variable $objtype. The object files are then
loaded using one of the loaders described in 2/(1). The options are:

—+ Accept C++ // comments.

—0 out Place loader output in file out instead of the default 2. out, v.out, etc.

-P Omit the compilation and loading phases; leave the result of preprocessing
name . c in name . 1i.

-E Like —P, but send the result to standard output.

-C Omit the loading phase.

-p Insert profiling code into the executable output.

-w Print compiler warning messages.

—1lib Include / $objtype/1ib/ape/1iblib. a as a library during the linking phase.

-B Don’t complain about functions used without ANSI function prototypes.

-V Enable void* conversion warnings, as in 2c¢(1).

-v Echo the preprocessing, compiling, and loading commands before they are exe-
cuted.

—D name=def

—Dname Define the name to the preprocessor, as if by #define. If no definition is given,
the name is defined as 1.

—Uname Undefine the name to the preprocessor, as if by #undef.

—1dir #include files whose names do not begin with / are always sought first in the

directory of the file argument, then in directories named in —I options, then in
/$objtype/include/ape.

—-N Don’t optimize compiled code.

=S Print an assembly language version of the object code on standard output.

-a Instead of compiling, print on standard output acid functions (see acid(1)) for
examining structures declared in the source files.

—aa Like —a except that functions for structures declared in included header files are
omitted.

-F Enable vararg type checking as described in 2¢(1). This is of limited use without the

appropriate #pragma definitions.

The APE environment contains all of the include files and library routines specified in the ANSI C
standard (X3.159-1989), as well as those specified in the IEEE Portable Operating System Interface
standard (POSIX, 1003.1-1990, ISO 9945-1). In order to access the POSIX routines, source pro-
grams should define the preprocessor constant _POSIX_SOURCE.

FILES
/sys/include/ape directory for machine-independent #include files.
/$objtype/include/ape directory for machine-dependent #include files.
/$objtype/lib/ape/libap.a ANSI C/POSIX library.

SEE ALSO

cpp(l), 2¢(1), 2a(1), 21(1), mkQ1), nm(1), acid(1), db(1), prof(1)

162

PCC(1) PCC(1)

Howard Trickey, ‘“APE — The ANSI/POSIX Environment”’
SOURCE

/sys/src/cmd/pcc.c
BUGS

The locale manipulation functions are minimal. Signal functions and terminal characteristic han-
dlers are only minimally implemented. Link always fails, because Plan 9 doesn’t support multiple
links to a file. The functions related to setting effective user and group ids cannot be implemented
because the concept doesn’t exist in Plan 9.

163

PIC(1) PIC(1)

NAME
pic, tpic - troff and tex preprocessors for drawing pictures

SYNOPSIS
pic | files]

tpic | files]

DESCRIPTION

Pic is a troff(1) preprocessor for drawing figures on a typesetter. Pic code is contained between
.PS and . PE lines:

. PS optional-width optional-height
element-list
.PE

or in a file mentioned in a . PS line:
.PS <file

If optional-width is present, the picture is made that many inches wide, regardless of any dimen-
sions used internally. The height is scaled in the same proportion unless optional-height is pre-
sent. If .PF is used instead of . PE, the typesetting position after printing is restored to what it
was upon entry.

An element-list is a list of elements:
primitive attribute—list
placename : element
placename : position
var = expr
direction
{ element-list }
[element-list]
for var = expr to expr by expr do { anything }
if expr then { anything } else { anything %}
copy file, copy thru macro, copy file thru macro
sh { commandline %}
print expr
reset optional var-list
troff-command

Elements are separated by newlines or semicolons; a long element may be continued by ending the
line with a backslash. Comments are introduced by a # and terminated by a newline. Variable
names begin with a lower case letter; place names begin with upper case. Place and variable
names retain their values from one picture to the next.

After each primitive the current position moves in the current direction (up,down, left,right
(default)) by the size of the primitive. The current position and direction are saved upon entry to a
{...} block and restored upon exit. Elements within a block enclosed in [...] are treated as a
unit; the dimensions are determined by the extreme points of the contained objects. Names, vari-
ables, and direction of motion within a block are local to that block.

Troff-command is any line that begins with a period. Such a line is assumed to make sense in the
context where it appears; generally, this means only size and font changes.

The primitive objects are:
box circle ellipse arc 1line arrow spline move text-list
arrow is a synonym for line —>.

An attribute—list is a sequence of zero or more attributes; each attribute consists of a keyword,
perhaps followed by a value.

h(eigh)t expr wid(th) expr
rad(ius) expr diam(eter) expr
up opt—expr down opt—expr
right opt-expr left opt-expr
from position to position

164

PIC(1)

PIC(1)

at position with corner

by expr, expr then

dotted opt-expr dashed opt-expr
chop opt-expr - <= <>
invis same

fill opt-expr

text-list expr

Missing attributes and values are filled in from defaults. Not all attributes make sense for all prim-
itives; irrelevant ones are silently ignored. The attribute at causes the geometrical center to be
put at the specified place; with causes the position on the object to be put at the specified place.
For lines, splines and arcs, height and width refer to arrowhead size. A bare expr implies
motion in the current direction.

Text is normally an attribute of some primitive; by default it is placed at the geometrical center of
the object. Stand-alone text is also permitted. A text listis a list of text items:
text—item:

"..." positioning ...

sprintf("format" , expr, ...) positioning ...
positioning :

center 1just 1rjust above below

If there are multiple text items for some primitive, they are arranged vertically and centered except
as qualified. Positioning requests apply to each item independently. Text items may contain troff
commands for size and font changes, local motions, etc., but make sure that these are balanced so
that the entering state is restored before exiting.

A position is ultimately an x,y coordinate pair, but it may be specified in other ways.
position:
expr, expr
place *+ expr, expr
place = (expr, expr)
(position, position) x from one, y the other
expr [of the way] between position and position
expr < position , position >
(position)

place:
placename optional-corner
corner of placename
nth primitive optional-corner
corner of nth primitive
Here
An optional—-corner is one of the eight compass points or the center or the start or end of a primi-
tive.
optional-corner:

.n .e .w .S .ne .se .nw .sw .Cc .start .end
corner:
top bot 1left right start end
Each object in a picture has an ordinal number; nth refers to this.
nth:
nth, nth last

The built-in variables and their default values are:

boxwid 0.75
circlerad 0.25
ellipsewid 0.75
linewid 0.5
movewid 0.5
textwid O
arrowwid 0.05
dashwid 0.1
scale 1

boxht 0.5
arcrad 0.25
ellipseht 0.5
lineht 0.5
moveht 0.5
textht O
arrowht 0.1
arrowhead 2

These may be changed at any time, and the new values remain in force from picture to picture

165

PIC(1)

PIC(1)

until changed again or reset by a reset statement. Variables changed within [and] revert to
their previous value upon exit from the block. Dimensions are divided by scale during output.

Expressions in pic are evaluated in floating point. All numbers representing dimensions are taken
to be in inches.
expr:
expr op expr
— expr
I expr
C expr)
variable
number
place .x place .y place .ht place .wid place .rad
sin(expr) cos(expr) atan2(expr,expr) log(expr) exp(expr)
sqrt(expr) max(expr,expr) min(expr,expr) 1int(expr) rand()
op:

-

+ - * /% < <= > >= == I= && ||

The define and undef statements are not part of the grammar.

define name { replacement text }

undef name
Occurrences of $1, $2, etc., in the replacement text will be replaced by the corresponding argu-
ments if name is invoked as

name(argl, arg2, ...)
Non-existent arguments are replaced by null strings. Replacement text may contain newlines.
The undef statement removes the definition of a macro.

Tpic is a tex(1) preprocessor that accepts pic language. It produces Tex commands that define a
box called \ graph, which contains the picture. The box may be output this way:

\centerline{\box\graph}

EXAMPLES
arrow "input" above; box "process"; arrow "output" above
move
A: ellipse

circle rad .1 with .w at A.e

circle rad .05 at 0.5 <A.c, A.ne>

circle rad .065 at 0.5 <A.c, A.ne>

spline from last circle.nw left .25 then left .05 down .05
arc from A.c to A.se rad 0.5

for i = 1 to 10 do { line from A.s+.025*i,.01*i down i/50 }

input output
— T =) process — "=
SOURCE
/sys/src/cmd/pic
SEE ALSO

grap(1), doctype(1), troff(1)
B. W. Kernighan, ‘“PIC—a Graphics Language for Typesetting”’, Unix Research System
Programmer’s Manual, Tenth Edition, Volume 2

166

PIPEFILE(1) PIPEFILE(1)

NAME

pipefile - attach filter to file in name space

SYNOPSIS

pipefile[—-d][—r command] [—w command] file

DESCRIPTION

Pipefile uses bind(2) to attach a pair of pipes to file, using them to interpose filter commands
between the true file and the simulated file that subsequently appears in the name space. Option
—r interposes a filter that will affect the data delivered to programs that read from file; —w inter-
poses a filter that will affect the data written by programs to file. At least one command must be
specified; pipefile will insert a cat(1) process in the other direction.

After pipefile has been run, the filters are established for programs that subsequently open the
file; programs already using the file are unaffected.

Pipefile opens the file twice, once for each direction. If the file is a single-use device, such as
/dev/mouse, use the —d flag to specify that the file is to be opened once, in ORDWR mode.

EXAMPLES

Simulate an old terminal:

% pipefile -w 'tr a-z A-Z’ /dev/cons

% rc —i </dev/cons >/dev/cons >[2=1]
% echo hello

HELLO

%

Really simulate an old terminal:

% pipefile -r ’tr A-Z a-z’ -w 'tr a-z A-Z’ /dev/cons
% rc -i </dev/cons >/dev/cons >[2=1]

% DATE

THU OCT 12 10:13:45 EDT 2000

%

SOURCE

/sys/src/cmd/pipefile.c

SEE ALSO

BUGS

mouse(8)

The 1/0 model of pipefile is peculiar; it doesn’t work well on plain files. It is really intended for use
with continuous devices such as /dev/cons and /dev/mouse. Pipefile should be rewritten to be a
user-level file system.

If the program using the file managed by pipefile exits, the filter will see EOF and exit, and the file
will be unusable until the name space is repaired.

167

PLOT(1) PLOT(1)

NAME

plot - graphics filter
SYNOPSIS

plot | file...]
DESCRIPTION

Plot interprets plotting instructions (see plot(6)) from the files or standard input, drawing the
results in a newly created rio(1) window. Plot persists until a newline is typed in the window. Vari-
ous options may be interspersed with the file arguments; they take effect at the given point in pro-
cessing. Options are:

—d Double buffer: accumulate the plot off-screen and write to the screen all at once
when an erase command is encountered or at end of file.

—-e Erase the screen.

—c col Set the foreground color (see plot(6) for color names).

—£ fill Set the background color.

—g grade Set the quality factor for arcs. Higher grades give better quality.

—p col Set the pen color.

—-w Pause until a newline is typed on standard input.

-C Close the current plot.

-W x0,y0,x1,y1l
Specify the bounding rectangle of plot’s window. By default it uses a 512x512 win-
dow in the middle of the screen.

SOURCE
/sys/src/cmd/plot

SEE ALSO
rio(1), plot(6)

168

PLUMB(1) PLUMB(1)

NAME
plumb - send message to plumber

SYNOPSIS
plumb [—p plumbfile] [—a attributes] [—s source] [—d destination] [—t type][—w directory]
—1i | data...

DESCRIPTION

The plumb command formats and sends a plumbing message whose data is, by default, the con-
catenation of the argument strings separated by blanks. The options are:

-p write the message to plumbfile (default /mnt/plumb/send).

—-a set the attr field of the message (default is empty).

-s set the src field of the message (default is plumb).

—-d set the dst field of the message (default is empty).

-t set the type field of the message (default is text).

—-w set the wdir field of the message (default is the current working directory of plumb).

—-1i take the data from standard input rather than the argument strings. If an action=
attribute is not otherwise specified, plumb will add an action=showdata attribute to
the message.

FILES
/usr/$user/1ib/plumbing default rules file
/mnt/plumb mount point for plumber(4).
SOURCE
/sys/src/cmd/plumb
SEE ALSO

plumb(2), plumber(4), plumb(6)

169

PQ(T)

NAME

PQ(1)

pd, pggen, pgsrv - query POST database

SYNOPSIS

pal-1f][-d debug] [—m modules][—o format] query ...
pagen [directory]

pasrv [modules]

DESCRIPTION

Pq connects to an Implicit Relational Database (IRDB) directory (a read-only, text-based relational
database) and outputs the record(s) that match the query arguments. The directory contacted may
be specified by a modules argument (see dispatch(7)). By default it is the corporate LUCID direc-
tory, which is a superset of the corporate POST directory.

Each query argument results in an independent query of the directory, consisting of a set of input
attributes, obtained from the query argument, and a set of output attributes, obtained from the
output format (see the —o option). The output of all the queries are formatted according to the
output format and concatenated on standard output.

Each query argument is a list of strings of the form attribute=value separated by any num-
ber of separator characters (|). It is an error if there is no corresponding attribute name. The
query argument may be the empty string; in this case, all records that contain the output
attributes are returned. The options are:

—d debug
Print information regarding internal operations. Values for debug range from 1 to 3, with 3
yielding the most detail.

-f Changes the default output format to a more verbose (‘full’) one.

-1 is similar but omits the htel attribute and consults only POST, not LUCID. This seems to
be necessary to find ex-Alcatel employees.

—m modules
Contact the directory specified by the modules string; the format is described in
dispatch(7). The default value for modules is the empty string.

—o format
Use the output format specified. See below for a full description.

Output Formatting

The format argument specified with the -o option is used like a print(2) string for formatting
the output of directory queries. All characters are copied literally, except for attribute substitu-
tions and backslash escapes. Quoting may be necessary to prevent shell interpretation. The syn-
tax for attribute substitutions is this:

% flags minimum . maximum {attribute}

Only % and attribute are required. Curly braces, {}, are required only when the attribute is immedi-
ately followed by an alphanumeric. Flags may be one or more of the following:
- Right justify (left justification is the default).

A Capitalize the first letter of each word.

+ Capitalize all letters in the value.

< If the value is empty, delete back to the last \ < or beginning of output.
> If the value is empty, skip to the next \ > or end of format string.

Minimum is an integer giving the minimum field width. If the value has fewer than the minimum
number of characters, the field will be padded with blanks. The default minimum is zero.

Maximum is an integer that specifies the maximum number of characters to be output from the
value. If the value has more characters than this number, the value will be truncated. A maximum
of zero (the default) causes all characters to be output. A period is used to separate minimum and
maximum and is only required if maximum is specified.

170

PQ(1) PQ(1)

The following table lists backslash escapes that are recognized by pg(1):
center,tab(;); c . Escape;Meaning

\b;Backspace \c;Suppress terminating newline \f;Formfeed \n;Newline \o0o00;ASCIl character
defined by an octal number \r;Carriage return \t;Tab \v;Vertical tab \<;Marker for < flag
\>;Marker for > flag

Pggen is used to create index files for an existing IRDB ev(7) directory. Once indexed, the speed
of lookups is greatly improved. However, it is then necessary to rerun pggen after any changes are
made to the ev database. The directory is the location of the ev database. If not an absolute path-
name, it is interpreted relative to /1ib/pq.

Pgsrv is the server that handles incoming PQ requests. It is meant to be run by listen(8), typically
for TCP port 411. The optional modules argument is the same as that to pg(1) above.
EXAMPLES
Find the telephone number of employee with login of 1iz:
pa —o %telephone ’'login=1iz’
List addresses of employees in New Jersey and Texas who are full-time:
pPd —-o ’%20name %25addr %state %zip’ ’status=FT|state=NJ|state=TX’
Consult /sys/src/cmd/pq/example for a more detailed example.

FILES
/1ib/pqg/dispatch default dispatch file
/rc/bin/service/tcp4l1l typical location for pgsrv
SOURCE
/sys/src/cmd/pq
/sys/src/libpg
SEE ALSO
listen(8)
DIAGNOSTICS

Pq prints a diagnostic to the standard error and exits with status no records if there are no
matches. Otherwise, it returns a successful status.

171

PR(1)

NAME

PR(1)

pr - print file

SYNOPSIS

pr [option ... 1| file ...]

DESCRIPTION

Pr produces a printed listing of one or more files on its standard output. The output is separated
into pages headed by a date, the name of the file or a specified header, and the page number.
With no file arguments, pr prints its standard input.

Options apply to all following files but may be reset between files:

-n
+n
-b
-d

SOURCE

Produce n-column output.

Begin printing with page n.

Balance columns on last page, in case of multi-column output.

Double space.

Set the tab stops for input text every n spaces.

Take the next argument as a page header (file by default).

Replace sequences of blanks in the output by tabs, using tab stops set every n spaces.
Use form feeds to separate pages.

Take the length of the page to be n lines instead of the default 66.

Print all files simultaneously, each in one column.

Number the lines of each file. The numeric argument m, default 5, sets the width of the
line-number field.

Offset the left margin n character positions.

Pad each file printed to an even number of pages, if necessary. For two-sided printers, this
will ensure each file will start a new page.

Separate columns by the single character ¢ instead of aligning them with white space. A
missing c is taken to be a tab.

Do not print the 5-line header or the 5-line trailer normally supplied for each page.

For multi-column output, take the width of the page to be n characters instead of the
default 72.

/sys/src/cmd/pr.c

SEE ALSO

cat(1), Ip(1)

172

PROF(1) PROF(1)

NAME

prof, tprof, kprof - display profiling data

SYNOPSIS

prof [—dr][program] [profile]
tprof pid
kprof kernel kpdata

DESCRIPTION

Prof interprets files produced automatically by programs loaded using the —p option of 2/(1) or
other loader. The symbol table in the named program file (2. out etc., according to $objtype,
by default) is read and correlated with the profile file (prof.out by default). For each symbol,
the percentage of time (in seconds) spent executing between that symbol and the next is printed
(in decreasing order), together with the time spent there and the number of times that routine was
called.

Under option —d, prof prints the dynamic call graph of the target program, annotating the calls
with the time spent in each routine and those it calls, recursively. The output is indented two
spaces for each call, and is formatted as

symbol:time/ncall

where symbol is the entry point of the call, time is in milliseconds, and ncall is the number of times
that entry point was called at that point in the call graph. If ncall is one, the /ncall is elided.
Normally recursive calls are compressed to keep the output brief; option —r prints the full call
graph.

The size of the buffer in program used to hold the profiling data, by default 2000 entries, may be
controlled by setting the environment variable profsize before running program. If the buffer
fills, subsequent function calls may not be recorded.

The profiling code provided by the linker initializes itself to profile the current pid, producing a file
called prof. pid. If a process forks, only the parent will continue to be profiled. Forked children
can cause themselves to be profile by calling

prof(fn, arg, entries, what)

which causes the function fn(arg) to be profiled. When fn returns prof . pid is produced for the
current process pid.

The environment variable proftype can be set to one of user, kernel, elapsed, or
sample, to profile time measured spent in user mode, time spent in user+kernel mode, or
elapsed time, using the cycle counter, or the time in user mode using the kernel’s HZ clock. The
cycle counter is currently only available on modern PCs and on the PowerPC. Default profiling
measures user time, using the cycle counter if it is available.

Tprof is similar to prof, but is intended for profiling multiprocess programs. It uses the
/proc/pid/profile file to collect instruction frequency counts for the text image associated
with the process, for all processes that share that text. It must be run while the program is still
active, since the data is stored with the running program. To enable tprof profiling for a given pro-
cess,

echo profile > /proc/pid/ctl
and then, after the program has run for a while, execute
tprof pid

Since the data collected for tprof is based on interrupt-time sampling of the program counter,
tprof has no —d or —r options.

Kprof is similar to prof, but presents the data accumulated by the kernel profiling device, kprof(3).
The symbol table file, that of the operating system kernel, and the data file, typically
/dev/kpdata, must be provided. Kprof has no options and cannot present dynamic data.

SOURCE

/sys/src/cmd/prof.c

173

PROF(1) PROF(1)

/sys/src/cmd/kprof.c

SEE ALSO
2I(1), exec(2), kprof(3)

174

PROOF(1) PROOF(1)

NAME

proof - troff output interpreter

SYNOPSIS

proof [—-mmag]|[—/nview] [-F dir] [—-d]| file]

DESCRIPTION

Proof reads troff(1) intermediate language from file or standard input and simulates the resulting
pages on the screen.

After a page of text is displayed, proof pauses for a command from the keyboard. The typed com-
mands are:

newline Go on to next page of text.
- Go back to the previous page.

q Quit.

pn Print page n. An out-of-bounds page number means the end nearer to that number; a
missing number means the current page; a signed number means an offset to the current
page.

n Same as pn.

c Clear the screen, then wait for another command.

mmag Change the magnification at which the output is printed. Normally it is printed with mag-
nification .9; mag=.5 shrinks it to half size; mag=2 doubles the size.

xval Move everything val screen pixels to the right (left, if val is negative).
yval Move everything val screen pixels down (up, if val is negative).

/ nview Split the window into nview pieces. The current page goes into the rightmost, bottom-
most piece, and previous pages are shown in the other pieces.

—F dir Use dir for fonts instead of /1ib/font/bit.
d Toggle the debug flag.

These commands are also available, under slightly different form, from a menu on button 3. The
pan menu item allows arbitrary positioning of the page: after selecting pan, press the mouse but-
ton again and hold it down while moving the page to the desired location. The page will be redis-
played in its entirety when the button is released. Mouse button 1 also pans, without the need for
selecting from a menu.

Them, x, y, F, /, and d commands are also available as command line options.

FILES
/1lib/font/bit/* fonts
/1lib/font/bit/MAP how to convert troff output fonts and character names into screen
fonts and character numbers
SOURCE
/sys/src/cmd/proof
SEE ALSO

Ip(1), gs(1), page(1)
J. F. Ossanna and B. W. Kernighan, “Troff User’s Manual”’

175

PS(1)

NAME

PS(1)

ps, psu - process status

SYNOPSIS
ps [—apr]

psu [—apr][user]

DESCRIPTION

Ps prints information about processes. Psu prints only information about processes started by
user (default $user).

For each process reported, the user, process id, user time, system time, size, state, and command
name are printed. State is one of the following:

Moribund
Ready
Scheding
Running
Queueing
Wakeme
Broken
Stopped
Stopwait
Fault
Idle

New
Pageout
Syscall

no resource

Process has exited and is about to have its resources reclaimed.
on the queue of processes ready to be run.

about to be run.

running.

waiting on a queue for a resource.

waiting for I/O or some other kernel event to wake it up.

dead of unnatural causes; lingering so that it can be examined.
stopped.

waiting for another process to stop.

servicing a page fault.

waiting for something to do (kernel processes only).

being created.

paging out some other process.

performing the named system call.

waiting for more of a critical resource.

The —r flag causes ps to print, before the user time, the elapsed real time for the process.

The —p flag causes ps to print, after the system time, the baseline and current priorities of each

process.

The —a flag causes ps to print the arguments for the process. Newlines in arguments will be trans-
lated to spaces for display.

FILES

/proc/*/status

SOURCE

/sys/src/cmd/ps.c
/rc/bin/psu

SEE ALSO

acid(1), db(1), kill(1), ns(1), proc(3)

176

PS2PDF(1) PS2PDF(1)

NAME

ps2pdf, pdf2ps - convert between PostScript and PDF

SYNOPSIS

ps2pdf [gs—options] [inputfile [output—file]]
pdf2ps [gs—options] [input—file [output—file]]

DESCRIPTION

Ps2pdf and pdf2ps convert from PostScript to PDF and back by invoking gs(1). If output—file is not
specified, they write to standard output. If neither input—file nor output—file is not specified, they
read from standard input and write to standard output.

The gs-options are passed to Ghostscript unaltered. The most useful option to ps2pdf is
—dCompatibilityLevel=level, which sets the version of PDF to be written. The default is
1.2; 1.3 and 1.4 are also possible. Similarly, the most useful option to pdf2ps is
—dLanguageLevel=level, which sets the version of PostScript to be written. The defaultis 2; 1
and 3 are also possible.

Ps2pdf produces output competitive with Adobe Distiller in most cases, and it accepts all the
embedded PDF-generation hints that Adobe Distiller does.

Pdf2ps produces a PostScript file containing one large bitmap per page. For a more direct and
smaller translation, use Adobe Acrobat’s —toPostScript command-line option.

SOURCE

/rc/bin/ps2pdf
/rc/bin/pdf2ps

SEE ALSO

BUGS

gs(1)

Gs’s pdfwrite sometimes emits bad PDF at the default level 1.2. Adding
’—dCompatibilityLevel=1.4"’ should cure it.

177

PUMP(1) PUMP(1)

NAME
pump - copy asynchronously via a large circular buffer

SYNOPSIS
pump [=b iando 1 [—d sleepms | [—F ofile] [—i ireadsize] [=k KB-buf] [—o owritesize] [—s
start—-KB] [file ...]

DESCRIPTION
Pump copies files (or standard input if none) to standard output by using two processes, one read-
ing and one writing, sharing a large circular buffer, thus permitting the reading process to get
ahead of the writing process if the output device is slow (e.g., an optical disc). This in turn can
keep the output device busy. The pipeline dd | dd can approximate this, but pipe buffering is
limited to 64K bytes, which is fairly modest.

Options are:

—b sets the size of read and write operations to iando bytes. The default size is 8 kilobytes.

—d causes the output process to sleep for sleepms milliseconds initially, giving the reading pro-
cess time to accumulate data in the buffer.

—f writes ofile rather than standard output

—1 sets the size of read operations to ireadsize bytes.

—k allocates a circular buffer of KB—buf kilobytes rather than the default 5000 kilobytes.

—0 sets the size of write operations to owritesize bytes.

—s prevents output until start—KB kilobytes have been read.

EXAMPLES
Append a venti(8) arena to a DVD or BD quickly.
cdfs
venti/rdarena arena0 arena.3 |
pump -b 65536 -k 51200 >/mnt/cd/wd/arena.3

SOURCE
/sys/src/cmd/pump.c

SEE ALSO
cp(1), dd(1), ecp(1), cdfs(4)

BUGS
Pump processes spin while waiting for the circular buffer to fill or drain.

178

PWD(1) PWD(1)

NAME
pwd, pbd - working directory

SYNOPSIS
pwd
pbd

DESCRIPTION
Pwd prints the path name of the working (current) directory. Pwd is guaranteed to return the same
path that was used to enter the directory. If, however, the name space has changed, or directory
names have been changed, this path name may no longer be valid. (See fd2path(2) for a descrip-
tion of pwd’s mechanism.)

Pbd prints the base name of the working (current) directory. It prints no final newline and is
intended for applications such as constructing shell prompts.

SOURCE
/sys/src/cmd/pwd.c
/sys/src/cmd/pbd.c

SEE ALSO
cdin rc(1), bind(1), intro(2), getwd(2), fd2path(2)

179

RATRACE(1) RATRACE(1)

NAME

ratrace - trace process system calls

SYNOPSIS

ratrace [pid] | [-c command]

DESCRIPTION

FILES

Ratrace shows the system calls executed by a process, either the one with pid or a fresh invocation
of command.

Trace output is determined by the kernel, not ratrace. Certain fixed rules apply. The first four
fields of the output are pid, text name, system call name, and the PC of the user program. Data is
always printed as pointer/"string", where the string is the first 32 bytes of the data, with . replac-
ing non-printing ASCII characters (printing characters are those between ASCII space (SP) and
delete (DEL), exclusive). Return values follow an =, and include the integer return value, the errstr
(with "" if there is no errstr), and the start and stop times for the system call in nanoseconds. The
times are exclusive of the overhead for tracing.

/proc/pid/syscalltrace
/proc/pid/ctl

SOURCE

/sys/src/cmd/ratrace.c

SEE ALSO

BUGS

acid(1), db(1), proc(3)

The printing of the data is too limited in length; printing . instead of something more sensible is
limiting.

180

RC(1)

NAME

RC(1)

rc, cd, eval, exec, exit, flag, rfork, shift, wait, whatis, ., ~ - command language

SYNOPSIS

rc [—-srdillxepvV][—c command] [—m initial 1 [file [arg ... 1]

DESCRIPTION

Rc is the Plan 9 shell. It executes command lines read from a terminal or a file or, with the —c
flag, from rc’s argument list.

Command Lines

A command line is a sequence of commands, separated by ampersands or semicolons (& or ;), ter-
minated by a newline. The commands are executed in sequence from left to right. Rc does not
wait for a command followed by & to finish executing before starting the following command.
Whenever a command followed by & is executed, its process id is assigned to the rc variable
$apid. Whenever a command not followed by & exits or is terminated, the rc variable $status
gets the process’s wait message (see wait(2)); it will be the null string if the command was suc-
cessful.

A long command line may be continued on subsequent lines by typing a backslash (\) followed by
a newline. This sequence is treated as though it were a blank. Backslash is not otherwise a special
character.

A number-sign (#) and any following characters up to (but not including) the next newline are
ignored, except in quotation marks.

Simple Commands

A simple command is a sequence of arguments interspersed with 1/O redirections. If the first
argument is the name of an rc function or of one of rc’s built-in commands, it is executed by rc.
Otherwise if the name starts with a slash (/), it must be the path name of the program to be exe-
cuted. Names containing no initial slash are searched for in a list of directory names stored in
$path. The first executable file of the given name found in a directory in $path is the program
to be executed. To be executable, the user must have execute permission (see stat(2)) and the file
must be either an executable binary for the current machine’s CPU type, or a shell script. Shell
scripts begin with a line containing the full path name of a shell (usually /bin/rc), prefixed by
#1.

The first word of a simple command cannot be a keyword unless it is quoted or otherwise dis-
guised. The keywords are
for in while if not switch fn ~ ! @

Arguments and Variables

A number of constructions may be used where rc’s syntax requires an argument to appear. In
many cases a construction’s value will be a list of arguments rather than a single string.

The simplest kind of argument is the unquoted word: a sequence of one or more characters none
of which is a blank, tab, newline, or any of the following:
#5,& | A8 =" {}F(C)<>
An unquoted word that contains any of the characters * ? [is a pattern for matching against file
names. The character * matches any sequence of characters, ? matches any single character, and
[class] matches any character in the class. If the first character of class is ~, the class is comple-
mented. The class may also contain pairs of characters separated by —, standing for all characters
lexically between the two. The character / must appear explicitly in a pattern, as must the first
character of the path name components . and ... A pattern is replaced by a list of arguments,
one for each path name matched, except that a pattern matching no names is not replaced by the
empty list, but rather stands for itself. Pattern matching is done after all other operations. Thus,
x=/tmp echo $xA/*.c
matches /tmp/* . c, rather than matching /* . c and then prefixing /tmp.

A quoted word is a sequence of characters surrounded by single quotes (’). A single quote is rep-
resented in a quoted word by a pair of quotes (’).

Each of the following is an argument.
(Carguments)
The value of a sequence of arguments enclosed in parentheses is a list comprising the

181

RC(1)

RC(1)

members of each element of the sequence. Argument lists have no recursive structure,
although their syntax may suggest it. The following are entirely equivalent:
echo hi there everybody
((echo) (hi there) everybody)
$ argument
$ argument (subscript)
The argument after the $ is the name of a variable whose value is substituted. Multiple lev-
els of indirection are possible, but of questionable utility. Variable values are lists of
strings. If argument is a number n, the value is the nth element of $*, unless $* doesn’t
have n elements, in which case the value is empty. If argument is followed by a parenthe-
sized list of subscripts, the value substituted is a list composed of the requested elements
(origin 1). The parenthesis must follow the variable name with no spaces. Subscripts can
also take the form m—n or m— to indicate a sequence of elements. Assignments to vari-
ables are described below.
$#argument
The value is the number of elements in the named variable. A variable never assigned a
value has zero elements.
$"argument
The value is a single string containing the components of the named variable separated by
spaces. A variable with zero elements yields the empty string.
“{ command}
rc executes the command and reads its standard output, splitting it into a list of argu-
ments, using characters in $ifs as separators. If $ifs is not otherwise set, its value is
“ \t\n’.
<{ command?}
>{ command?}
The command is executed asynchronously with its standard output or standard input con-
nected to a pipe. The value of the argument is the name of a file referring to the other end
of the pipe. This allows the construction of non-linear pipelines. For example, the follow-
ing runs two commands old and new and uses cmp to compare their outputs
cmp <{old} <{new}
argumentA argument
The A operator concatenates its two operands. If the two operands have the same number
of components, they are concatenated pairwise. If not, then one operand must have one
component, and the other must be non-empty, and concatenation is distributive.

Free Carets

In most circumstances, rc will insert the A operator automatically between words that are not sepa-
rated by white space. Whenever one of $§ * ‘ follows a quoted or unquoted word or an unquoted
word follows a quoted word with no intervening blanks or tabs, a A is inserted between the two. If
an unquoted word immediately follows a $ and contains a character other than an alphanumeric,
underscore, or *, a A is inserted before the first such character. Thus

cc —$flags $stem.c
is equivalent to
cc —A$flags $stemA.c

I/0 Redirections

The sequence >file redirects the standard output file (file descriptor 1, normally the terminal) to
the named file; >> file appends standard output to the file. The standard input file (file descriptor
0, also normally the terminal) may be redirected from a file by the sequence <file, or from an
inline ‘here document’ by the sequence <<eof-marker. The contents of a here document are lines
of text taken from the command input stream up to a line containing nothing but the eof-marker,
which may be either a quoted or unquoted word. If eof-marker is unquoted, variable names of the
form $ word have their values substituted from rc’s environment. If $word is followed by a caret
(M), the caret is deleted. If eof-marker is quoted, no substitution occurs. The standard input file
may also be redirected from a file by the sequence <> file, which opens file exactly once, for read-
ing and writing.

Redirections may be applied to a file-descriptor other than standard input or output by qualifying
the redirection operator with a number in square brackets. For example, the diagnostic output

182

RC(1)

RC(1)

(file descriptor 2) may be redirected by writing cc junk.c >[2]junk.

A file descriptor may be redirected to an already open descriptor by writing >[fdO=fdI],
<>[fdo=fd1], or <[fdO=fd1]. Fdl is a previously opened file descriptor and fd0 becomes a
new copy (in the sense of dup(2)) of it. A file descriptor may be closed by writing >[fd0=] or
<[fdo=1].

Redirections are executed from left to right. Therefore, cc junk.c >/dev/null >[2=1]
and cc junk.c >[2=1] >/dev/null have different effects: the first puts standard output
in /dev/null and then puts diagnostic output in the same place, where the second directs diag-
nostic output to the terminal and sends standard output to /dev/null.

newconn <>/net/tcp/clone >[1=0] opens /net/tcp/clone exactly once for reading
and writing and puts it on standard input and output. 1pd <>[3]/net/tcp/42/data opens
/net/tcp/42/data exactly once for reading and writing and puts it on file descriptor 3.

Compound Commands

A pair of commands separated by a pipe operator (|) is a command. The standard output of the
left command is sent through a pipe to the standard input of the right command. The pipe opera-
tor may be decorated to use different file descriptors. | [fd] connects the output end of the pipe
to file descriptor fd rather than 1. | [fdO=fd1] connects output to fdI of the left command and
input to fdO of the right command.

A pair of commands separated by && or | | is a command. In either case, the left command is
executed and its exit status examined. If the operator is && the right command is executed if the
left command’s status is null. | | causes the right command to be executed if the left command’s
status is non-null.

The exit status of a command may be inverted (non-null is changed to null, null is changed to
non-null) by preceding it with a !.

The | operator has highest precedence, and is left-associative (i.e. binds tighter to the left than
the right). ! has intermediate precedence, and && and | | have the lowest precedence.

The unary @ operator, with precedence equal to !, causes its operand to be executed in a subshell.

Each of the following is a command.

if (list) command
A list is a sequence of commands, separated by &, ;, or newline. It is executed and if its
exit status is null, the command is executed.

if not command
The immediately preceding command must have been if(list) command. If its condition
was non-zero, the command is executed.

for(name in arguments) command

for(name) command
The command is executed once for each argument with that argument assigned to name. If
the argument list is omitted, $* is used.

while (list) command
The list is executed repeatedly until its exit status is non-null. Each time it returns null sta-
tus, the command is executed. An empty list is taken to give null status.

switch(Cargument){list}
The list is searched for simple commands beginning with the word case. (The search is
only at the ‘top level’ of the list. That is, cases in nested constructs are not found.)
Argument is matched against each word following case using the pattern-matching algo-
rithm described above, except that / and the first characters of . and .. need not be
matched explicitly. When a match is found, commands in the list are executed up to the
next following case command (at the top level) or the closing brace.

{list}
Braces serve to alter the grouping of commands implied by operator priorities. The body is
a sequence of commands separated by &, ;, or newline.

fn name{list}

fn name
The first form defines a function with the given name. Subsequently, whenever a command
whose first argument is name is encountered, the current value of the remainder of the
command’s argument list will be assigned to $*, after saving its current value, and rc will

183

RC(1) RC(T)

execute the list. The second form removes name’s function definition.

fn note{list}

fn note
A function with a special name will be called when rc receives a corresponding note; see
notify(2). The valid note names (and corresponding notes) are sighup (hangup),
sigint (interrupt), sigalrm (alarm), and sigfpe (floating point trap). By
default rc exits on receiving any signal, except when run interactively, in which case inter-
rupts and quits normally cause rc to stop whatever it’s doing and start reading a new com-
mand. The second form causes rc to handle a signal in the default manner. Rc recognizes
an artificial note, sigexit, which occurs when rcis about to finish executing.

name=argument command
Any command may be preceded by a sequence of assignments interspersed with redirec-
tions. The assignments remain in effect until the end of the command, unless the com-
mand is empty (i.e. the assignments stand alone), in which case they are effective until
rescinded by later assignments.

Built-in Commands

These commands are executed internally by rc, usually because their execution changes or

depends on rc’s internal state.

. file ...
Execute commands from file. $* is set for the duration to the remainder of the argument
list following file. File is searched for using $path.

builtin command ...
Execute command as usual except that any function named command is ignored in favor of
the built-in meaning.

cd [dir]
Change the current directory to dir. The default argument is $home. dir is searched for in
each of the directories mentioned in $cdpath.

eval [arg...]
The arguments are concatenated separated by spaces into a single string, read as input to
rc, and executed.

exec [command ...]
This instance of rc replaces itself with the given (non-built-in) command.

flag f [+-1]
Either set (+), clear (), or test (neither + nor —) the flag f, where fis a single character, one
of the command line flags (see Invocation, below).

exit [status]
Exit with the given exit status. If none is given, the current value of $status is used.

rfork [nNeEsfFm]
Become a new process group using rfork(flags) where flags is composed of the bitwise
OR of the rfork flags specified by the option letters (see fork(2)). If no flags are given,
they default to ens. The flags and their meanings are: n is RENAMEG; N is RFCNAMEG,; e
is RFENVG; E is RFCENVG,; s is RFNOTEG; f is RFFDG; F is RFCFDG; and m is
RENOMNT.

shift [n]
Delete the first n (default 1) elements of $*.

wait [pid]
Wait for the process with the given pid to exit. If no pid is given, all outstanding processes
are waited for.

whatis name ...
Print the value of each name in a form suitable for input to rc. The output is an assignment
to any variable, the definition of any function, a call to builtin for any built-in com-
mand, or the completed pathname of any executable file.

~ Subject pattern ...
The subject is matched against each pattern in sequence. If it matches any pattern,
$status is set to zero. Otherwise, §status is set to one. Patterns are the same as for
file name matching, except that / and the first character of . and .. need not be matched
explicitly. The patterns are not subjected to file name matching before the ~ command is
executed, so they need not be enclosed in quotation marks.

184

RC(1)

Environment

The environment is a list of strings made available to executing binaries by the env device (see
env(3)). Rc creates an environment entry for each variable whose value is non-empty, and for each
function. The string for a variable entry has the variable’s name followed by = and its value. If the
value has more than one component, these are separated by ctrl-a (’\001’) characters. The
string for a function is just the rc input that defines the function. The name of a function in the
environment is the function name preceded by fn#.

When rc starts executing it reads variable and function definitions from its environment.

Special Variables

The following variables are set or used by rc.

$* Set to rc’s argument list during initialization. Whenever a . command or a function
is executed, the current value is saved and $* receives the new argument list. The
saved value is restored on completion of the . or function.

$apid Whenever a process is started asynchronously with &, $apid is set to its process id.

$home The default directory for cd.

$ifs The input field separators used in backquote substitutions. If $ifs is not set in rc’s
environment, it is initialized to blank, tab and newline.

$path The search path used to find commands and input files for the . command. If not

set in the environment, it is initialized by path=(. /bin). Its use is discouraged;
instead use bind(1) to build a /bin containing what’s needed.

$pid Set during initialization to rc’s process id.

$prompt When rcis run interactively, the first component of $prompt is printed before read-
ing each command. The second component is printed whenever a newline is typed
and more lines are required to complete the command. If not set in the environment,

it is initialized by prompt=("% ’ ’ ’).
$status Set to the wait message of the last-executed program. (unless started with &) . !
and ~ also change $status. Its value is used to control execution in &&, ||, if

and while commands. When rc exits at end-of-file of its input or on executing an
exit command with no argument, $status is its exit status.

Invocation

If rc is started with no arguments it reads commands from standard input. Otherwise its first
non-flag argument is the name of a file from which to read commands (but see —c below). Subse-
guent arguments become the initial value of $*. Rc accepts the following command-line flags.

—c string Commands are read from string.

SOURCE

-s Print out exit status after any command where the status is non-null.

—e Exit if $status is non-null after executing a simple command.

—-i If —i is present, or rc is given no arguments and its standard input is a terminal, it
runs interactively. Commands are prompted for using $prompt.

-I Makes sure rcis not run interactively.

-1 If —1 is given or the first character of argument zero is —, rc reads commands from
$home/1ib/profile, if it exists, before reading its normal input.

-m Read commands to initialize rc from initial instead of from /rc/1lib/rcmain.

-p A no-op.

—d A no-op.

-V Echo input on file descriptor 2 as it is read.

-X Print each simple command before executing it.

-r Print debugging information (internal form of commands as they are executed).

/sys/src/cmd/rc

SEE ALSO

Tom Duff, ““Rc - The Plan 9 Shell”.

There should be a way to match patterns against whole lists rather than just single strings.
Using ~ to check the value of §status changes $status.

Functions containing here documents don’t work.

185

RC(1)

Free carets don’t get inserted next to keywords.

186

RC(1)

REPLICA(1) REPLICA(1)

NAME

changes, pull, push, scan - client-server replica management

SYNOPSIS

replica/pull[-nv][—-c namel... [—s name]... name [path]
replica/push [—nv] name [path]

replica/changes name [path]

replica/scan name [path]

DESCRIPTION

These shell scripts provide a simple log-based client-server replica management. The server
keeps a log of changes made to its file system, and clients synchronize by reading the log and
applying these changes locally.

These scripts are a polished interface to the low-level tools described in replica(8). See replica(8)
for details on the inner workings of replica management. These tools were written primarily as the
fourth edition Plan 9 distribution mechanism, but they have wider applicability. For example, they
could be used to synchronize one’s home directory between a laptop and a central file server.

Replicas are described by configuration files. The name in all the replica commands is a configura-
tion file. Paths that do not begin with /, ./, or ../ are assumed to be relative to
$home/1ib/replica. Configuration files are described below.

Replica/scan is the only one of these programs that does not need to be run on the client. It scans
the server file system for changes and appends entries for those changes into the server log. Typi-
cally it is run on a machine with a fast network connection to the server file system.

Replica/pull copies changes from the server to the client, while replica/push copies changes from
the client to the server. (Both run on the client.) If a list of paths is given, only changes to those
paths or their children are copied. The —v flag causes pull or push to print a summary of what it is
doing. Each status line is of the form

verb path serverpath mode uid gid mtime length

Verb describes the event: addition of a file (a), deletion of a file (d), a change to a file’s contents
(c), or a change to a file’s metadata (m). Path is the file path on the client; serverpath is the file
path on the server. Mode, uid, gid, and mtime are the file’s metadata as in the Dir structure (see
stat(5)). For deletion events, the metadata is that of the deleted file. For other events, the meta-
data is that after the event. The —n flag causes pull or push to print the summary but not actually
carry out the actions.

Push and pull are careful to notice simultaneous changes to a file or its metadata on both client
and server. Such simultaneous changes are called conflicts. Here, simultaneous does not mean at
the same instant but merely that both changes were carried out without knowledge of the other.
For example, if a client and server both make changes to a file without an intervening push or pull,
the next push or pull will report an update/update conflict. If a conflict is detected, both files are
left the same. The —c flag to pull specifies that conflicts for paths beginning with name should be
resolved using the client’s copy, while —s specifies the server’s copy. The —c and —s options may
be repeated.

Replica/changes prints a list of local changes made on the client that have not yet been pushed to
the server. It is like push with the —n flag, except that it does not check for conflicts and thus
does not require the server to be available.

The replica configuration file is an rc(1) script that must define the following functions and vari-
ables:

servermount
A function that mounts the server; run on both client and server.

serverupdate
A function that rescans the server for changes. Typically this command dials a CPU server
known to be close to the file server and runs replica/scan on that well-connected machine.

serverroot
The path to the root of the replicated file system on the server, as it will be in the name

187

REPLICA(1) REPLICA(1)

space after running servermount.

serverlog
The path to the server’s change log, after running servermount.

serverproto
The path to the proto file describing the server’s files, after running servermount. Only
used by scan.

serverdb
The path to the server’s file database, after running servermount. Only used by scan.
clientmount
A function to mount the client file system; run only on the client.
clientroot
The path to the root of the replicated file system on the client, after running
clientmount.
clientlog

The path to the client’s copy of the server log file. The client log is maintained by pull.

clientproto
The path to the proto file describing the client’s files. Only used by changes. Often just a
copy of $serverproto

clientdb
The path to the client’s file database, after running clientmount.

clientexclude
A (potentially empty) list of paths to exclude from synchronization. A typical use of this is
to exclude the client database and log files. These paths are relative to the root of the
replicated file system.

As an example, the Plan 9 distribution replica configuration looks like:
fn servermount { 9fs sources; bind /n/sources/plan9 /n/dist }
fn serverupdate { status=’’ }
serverroot=/n/dist
s=/n/dist/dist/replica
serverlog=$s/plan9.log
serverproto=$s/plan9.proto

fn clientmount { 9fs kfs }
clientroot=/n/kfs
c=/n/kfs/dist/replica
clientlog=$c/client/plan9.log
clientproto=$c/plan9.proto
clientdb=$c/client/plan9.db
clientexclude=(dist/replica/client)

(Since the Plan 9 developers run scan manually to update the log, the clients need not do anything
to rescan the file system. Thus serverupdate simply returns successfully.)

The fourth edition Plan 9 distribution uses these tools to synchronize installations with the central
server at Bell Labs. The replica configuration files and metadata are kept in /dist/replica.
To update your system, make sure you are connected to the internet and run

replica/pull /dist/replica/network
If conflicts are reported (say you have made local changes to /rc/bin/cpurc and
/rc/bin/termrc, but only want to keep the cpurc changes), use

replica/pull -c rc/bin/cpurc -s rc/bin/termrc /dist/replica/network
to instruct pull to ignore the server’s change to cpurc.
The script /usr/glenda/bin/rc/pull runs pull with the —-v flag and with
/dist/replica/network inserted at the right point on the command line. Logged in as

glenda, one can repeat the above example with:
pull —-c rc/bin/cpurc -s rc/bin/termrc

188

REPLICA(1) REPLICA(1)

To see a list of changes made to the local file system since installation, run
replica/changes /dist/replica/network
(Although the script is called network, since changes is a local-only operation, the network need
not be configured.)
SOURCE
/rc/bin/replica

SEE ALSO
replica(8)

189

RESAMPLE(1) RESAMPLE(1)

NAME

resample - resample a picture

SYNOPSIS

resample [—x size] [—y size][file]

DESCRIPTION

Resample resamples its input image (default standard input) to a new size. The image is deci-
mated or interpolated using a Kaiser window.

The size of the resampled image can be specified with the —x and —y options. An unadorned
value sets the number of pixels of that dimension; a suffixed percent sign specifies a percentage.
If only one of —x or —y is given, the other dimension is scaled to preserve the aspect ratio of the
original image. Thus, —x50% will reduce the image to half its original dimension in both x and y.

The input should be a Plan 9 image as described in image(6), and the output will be a compressed
24-bit r8g8b8 image. To uncompress the image or change the pixel format, use iconv (see
crop(1)).

SOURCE

/sys/src/cmd/resample.c

SEE ALSO

BUGS

crop(1), image(6)

Faster algorithms exist, but this implementation produces correct pictures.

190

RIO(1) RIO(1)
NAME
rio, label, window, wloc - window system
SYNOPSIS
rio[—-i ’ecmd’ 1[-k ’kbdcmd’][—-s][—f font]
label name
window [-m] [—r minx miny maxx maxy][—-dx n][—-dy n][—-minx n] [-miny n] [- maxx
n][—-maxy n][—-cddir][-hide][-scroll][—noscroll][cmdarg...]
wloc
DESCRIPTION
Rio manages asynchronous layers of text, or windows, on a raster display. It also serves a variety
of files for communicating with and controlling windows; these are discussed in section rio(4).
Commands

The rio command starts a new instance of the window system. Its —i option names a startup
script, which typically contains several window commands generated by wloc. The —k option
causes rio to run the command kbdcmd at startup and allow it to provide characters as keyboard
input; the keyboard program described in bitsyload(1) is the usual choice.

The —s option initializes windows so that text scrolls; the default is not to scroll. The font argu-
ment names a font used to display text, both in rio’s menus and as a default for any programs
running in its windows; it also establishes the environment variable $font. If —f is not given, rio
uses the imported value of $font if set; otherwise it imports the default font from the underlying
graphics server, usually the terminal’s operating system.

The label command changes a window’s identifying name.

The window command creates a window. By default, it creates a shell window and sizes and places
it automatically. The geometry arguments control the size (dx, dy) and placement (minx, miny,
maxx, maxy); the units are pixels with the upper left corner of the screen at (0, 0). The hide
option causes the window to be created off-screen. The scroll and noscroll options set the
scroll mode. The cd option sets the working directory. The optional command and arguments
define which program to run in the window.

By default, window uses /dev/wctl (see rio(4)) to create the window and run the command.
Therefore, the window and command will be created by rio and run in a new file name space, just
as if the window had been created using the interactive menu. However, the —m option uses the
file server properties of rio to mount (see bind(1)) the new window’s name space within the name
space of the program calling window. This means, for example, that running window in a CPU
window will create another window whose command runs on the terminal, where rio is running;
while window —m will create another window whose command runs on the CPU server.

The wloc command prints the coordinates and label of each window in its instance of rio and is
used to construct arguments for window.

Window control

Each window behaves as a separate terminal with at least one process associated with it. When a
window is created, a new process (usually a shell; see rc(1)) is established and bound to the win-
dow as a new process group. Initially, each window acts as a simple terminal that displays charac-
ter text; the standard input and output of its processes are attached to /dev/cons. Other spe-
cial files, accessible to the processes running in a window, may be used to make the window a
more general display. Some of these are mentioned here; the complete set is discussed in rio(4).

One window is current, and is indicated with a dark border and text; characters typed on the key-
board are available in the /dev/cons file of the process in the current window. Characters writ-
ten on /dev/cons appear asynchronously in the associated window whether or not the window
is current.

Windows are created, deleted and rearranged using the mouse. Clicking (pressing and releasing)
mouse button 1 in a non-current window makes that window current and brings it in front of any
windows that happen to be overlapping it. When the mouse cursor points to the background area
or is in a window that has not claimed the mouse for its own use, pressing mouse button 3

191

RIO(1)

RIO(1)

activates a menu of window operations provided by rio. Releasing button 3 then selects an opera-
tion. At this point, a gunsight or cross cursor indicates that an operation is pending. The button 3
menu operations are:

New Create a window. Press button 3 where one corner of the new rectangle should appear
(cross cursor), and move the mouse, while holding down button 3, to the diagonally
opposite corner. Releasing button 3 creates the window, and makes it current. Very
small windows may not be created.

Resize Change the size and location of a window. First click button 3 in the window to be
changed (gunsight cursor). Then sweep out a window as for the New operation. The
window is made current.

Move Move a window to another location. After pressing and holding button 3 over the win-
dow to be moved (gunsight cursor), indicate the new position by dragging the rectan-
gle to the new location. The window is made current. Windows may be moved par-
tially off-screen.

Delete Delete a window. Click in the window to be deleted (gunsight cursor). Deleting a win-
dow causes a hangup note to be sent to all processes in the window’s process group
(see notify(2)).

Hide Hide a window. Click in the window to be hidden (gunsight cursor); it will be moved
off-screen. Each hidden window is given a menu entry in the button 3 menu according
to the value of the file /dev/label, which rio maintains (see rio(4)).

label Restore a hidden window.

Windows may also be arranged by dragging their borders. Pressing button 1 or 2 over a window’s
border allows one to move the corresponding edge or corner, while button 3 moves the whole win-
dow.

Text windows

Characters typed on the keyboard or written to /dev/cons collect in the window to form a long,
continuous document.

There is always some selected text, a contiguous string marked on the screen by reversing its
color. If the selected text is a null string, it is indicated by a hairline cursor between two charac-
ters. The selected text may be edited by mousing and typing. Text is selected by pointing and
clicking button 1 to make a null-string selection, or by pointing, then sweeping with button 1
pressed. Text may also be selected by double-clicking: just inside a matched delimiter-pair with
one of {[(<« ‘" ontheleftand }])>»“"" on the right, it selects all text within the pair; at the
beginning or end of a line, it selects the line; within or at the edge of an alphanumeric word, it
selects the word.

Characters typed on the keyboard replace the selected text; if this text is not empty, it is placed in
a snarf buffer common to all windows but distinct from that of sam(1).

Programs access the text in the window at a single point maintained automatically by rio. The
output point is the location in the text where the next character written by a program to
/dev/cons will appear; afterwards, the output point is the null string beyond the new character.
The output point is also the location in the text of the next character that will be read (directly
from the text in the window, not from an intervening buffer) by a program from /dev/cons.
When such a read will occur is, however, under control of rio and the user.

In general there is text in the window after the output point, usually placed there by typing but
occasionally by the editing operations described below. A pending read of /dev/cons will block
until the text after the output point contains a newline, whereupon the read may acquire the text,
up to and including the newline. After the read, as described above, the output point will be at the
beginning of the next line of text. In normal circumstances, therefore, typed text is delivered to
programs a line at a time. Changes made by typing or editing before the text is read will not be
seen by the program reading it. If the program in the window does not read the terminal, for
example if it is a long-running computation, there may accumulate multiple lines of text after the
output point; changes made to all this text will be seen when the text is eventually read. This
means, for example, that one may edit out newlines in unread text to forestall the associated text
being read when the program finishes computing. This behavior is very different from most sys-
tems.

192

RIO(1)

RIO(1)

Even when there are newlines in the output text, rio will not honor reads if the window is in hold
mode, which is indicated by a white cursor and blue text and border. The ESC character toggles
hold mode. Some programs, such as mail(1), automatically turn on hold mode to simplify the edit-
ing of multi-line text; type ESC when done to allow mail to read the text.

An EOT character (control-D) behaves exactly like newline except that it is not delivered to a pro-
gram when read. Thus on an empty line an EOT serves to deliver an end-of-file indication: the
read will return zero characters. Like newlines, unread EOTs may be successfully edited out of the
text. The BS character (control-H) erases the character before the selected text. The ETB character
(control-W) erases any nonalphanumeric characters, then the alphanumeric word just before the
selected text. ‘Alphanumeric’ here means non-blanks and non-punctuation. The NAK character
(control-U) erases the text after the output point, and not yet read by a program, but not more
than one line. All these characters are typed on the keyboard and hence replace the selected text;
for example, typing a BS with a word selected places the word in the snarf buffer, removes it from
the screen, and erases the character before the word.

An ACK character (control-F) or Insert character triggers file name completion for the preceding
string (see complete(2)).

Typing a left or right arrow moves the cursor one character in that direction. Typing an SOH char-
acter (control-A) moves the cursor to the beginning of the current line; an ENQ character (control-
E) moves to the end.

Text may be moved vertically within the window. A scroll bar on the left of the window shows in
its clear portion what fragment of the total output text is visible on the screen, and in its gray part
what is above or below view; it measures characters, not lines. Mousing inside the scroll bar
moves text: clicking button 1 with the mouse pointing inside the scroll bar brings the line at the
top of the window to the cursor’s vertical location; button 3 takes the line at the cursor to the top
of the window; button 2, treating the scroll bar as a ruler, jumps to the indicated portion of the
stored text. Holding a button pressed in the scroll bar will cause the text to scroll continuously
until the button is released. Also, a page down or down-arrow scrolls forward half a window, and
page up or up-arrow scrolls back. Typing the home key scrolls to the top of the window; typing
the end key scrolls to the bottom.

The DEL character sends an interrupt note to all processes in the window’s process group.
Unlike the other characters, the DEL, VIEW, and up- and down-arrow keys do not affect the
selected text. The left (right) arrow key moves the selection to one character before (after) the cur-
rent selection.

Normally, written output to a window blocks when the text reaches the end of the screen; a button
2 menu item toggles scrolling.

Other editing operations are selected from a menu on button 2. The cut operation deletes the
selected text from the screen and puts it in the snarf buffer; snarf copies the selected text to the
buffer without deleting it; paste replaces the selected text with the contents of the buffer; and
send copies the snarf buffer to just after the output point, adding a final newline if missing.
Paste will sometimes and send will always place text after the output point; the text so placed
will behave exactly as described above. Therefore when pasting text containing newlines after the
output point, it may be prudent to turn on hold mode first.

The plumb menu item sends the contents of the selection (not the snarf buffer) to the plumber(4).
If the selection is empty, it sends the white-space-delimited text containing the selection (typing
cursor). A typical use of this feature is to tell the editor to find the source of an error by plumbing
the file and line information in a compiler’s diagnostic.

Raw text windows

Opening or manipulating certain files served by rio suppresses some of the services supplied to
ordinary text windows. While the file /dev/mouse is open, any mouse operations are the
responsibility of another program running in the window. Thus, rio refrains from maintaining the
scroll bar, supplying text editing or menus, interpreting the VIEW key as a request to scroll, and
also turns scrolling on.

The file /dev/consctl controls interpretation of keyboard input. In particular, a raw mode may
be set: in a raw-input window, no typed keyboard characters are special, they are not echoed to
the screen, and all are passed to a program immediately upon reading, instead of being gathered

193

RIO(1) RIO(1)

into lines.

Graphics windows
A program that holds /dev/mouse and /dev/consctl open after putting the console in raw
mode has complete control of the window: it interprets all mouse events, gets all keyboard charac-
ters, and determines what appears on the screen.

FILES
/1lib/font/bit/* font directories
/mnt/wsys Files served by rio (also unioned in /dev in a window’s name
space, before the terminal’s real /dev files)
/srv/rio. user. pid Server end of rio.
/srv/riowctl. user.pid Named pipe for wct/ messages.
SOURCE
/sys/src/cmd/rio
/rc/bin/label
/rc/bin/window
/rc/bin/wloc
SEE ALSO
rio(4), rc(1), cpu(l), sam(1), mail(1), proof(1), graphics(2), frame(2), window(2), notify(2),
cons(3), draw(3), mouse(3), keyboard(6)
BUGS

The standard input of window is redirected to the newly created window, so there is no way to pipe
the output of a program to the standard input of the new window. In some cases, plumb(1) can be
used to work around this limitation.

194

RM(1) RM(1)

NAME
rm - remove files

SYNOPSIS
rm [—fr] file ...

DESCRIPTION
Rm removes files or directories. A directory is removed only if it is empty. Removal of a file
requires write permission in its directory, but neither read nor write permission on the file itself.
The options are

—f Don’t report files that can’t be removed.
-r Recursively delete the entire contents of a directory and the directory itself.

SOURCE
/sys/src/cmd/rm.c

SEE ALSO
remove(2)

195

RWD(1) RWD(1)

NAME
rwd, conswdir - maintain remote working directory

SYNOPSIS
rwd path

conswdir [prog]

DESCRIPTION
Rwd and conswdir conspire to keep rio(4) and acme(4) informed about the current directory on
remote systems during login sessions. Rio and acme include this information in plumb messages
sent to plumber(4). If the remote system’s name space is mounted in the plumber’s name space,
the end result is that file paths printed during the session are plumbable.

Rwd informs rio and acme of directory changes. The name of the remote machine is taken from
the environment variable $remotesys. Rwd writes the full path to /dev/wdir; writes the last
element of the path, suffixed by @remotesys, to /dev/label; and when run inside a win (see
acme(1)) window, changes the window title to path/—remotesys using /dev/acme/ctl.

Conswdir copies standard input to standard output, looking for in—-band messages about directory
changes. The messages are of the form:

\033]; path\007

where \033 and \007 are ASCIl escape and bell characters. Such messages are removed from
the stream and not printed to standard output; for each such message conswdir runs prog (default
/bin/rwd) with path as its only argument.

EXAMPLES
Add this plumbing rule (see plumb(6)) in order to run commands in the plumber’s name space:

have plumber run command
kind is text

data matches ’Local (.*)’
plumb to none

plumb start rc -c $1

Mount a Unix system in your name space and the plumber’s:

% 9fs unix
% plumb ’Local 9fs unix’

(If you’re using acme, execute Local 9fs unix with the middle button to mount the Unix sys-
tem in acme’s name space.)

Connect to the Unix system, processing in-band directory change messages:
% ssh unix | aux/conswdir

Add this shell function to your .profile on the Unix system to generate directory change mes-
sages every time a cd command is executed:

H=‘hostname | sed ’'s/\..*//’"*

_cd O {
\cd $* &&
case $- in
:’:iv‘:)
_dir="pwd"
echo /n/$HY_dir | awk ’{printf("\033];%s\007", $1);}’
esac
}

alias cd=_cd

The examples described so far only help for relative path names. Add this plumbing rule to handle
rooted names like /usr/include/stdio.h:

remote rooted path names
type is text
wdir matches ’/n/unix(/.*)7?’

196

RWD(1) RWD(1)

data matches ’/([.a-zA-Z;i-0-9_/\-]1*[a—zA-Z;—-0-9_/\-1)(’$addr’)?’
arg isfile /n/unix/$1

data set $file

attr add addr=$3

plumb to edit

plumb client window $editor

SOURCE
/rc/bin/rwd
/sys/src/cmd/aux/conswdir.c

SEE ALSO
plumber(4), plumb(6), srv(4)

BUGS
This mechanism is clunky, but Unix and SSH make it hard to build a better one.

The escape sequence was chosen because it changes the title on xterm windows.

197

SAM(1) SAM(1)

NAME
sam, B, sam.save, samterm - screen editor with structural regular expressions

SYNOPSIS
sam [option ...] [files]

sam —r machine
sam.save
B[—nnnn] file ...

DESCRIPTION
Sam is a multi-file editor. It modifies a local copy of an external file. The copy is here called a
file. The files are listed in a menu available through mouse button 3 or the n command. Each file
has an associated name, usually the name of the external file from which it was read, and a ‘modi-
fied’ bit that indicates whether the editor’s file agrees with the external file. The external file is
not read into the editor’s file until it first becomes the current file—that to which editing com-
mands apply—whereupon its menu entry is printed. The options are

—-a Autoindent. In this mode, when a newline character is typed in the terminal inter-
face, samterm copies leading white space on the current line to the new line.
—-d Do not ‘download’ the terminal part of sam. Editing will be done with the com-

mand language only, as in ed(1).
—1 machine Run the host part remotely on the specified machine, the terminal part locally.

—Ss path Start the host part from the specified file on the remote host. Only meaningful
with the —r option.
—t path Start the terminal part from the specified file. Useful for debugging.

Regular expressions
Regular expressions are as in regexp(6) with the addition of \n to represent newlines. A regular
expression may never contain a literal newline character. The empty regular expression stands for
the last complete expression encountered. A regular expression in sam matches the longest left-
most substring formally matched by the expression. Searching in the reverse direction is equiva-
lent to searching backwards with the catenation operations reversed in the expression.

Addresses
An address identifies a substring in a file. In the following, ‘character n’ means the null string
after the n-th character in the file, with 1 the first character in the file. ‘Line n’ means the n-th
match, starting at the beginning of the file, of the regular expression . *\n?. All files always have
a current substring, called dot, that is the default address.

Simple Addresses

#n The empty string after character n; #0 is the beginning of the file.

n Line n; O is the beginning of the file.

/ regexp/

? regexp?
The substring that matches the regular expression, found by looking toward the end (/) or
beginning (?) of the file, and if necessary continuing the search from the other end to the
starting point of the search. The matched substring may straddle the starting point. When
entering a pattern containing a literal question mark for a backward search, the question
mark should be specified as a member of a class.

0 The string before the first full line. This is not necessarily the null string; see + and —
below.

$ The null string at the end of the file.
Dot.

’ The mark in the file (see the k command below).

llregexpll
Preceding a simple address (default .), refers to the address evaluated in the unique file
whose menu line matches the regular expression.

198

SAM(1)

SAM(1)

Compound Addresses

In the following, al and a2 are addresses.

al+a2 The address a2 evaluated starting at the end of al.

al—a2 The address a2 evaluated looking in the reverse direction starting at the beginning of
al.

al ,a2 The substring from the beginning of al to the end of a2. If al is missing, 0 is substi-
tuted. If a2 is missing, $ is substituted.

al ;a2 Like al, a2, but with a2 evaluated at the end of, and dot set to, al.

The operators + and — are high precedence, while , and ; are low precedence.

In both + and — forms, if a2 is a line or character address with a missing number, the number
defaults to 1. If al is missing, . is substituted. If both al and a2 are present and distinguishable,
+ may be elided. a2 may be a regular expression; if it is delimited by ?’s, the effect of the + or —
is reversed.

It is an error for a compound address to represent a malformed substring. Some useful idioms:
al+— (al-+) selects the line containing the end (beginning) of al. 0/regexp/ locates the first
match of the expression in the file. (The form 0; // sets dot unnecessarily.) ./regexp/// finds
the second following occurrence of the expression, and . , /regexp/ extends dot.

Commands

In the following, text demarcated by slashes represents text delimited by any printable character
except alphanumerics. Any number of trailing delimiters may be elided, with multiple elisions then
representing null strings, but the first delimiter must always be present. In any delimited text,
newline may not appear literally; \n may be typed for newline; and \/ quotes the delimiter, here
/. Backslash is otherwise interpreted literally, except in s commands.

Most commands may be prefixed by an address to indicate their range of operation. Those that
may not are marked with a * below. If a command takes an address and none is supplied, dot is
used. The sole exception is the w command, which defaults to 0, $. In the description, ‘range’ is
used to represent whatever address is supplied. Many commands set the value of dot as a side
effect. If so, it is always set to the ‘result’ of the change: the empty string for a deletion, the new
text for an insertion, etc. (but see the s and e commands).

Text commands

a/text/
or
a
lines of text
Insert the text into the file after the range. Set dot.

c

i Same as a, but c replaces the text, while i inserts before the range.

d Delete the text in the range. Set dot.

s/ regexp / text/
Substitute text for the first match to the regular expression in the range. Set dot to the
modified range. In text the character & stands for the string that matched the expression.
Backslash behaves as usual unless followed by a digit: \d stands for the string that
matched the subexpression begun by the d-th left parenthesis. If s is followed immedi-
ately by a number n, as in s2/x/y/, the n-th match in the range is substituted. If the
command is followed by a g, as in s/x/y/g, all matches in the range are substituted.

mal

t al Move (m) or copy (t) the range to after al. Set dot.

Display commands

File

P Print the text in the range. Set dot.
= Print the line address and character address of the range.
=# Print just the character address of the range.

commands
*b file-list
Set the current file to the first file named in the list that sam also has in its menu. The list

199

SAM(1) SAM(1)

may be expressed <Plan 9 command in which case the file names are taken as words (in
the shell sense) generated by the Plan 9 command.
* B file-list
Same as b, except that file names not in the menu are entered there, and all file names in
the list are examined.
n Print a menu of files. The format is:
” or blank indicating the file is modified or clean,
—or+ indicating the file is unread or has been read (in the terminal,
than one window is open),
. or blank indicating the current file,
a blank,
and the file name.
* D file-list
Delete the named files from the menu. If no files are named, the current file is deleted. It
is an error to D a modified file, but a subsequent D will delete such a file.

3%

E

* means more

I/0 Commands
* e filename
Replace the file by the contents of the named external file. Set dot to the beginning of the
file.
T filename
Replace the text in the range by the contents of the named external file. Set dot.
w filename
Write the range (default 0, $) to the named external file.
* £ filename
Set the file name and print the resulting menu entry.
If the file name is absent from any of these, the current file name is used. e always sets the file
name; r and w do so if the file has no name.
< Plan 9-command
Replace the range by the standard output of the Plan 9 command.
> Plan 9—-command
Send the range to the standard input of the Plan 9 command.
| Plan 9—command
Send the range to the standard input, and replace it by the standard output, of the Plan 9
command.
I Plan 9—command
Run the Plan 9 command.
cd directory
Change working directory. If no directory is specified, $home is used.

E

In any of <, >, | or !, if the Plan 9 command is omitted the last Plan 9 command (of any type) is
substituted. If sam is downloaded (using the mouse and raster display, i.e. not using option —d),
! sets standard input to /dev/null, and otherwise unassigned output (stdout for ! and >,
stderr for all) is placed in /tmp/sam. err and the first few lines are printed.

Loops and Conditionals

x/ regexp/ command
For each match of the regular expression in the range, run the command with dot set to the
match. Set dot to the last match. If the regular expression and its slashes are omitted,
/. *\n/ is assumed. Null string matches potentially occur before every character of the
range and at the end of the range.

y/ regexp/ command
Like x, but run the command for each substring that lies before, between, or after the
matches that would be generated by x. There is no default regular expression. Null sub-
strings potentially occur before every character in the range.

* X/ regexp/ command
For each file whose menu entry matches the regular expression, make that the current file
and run the command. If the expression is omitted, the command is run in every file.

*Y/regexp/ command
Same as X, but for files that do not match the regular expression, and the expression is
required.

200

SAM(1) SAM(1)

g/ regexp/ command
v/ regexp/ command
If the range contains (g) or does not contain (v) a match for the expression, set dot to the
range and run the command.
These may be nested arbitrarily deeply, but only one instance of either X or Y may appear in a
single command. An empty command in an x or y defaults to p; an empty command in X or Y
defaults to £. g and v do not have defaults.

Miscellany
k Set the current file’s mark to the range. Does not set dot.
*q Quit. It is an error to quit with modified files, but a second g will succeed.
*un Undo the last n (default 1) top-level commands that changed the contents or name of

the current file, and any other file whose most recent change was simultaneous with
the current file’s change. Successive u’s move further back in time. The only com-
mands for which u is ineffective are cd, u, q, w and D. If nis negative, u ‘redoes,’
undoing the undo, going forwards in time again.

(empty) If the range is explicit, set dot to the range. If sam is downloaded, the resulting dot
is selected on the screen; otherwise it is printed. If no address is specified (the com-
mand is a newline) dot is extended in either direction to line boundaries and printed.
If dot is thereby unchanged, it is set to .+1 and printed.

Grouping and multiple changes
Commands may be grouped by enclosing them in braces {}. Commands within the braces must
appear on separate lines (no backslashes are required between commands). Semantically, an
opening brace is like a command: it takes an (optional) address and sets dot for each sub-
command. Commands within the braces are executed sequentially, but changes made by one
command are not visible to other commands (see the next paragraph). Braces may be nested arbi-
trarily.

When a command makes a number of changes to a file, as in x/re/c/text/, the addresses of
all changes to the file are computed in the original file. If the changes are in sequence, they are
applied to the file. Successive insertions at the same address are catenated into a single insertion
composed of the several insertions in the order applied.

The terminal
What follows refers to behavior of sam when downloaded, that is, when operating as a display edi-
tor on a raster display. This is the default behavior; invoking sam with the —d (no download)
option provides access to the command language only.

Each file may have zero or more windows open. Each window is equivalent and is updated simulta-
neously with changes in other windows on the same file. Each window has an independent value
of dot, indicated by a highlighted substring on the display. Dot may be in a region not within the
window. There is usually a ‘current window’, marked with a dark border, to which typed text and
editing commands apply. Text may be typed and edited as in rio(1); also the escape key (ESC)
selects (sets dot to) text typed since the last mouse button hit.

The button 3 menu controls window operations. The top of the menu provides the following oper-
ators, each of which uses one or more rio-like cursors to prompt for selection of a window or
sweeping of a rectangle. ‘Sweeping’ a null rectangle gets a large window, disjoint from the com-
mand window or the whole screen, depending on where the null rectangle is.

new Create a new, empty file.

Zerox Create a copy of an existing window.

resize Asin rio.

close Delete the window. In the last window of a file, close is equivalent to a D for the file.
write Equivalent to a w for the file.

Below these operators is a list of available files, starting with ~~sam~~, the command window.
Selecting a file from the list makes the most recently used window on that file current, unless it is
already current, in which case selections cycle through the open windows. If no windows are open
on the file, the user is prompted to open one. Files other than ~~sam~~ are marked with one of
the characters —+* according as zero, one, or more windows are open on the file. A further mark
. appears on the file in the current window and a single quote, ’, on a file modified since last
write.

201

SAM(1)

Man

SAM(1)

The command window, created automatically when sam starts, is an ordinary window except that
text typed to it is interpreted as commands for the editor rather than passive text, and text printed
by editor commands appears in it. The behavior is like rio, with an ‘output point’ that separates
commands being typed from previous output. Commands typed in the command window apply to
the current open file—the file in the most recently current window.

ipulating text

Button 1 changes selection, much like rio. Pointing to a non-current window with button 1 makes
it current; within the current window, button 1 selects text, thus setting dot. Double-clicking
selects text to the boundaries of words, lines, quoted strings or bracketed strings, depending on
the text at the click.

Button 2 provides a menu of editing commands:

cut Delete dot and save the deleted text in the snarf buffer.

paste Replace the text in dot by the contents of the snarf buffer.

snarf Save the text in dot in the snarf buffer.

plumb Send the text in the selection as a plumb message. If the selection is empty, the

white-space-delimited block of text is sent as a plumb message with a click
attribute defining where the selection lies (see plumb(6)).

look Search forward for the next occurrence of the literal text in dot. If dot is the null
string, the text in the snarf buffer is used. The snarf buffer is unaffected.

<rio> Exchange snarf buffers with rio.

/ regexp Search forward for the next match of the last regular expression typed in a command.
(Not in command window.)

send Send the text in dot, or the snarf buffer if dot is the null string, as if it were typed to
the command window. Saves the sent text in the snarf buffer. (Command window
only.)

External communication

Abn

FILES

SOURC

SEE AL

Sam listens to the edit plumb port. If plumbing is not active, on invocation sam creates a named
pipe /srv/sam. user which acts as an additional source of commands. Characters written to the
named pipe are treated as if they had been typed in the command window.

B is a shell-level command that causes an instance of sam running on the same terminal to load
the named files. B uses either plumbing or the named pipe, whichever service is available. If
plumbing is not enabled, the option allows a line number to be specified for the initial position to
display in the last named file (plumbing provides a more general mechanism for this ability).

ormal termination

If sam terminates other than by a g command (by hangup, deleting its window, etc.), modified files
are saved in an executable file, $home/sam. save. This program, when executed, asks whether
to write each file back to a external file. The answer y causes writing; anything else skips the file.

$home/sam. save
$home/sam.err

/sys/lib/samsave the program called to unpack $home/sam. save.
E

/sys/src/cmd/sam source for sam itself
/sys/src/cmd/samterm source for the separate terminal part

/rc/bin/B

SO

ed(1), sed(1), grep(1), rio(1), regexp(6).
Rob Pike, ““The text editor sam”’.

202

SECSTORE(T1) SECSTORE(1)

NAME
aescbc, ipso, secstore - secstore commands

SYNOPSIS
auth/secstore [—cinv][—(g|G) getfile] [—p putfile] [—x rmfile] [—s server] [—u user

]

auth/aescbc -e [-in] <cleartext >ciphertext
auth/aescbc -d [-in] <ciphertext >cleartext

ipso[—-a —-e -1 —f —-s]|[file...]

DESCRIPTION
Secstore authenticates to a secure-store server using a password and optionally a hardware token,
then saves or retrieves a file. This is intended to be a credentials store (public/private keypairs,
passwords, and other secrets) for a factotum.

Option —c prompts for a password change.

Option —g retrieves a file to the local directory; option —G writes it to standard output instead.
Specifying getfile of . will send to standard output a list of remote files with dates, lengths and
SHAT1 hashes.

Option —i says that the password should be read from standard input instead of from
/dev/cons.

Option —n says that the password should be read from NVRAM (see authsrv(2)) instead of from
/dev/cons.

Option —p stores a file on the secstore.

Option —r removes a file from the secstore.

The serveris tcp! $auth! secstore, or the server specified by option —s.
Option —u access the secure-store files belonging to user.

Option —v produces more verbose output, in particular providing a few bits of feedback to help
the user detect mistyping.

For example, to add a secret to the file read by factotum(4) at startup, open a new window, type

% ramfs —-p; cd /tmp

% auth/secstore —-g factotum

secstore password:

% echo ’'key proto=apop dom=x.com user=ehg !password=hi’ >> factotum
% auth/secstore —-p factotum

secstore password:

% read —-m factotum > /mnt/factotum/ctl

and delete the window. The first line creates an ephemeral memory-resident workspace, invisible
to others and automatically removed when the window is deleted. The next three commands fetch
the persistent copy of the secrets, append a new secret, and save the updated file back to secstore.
The final command loads the new secret into the running factotum.

The ipso command packages this sequence into a convenient script to simplify editing of files
stored on a secure store. It copies the named files into a local ramfs(4) and invokes acme(1) on
them. When the editor exits, ipso prompts the user to confirm copying modifed or newly created
files back to secstore. If no file is mentioned, ipso grabs all the user’s files from secstore for edit-
ing.

By default, ipso will edit the secstore files and, if one of them is named factotum, flush current
keys from factotum and load the new ones from the file. If the —e, —f, or —1 options are given,
ipso will just perform only the requested operations, i.e., edit, flush, and/or load.

The —s option of ipso invokes sam(1) as the editor insted of acme; the —a option provides a simi-
lar service for files encrypted by aescbc (q.v.). With the —a option, the full rooted pathname of the
file must be specified and all files must be encrypted with the same key. Also with —a, newly cre-
ated files are ignored.

203

SECSTORE(T1) SECSTORE(1)

Aescbc encrypts (under —e) and decrypts (under —d) using AES (Rijndael) in cipher block chaining
(CBC) mode. Options i and n are as per secstore, except that i reads from file descriptor 3.

SOURCE
/rc/bin/ipso
/sys/src/cmd/auth/secstore

SEE ALSO
factotum(4), secstore(8)

BUGS
There is deliberately no backup of files on the secstore, so —r (or a disk crash) is irrevocable. You
are advised to store important secrets in a second location.

When using ipso, secrets will appear as plain text in the editor window, so use the command in pri-
vate.

204

SED(1)

NAME

SED(1)

sed - stream editor

SYNOPSIS

sed[-n][—-g]ll[—e script] [-1 sfile] [file ...]

DESCRIPTION

Sed copies the named files (standard input default) to the standard output, edited according to a
script of commands. The —f option causes the script to be taken from file sfile; these options
accumulate. If there is just one —e option and no —f’s, the option —e may be omitted. The —n
option suppresses the default output; —g causes all substitutions to be global, as if suffixed g.

A script consists of editing commands, one per line, of the following form:
[address [, address]] function [argument ...] [;]

In normal operation sed cyclically copies a line of input into a pattern space (unless there is some-
thing left after a D command), applies in sequence all commands whose addresses select that pat-
tern space, and at the end of the script copies the pattern space to the standard output (except
under —n) and deletes the pattern space.

An address is either a decimal number that counts input lines cumulatively across files, a $ that
addresses the last line of input, or a context address, /regular—expression/, in the style of
regexp(6), with the added convention that \n matches a newline embedded in the pattern space.

A command line with no addresses selects every pattern space.
A command line with one address selects each pattern space that matches the address.

A command line with two addresses selects the inclusive range from the first pattern space that
matches the first address through the next pattern space that matches the second. (If the second
address is a number less than or equal to the line number first selected, only one line is selected.)
Thereafter the process is repeated, looking again for the first address.

Editing commands can be applied to non-selected pattern spaces by use of the negation function
I (below).

An argument denoted text consists of one or more lines, all but the last of which end with \ to
hide the newline. Backslashes in text are treated like backslashes in the replacement string of an s
command, and may be used to protect initial blanks and tabs against the stripping that is done on
every script line.

An argument denoted rfile or wfile must terminate the command line and must be preceded by
exactly one blank. Each wfile is created before processing begins. There can be at most 120 dis-
tinct wfile arguments.

a\

text Append. Place text on the output before reading the next input line.

b label Branch to the : command bearing the label. If label is empty, branch to the end of
the script.

c\

text Change. Delete the pattern space. With 0 or 1 address or at the end of a 2-
address range, place text on the output. Start the next cycle.

d Delete the pattern space. Start the next cycle.

D Delete the initial segment of the pattern space through the first newline. Start the
next cycle.

g Replace the contents of the pattern space by the contents of the hold space.

G Append the contents of the hold space to the pattern space.

h Replace the contents of the hold space by the contents of the pattern space.

H Append the contents of the pattern space to the hold space.

i\

205

SED(1)

text

P

a
T rfile

SED(1)

Insert. Place text on the standard output.

Copy the pattern space to the standard output. Replace the pattern space with the
next line of input.

Append the next line of input to the pattern space with an embedded newline.
(The current line number changes.)

Print. Copy the pattern space to the standard output.

Copy the initial segment of the pattern space through the first newline to the stan-
dard output.

Quit. Branch to the end of the script. Do not start a new cycle.

Read the contents of rfile. Place them on the output before reading the next input
line.

s/ regular—expression/replacement/ flags

Substitute the replacement string for instances of the regular—expression in the
pattern space. Any character may be used instead of /. For a fuller description
see regexp(6). Flags is zero or more of

g Global. Substitute for all non-overlapping instances of the regular
expression rather than just the first one.

9] Print the pattern space if a replacement was made.

w wfile

Write. Append the pattern space to wfile if a replacement was made.

t label Test. Branch to the : command bearing the label if any substitutions have been
made since the most recent reading of an input line or execution of a t. If label is
empty, branch to the end of the script.

w wfile
Write. Append the pattern space to wfile.

X Exchange the contents of the pattern and hold spaces.

y/stringl/string2/

Transform. Replace all occurrences of characters in stringl with the corresponding
character in string2. The lengths of stringl and string2 must be equal.

! function Don’t. Apply the function (or group, if function is {) only to lines not selected by
the address(es).

Comment. Ignore the rest of the line.

: label This command does nothing; it bears a label for b and t commands to branch to.

= Place the current line number on the standard output as a line.

{ Execute the following commands through a matching } only when the pattern
space is selected.

An empty command is ignored.
EXAMPLES

sed 10q file
Print the first 10 lines of the file.
sed '/A$/4’
Delete empty lines from standard input.
sed ’'s/UNIX/& system/g’
Replace every instance of UNIX by UNIX system.

sed 's/ *$// drop trailing blanks

/A$/d
s/ */\
/8
/N$/d’

drop empty lines
replace blanks by newlines

chapter*

206

SED(1)

SED(1)

Print the files chapterl, chapter?2, etc. one word to a line.

nroff -ms manuscript | sed ’
${
/A$/p if last line of file is empty, print it
}
//N if current line is empty, append next line
/A\n$ /D’ if two lines are empty, delete the first

Delete all but one of each group of empty lines from a formatted manuscript.

SOURCE

/sys/src/cmd/sed.c

SEE ALSO

BUGS

ed(1), grep(1), awk(1), lex(1), sam(1), regexp(6)
L. E. McMahon, ‘SED — A Non-interactive Text Editor’, Unix Research System Programmer’s Man-
ual, Volume 2.

If input is from a pipe, buffering may consume characters beyond a line on which a g command is
executed.

207

SEQ(1) SEQ(1)

NAME
seq - print sequences of numbers

SYNOPSIS
seq[—w] [—fformat] | first[incr]] last

DESCRIPTION
Seq prints a sequence of numbers, one per line, from first (default 1) to as near last as possible, in
increments of jncr (default 1). The loop is:

for(val = min; val <= max; val += incr) print val;

The numbers are interpreted as floating point.
Normally integer values are printed as decimal integers. The options are

—f format Use the print(2)-style format print for printing each (floating point) nhumber. The
default is %g.

—-w Equalize the widths of all numbers by padding with leading zeros as necessary. Not
effective with option —£, nor with numbers in exponential notation.

EXAMPLES
seq 0 .05 .1
Print 0 0.05 0.1 (on separate lines).

seq -w 0 .05 .1
Print 0.00 0.05 0.10.

SOURCE
/sys/src/cmd/seq.c

BUGS
Option —w always surveys every value in advance. Thus seq —w 1000000000 is a painful way
to get an ‘infinite’ sequence.

208

SIZE(1) SIZE(1)

NAME

size - print size of executable files
SYNOPSIS

size | file...]
DESCRIPTION

Size prints the size of the segments for each of the argument executable files (default v.out).
The format is

textsizet + datasized + bsssizeb = total
where the numbers are in bytes.

SOURCE
/sys/src/cmd/size.c

SEE ALSO
a.out(6)

209

SLEEP(1) SLEEP(1)

NAME
sleep - suspend execution for an interval

SYNOPSIS

sleep time
DESCRIPTION

Sleep suspends execution for time seconds. Time may be floating-point.
EXAMPLES

Execute a command 100 seconds hence.

{sleep 100; command}&
Repeat a command every 30 seconds.

while (){
command
sleep 30

SOURCE
/sys/src/cmd/sleep.c

SEE ALSO
sleep(2)

210

SOELIM(1) SOELIM(1)

NAME

soelim - preprocess so inclusion commands in troff input
SYNOPSIS

soelim] files ...]
DESCRIPTION

Soelim reads the specified files or the standard input and performs the textual inclusion implied by
troff(1) directives of the form

.so some_file

when they appear at the beginning of input lines. This is useful when using programs such as
tbl(1) that do not normally do this, allowing placement of individual tables or other text objects in
separate files to be run as a part of a large document.

Note that inclusion can be suppressed by using ’ instead of . at the start of the line as in:

’so /usr/share/lib/tmac/tmac.s
SOURCE
/rc/bin/soelim
SEE ALSO
troff(1)
BUGS
The shell script was written by Sape Mullender.

211

SORT(1) SORT(1)

NAME

sort - sort and/or merge files

SYNOPSIS

sort [—cmuMbdfinrwtx] [+posi [—pos2]...]... [-k posl [,pos2]] ...
[—o output] [=T dir ... 1[option ... 1] file ...]

DESCRIPTION

Sort sorts lines of all the files together and writes the result on the standard output. If no input
files are named, the standard input is sorted.

The default sort key is an entire line. Default ordering is lexicographic by runes. The ordering is
affected globally by the following options, one or more of which may appear.

-M Compare as months. The first three non-white space characters of the field are folded to
upper case and compared so that JAN precedes FEB, etc. Invalid fields compare low to

JAN.
-b Ignore leading white space (spaces and tabs) in field comparisons.
—d ‘Phone directory’ order: only letters, accented letters, digits and white space are significant

in comparisons.

—f Fold lower case letters onto upper case. Accented characters are folded to their non-
accented upper case form.

—-1i Ignore characters outside the ASCIl range 040-0176 in non-numeric comparisons.
—w Like —i, but ignore only tabs and spaces.

-n An initial numeric string, consisting of optional white space, optional plus or minus sign,
and zero or more digits with optional decimal point, is sorted by arithmetic value.

-g Numbers, like —n but with optional e-style exponents, are sorted by value.
-r Reverse the sense of comparisons.
—tx ‘Tab character’ separating fields is x.

The notation +pos] —pos2 restricts a sort key to a field beginning at pos1 and ending just before
pos2. Pos1 and pos2 each have the form m. n, optionally followed by one or more of the flags
Mbdfginr, where m tells a number of fields to skip from the beginning of the line and n tells a
number of characters to skip further. If any flags are present they override all the global ordering
options for this key. A missing . n means .0; a missing —pos2 means the end of the line. Under
the —tx option, fields are strings separated by x; otherwise fields are non-empty strings sepa-
rated by white space. White space before a field is part of the field, except under option —b. A b
flag may be attached independently to posi1 and pos2.

The notation —k pos]i[,pos2] is how POSIX sort defines fields: pos1 and pos2 have the same format
but different meanings. The value of m is origin 1 instead of origin 0 and a missing . n in pos2 is
the end of the field.

When there are multiple sort keys, later keys are compared only after all earlier keys compare
equal. Lines that otherwise compare equal are ordered with all bytes significant.

These option arguments are also understood:

—C Check that the single input file is sorted according to the ordering rules; give no out-
put unless the file is out of sort.

—m Merge; assume the input files are already sorted.

—u Suppress all but one in each set of equal lines. Ignored bytes and bytes outside keys

do not participate in this comparison.

-0 The next argument is the name of an output file to use instead of the standard out-
put. This file may be the same as one of the inputs.

212

SORT(1) SORT(1)

=Tdir Put temporary files in dir rather than in /tmp.

EXAMPLES
sort —u +0f +0 list
Print in alphabetical order all the unique spellings in a list of words where capitalized words
differ from uncapitalized.

sort —-t: +1 /adm/users
Print the users file sorted by user name (the second colon-separated field).

sort —umM dates
Print the first instance of each month in an already sorted file. Options —um with just one
input file make the choice of a unique representative from a set of equal lines predictable.

grep -n A’ input | sort —-t: +1f +On | sed ’s/[0-9]1%*://’
A stable sort: input lines that compare equal will come out in their original order.

FILES
/tmp/sort . <pid>.<ordinal>
SOURCE
/sys/src/cmd/sort.c
SEE ALSO
uniq(1), look(1)
DIAGNOSTICS
Sort comments and exits with non-null status for various trouble conditions and for disorder dis-
covered under option —c.
BUGS

An external null character can be confused with an internally generated end-of-field character.
The result can make a sub-field not sort less than a longer field.

Some of the options, e.g. —1i and —M, are hopelessly provincial.

213

SPELL(1) SPELL(1)

NAME

spell, sprog - find spelling errors

SYNOPSIS

spell [options] ... [file] ...
aux/sprog [options][—£ file]

DESCRIPTION

Spell looks up words from the named files (standard input default) in a spelling list and places pos-
sible misspellings—words not sanctioned there—on the standard output.

Spell ignores constructs of troff(1) and its standard preprocessors. It understands these options:
-b Check British spelling.
-V Print all words not literally in the spelling list, with derivations.

-X Print on standard error, marked with =, every stem as it is looked up in the spelling list,
along with its affix classes.

As a matter of policy, spell does not admit multiple spellings of the same word. Variants that fol-
low general rules are preferred over those that don’t, even when the unruly spelling is more com-
mon. Thus, in American usage, ‘modelled’, ‘sizeable’, and ‘judgment’ are rejected in favor of
‘modeled’, ‘sizable’, and ‘judgement’. Agglutinated variants are shunned: ‘crewmember’ and
‘backyard’ cede to ‘crew member’ and ‘back yard’ (noun) or ‘back-yard’ (adjective).

FILES
/sys/lib/amspell American spelling list
/sys/lib/brspell British spelling list
/bin/aux/sprog The actual spelling checker. It expects one word per line on standard
input, and takes the same arguments as spell.
SOURCE
/rc/bin/spell the script
/sys/src/cmd/spell source for sprog
SEE ALSO
deroff(1)
BUGS

The heuristics of deroff(1) used to excise formatting information are imperfect.

The spelling list’s coverage is uneven; in particular biology, medicine, and chemistry, and perforce
proper names, not to mention languages other than English, are covered very lightly.

214

SPIN(1) SPIN(T1)

NAME

spin - verification tool for models of concurrent systems

SYNOPSIS

spin—-al[-m][—-Pcpp] file

spin [-bglmprsv][-nN][-Pcpp] file
spin—-c[—-t][—-Pcpp] file

spin—-d [-Pcpp] file

spin —f It/

spin —F file

spin —i[-bglmprsv][-nN][—-Pcpp] file
spin-M[—-t][—-Pcpp] file

spin —t[N] [-bglmprsv][-jN][-Pcpp] file
spin -V

DESCRIPTION

Spin is a tool for analyzing the logical consistency of asynchronous systems, specifically dis-
tributed software amd communication protocols. A verification model of the system is first speci-
fied in a guarded command language called Promela. This specification language, described in the
reference, allows for the modeling of dynamic creation of asynchronous processes, nondeterminis-
tic case selection, loops, gotos, local and global variables. It also allows for a concise specification
of logical correctness requirements, including, but not restricted to requirements expressed in lin-
ear temporal logic.

Given a Promela model stored in file, spin can perform interactive, guided, or random simulations
of the system’s execution. It can also generate a C program that performs an exhaustive or
approximate verification of the correctness requirements for the system.

—-a Generate a verifier (model checker) for the specification. The output is written into a set of
C files, named pan. [cbhmt], that can be compiled (pcc pan.c) to produce an exe-
cutable verifier. The online spin manuals (see below) contain the details on compilation
and use of the verifiers.

—-C Produce an ASCIl approximation of a message sequence chart for a random or guided
(when combined with —t) simulation run. See also option —M.

—d Produce symbol table information for the model specified in file. For each Promela object
this information includes the type, name and number of elements (if declared as an array),
the initial value (if a data object) or size (if a message channel), the scope (global or local),
and whether the object is declared as a variable or as a parameter. For message channels,
the data types of the message fields are listed. For structure variables, the third field
defines the name of the structure declaration that contains the variable.

—f ItI Translate the LTL formula It/ into a never claim.
This option reads a formula in LTL syntax from the second argument and translates it into
Promela syntax (a never claim, which is Promela’s equivalent of a Biichi Automaton). The
LTL operators are written: [] (always), <> (eventually), and U (strong until). There is no X
(next) operator, to secure compatibility with the partial order reduction rules that are
applied during the verification process. If the formula contains spaces, it should be quoted
to form a single argument to the spin command.

—F file
Translate the LTL formula stored in file into a never claim.
This behaves identically to option —f but will read the formula from the file instead of from
the command line. The file should contain the formula as the first line. Any text that fol-
lows this first line is ignored, so it can be used to store comments or annotation on the for-
mula. (On some systems the quoting conventions of the shell complicate the use of option
—f. Option —F is meant to solve those problems.)

215

SPIN(1)

-V

SPIN(T1)

Perform an interactive simulation, prompting the user at every execution step that requires
a nondeterministic choice to be made. The simulation proceeds without user intervention
when execution is deterministic.

Produce a message sequence chart in Postscript form for a random simulation or a guided
simulation (when combined with —t), for the model in file, and write the result into file.ps.
See also option —c.

Changes the semantics of send events. Ordinarily, a send action will be (blocked) if the tar-
get message buffer is full. With this option a message sent to a full buffer is lost.

Set the seed for a random simulation to the integer value N. There is no space between the
—n and the integer N.

Perform a guided simulation, following the error trail that was produces by an earlier verifi-
cation run, see the online manuals for the details on verification.

Prints the spin version number and exits.

With only a filename as an argument and no options, spin performs a random simulation of the
model specified in the file (standard input is the default if the filename is omitted). If option —1i is
added, the simulation is interactive, or if option —t is added, the simulation is guided.

The simulation normally does not generate output, except what is generated explicitly by the user
within the model with printf statements, and some details about the final state that is reached after
the simulation completes. The group of options —bglmprsv sets the desired level of information
that the user wants about a random, guided, or interactive simulation run. Every line of output
normally contains a reference to the source line in the specification that generated it.

-b Suppress the execution of printf statements within the model.

-g Show at each time step the current value of global variables.

-1 In combination with option —p, show the current value of local variables of the process.

-p Show at each simulation step which process changed state, and what source statement was
executed.

-r Show all message-receive events, giving the name and number of the receiving process and
the corresponding the source line number. For each message parameter, show the mes-
sage type and the message channel number and name.

-s Show all message-send events.

-V Verbose mode, add some more detail, and generate more hints and warnings about the
model.

SOURCE

/sys/src/cmd/spin

SEE ALSO

http://spinroot.com: GettingStarted.pdf, Roadmap.pdf, Manual.pdf,

WhatsNew. pdf, Exercises.pdf

G.J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991.

—, ‘Design and validation of protocols: a tutorial,” Computer Networks and ISDN Systems, Vol. 25,
No. 9, 1993, pp. 981-1017.

—, ‘The model checker Spin,” IEEE Trans. on SE, Vol, 23, No. 5, May 1997.

216

SPLIT(T) SPLIT(1)

NAME

split - split a file into pieces

SYNOPSIS

split [option ... 1] file]

DESCRIPTION

Split reads file (standard input by default) and writes it in pieces of 1000 lines per output file. The
names of the output files are xaa, xab, and so on to xzz. The options are

—n n Split into n-line pieces.
-1 n Synonym for —n n, a nod to Unix’s syntax.

—e expression
File divisions occur at each line that matches a regular expression; see regexp(6). Multiple
—e options may appear. If a subexpression of expression is contained in parentheses
(..., the output file name is the portion of the line which matches the subexpression.

—f stem
Use stem instead of x in output file names.

—s suffix
Append suffix to names identified under —e.

—-X Exclude the matched input line from the output file.
—-i Ignore case in option —e; force output file names (excluding the suffix) to lower case.

SOURCE

/sys/src/cmd/split.c

SEE ALSO

sed(1), awk(1), grep(1), regexp(6)

217

SRC(1) SRC(1)

NAME

src - find source code for executable
SYNOPSIS

src[—-n][—s symbol] file . ..
DESCRIPTION

Src examines the named files to find the corresponding source code, which is then sent to the edi-
tor using B (see sam(1)). If file is an rc(1) script, the source is the file itself. If file is an exe-
cutable, the source is defined to be the single file containing the definition of main and src will
point the editor at the line that begins the definition. Src uses db(1) to extract the symbol table
information that identifies the source.

Src looks for each file in the current directory, in /bin, and in the subdirectories of /bin, in that
order.

The —n flag causes src to print the file name but not send it to the editor. The —s flag identifies
a symbol other than main to locate.

EXAMPLES
Find the source to the main routine in /bin/ed:

src ed
Find the source for strcmp:
src —-s strcmp rc

SOURCE
/rc/bin/src

SEE ALSO
db(1), plumb(1), sam(1).

218

SSH(T1)

NAME

SSH(1)

ssh, sshnet, scp, sshserve - secure login and file copy from/to Unix or Plan 9

SYNOPSIS

ssh [-CfiImPpRrw] [—A authlist] [—c cipherlist] [—[1u] user] [user@]host [cmd [args ...
1

sshnet [—A authlist] [—c cipherlist] [—-m mtpt] [—s service] [user@] host

scp [host:]file [host:]file
scp [host:Ifile ... [host:]dir

aux/sshserve [—p] address

DESCRIPTION

Ssh allows authenticated login over an encrypted channel to hosts that support the ssh protocol
(see the RFCs listed below for encryption and authentication details).

Ssh takes the host name of the machine to connect to as its mandatory argument. It may be speci-
fied as a domain name or an IP address. Normally, login is attempted using the user name from
/dev/user.

Command-line options are:
—C force input to be read in cooked mode: “‘line at a time’” with local echo.

—f enable agent forwarding. With this flag, ssh uses SSH’s agent forwarding protocol to allow
programs running on the remote server to interact with factotum(4) to perform RSA authen-
tication.

—-i force interactive mode. In interactive mode, ssh prompts for passwords and confirmations
of new host keys when necessary. (In non-interactive mode, password requests are
rejected and unrecognized host keys are cause for disconnecting.) By default, ssh runs in
interactive mode only when its input file descriptor is /dev/cons.

-I force non-interactive mode.
-m disable the control-\ menu, described below.

-p force pseudoterminal request. The ssh protocol, grounded in Unix tradition, differentiates
between connections that request controlling pseudoterminals and those that do not. By
default, ssh requests a pseudoterminal only when no command is given.

-P force no pseudoterminal request.

-r strip carriage returns.

-R put the allocated pseudoterminal, if any, in raw mode.

—-w notify the remote side whenever the window changes size.

—[1u] user
specify user name. This option is deprecated in favor of the user@hostname syntax.

—A authlist
specify an ordered space-separated list of authentication protocols to try. The full set of
authentication protocols is rsa (RSA using factotum(4) to moderate key usage),
password (use a password gathered from factotum), and tis (challenge-response). The
default list is all three in that order.

—c cipherlist
specify an ordered space-separated list of allowed ciphers to use when encrypting the
channel. The full set of ciphers is des (standard DES), 3des (a somewhat doubtful varia-
tion on triple DES), blowfish (Bruce Schneier’s Blowfish), rc4 (RC4), and none (no
encryption). The default cipher list is blowfish rc4 3des.

The control-\ character is a local escape, as in con(1). It prompts with >>>. Legitimate responses
to the prompt are

q Exit.

219

SSH(T1)

SSH(1)

Return from the escape.

cmd Run the command with the network connection as its standard input and standard output.
Standard error will go to the screen.

r Toggle printing of carriage returns.

If no command is specified, a login session is started on the remote host. Otherwise, the com-
mand is executed with its arguments.

Ssh establishes a connection with an ssh daemon on the remote host. The daemon sends to ssh
its RSA public host key and session key. Using these, ssh sends a session key which, presumably,
only the daemon can decipher. After this, both sides start encrypting their data with this session
key.

When the daemon’s host key has been received, ssh looks it up in $home/l1ib/keyring and in
/sys/lib/ssh/keyring. If the key is found there, and it matches the received key, ssh is
satisfied. If not, ssh reports this and offers to add the key to $home/1ib/keyring.

Over the encrypted channel, ssh attempts to convince the daemon to accept the call using the
listed authentication protocols (see the —A option above).

The preferred way to authenticate is a netkey-style challenge/response or via a SecurlD token. Ssh
users on other systems than Plan 9 should enable Tis_authentication.

When the connection is authenticated, the given command line, (by default, a login shell) is exe-
cuted on the remote host.

The SSH protocol allows clients to make outgoing TCP calls via the server. Sshnet establishes an
SSH connection and, rather than execute a remote command, presents the remote server’s TCP
stack as a network stack (see the discussion of TCP in ip(3)) mounted at mtpt (default /net),
optionally posting a 9P service descriptor for the new file system as /srv/service. The —A and
—C arguments are as in ssh.

Scp uses ssh to copy files from one host to another. A remote file is identified by a host name, a
colon and a file name (no spaces). Scp can copy files from remote hosts and to remote hosts.

Sshserve is the server that services ssh calls from remote hosts. The —A and —c options set valid
authentication methods and ciphers as in ssh, except that there is no rsa authentication method.
Unlike in ssh, the list is not ordered: the server presents a set and the client makes the choice.
The default sets are tis and blowfish rc4 3des. By default, users start with the namespace
defined in /1ib/namespace. Users in group noworld in /adm/users start with the names-
pace defined in /1lib/namespace.noworld. Sshserve does not provide the TCP forwarding
functionality used by sshnet, because many Unix clients present this capability in an insecure man-
ner.

Sshserve requires that factotum(4) hold the host key, identified by having attributes proto=rsa
service=sshserve. To generate a host key:

auth/rsagen —t ’service=sshserve’ >/mnt/factotum/ctl
To extract the public part of the host key in the form used by SSH key rings:
grep ’'service=sshserve’ /mnt/factotum/ctl | auth/rsa2ssh

FILES
/sys/lib/ssh/keyring
System key ring file containing public keys for remote ssh clients and servers.
/usr/user/1lib/keyring
Personal key ring file containing public keys for remote ssh clients and servers.
SOURCE
/sys/src/cmd/ssh
SEE ALSO

/1lib/rfc/rfcd425[0-6]
factotum(4), authsrv(6), rsa(8)

220

SSH(T1) SSH(1)

BUGS
Only version 1 of the SSH protocol is implemented.

221

STOP(1) STOP(1)

NAME

stop, start - print commands to stop and start processes
SYNOPSIS

stop name

start name

DESCRIPTION
Stop prints commands that will cause all processes called name and owned by the current user to
be stopped. The processes can then be debugged when they are in a consistent state.

Start prints commands that will cause all stopped processes called name and owned by the current
user to be started again.

Use the send command of rio(1), or pipe into rc(1) to execute the commands.

SOURCE
/rc/bin/stop
/rc/bin/start
SEE ALSO
ps(1), kill(1), proc(3)

222

STRINGS(1) STRINGS(1)

NAME

strings - extract printable strings
SYNOPSIS

strings[-m min]| file ...]
DESCRIPTION

Strings finds and prints strings containing min (default 6) or more consecutive printable UTF-
encoded characters in a (typically) binary file, default standard input. Printable characters are
taken to be ASCll characters from blank through tilde (hexadecimal 20 through 7E), inclusive, and
all other characters from value 00AO to FFFF. Strings reports the decimal offset within the file at
which the string starts and the text of the string. If the string is longer than 70 runes the line is
terminated by three dots and the printing is resumed on the next line with the offset of the contin-
uation line.

SOURCE
/sys/src/cmd/strings.c

SEE ALSO
nm(1)

223

STRIP(1) STRIP(1)

NAME

strip - remove symbols from binary files
SYNOPSIS

strip file ...

strip —o ofile file

DESCRIPTION
Strip removes symbol table segments from executable files, rewriting the files in place. Stripping a
file requires write permission of the file and the directory it is in.

If the —o flag is given, the single input file file is stripped and the result written to ofile. File is
unchanged.

SOURCE
/sys/src/cmd/strip.c

SEE ALSO
a.out(6)

224

SUM(1) SUM(1)

NAME
sum, md5sum, shalsum - sum and count blocks in a file

SYNOPSIS
sum[-5r]] file...]

md5sum [file ...]
shalsum|[-2 bits] [file ...]

DESCRIPTION
By default, sum calculates and prints a 32-bit hexadecimal checksum, a byte count, and the name
of each file. The checksum is also a function of the input length. If no files are given, the standard
input is summed. Other summing algorithms are available. The options are

—r Sum with the algorithm of System V’s sum —r and print the length (in 1K blocks) of the
input.

—5 Sum with System V’s default algorithm and print the length (in 512-byte blocks) of the input.

Sum is typically used to look for bad spots, to validate a file communicated over some transmis-
sion line or as a quick way to determine if two files on different machines might be the same.

Md5sum computes the 32 hex digit RSA Data Security, Inc. MD5 Message-Digest Algorithm
described in RFC1321.

Shalsum computes the 40 hex digit National Institute of Standards and Technology (NIST) SHAT
secure hash algorithm described in FIPS PUB 180-1, by default. Given the 2 option, it instead com-
putes the bits-bit NIST SHA2 secure hash algorithm described in FIPS PUB 180-2 and prints the
hash in hex. Currently supported values of bits are 224, 256, 384, and 512.

SOURCE
/sys/src/cmd/sum.c
/sys/src/cmd/md5sum. c
/sys/src/cmd/shalsum.c

SEE ALSO
cmp(1), we(l), sechash(2)

225

SYSCALL(1) SYSCALL(1)

NAME
syscall - test a system call

SYNOPSIS
syscall [—-osx]entry[arg...]

DESCRIPTION
Syscall invokes the system call entry with the given arguments. (Some functions, such as write
and read(2), although not strictly system calls, are valid entries.) It prints the return value and the
error string, if there was an error. An argument is either an integer constant as in C (its value is
passed), a string (its address is passed), or the literal buf (a pointer to a 1MB buffer is passed).

If —o is given, the contents of the 1MB buffer are printed as a zero-terminated string after the sys-
tem call is done. The —x and —s options are similar, but —x formats the data as hexadecimal
bytes, while —s interprets the data as a stat(5) message and formats it similar to the style of 1s
—1qgm (see Is(1)), with extra detail about the modify and access times.

EXAMPLES
Write a string to standard output:

syscall write 1 hello 5
Print information about the file connected to standard input:
syscall -s fstat 0 buf 1024

SOURCE
/sys/src/cmd/syscall
SEE ALSO
Section 2 of this manual.

DIAGNOSTICS
If entry is not known to syscall, the exit status is unknown. If the system call succeeds, the exit
status is null; otherwise the exit status is the string that errstr(2) returns.

226

TAGRD(T1) TAGRD(1)

NAME

tagrd - plumb a Mifare Ultralight tag
SYNOPSIS

tagrd[-D] /dev/cci*/rpc
DESCRIPTION

Tagrd runs continuously, polling a usb(4) ccid-based Touchatag reader and plumbs a message for
any tag with its content and its UID. It plumbs another message when the tag disappears. For an
example of how to use this, see /sys/src/cmd/scard/plumbing.

When the program successfully communicates with the reader, its led should turn orange.

This program is part of an ongoing programming of the ISO smartcard standards, part of the
library can be seen at /sys/src/cmd/scard.

SOURCE
/sys/src/cmd/scard/tagrd.c
/sys/src/cmd/scard/plumbing

SEE ALSO
usb(4)

227

TAIL(T) TAIL(1)

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [+—number[lbc][rf] 1] file]

tail [—-fr][—n nlines] [—c nbytes]| file]

DESCRIPTION
Tail copies the named file to the standard output beginning at a designated place. If no file is

named, the standard input is copied.

Copying begins at position +number measured from the beginning, or —number from the end of
the input. Number is counted in lines, 1K blocks or bytes, according to the appended flag 1, b, or
c. Defaultis =101 (ten ell).

The further flag r causes tail to print lines from the end of the file in reverse order; £ (follow)
causes tail, after printing to the end, to keep watch and print further data as it appears.

The second syntax is that promulgated by POSIX, where the numbers rather than the options are
signed.

EXAMPLES
tail file
Print the last 10 lines of a file.

tail +0f file
Print a file, and continue to watch data accumulate as it grows.

sed 10q file
Print the first 10 lines of a file.

SOURCE
/sys/src/cmd/tail.c

BUGS
Tails relative to the end of the file are treasured up in a buffer, and thus are limited in length.

According to custom, option +number counts lines from 1, and counts blocks and bytes from 0.

Tail is ignorant of UTF.

228

TAR(1)

NAME

TAR(1)

tar, dircp - archiver

SYNOPSIS

tar key| file ...]
dircp fromdir todir

DESCRIPTION

Tar saves and restores file trees. It is most often used to transport a tree of files from one system
to another. The key is a string that contains at most one function letter plus optional modifiers.
Other arguments to the command are names of files or directories to be dumped or restored. A
directory name implies all the contained files and subdirectories (recursively).

The function is one of the following letters:

C

r
t
X

Create a new archive with the given files as contents.
The named files are appended to the archive.
List all occurrences of each file in the archive, or of all files if there are no file arguments.

Extract the named files from the archive. If a file is a directory, the directory is extracted
recursively. Modes are restored if possible. If no file argument is given, extract the entire
archive. If the archive contains multiple entries for a file, the latest one wins.

The modifiers are:

f

Use the next argument as the name of the archive instead of the default standard input (for
keys x and t) or standard output (for keys c and r).

Use the next (humeric) argument as the group id for files in the output archive.

Ignore errors encountered when reading. Errors writing either produce a corrupt archive or
indicate deeper file system problems.

(keep) Modifies the behavior of x not to extract files which already exist.

Do not set the modification time on extracted files. This is the default behavior; the flag
exists only for compatibility with other tars.

Create archive in POSIX ustar format, which raises the maximum pathname length from 100
to 256 bytes. Ustar archives are recognised automatically by tar when reading archives.
This is the default behavior; the flag exists only for backwards compatibility with older ver-
sions of tar.

Do not generate the POSIX ustar format.

When extracting, respect leading slash on file names. By default, files are always extracted
relative to the current directory.

When extracting, attempt to resynchronise after not finding a tape header block where
expected.

Modifies the behavior of x to set the modified time, mode and, for POSIX archives and
filesystem permitting, the user and group of each file to that specified in the archive.

Use the next (numeric) argument as the user id for files in the output archive. This is only
useful when moving files to a non-Plan 9 system.

(verbose) Print the name of each file as it is processed. With t, give more details about the
archive entries.

Operate on compressed tar archives. The type of compression is inferred from the file
name extension: gzip(1) for .tar.gz and .tgz; bzip2 (see gzip(1)) for .tar.bz,
.tbz, .tar.bz2, and .tbz2; compress for .tar.Z and .tz. If no extension
matches, gzip is used. The z flag is unnecessary (but allowed) when using the t and x
verbs on archives with recognized extensions.

229

TAR(1) TAR(1)

EXAMPLES
Tar can be used to copy hierarchies thus:
@{cd fromdir && tar c¢c .} | @{cd todir && tar xT}
Dircp does this.

SOURCE
/sys/src/cmd/tar.c
/rc/bin/dircp

SEE ALSO
ar(1), bundle(1), tapefs(4), mkfs(8)

BUGS
There is no way to ask for any but the last occurrence of a file.

File path names are limited to 100 characters (256 when using ustar format).

The tar format allows specification of links and symbolic links, concepts foreign to Plan 9: they are
ignored.

The T key (append) cannot be used on compressed archives.

Tar, thus dircp, doesn’t record Plan-9-specific metadata such as append-only and exclusive-open
permission bits, so they aren’t copied.

230

TBL(1) TBL(1)

NAME

tbl - format tables for nroff or troff
SYNOPSIS

tbl [file ...]
DESCRIPTION

Thl is a preprocessor for formatting tables for nroff or troff(1). The input files are copied to the
standard output, except for segments of the form

.TS
options ;
format
data

.T&
format
data

.TE
which describe tables and are replaced by troff requests to lay out the tables. If no arguments are
given, tbl reads the standard input.
The (optional) options line is terminated by a semicolon and contains one or more of

center center the table; default is left-adjust
expand make table as wide as current line length
box

doublebox enclose the table in a box or double box
allbox enclose every item in a box

tab(x) use x to separate input items; default is tab
linesize(n) setrulesin n-point type

delim(xy) recognize x and y as eqn(1) delimiters

Each line, except the last, of the obligatory format describes one row of the table. The last line
describes all rows until the next . T&, where the format changes, or the end of the table at . TE. A
format is specified by key letters, one per column, either upper or lower case:

L Left justify: the default for columns without format keys.

R Right justify.

C Center.

N Numeric: align at decimal point (inferred for integers) or at \ &.

S Span: extend previous column across this one.

A Alphabetic: left-aligned within column, widest item centered, indented relative to L
rows.

A Vertical span: continue item from previous row into this row.

- Draw a horizontal rule in this column.
= Draw a double horizontal rule in this column.

Key letters may be followed by modifiers, also either case:

| Draw vertical rule between columns.
| Draw a double vertical rule between columns.

n Gap between column is n ens wide. Default is 3.

Ffont Use specified font. B and I mean FB and F1I.

T Begin vertically-spanned item at top row of range; default is vertical centering
(with A).

Pn Use point size n.

Vn Use n-point vertical spacing in text block; signed n means relative change.

W(n) Column width as a troff width specification. Parens are optional if n is a simple
integer.

E Equalize the widths of all columns marked E.

Each line of data becomes one row of the table; tabs separate items. Lines beginning with . are
troff requests. Certain special data items are recognized:

231

TBL(1) TBL(1)

— Draw a horizontal rule in this column.

= Draw a double horizontal rule in this column. A data line consisting of a single _ or
= draws the rule across the whole table.

_ Draw a rule only as wide as the contents of the column.

\Rx Repeat character x across the column.

\A Span the previous item in this column down into this row.

T{ The item is a text block to be separately formatted by troff and placed in the table.
The block continues to the next line beginning with T}. The remainder of the data
line follows at that point.

When it is used in a pipeline with egn, the tbl command should be first, to minimize the volume of
data passed through pipes.

EXAMPLES
Let <tab> represent a tab (which should be typed as a genuine tab).
.TS
Cc s s
ccs
ccoc Household Population
1l nn. Town Households
Household Population Number Size
Town<tab>Households Bedminster 789 3.26
<tab>Number<tab>Size Bernards Twp. 3087 3.74
Bedminster<tab>789<tab>3.26 Bernardsville 2018 3.30

Bernards Twp.<tab>3087<tab>3.74
Bernardsville<tab>2018<tab>3.30
.TE

SOURCE
/sys/src/cmd/tbl

SEE ALSO
troff(1), eqn(1), doctype(1)
M. E. Lesk and L. L. Cherry, “TBL—a Program to Format Tables’’, Unix Research System
Programmer’s Manual, Tenth Edition, Volume 2.

232

TCS(1) TCS(1)

NAME

tcs - translate character sets
SYNOPSIS

tcs[—-slcv][-fics][—-t ocs]]|file...]
DESCRIPTION

Tcs interprets the named file(s) (standard input default) as a stream of characters from the ics char-
acter set or format, converts them to runes, and then converts them into a stream of characters
from the ocs character set or format on the standard output. The default value for ics and ocs is
utf, the UTF encoding described in utf(6). The —1 option lists the character sets known to tcs.
Processing continues in the face of conversion errors (the —s option prevents reporting of these
errors). The —c option forces the output to contain only correctly converted characters; otherwise,
Runeerror (OxFFFD) characters will be substituted for UTF encoding errors and unknown charac-
ters.

The —v option generates various diagnostic and summary information on standard error, or makes
the —1 output more verbose.

Tcs recognizes an ever changing list of character sets. In particular, it supports a variety of Rus-
sian and Japanese encodings. Some of the supported encodings are

utf The Plan 9 UTF encoding, known by ISO as UTF-8
utfl The deprecated original UTF encoding from ISO 10646
ascii 7-bit ASCII
8859-1 Latin-1 (Central European)
8859-2 Latin-2 (Czech .. Slovak)
8859-3 Latin-3 (Dutch .. Turkish)
8859-4 Latin-4 (Scandinavian)
8859-5 Part 5 (Cyrillic)
8859-6 Part 6 (Arabic)
8859-7 Part 7 (Greek)
8859-8 Part 8 (Hebrew)
8859-9 Latin-5 (Finnish .. Portuguese)
html Unicode as encoded by HTML
koi8 KOI-8 (GOST 19769-74)
jis—kanji 1SO 2022-JP
ujis EUC-JX: JIS 0208
ms—-kanji Microsoft, or Shift-JIS
jis (from only) guesses between ISO 2022-JP, EUC or Shift-Jis
gb Chinese national standard (GB2312-80)
big5s Big 5 (HKU version)
unicode Unicode Standard 1.0
tis Thai character set plus ASCII (TIS 620-1986)
msdos IBM PC: CP 437
atari Atari-ST character set
EXAMPLES

tcs —f 8859-1
Convert 8859-1 (Latin-1) characters into UTF format.

tcs —-s —f jis
Convert characters encoded in one of several shift JIS encodings into UTF format. Unknown
Kanji will be converted into OXFFFD characters.

tcs —t html
Convert UTF into character set-independent HTML.

tcs —-1v
Print an up to date list of the supported character sets.
SOURCE
/sys/src/cmd/tcs

233

TCS(1) TCS(1)

SEE ALSO
ascii(1), rune(2), utf(6).

234

TEE(1) TEE(1)

NAME
tee - pipe fitting
SYNOPSIS
tee[—-i][—-a] files
DESCRIPTION
Tee transcribes the standard input to the standard output and makes copies in the files. The
options are

—-i Ignore interrupts.
—-a Append the output to the files rather than rewriting them.

SOURCE
/sys/src/cmd/tee.c

235

TEL(1) TEL(1)

NAME

tel, iwhois - look in phone book
SYNOPSIS

tel key ...

iwhois name[@domain]
DESCRIPTION

Tel looks up key in a private telephone book, $home/1ib/tel, and in the public telephone
book, /1ib/tel. It uses grep (with the —i option to ignore case differences), so the key may be
any part of a name or number. Customarily, the telephone book contains names, userids, home
numbers, and office numbers of users. It also contains a directory of area codes and miscella-
neous people of general interest.

Iwhois looks up names in the Internet NIC’s personnel database. Name should be a surname
optionally followed by a comma and given name. A different server can be chosen by appending
to the name an @ followed by the server’s domain name.

FILES
/lib/areacodes Telephone area codes database.
/1lib/tel Public telephone number database.
$home/lib/tel Personal telephone number database.
SOURCE
/rc/bin/tel
/rc/bin/iwhois

236

TEST(1) TEST(1)

NAME

test - set status according to condition

SYNOPSIS

test expr

DESCRIPTION

Test evaluates the expression expr. If the value is true the exit status is null; otherwise the exit sta-
tus is non-null. If there are no arguments the exit status is non-null.

The following primitives are used to construct expr.

—r file True if the file exists (is accessible) and is readable.

—w file True if the file exists and is writable.

—x file True if the file exists and has execute permission.

—e file True if the file exists.

—f file True if the file exists and is a plain file.

—d file True if the file exists and is a directory.

—s file True if the file exists and has a size greater than zero.

—t fildes True if the open file whose file descriptor number is fildes (1 by default) is the same
file as /dev/cons.

—A file True if the file exists and is append-only.

—L file True if the file exists and is exclusive-use.

=T file True if the file exists and is temporary.

sl = s2 True if the strings s7 and s2 are identical.

sl !'= s2 True if the strings s and s2 are not identical.

s1 True if s1 is not the null string. (Deprecated.)

-n sl True if the length of string s1 is non-zero.

-z sl True if the length of string s1 is zero.

nl —eq n2 True if the integers n1 and n2 are arithmetically equal. Any of the comparisons
—-ne, —gt, —ge, —1t, or —1e may be used in place of —eq. The (nonstandard)
construct —1 string, meaning the length of string, may be used in place of an inte-
ger.

a -nt b True if file a is newer than (modified after) file b.

a -ot b True if file a is older than (modified before) file b.

f —older t True if file fis older than (modified before) time t. If t is a integer followed by the
letters y(years), M(months), d(days), h(hours), m(minutes), or s(seconds), it repre-
sents current time minus the specified time. If there is no letter, it represents sec-
onds since epoch. You can also concatenate mixed units. For example, 3d12h
means three days and twelve hours ago.

These primaries may be combined with the following operators:

! unary negation operator

-0 binary or operator

-a binary and operator; higher precedence than —o
(expr) parentheses for grouping.

The primitives —b, —u, —g, and —s return false; they are recognized for compatibility with POSIX.

Notice that all the operators and flags are separate arguments to test. Notice also that parentheses
and equal signs are meaningful to rc and must be enclosed in quotes.

EXAMPLES

Test is a dubious way to check for specific character strings: it uses a process to do what an rc(1)
match or switch statement can do. The first example is not only inefficient but wrong, because
test understands the purported string "—c" as an option.

if (test $1 =’ "—-c") echo OK # wrong!
A better way is

if (~ $1 —c) echo OK
Test whether abc is in the current directory.

237

TEST(1) TEST(1)

test —-f abc -o —-d abc

SOURCE
/sys/src/cmd/test.c

SEE ALSO
rc(1)

BUGS

Won’t complain about extraneous arguments since there may be arguments left unprocessed by
short-circuit evaluation of —a or —o.

238

THESAURUS(1) THESAURUS(1)

NAME
thesaurus - search online thesaurus

SYNOPSIS
thesaurus word

DESCRIPTION
thesaurus searches the online thesaurus at http://thesaurus.reference.com

SOURCE
/rc/bin/thesaurus

239

TIME(1) TIME(1)

NAME
time - time a command

SYNOPSIS
time command [arg ...]

DESCRIPTION
The command is executed with the given arguments; after it is complete, time reports on standard
error the program’s elapsed user time, system time, and real time, in seconds, followed by the
command line.

SOURCE
/sys/src/cmd/time.c

SEE ALSO
prof(1)

240

TOUCH(1) TOUCH(1)

NAME

touch - set modification date of a file
SYNOPSIS

touch[-c][-t time] file ...
DESCRIPTION

Touch attempts to set the modification time of the files to time (by default, the current time). If a
file does not exist, it will be created unless option —c is present.

SOURCE
/sys/src/cmd/touch.c

SEE ALSO
Is(1), stat(2), chmod(1)

BUGS
Touch will not touch directories.

241

TR(1) TR(1)

NAME
tr - translate characters

SYNOPSIS
tr [—cds][stringl [string2]]

DESCRIPTION
Tr copies the standard input to the standard output with substitution or deletion of selected char-
acters (runes). Input characters found in stringl are mapped into the corresponding characters of
string2. When string?2 is short it is padded to the length of stringl by duplicating its last character.
Any combination of the options —cds may be used:

—C Complement stringl: replace it with a lexicographically ordered list of all other characters.
—d Delete from input all characters in string].
-s Squeeze repeated output characters that occur in string2 to single characters.

In either string a noninitial sequence —x, where x is any character (possibly quoted), stands for a
range of characters: a possibly empty sequence of codes running from the successor of the previ-
ous code up through the code for x. The character \ followed by 1, 2 or 3 octal digits stands for
the character whose 16-bit value is given by those digits. The character sequence \x followed by
1, 2, 3, or 4 hexadecimal digits stands for the character whose 16-bit value is given by those dig-
its. A\ followed by any other character stands for that character.

EXAMPLES
Replace all upper-case ASCII letters by lower-case.

tr A-Z a-z <mixed >lower

Create a list of all the words in filel one per line in file2, where a word is taken to be a maxi-
mal string of alphabetics. String?2 is given as a quoted newline.

tr —cs A-Za-z '’

' <filel >file?2

SOURCE

/sys/src/cmd/tr.c
SEE ALSO

sed(1)

242

TRACE(1) TRACE(1)

NAME

trace - show (real-time) process behavior
SYNOPSIS

trace[-dfile]l[-v][—-w]][pid...]
DESCRIPTION

Trace displays the behavior of processes running on the machine. In its window it shows a time
line for each traced process. Running processes appear as colored blocks, with arrows marking
important events in real-time processes (see proc(3)). Black up arrows mark process releases,
black down arrows mark process deadlines, green down arrows mark times when a process yielded
the processor before its deadline, red down arrows mark times when the process overran its allot-
ted time.

Trace reads /proc/trace to retrieve trace events from the kernel scheduler. Trace events are
binary data structures generated by the kernel scheduler. It is assumed that the reader of
/proc/trace and the kernel providing it have the same byte order.

The options are:

—d specify an alternate trace event file

4 print events as they are read from the trace event file
—-w run in a new window rather than using the current one
Trace recognizes these keystroke commands while it is running:
+ zoom in by a factor of two

- zoom out by a factor of two

9] pause or resume
a quit
SEE ALSO
proc(3)
FILES
/proc/trace trace event file
/sys/include/trace.h trace event data structures
SOURCE

/sys/src/cmd/trace.c

243

TROFF(1) TROFF(1)

NAME

troff, nroff, dpost - text formatting and typesetting

SYNOPSIS

troff [option...] | file ...]
dpost [-f][file...]
nroff [option... 1| file ...]

DESCRIPTION

Troff formats text in the named files for printing on a typesetter, emitting a textual intermediate
format called ‘typesetter-independent troff output’, understood by programs such as proof(1) and
Ip(1), but also by a troff post-processor named dpost, which emits corresponding Postscript.
Under —f, dpost also emits Postscript font definitions as needed. Nroff does the same as troff,
but produces output suitable for typewriter-like devices, usually without further post-processing,
but see col(1).

If no file argument is present, the standard input is read. An argument consisting of a single
minus (—) is taken to be a file name corresponding to the standard input. The options are:

—olist Print pages in the comma-separated list of numbers and ranges. A range N—M means N
through M; initial —M means up to M; final N— means from N to the end.

-nN Number first generated page N.
—mname Process the macro file /sys/1ib/tmac/tmac . name before the input files.
—raN Set register a (one character name) to N.

—-1i Read standard input after the input files are exhausted.
-q Invoke the simultaneous input-output mode of the rd request.
—-N Produce output suitable for typewriter-like devices.

Typesetter devices (not —N) only

—-a Send a printable textual approximation of the results to the standard output.

—Tdest Prepare output for typesetter dest:
—Tutf (The default.) PostScript printers with preprocessing to handle Unicode
characters encoded in UTF
—Tpost Regular PostScript printers
-T202 Mergenthaler Linotron 202

—Fdir Take font information from directory dir.

Typewriter (—N) output only

—-sN Halt prior to every N pages (default N=1) to allow paper loading or changing.

—T name Prepare output for specified terminal. Known names include utf for the normal Plan 9
UTF encoding of the Unicode Standard character set (default), 37 for the Teletype model
37, 1p (‘line-printer’) for any terminal without half-line capability, 450 for the DASI-450
(Diablo Hyterm), and think (HP ThinkJet).

—e Produce equally-spaced words in adjusted lines, using full terminal resolution.
-h Use output tabs during horizontal spacing to speed output and reduce output character
count. Tab settings are assumed to be every 8 nominal character widths.
FILES
/tmp/trtmp* temporary file
/sys/lib/tmac/tmac. * standard macro files
/sys/lib/troff/term/* terminal driving tables for nroff
/sys/lib/troff/font/* font width tables for troff
SOURCE
/sys/src/cmd/troff
/rc/bin/dpost

244

TROFF(1) TROFF(1)

SEE ALSO
Ip(1), proof(1), page(1), eqn(1), tbl(1), pic(1), grap(1), doctype(1), ms(6), image(6), tex(1),
deroff(1), col(1)
J. F. Ossanna and B. W. Kernighan, “Troff User’s Manual”’
B. W. Kernighan, “A Typesetter-Independent TROFF”’, CSTR #97
B. W. Kernighan, ‘““A TROFF Tutorial’’, Unix Research System Programmer’s Manual, Tenth Edition,
Volume 2.

245

TROFF2HTML(1) TROFF2HTML(1)

NAME

troff2html - convert troff output into HTML

SYNOPSIS

troff2html [-t title] [file ...]

DESCRIPTION

Troff2html reads the troff(1) output in the named files, default standard input, and converts them
into HTML.

Troff2html does a tolerable job with straight troff output, but it is helped by annotations,
described below. Its main use is for man2html (see httpd(8)), which converts man(1) pages into
HTML and depends on a specially annotated set of man(6) macros, invoked by troff
—manhtml.

Troff output lines beginning
x X html ..

which are introduced by placing \X’html ...’ in the input, cause the rest of the line to be inter-
polated into the HTML produced. Several such lines are recognized specially by troff2html. The
most important are the pair

x X html manref start cp 1
x X html manref end cp 1

which are used to create HTML hyperlinks around text of the form c¢p(1) pointing to
/magic/man2html/1/cp.

Troff2html is new and experimental; in time, it may improve and subsume ms2html(1). On the one
hand, because it uses the input, ms2html can handle pic(1), eqn(1), etc., which troff2html does
not handle at all; on the other hand, ms2html understands only ms(6) documents and is easily
confused by complex troff constructions. Troff2html has the reverse properties: it does not
handle the preprocessors but its output is reliable and (modulo helper annotations) is independent
of macro package.

SOURCE

/sys/src/cmd/troff2html

SEE ALSO

BUGS

troff(1), ms2html(1), man2html in httpd(8).

Troff and HTML have different models, and they don’t mesh well in all cases. Troff’s indented
paragraphs are not well served in HTML, and the output of troff2html shows this.

246

TWEAK(1) TWEAK(1)

NAME

tweak - edit image files, subfont files, face files, etc.

SYNOPSIS

tweak [file ...]

DESCRIPTION

Tweak edits existing files holding various forms of images. To create original images, start from
an existing image, subfont, etc.

Tweak reads its argument files and displays the resulting images in a vertical column. If the image
is too wide to fit across the display, it is folded much like a long line of text in an rio window.
Under each image is displayed one or two lines of text presenting its parameters. The first line
shows the image’s depth, the number of bits per pixel; r, the rectangle covered by the image;
and the name of the file from which it was read. If the file is a subfont, a second line presents a
hexadecimal 16-bit offset to be applied to character values from the subfont (typically as
stored in a font file; see font(6)); and the subfont’s n, height, and ascent as defined in
cachechars(2).

By means described below, magnified views of portions of the images may be displayed. The text
associated with such a view includes mag, the magnification. If the view is of a single character
from a subfont, the second line of text shows the character’s value (including the subfont’s offset)
in hexadecimal and as a character in tweak’s default font; the character’s x, top, bottom, left,
and width as defined in cachechars(2); and iwidth, the physical width of the image in the
subfont’s image.

There are two methods to obtain a magnified view of a character from a subfont. The first is to
click mouse button 1 over the image of the character in the subfont. The second is to select the
char entry on the button 3 menu, point the resulting gunsight cursor at the desired subfont and
click button 3, and then type at the text prompt at the bottom of the screen the character value,
either as a multi-digit hexadecimal number or as a single rune representing the character.

To magnify a portion of other types of image files, click button 1 over the unmagnified file. The
cursor will switch to a cross. Still with button 1, sweep a rectangle, as in rio, that encloses the
portion of the image to be magnified. (If the file is 16XxX16 or smaller, tweak will just magnify the
entire file; no sweeping is necessary.)

Pressing buttons 1 and 2 within magnified images changes pixel values. By default, button 1 sets
the pixel to all zeros and button 2 sets the pixel to all ones.

Across the top of the screen is a textual display of global parameters. These values, as well as
many of the textual values associated with the images, may be edited by clicking button 1 on the
displayed value and typing a new value. The values along the top of the screen are:

mag Default magnification.

val (hex)
The value used to modify pixels within magnified images. The value must be in hexadeci-
mal, optionally preceded by a tilde for bitwise negation.

butl
but2 The pixel value written when the corresponding button is pressed over a pixel.

invert—-on-copy
Whether the pixel values are inverted when a copy operation is performed.

Under button 3 is a menu holding a variety of functions. Many of these functions prompt for the
image upon which to act by switching to a gunsight cursor; click button 3 over the selection, or
click a different button to cancel the action.

open Read and display a file. The name of the file is typed to the prompt on the bottom line.
read Reread a file.

write
Write a file.

247

TWEAK(1) TWEAK(1)

copy Use the copy function, default S, to transfer a rectangle of pixels from one image to
another. The program prompts with a cross cursor; sweep out a rectangle in one image or
just click button 3 to select the whole image. The program will leave that rectangle in place
and attach another one to the cursor. Move that rectangle to the desired place in any
image and click button 3, or another button to cancel the action.

char As described above, open a magnified view of a character image in a subfont.

pixels
Report the coordinate and value of individual pixels indicated by pressing button 3. This is
a mode of operation canceled by pressing button 1 or 2.

close
Close the specified image. If the image is the unmagnified file, also close any magnified
views of that file.

exit Quit tweak. The program will complain once about modified but unwritten files.

SOURCE
/sys/src/cmd/tweak.c

SEE ALSO
cachechars(2), image(6), font(6)

BUGS
For a program written to adjust width tables in fonts, tweak has been pushed unreasonably far.

248

UNIQ(1) UNIQ(T1)

NAME
uniq - report repeated lines in a file

SYNOPSIS
uniq [—udc [+—num]]] file]

DESCRIPTION
Uniq copies the input file, or the standard input, to the standard output, comparing adjacent lines.
In the normal case, the second and succeeding copies of repeated lines are removed. Repeated
lines must be adjacent in order to be found.

—u Print unique lines.
—d Print (one copy of) duplicated lines.
—C Prefix a repetition count and a tab to each output line. Implies —u and —d.

—num The first num fields together with any blanks before each are ignored. A field is defined as
a string of non-space, non-tab characters separated by tabs and spaces from its neigh-
bors.

+num The first num characters are ignored. Fields are skipped before characters.

SOURCE
/sys/src/cmd/uniq.c
SEE ALSO
sort(1)

BUGS
Field selection and comparison should be compatible with sort(1).

249

UNITS(T) UNITS(1)

NAME

units - conversion program

SYNOPSIS

units[—-v]][file]

DESCRIPTION

Units converts quantities expressed in various standard scales to their equivalents in other scales.
It works interactively in this fashion:

you have: inch
you want: cm

* 2.54

/ 0.393701

A quantity is specified as a multiplicative combination of units and floating point numbers. Opera-
tors have the following precedence:

+ — add and subtract

* /X + multiply and divide
catenation multiply

23 A exponentiation

| divide

C...D grouping

Most familiar units, abbreviations, and metric prefixes are recognized, together with a generous
leavening of exotica and a few constants of nature including:

pi,T ratio of circumference to diameter

c speed of light

e charge on an electron

g acceleration of gravity

force same as g

mole Avogadro’s number

water pressure head per unit height of water
au astronomical unit

The pound is a unit of mass. Compound names are run together, e.g. 1lightyear. British
units that differ from their US counterparts are prefixed thus: brgallon. Currency is denoted
belgiumfranc, britainpound, etc.

The complete list of units can be found in /1ib/units. A file argument to units specifies a file
to be used instead of /1ib/units. The —v flag causes units to print its entire database.

EXAMPLE

FILES

you have: 15 pounds force/in?z
you want: atm
1.02069
/ .97973

/1lib/units

SOURCE

BUGS

/sys/src/cmd/units.y
Since units does only multiplicative scale changes, it can convert Kelvin to Rankine but not Centi-

grade to Fahrenheit.

Currency conversions are only as accurate as the last time someone updated the database.

250

UPTIME(1) UPTIME(1)

NAME
uptime - show how long the system has been running

SYNOPSIS
uptime

DESCRIPTION
Uptime shows how long the system has been running. It uses the following format:

sysname up 33 days, 17:56:42

The time given accounts for the timezone.

SOURCE
/rc/bin/uptime

SEE ALSO
date(1)

251

UUENCODE(T) UUENCODE(T1)

NAME
uuencode, uudecode - encode/decode a file as printable ASCII

SYNOPSIS
uuencode [input]

uudecode [input]

DESCRIPTION
Uuencode and uudecode are filters used to transmit files over transmission media that do not sup-
port other than simple ASCII data.

Uuencode converts a file to a purely ASCll-based representation.

Uudecode reads a file produced by uuencode, ignoring any leading and trailing lines that are not
part of the encoding, and emits the original file on standard output, also writing its name to stan-
dard error.

EXAMPLES
Encode a dis file limbo.dis so that it can be included in a mail message:

uuencode limbo.dis >tmp
place tmp in mail message and send to recipient

Decode the mail message (msg say):
uudecode <msg >limbo.dis

SOURCE
/sys/src/cmd/uuencode.c
/sys/src/cmd/uudecode.c

SEE ALSO
marshal(1)

BUGS
The encoded file is expanded by at least a third.

This encoding is a relic of the days before MIME encoding.

252

VAC(1) VAC(1)

NAME
vac, unvac - create, extract a vac archive on Venti
SYNOPSIS
vac [-mgsv] [—b blocksize] [—d oldvacfile] [—e exclude] [—f vacfile] [—1i name] [—h host]
file ...
unvac [-Tctv][—h host] vacfile [file ...]
DESCRIPTION

Vac creates an archival copy of Plan 9 file trees on Venti. It can be used to build a simple backup
system. One of the unusual properties of Venti is that duplicate blocks are detected and coalesced.
When vac is used on a file tree that shares data with an existing archive, the consumption of stor-
age will be approximately equal to an incremental backup. This reduction in storage consumption
occurs transparently to the user.

As an optimization, the —d and —q options, described below, can be used to explicitly create an
archive relative to an existing archive. These options do not change the resulting archive gener-
ated by vac, but simply reduce the number of write operations to Venti.

The output of vac is the hexadecimal representation of the SHA1 fingerprint of the root of the
archive, in this format:

vac:64daefaecc4df4b5cb48a368b361ef56012a4f46
The options to vac are:

—b blocksize Specifies the block size that data will be broken into. The units for the size can be
specified by appending k to indicate kilobytes. The default is 8k. The size must be
in the range of 512 bytes to 52k.

—d oldvacfile Reduce the number of blocks written to Venti by comparing the files to be stored
with the contents of an existing vac file tree whose score is stored in oldvacfile.

—e exclude Do not include the file or directory specified by exclude. This option may be
repeated multiple times.

—f vacfile The results of vac are placed in vacfile, or the standard output if no file is given.

—i name Include standard input as one of the input files, storing it in the archive with the
specified name.

—h host The network address of the Venti server. The default is taken from the environment
variable venti. If this variable does not exist, then the default is the metaname
$venti, which can be configured via ndb(6).

—-m Expand and merge any vac archives that are found while reading the input files.
This option is useful for building an archive from a collection of existing archives.
Each archive is inserted into the new archive as if it had been unpacked in the direc-
tory in which it was found. Multiple archives can be unpacked in a single directory
and the contents will be merged. To be detected, the archives must end in .vac.
Note, an archive is inserted by simply copying the root fingerprint and does not
require the archive to be unpacked.

-q Increase the performance of the —d option by detecting unchanged files based on a
match of the files name and other meta data, rather than examining the contents of
the files.

-s Print out various statistics on standard error.

-V Produce more verbose output on standard error, including the name of the files

added to the archive and the vac archives that are expanded and merged.

Unvac lists or extracts files stored in the vac archive vacfile, which can be either a vac archive
string in the format given above or the name of a file containing one. If file arguments are given,
only those files or directories will be extracted. The options are:

=T Set the modification time on extracted files to the time listed in the archive.

253

VAC(1)

VAC(1)
—C Write extracted files to standard output instead of creating a file.
-h as per vac.
-t Print a list of the files to standard output rather than extracting them.
-V If extracting files, print the name of each file and directory to standard error. If listing files,
print metadata in addition to the names.
SOURCE
/sys/src/cmd/vac
/sys/src/cmd/unvac
SEE ALSO

vacfs(4), venti(8)

254

VENTI(1) VENTI(1)

NAME
read, write, copy - simple Venti clients

SYNOPSIS
venti/read [—h host] [—t type] score
venti/write[—-z][—-h host][—t type]l
venti/copy [—fir][—t type] srchost dsthost score [type]

DESCRIPTION
Venti is a SHAT-addressed block storage server. See venti(6) for a full introduction.

Read reads a block with the given score and numeric type from the server host and prints the block
to standard output. If the —h option is omitted, read consults the environment variable $venti
for the name of the Venti server. If the —t option is omitted, read will try each type, one at a time,
until it finds one that works. It prints the corresponding read —t command to standard error to
indicate the type of the block.

Write writes at most 56 kilobytes of data from standard input to the server host and prints the
resulting score to standard output. If the —t option is omitted, write uses type 0, denoting a data
block. If the —z option is given, write zero truncates the block before writing it to the server.

Copy expects score to be the score of a VtRoot block. It copies the entire tree of blocks reach-
able from the root block from the server srchost to the server dsthost.

The —f option causes copy to run in ‘fast’” mode, assuming that if a block already exists on the
destination Venti server, all its children also exist and need not be checked.

The —i and —r options control copy’s reaction to errors reading from srchost. Copy always prints
information to standard error about each read error. By default, copy exits after printing the first
error. If the —i option is given, read errors are ignored. This is dangerous behavior because it
breaks the assumption made by ‘fast’ mode. If the —r option is given, copy replaces pointers to
unreadable blocks with pointers to the zero block. It writes the new root score to standard output.

SOURCE
/sys/src/cmd/venti
SEE ALSO
vac(1), venti(2), vacfs(4), venti(6), venti(8), venti-backup(8), venti—fmt(8)

BUGS
There should be programs to read and write venti files and directories.

255

VI(1)

NAME

VI(1)

5i, ki, vi, qi - instruction simulators

SYNOPSIS

vi [textfile]
vi pid
51 [textfile]
5i pid
ki [textfile]
ki pid
qi [textfile]
qi pid

DESCRIPTION

Vi simulates the execution of a MIPS binary in a Plan 9 environment. It has two main uses: as a
debugger and as a statistics gatherer. Programs running under vi execute about two hundred
times slower than normal—but faster than single stepping under db. 5i, ki, and gi are similar to vi
but interpret ARM, SPARC, and PowerPC binaries. The following discussion refers to vi but applies
to the others as well.

Vi will simulate the execution of a named textfile. It will also make a copy of an existing process
with process id pid and simulate its continuation.

As a debugger vi offers more complete information than db(1). Tracing can be performed at the
level of instructions, system calls, or function calls. Vi allows breakpoints to be triggered when
specified addresses in memory are accessed. A report of instruction counts, load delay fills and
distribution is produced for each run. Vi simulates the CPU’s caches and MMU to assist the opti-
mization of compilers and programs.

The command interface mirrors the interface to db; see db(1) for a detailed description. Data for-
mats and addressing are compatible with db except for disassembly: vi offers only MIPS (db
—mmipsco) mnemonics for machine instructions. Ki offers both Plan 9 and Sun SPARC formats.

Several extra commands allow extended tracing and printing of statistics:

$t[0ics]
The t command controls tracing. Zero cancels all tracing options.

i Enable instruction tracing
c Enable call tracing
S Enable system call tracing
$i[itsp]
The i command prints statistics accumulated by all code run in this session.
i Print instruction counts and frequency.
p Print cycle profile.
t (Vi only) Print TLB and cache statistics.
s Print memory reference, working set and size statistics.

:b[arwe]
Vi allows breakpoints to be set on any memory location. These breakpoints monitor when
a location is accessed, read, written, or equals a certain value. For equality the compared
value is the count (see db(1)) supplied to the command.

SOURCE

/sys/src/cmd/vi etc.

SEE ALSO

BUGS

nm(1), db(1)

The code generated by the compilers is well supported, but some unusual instructions are unim-
plemented. Some Plan 9 system calls such as rfork cause simulated traps. The floating point

256

VI(1)

VI(1)

simulation makes assumptions about the interpreting machine’s floating point support. The float-
ing point conversions performed by vi may cause a loss of precision.

257

VNC(1) VNC(1)

NAME
vncs, vnev - remote frame buffer server and viewer for Virtual Network Computing (VNC)

SYNOPSIS
vncs [—v][—c cert][—d :display]| —g widthx height] [—p pixfmt] [—x net] [cmd [args]]

vncs —k :display [—x net]
vncv [—cstv] [—e encodings] [—k keypattern] host[: n]

DESCRIPTION
VNC is a lightweight protocol for accessing graphical applications remotely. The protocol allows
one or more clients to connect to a server. While connected, clients display the frame buffer pre-
sented by the server and can send mouse events, keyboard events, and exchange snarf buffers.
The server persists across viewer sessions, so that the virtual application can be accessed from
various locations as its owner moves around.

VNC displays have names of the form host: n, where host is the machine’s network name and n is
a small integer identifier; display n is served on TCP port 5900+ n.

Vncs starts a new virtual frame buffer in memory, simulating a Plan 9 terminal running cmd args,
by default an interactive shell. As viewers connect, each is authenticated using a (rather breakable)
challenge-response protocol using the user’s Inferno/POP password.

The options are:
—c cert start TLS on each viewer connection using the certificate in the file cert. The corre-

sponding private key must be loaded into the server’s factotum(4). When serving TLS
connections, the base port is 35729 rather than 5900.

—d :n run on display n ; without this option, the server searches for an unused display.

—g widthxheight
set the virtual frame buffer to be widthx height (default 1024x768) pixels.

—p pixfmt set the virtual frame buffer’s internal pixel format to pixfmt (default r5g6b5).
-v print verbose output to standard error.

—X net announce on an alternate network interface. Because of the weak authentication pro-
tocol and default lack of encryption, this option must be accompanied by —c.

The command vncs —k : n kills the VNC server running on display n.

Vncv provides access to remote display host: n. It resizes its window to be the smaller of the
remote frame buffer size and the local screen.

The options are:

—C when connecting to 8-bit displays, request r4g4b4 pixels rather than r3g3b2 pixels.
This takes up more bandwidth but usually gives significantly better matching to the Plan 9
color map.

—e encodings
set the ordered list of allowed frame buffer update encodings. The default (and full) set is
copyrect corre hextile rre raw. The encodings should be given as a single
space-separated argument (quoted when using the shell).

-k keypattern
add keypattern to the pattern used to select a key from factotum(4).

-s share the display with extant viewers; by default extant viewers are closed when a new
viewer connects.

-t start TLS on the connection.
-V print verbose output to standard error.

The VNC protocol represents keyboard input as key up/down events. Plan 9 does not expose the
state of the Ctl and Shift keys except as it can be inferred from receipt of control or shifted charac-
ters. It does not expose the state of the Alt key at all, since the Alt key is used to compose

258

VNC(1) VNC(1)

Unicode characters (see keyboard(6)). Vncv correctly handles the sending of control and shifted
characters. To support systems that use key sequences like Alt-X (or worse, Alt-mouse-click), typ-
ing the Plan 9 compose sequences Alt Z A (for Alt), A1t Z C (for Ctrl), and A1t Z S (for Shift)
will send a ““key down” message for the given key. A corresponding ‘‘key up’”’ message will be
sent after the next key is pressed, or when the sequence is retyped, whichever happens first.

SOURCE
/sys/src/cmd/vnc

SEE ALSO
drawterm(8)
http://www.uk.research.att.com/vnc

BUGS
If the remote frame buffer is larger than the local screen, only the upper left corner can be
accessed.

Vncv does no verification of the TLS certificate presented by the server.

Vncv supports only version 3.3 of the RFB protocol.

259

VT(1)

NAME

VT(1)

vt - emulate a VT-100 or VT-220 terminal

SYNOPSIS
vt [

—2abex][—f font][-1 log]

DESCRIPTION
Vt replaces a rio window with a fresh instance of the shell, rc(1), running within an emulation of a

DEC
Options

oX 0N

c
f
1

Menus
The

VT-100 terminal. To exit vt, exit the rc it starts.

change vt to emulate a VT-220, ANSI, or XTerm terminal respectively.

changes the color scheme to white text on a black background, but potentially with colors
from escape sequences.

changes the color scheme to monochrome (no colors).

sets the font.

names a log file for the session.

right button has a menu with the following entries to provide the sort of character processing

expected by non-Plan 9 systems:

24x80 Resize the vt window to hold 24 rows of 80 columns.

crnl Print a newline (linefeed) character after receiving a carriage return from the host.

cr Do not print a newline after carriage return.

nlcr Print a carriage return after receiving a newline from the host.

nl Do not print a carriage return after newline.

raw Enter raw (no echo, no interpretation) character mode for input.

cooked Leave raw mode.

exit Exit vt.

The middle button has a menu with the following entries:

backup Move the display back one screenful.

forward Move the display forward one screenful. (These are a poor substitute for a scroll

bar.)

reset Display the last screenful; the same as going forward to the end.

clear Clear the screen. Previous contents can be recovered using backup.

send Send the contents of the rio snarf buffer, just as send in the rio menu.

scroll Make new lines visible as they appear at the bottom.

page When the page fills, pause and wait for a character to be typed before proceeding.

The down arrow key advances a page without sending the character to the host.

SOURCE

/sys/src/cmd/vt
BUGS

This program is used only for communicating with foreign systems, so it is not as rich an emula-

tion

as its equivalent in other environments.

Use care in setting raw and newline modes when connecting to Unix systems via con(1) or ssh(1).
It may also be necessary to set the emulator into raw mode.

260

WC(1) WC(1)

NAME
wc - word count

SYNOPSIS
wec [—1lwrbc]| file ...]

DESCRIPTION
Wc counts lines, words, runes, syntactically-invalid UTF codes and bytes in the named files, or in

the standard input if no file is named. A word is a maximal string of characters delimited by
spaces, tabs or newlines. The count of runes includes invalid codes.

If the optional argument is present, just the specified counts (lines, words, runes, broken UTF
codes or bytes) are selected by the letters 1, w, r, b, or c. Otherwise, lines, words and bytes
(—1wc) are reported.

SOURCE
/sys/src/cmd/wc.c

BUGS

The Unicode Standard has many blank characters scattered through it, but wc looks for only AsCil
space, tab and newline.

Wc should have options to count suboptimal UTF codes and bytes that cannot occur in any UTF
code.

261

WEATHER(1) WEATHER(1)

NAME

weather - print weather report
SYNOPSIS

weather [air] [st]
DESCRIPTION

Weather prints the local conditions and seven-day forecast most recently reported at the US airport
with the three-letter location identifier air. Given a two-letter US state abbreviation st instead,
weather prints a table of air location identifiers known for st.

The arguments are mutually exclusive and case-insensitive. If neither is given, air defaults to loca-
tion identifier ewr, designating the Newark, NJ, airport near Bell Labs, Murray Hill.

SOURCE
/rc/bin/weather

262

WHO(1) WHO(1)

NAME
who, whois - who is using the machine

SYNOPSIS
who

whodis person

DESCRIPTION
Who prints the name of everyone with a non-Exiting process on the current machine.

Whois looks in /adm/whois and /adm/users to find out more information about person.

SOURCE
/rc/bin/who

263

WINWATCH(1) WINWATCH(1)

NAME

winwatch - monitor rio windows
SYNOPSIS

winwatch [—e exclude] [—f font]
DESCRIPTION

Winwatch displays the labels of all current rio(4) windows, refreshing the display every five sec-
onds. Right clicking a window’s label unhides, raises and gives focus to that window. Typing g or
DEL quits winwatch.

If the —e flag is given, windows matching the regular expression exclude are not shown.

EXAMPLE
Excluding winwatch, stats and faces from being showed.

% winwatch —-e ’'A(winwatch|stats|faces)’

FILES
/dev/wsys/*/label

SOURCE
/sys/src/cmd/winwatch.c

SEE ALSO
rio(1), rio(4), regexp(6).

264

XD(1) XD(1)

NAME

xd - hex, octal, decimal, or ASCIl dump
SYNOPSIS

xd [option ... 1 [—format ... 1] file ...]
DESCRIPTION

Xd concatenates and dumps the files (standard input by default) in one or more formats. Groups
of 16 bytes are printed in each of the named formats, one format per line. Each line of output is
prefixed by its address (byte offset) in the input file. The first line of output for each group is
zero-padded; subsequent are blank-padded.

Formats other than —c are specified by pairs of characters telling size and style, 4x by default.
The sizes are

1 orb T1-byte units.

2 orw 2-byte big-endian units.
4 or 1 4-byte big-endian units.
8 or v 8-byte big-endian units.

The styles are

o Octal.
X Hexadecimal.
d Decimal.

Other options are
—C Format as 1x but print ASCII representations or C escape sequences where possible.
—astyle Print file addresses in the given style (and size 4).

—u (Unbuffered) Flush the output buffer after each 16-byte sequence.
-s Reverse (swab) the order of bytes in each group of 4 before printing.
-r Print repeating groups of identical 16-byte sequences as the first group followed by an
asterisk.
SOURCE
/sys/src/cmd/xd.c
SEE ALSO
db(1)

BUGS
The various output formats don’t line up properly in the output of xd.

265

YACC(1) YACC(1)

NAME

yacc - yet another compiler-compiler

SYNOPSIS

yacc [option ...] grammar

DESCRIPTION

FILES

Yacc converts a context-free grammar and translation code into a set of tables for an LR(1) parser
and translator. The grammar may be ambiguous; specified precedence rules are used to break
ambiguities.

The output file, y. tab.c, must be compiled by the C compiler to produce a program yyparse.
This program must be loaded with a lexical analyzer function, yylex(void) (often generated by
lex(1)), with amain(int argc, char *argv[]) program, and with an error handling rou-
tine, yyerror (char*).

The options are
—o output Direct output to the specified file instead of y. tab.c.

—Dn Create file y.debug, containing diagnostic messages. To incorporate them in the
parser, compile it with preprocessor symbol yydebug defined. The amount of
diagnostic output from the parser is regulated by value n. The value 0 reports errors;
1 reports reductions; higher values (up to 4) include more information about state
transitions.

-V Create file y.output, containing a description of the parsing tables and of con-
flicts arising from ambiguities in the grammar.

—d Create file y. tab.h, containing #define statements that associate yacc-assigned
‘token codes’ with user-declared ‘token names’. Include it in source files other than
y.tab. c to give access to the token codes.

—s stem Change the prefix y of the file names y.tab.c, y.tab.h, y.debug, and
y.output to stem.

=S Write a parser that uses Stdio instead of the print routines in libc.

The specification of yacc itself is essentially the same as the UNIX version described in the refer-
ences mentioned below. Besides the —D option, the main relevant differences are:

The interface to the C environment is by default through <libc.h> rather than
<stdio.h>; the —S option reverses this.

The parser accepts UTF input text (see utf(6)), which has a couple of effects. First, the
return value of yylex() no longer fits in a short; second, the starting value for non-
terminals is now OXEO00O rather than 257.

The generated parser can be recursive: actions can call yyparse, for example to implement
a sort of #include statement in an interpreter.

Finally, some undocumented inner workings of the parser have been changed, which may
affect programs that know too much about its structure.

.output
.tab.c

.tab.h

.debug

.tmp . * temporary file

y.acts.* temporary file
/sys/lib/yaccpar parser prototype
/sys/lib/yaccpars parser prototype using stdio

MK

SOURCE

/sys/src/cmd/yacc.c

SEE ALSO

lex(1)

266

YACC(1) YACC(1)

S. C. Johnson and R. Sethi, ““Yacc: A parser generator’, Unix Research System Programmer’s Man-
ual, Tenth Edition, Volume 2
B. W. Kernighan and Rob Pike, The UNIX Programming Environment, Prentice Hall, 1984

BUGS
The parser may not have full information when it writes to y.debug so that the names of the

tokens returned by yylex may be missing.

267

YESTERDAY (1) YESTERDAY (1)

NAME

yesterday, diffy - print file names from the dump

SYNOPSIS

yesterday [—abcCdDs] [—n daysago] [-date] files ...
diffy [—abcefmnrw] files ...

DESCRIPTION

Yesterday prints the names of the files from the most recent dump. Since dumps are done early in
the morning, yesterday’s files are really in today’s dump. For example, if today is March 17, 1992,

yesterday /adm/users
prints
/n/dump/1992/0317/adm/users

In fact, the implementation is to select the most recent dump in the current year, so the dump
selected may not be from today.

When presented with a path of the form /n/fs/path, yesterday will look for dump files of the
form /n/fsdump/yyyy/hhmm/path.

By default, yesterday prints the names of the dump files corresponding to the named files. The
first set of options changes this behavior.

—-a Run acme(1)’s adiff to compare the dump files with the named files.
-b Bind the dump files over the named files.

—C Copy the dump files over the named files.

—C Copy the dump files over the named files only when they differ.

—d Run diff to compare the dump files with the named files.

-D Run diff —n to compare the dump files with the named files.

The date option selects other day’s dumps, with a format of 1, 2, 4, 6, or 8 digits of the form d,
dd, mmdd, yymmdd, or yyyymmdd.

The —n option selects the dump daysago prior to the current day.

The —s option selects the most recent snapshot instead of the most recent archived dump. Snap-
shots may occur more frequently than dumps.

Yesterday does not guarantee that the string it prints represents an existing file.

Diffy runs diff(1) with the given options to compare yesterday’s version of each of the named files
with today’s.

EXAMPLES

FILES

Back up to yesterday’s MIPS binary of vc:

yesterday -c /mips/bin/vc
Temporarily back up to March 1’s MIPS C library to see if a program runs correctly when loaded
with it:

yesterday -b -0301 /mips/lib/libc.a

rm v.out

mk
v.out

Find what has changed in the C library since March 1:

yesterday -d -0301 /sys/src/libc/port/*.c
Find what has changed in the source tree today:

diffy —-r /sys/src

/n/dump

268

YESTERDAY (1) YESTERDAY (1)

SOURCE
/rc/bin/yesterday
/rc/bin/diffy

SEE ALSO
history(1), bind(1), diff(1), fs(4).

BUGS
It’s hard to use this command without singing.

269

INTRO(2)

NAME

intro - introduction to library functions

SYNOPSIS

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<u.h>
<libc.h>
<auth.h>
<bio.h>
<draw.h>
<fcall.h>
<frame.h>
<mach.h>
<ndb.h>

<regexp.h>

<stdio.h>

INTRO(2)

#include <thread.h>

DESCRIPTION

This section describes functions in various libraries. For the most part, each library is defined by a
single C include file, such as those listed above, and a single archive file containing the library
proper. The name of the archive is /$objtype/1lib/1ibx.a, where x is the base of the
include file name, stripped of a leading 1ib if present. For example, <draw. h> defines the con-
tents of library /$objtype/lib/libdraw. a, which may be abbreviated when named to the
loader as —1draw. In practice, each include file contains a #pragma that directs the loader to
pick up the associated archive automatically, so it is rarely necessary to tell the loader which
libraries a program needs.

The library to which a function belongs is defined by the header file that defines its interface. The
‘C library’, libc, contains most of the basic subroutines such as strlen. Declarations for all of these
functions are in <libc.h>, which must be preceded by (needs) an include of <u.h>. The
graphics library, draw, is defined by <draw.h>, which needs <1ibc.h> and <u.h>. The Buf-
fered 1/0 library, libbio, is defined by <bio.h>, which needs <libc.h> and <u.h>. The ANSI
C Standard 1/0 library, libstdio, is defined by <stdio.h>, which needs <u.h>. There are a few
other, less commonly used libraries defined on individual pages of this section.

The include file <u.h>, a prerequisite of several other include files, declares the architecture-
dependent and -independent types, including: uchar, ushort, uint, and ulong, the unsigned inte-
ger types; schar, the signed char type; viong and uviong, the signed and unsigned very long inte-
gral types; Rune, the Unicode character type; u8int, ul6int, u32int, and u64int, the unsigned inte-
gral types with specific widths; uintptr, the unsigned integral type with the same width as a
pointer; jmp_buf, the type of the argument to setjimp and longjmp, plus macros that define the lay-
out of jmp_buf (see setjmp(2)); definitions of the bits in the floating-point control register as used
by getfcr(2); and the macros va_arg and friends for accessing arguments of variadic functions
(identical to the macros defined in <stdarg.h> in ANSI C).

Name space

Files are collected into a hierarchical organization called a file tree starting in a directory called the
root. File names, also called paths, consist of a number of /-separated path elements with the
slashes corresponding to directories. A path element must contain only printable characters (those
outside the control spaces of ASCIl and Latin-1). A path element cannot contain a slash.

When a process presents a file name to Plan 9, it is evaluated by the following algorithm. Start
with a directory that depends on the first character of the path: / means the root of the main hier-
archy, # means the separate root of a kernel device’s file tree (see Section 3), and anything else
means the process’s current working directory. Then for each path element, look up the element
in the directory, advance to that directory, do a possible translation (see below), and repeat. The
last step may yield a directory or regular file. The collection of files reachable from the root is

270

INTRO(2) INTRO(2)

File

called the name space of a process.

A program can use bind or mount (see bind(2)) to say that whenever a specified file is reached dur-
ing evaluation, evaluation instead continues from a second specified file. Also, the same system
calls create union directories, which are concatenations of ordinary directories that are searched
sequentially until the desired element is found. Using bind and mount to do name space adjust-
ment affects only the current process group (see below). Certain conventions about the layout of
the name space should be preserved; see namespace(4).

1/0

Files are opened for input or output by open or create (see open(2)). These calls return an integer
called a file descriptor which identifies the file to subsequent I/O calls, notably read(2) and write.
The system allocates the numbers by selecting the lowest unused descriptor. They are allocated
dynamically; there is no visible limit to the number of file descriptors a process may have open.
They may be reassigned using dup(2). File descriptors are indices into a kernel resident file
descriptor table. Each process has an associated file descriptor table. In some cases (see rfork in
fork(2)) a file descriptor table may be shared by several processes.

By convention, file descriptor O is the standard input, 1 is the standard output, and 2 is the stan-
dard error output. With one exception, the operating system is unaware of these conventions; it is
permissible to close file 0, or even to replace it by a file open only for writing, but many programs
will be confused by such chicanery. The exception is that the system prints messages about bro-
ken processes to file descriptor 2.

Files are normally read or written in sequential order. The 1/0 position in the file is called the file
offset and may be set arbitrarily using the seek(2) system call.

Directories may be opened and read much like regular files. They contain an integral number of
records, called directory entries. Each entry is a machine-independent representation of the infor-
mation about an existing file in the directory, including the name, ownership, permission, access
dates, and so on. The entry corresponding to an arbitrary file can be retrieved by stat(2) or fstat;
wstat and fwstat write back entries, thus changing the properties of a file. An entry may be trans-
lated into a more convenient, addressable form called a Dixr structure; dirstat, dirfstat, dirwstat,
and dirfwstat execute the appropriate translations (see stat(2)).

New files are made with create (see open(2)) and deleted with remove(2). Directories may not
directly be written; create, remove, wstat, and fwstat alter them.

The operating system kernel records the file name used to access each open file or directory. If
the file is opened by a local name (one that does not begin / or #), the system makes the stored
name absolute by prefixing the string associated with the current directory. Similar lexical adjust-
ments are made for path names containing . (dot) or .. (dot-dot). By this process, the system
maintains a record of the route by which each file was accessed. Although there is a possibility for
error—the name is not maintained after the file is opened, so removals and renamings can con-
found it—this simple method usually permits the system to return, via the fd2path(2) system call
and related calls such as getwd(2), a valid name that may be used to find a file again. This is also
the source of the names reported in the name space listing of ns(1) or /dev/ns (see proc(3)).

Pipe(2) creates a connected pair of file descriptors, useful for bidirectional local communication.

Process execution and control

A new process is created when an existing one calls rfork with the RFPROC bit set, usually just by
calling fork(2). The new (child) process starts out with copies of the address space and most other
attributes of the old (parent) process. In particular, the child starts out running the same program
as the parent; exec(2) will bring in a different one.

Each process has a unique integer process id; a set of open files, indexed by file descriptor; and a
current working directory (changed by chdir(2)).

Each process has a set of attributes — memory, open files, name space, etc. — that may be shared
or unique. Flags to rfork control the sharing of these attributes.

The memory of a process is divided into segments. Every program has at least a text (instruction)
and stack segment. Most also have an initialized data segment and a segment of zero-filled data
called bss. Processes may segattach(2) other segments for special purposes.

271

INTRO(2) INTRO(2)

A process terminates by calling exits(2). A parent process may call wait(2) to wait for some child to
terminate. A string of status information may be passed from exits to wait. A process can go to
sleep for a specified time by calling sleep(2).

There is a notification mechanism for telling a process about events such as address faults, float-
ing point faults, and messages from other processes. A process uses notify(2) to register the func-
tion to be called (the notification handler) when such events occur.

Multithreading

By calling rfork with the RFMEM bit set, a program may create several independently executing
processes sharing the same memory (except for the stack segment, which is unique to each pro-
cess). Where possible according to the ANSI C standard, the main C library works properly in mul-
tiprocess programs; malloc, print, and the other routines use locks (see lock(2)) to synchronize
access to their data structures. The graphics library defined in <draw.h> is also multi-process
capable; details are in graphics(2). In general, though, multiprocess programs should use some
form of synchronization to protect shared data.

The thread library, defined in <thread.h>, provides support for multiprocess programs. It
includes a data structure called a Channel that can be used to send messages between pro-
cesses, and coroutine-like threads, which enable multiple threads of control within a single pro-
cess. The threads within a process are scheduled by the library, but there is no pre-emptive
scheduling within a process; thread switching occurs only at communication or synchronization
points.

Most programs using the thread library comprise multiple processes communicating over chan-
nels, and within some processes, multiple threads. Since Plan 9 1/0 calls may block, a system call
may block all the threads in a process. Therefore, a program that shouldn’t block unexpectedly
will use a process to serve the 1/0 request, passing the result to the main processes over a channel
when the request completes. For examples of this design, see ioproc(2) or mouse(2).

SEE ALSO
nm(1), 21(1), 2¢(1)

DIAGNOSTICS
Math functions in libc return special values when the function is undefined for the given arguments
or when the value is not representable (see nan(2)).

Some of the functions in libc are system calls and many others employ system calls in their imple-
mentation. All system calls return integers, with -1 indicating that an error occurred; errstr(2)
recovers a string describing the error. Some user-level library functions also use the errstr mecha-
nism to report errors. Functions that may affect the value of the error string are said to ‘‘set
errstr’’; it is understood that the error string is altered only if an error occurs.

272

9P(2) 9P(2)

NAME
Srv, dirread9p, emalloc9p, erealloc9p, estrdup9p, listensrv, postfd, postmountsrv, readbuf, read-
str, respond, responderror, threadlistensrv, threadpostmountsrv, srv - 9P file service

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>
#include <thread.h>
#include <9p.h>

typedef struct Srv {
Tree* tree;

void (*attach)(Req *r);
void (*auth)(Req *r);
void (*open)(Req *r);
void (*create)(Req *r);
void (*read)(Req *T);
void (*write)(Req *r);
void (*remove) (Req *r);
void (*flush)(Req *71);
void (*stat)(Req *T);
void (*wstat)(Req *r);
void (*walk)(Req *T);

char* (*walkl) (Fid *fid, char *name, Qid *qid);
char* (*clone)(Fid *oldfid, Fid *newfid);

void (*destroyfid) (Fid *fid);
void (*destroyreq)(Req *r);
void (*end)(Srv *s);

void* aux;

int infd;
int outfd;

int srvfd;
int nopipe;
} Srv;
int srv(Srv *s)

void postmountsrv(Srv *s, char *name, char *mtpt, int flag)

void threadpostmountsrv(Srv *s, char *name, char *mtpt, int flag)

void 1listensrv(Srv *s, char *addr)

void threadlistensrv(Srv *s, char *addr)

int postfd(char *srvname, int fd)

void respond(Req *r, char *error)

void responderror(Req*)

void readstr(Req *r, char *src)

void readbuf(Req *r, void *src, long nsrc)

typedef int Dirgen(int n, Dir *dir, void *aux)

void dirread9p(Req *r, Dirgen *gen, void *aux)

void walkandclone(Req *r, char *(*walkl)(Fid *old, char *name, void
char *(*clone) (Fid *old, Fid *new, void *v), void *v)

*

v),

void* emalloc9p(ulong n)
void* erealloc9p(void *v, ulong n)
char* estrdup9p(char *s)

extern int chatty9p;

273

9P(2) 9P(2)

DESCRIPTION
The function srv serves a 9P session by reading requests from s—>infd, dispatching them to the
function pointers kept in Srv, and writing the responses to s—>outfd. (Typically, postmountsrv
or threadpostmountsrv initializes the infd and outfd structure members. See the description
below.)

Req and Fid structures are allocated one-to-one with uncompleted requests and active fids, and
are described in 9pfid(2).

The behavior of srv depends on whether there is a file tree (see 9pfile(2)) associated with the
server, that is, whether the tree element is nonzero. The differences are made explicit in the dis-
cussion of the service loop below. The aux element is the client’s, to do with as it pleases.

Srv does not return until the 9P conversation is finished. Since it is usually run in a separate pro-
cess so that the caller can exit, the service loop has little chance to return gracefully on out of
memory errors. It calls emalloc9p, erealloc9p, and estrdup9p to obtain its memory. The default
implementations of these functions act as malloc, realloc, and strdup but abort the program if
they run out of memory. If alternate behavior is desired, clients can link against alternate imple-
mentations of these functions.

Postmountsrv and threadpostmountsrv are wrappers that create a separate process in which to run
srv. They do the following:

If s—>nopipe is zero (the common case), initialize s—>infd and s—>outfd to be one end of
a freshly allocated pipe, with s—> srvfd initialized as the other end.

If name is non-nil, call postfd (s—>srvfd, name) to post s—>srvfd as /srv/name.

Fork a child process via rfork (see fork(2)) or procrfork (see thread(2)), using the RFFDG,
RFNAMEG, and RFMEM flags. The child process calls close(s—>srvfd) and then srv(s); it
will exit once srv returns.

If mtpt is non-nil, call amount (s—>srvfd, mtpt, flag, "); otherwise, close s—> srvfd.

The parent returns to the caller.

If any error occurs during this process, the entire process is terminated by calling sysfatal (see
perror(2)).

Listensrv and threadlistensrv create a separate process to announce as addr. The process listens
for incoming connections, creating a new process to serve each. Using these functions results in
srv and the service functions being run in multiple processes simultaneously. The library locks its
own data structures as necessary; the client may need to lock data it shares between the multiple
connections.

Service functions

The functions in a Srv structure named after 9P transactions are called to satisfy requests as they
arrive. If a function is provided, it must arrange for respond to be called when the request is satis-
fied. The only parameter of each service function is a Req* parameter (say r). The incoming
request parameters are stored in r—> ifcall; r—>fid and r—> newfid are pointers to Fid structures
corresponding to the numeric fids in r—>ifcall; similarly, r—>oldreq is the Req structure corre-
sponding to r—>ifcall.oldtag. The outgoing response data should be stored in r—>ofcall. The
one exception to this rule is that stat should fill in r—>d rather than r—> ofcall.stat: the library will
convert the structure into the machine-independent wire representation. Similarly, wstat may con-
sult r—>d rather than decoding r—>ifcall . stat itself. When a request has been handled, respond
should be called with ¥ and an error string. If the request was satisfied successfully, the error
string should be a nil pointer. Note that it is permissible for a function to return without itself call-
ing respond, as long as it has arranged for respond to be called at some point in the future by
another proc sharing its address space, but see the discussion of flush below. Once respond has
been called, the Req* as well as any pointers it once contained must be considered freed and not
referenced.

Responderror calls respond with the system error string (see errstr(2)).

If the service loop detects an error in a request (e.g., an attempt to reuse an extant fid, an open of
an already open fid, a read from a fid opened for write, etc.) it will reply with an error without con-
sulting the service functions.

274

9P(2)

9P(2)

The service loop provided by srv (and indirectly by postmountsrv and threadpostmountsrv) is

single-

cesses

threaded. If it is expected that some requests might block, arranging for alternate pro-
to handle them is suggested.

The constraints on the service functions are as follows. These constraints are checked while the
server executes. If a service function fails to do something it ought to have, srv will call endsrv
and then abort.

Auth

Attach

Walk

Walk1,

Open

Create

If authentication is desired, the auth function should record that r—>afid is the new
authentication fid and set r—>afid—> qid and ofcall.qid. Auth may be nil, in which case it
will be treated as having responded with the error “argv0: authentication not required,”
where argvO is the program name variable as set by ARGBEGIN (see arg(2)).

The attach function should check the authentication state of afid if desired, and set
r—> fid—> qid and ofcall.qid to the qid of the file system root. Attach may be nil only if file
trees are in use; in this case, the qid will be filled from the root of the tree, and no authenti-
cation will be done.

If file trees are in use, walk is handled internally, and srv—>walk is never called.

If file trees are not in use, walk should consult r—>ifcall . wname and r—> ifcall . nwname,
filling in ofcall . qid and ofcall . nqid, and also copying any necessary aux state from r—> fid
to r—>newfid when the two are different. As long as walk sets ofcall . nqid appropriately, it
can respond with a nil error string even when 9P demands an error (e.g., in the case of a
short walk); the library detects error conditions and handles them appropriately.

Because implementing the full walk message is intricate and prone to error, the helper rou-
tine walkandclone will handle the request given pointers to two functions walkl and
(optionally) clone . Clone, if non-nil, is called to signal the creation of newfid from oldfid.
Typically a clone routine will copy or increment a reference count in oldfid’s aux element.
Walk1 should walk fid to name, initializing fid—> qid to the new path’s gid. Both should
return nil on success or an error message on error. Walkandclone will call respond after
handling the request.

Clone
If the client provides functions srv—>walkl and (optionally) srv—>clone, the 9P service
loop will call walkandclone with these functions to handle the request. Unlike the walkl
above, srv—>walkl must fill in both fid—>qid and * gid with the new qid on a successful
walk.

If file trees are in use, the file metadata will be consulted on open, create, remove, and
wstat to see if the requester has the appropriate permissions. If not, an error will be sent
back without consulting a service function.

If not using file trees or the user has the appropriate permissions, open is called with
r—>ofcall . qid already initialized to the one stored in the Fid structure (that is, the one
returned in the previous walk). If the qid changes, both should be updated.

The create function must fill in both r—>fid—>qgid and r—>ofcall . qid on success. When
using file trees, create should allocate a new File with createfile; note that createfile may
return nil (because, say, the file already exists). If the create function is nil, srv behaves as
though it were a function that always responded with the error ““create prohibited”’.

Remove

Read

Remove should mark the file as removed, whether by calling removefile when using file
trees, or by updating an internal data structure. In general it is not a good idea to clean up
the aux information associated with the corresponding File at this time, to avoid memory
errors if other fids have references to that file. Instead, it is suggested that remove simply
mark the file as removed (so that further operations on it know to fail) and wait until the file
tree’s destroy function is called to reclaim the aux pointer. If not using file trees, it is pru-
dent to take the analogous measures. If remove is not provided, all remove requests will
draw ‘“‘remove prohibited’’ errors.

The read function must be provided; it fills r—>ofcall . data with at most r—>ifcall . count
bytes of data from offset r—>ifcall . offset of the file. It also sets r—>ofcall . count to the
number of bytes being returned. If using file trees, srv will handle reads of directories
internally, only calling read for requests on files. Readstr and readbuf are useful for

275

9P(2) 9P(2)

satisfying read requests on a string or buffer. Consulting the request in r—> ifcall, they fill
r—>ofcall . data and set r—>ofcall . count; they do not call respond. Similarly, dirread9p
can be used to handle directory reads in servers not using file trees. The passed gen func-
tion will be called as necessary to fill dir with information for the nth entry in the directory.
The string pointers placed in dir should be fresh copies made with estrdup9p; they will be
freed by dirread9p after each successful call to gen. Gen should return zero if it success-
fully filled dir, minus one on end of directory.

Write The write function is similar but need not be provided. If it is not, all writes will draw
“write prohibited’’ errors. Otherwise, write should attempt to write the r—>ifcall . count
bytes of r—>ifcall. data to offset r—>ifcall . offset of the file, setting r—>ofcall . count to
the number of bytes actually written. Most programs consider it an error to write less than
the requested amount.

Stat Stat should fill ¥—>d with the stat information for r—>fid. If using file trees, r—>d will
have been initialized with the stat info from the tree, and stat itself may be nil.

Wstat The wstat consults r—>d in changing the metadata for r—> fid as described in stat(5). When
using file trees, srv will take care to check that the request satisfies the permissions out-
lined in stat(5). Otherwise wstat should take care to enforce permissions where appropri-
ate.

Flush Servers that always call respond before returning from the service functions need not pro-
vide a flush implementation: flush is only necessary in programs that arrange for respond
to be called asynchronously. Flush should cause the request r—>oldreq to be cancelled or
hurried along. If oldreq is cancelled, this should be signalled by calling respond on oldreq
with error string ‘interrupted’. Flush must respond to r with a nil error string. Flush
may respond to r before forcing a response to r—>oldreq. In this case, the library will
delay sending the Rflush message until the response to r—>oldreq has been sent.

Destroyfid, destroyreq, and end are auxiliary functions, not called in direct response to 9P
requests.

Destroyfid
When a Fid’s reference count drops to zero (i.e., it has been clunked and there are no out-
standing requests referring to it), destroyfid is called to allow the program to dispose of the
fid—> aux pointer.

Destroyreq
Similarly, when a Req’s reference count drops to zero (i.e., it has been handled via respond
and other outstanding pointers to it have been closed), destroyreq is called to allow the
program to dispose of the r—>aux pointer.

End Once the 9P service loop has finished (end of file been reached on the service pipe or a bad
message has been read), end is called (if provided) to allow any final cleanup. For example,
it was used by the Palm Pilot synchronization file system (never finished) to gracefully ter-
minate the serial conversation once the file system had been unmounted. After calling end,
the service loop (which runs in a separate process from its caller) terminates using _exits
(see exits(2)).

If the chatty9p flag is at least one, a transcript of the 9P session is printed on standard error. If
the chatty9p flag is greater than one, additional unspecified debugging output is generated. By
convention, servers written using this library accept the —D option to increment chatty9p.

EXAMPLES
Archfs(4), cdfs(4), nntpfs(4), snap(4), and /sys/src/1ib9p/ramfs. c are good examples of
simple single-threaded file servers. Webfs(4) and sshnet (see ssh(1)) are good examples of multi-
threaded file servers.

In general, the File interface is appropriate for maintaining arbitrary file trees (as in ramfs). The
File interface is best avoided when the tree structure is easily generated as necessary; this is
true when the tree is highly structured (as in cdfs and nntpfs) or is maintained elsewhere.

SOURCE
/sys/src/1ib9p

276

9P(2) 9P(2)

SEE ALSO
9pfid(2), 9pfile(2), srv(3), intro(5)

BUGS
The switch to 9P2000 was taken as an opportunity to tidy much of the interface; we promise to
avoid such gratuitous change in the future.

277

9PCMDBUF(2) 9PCMDBUF(2)

NAME
Cmdbuf, parsecmd, respondcmderror, lookupcmd - control message parsing

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>
#include <thread.h>
#include <9p.h>

typedef struct Cmdbuf

{
char *buf;
char wkf,
int nf;
} Cmdbuf;
typedef struct Cmdtab
{
int index;
char *cmd ;
int narg;
};
Cmdbuf *parsecmd(char *p, int n)
Cmdtab *lookupcmd (Cmdbuf *cb, Cmdtab *tab, int ntab)
void respondcmderror(Req *r, Cmdbuf *cb, char *fmt, ...)
DESCRIPTION

These data structures and functions provide parsing of textual control messages.

Parsecmd treats the n bytes at p (which need not be NUL-terminated) as a UTF string and splits it
using tokenize (see getfields(2)). It returns a Cmdbuf structure holding pointers to each field in
the message. It is the caller’s responsibility to free this structure when it is no longer needed.

Lookupcmd walks through the array ctab, which has ntab entries, looking for the first Cmdtab
that matches the parsed command. (If the parsed command is empty, lookupcmd returns nil
immediately.) A Cmdtab matches the command if cmd is equal to cb—>f[0] or if cmd is *
Once a matching Cmdtab has been found, if narg is not zero, then the parsed command must
have exactly narg fields (including the command string itself). If the command has the wrong
number of arguments, lookupcmd returns nil. Otherwise, it returns a pointer to the Cmdtab
entry. If lookupcmd does not find a matching command at all, it returns nil. Whenever lookupcmd
returns nil, it sets the system error string.

Respondcmderror resoponds to request r with an error of the form ‘fmt: cmd,” where fmt is the
formatted string and cmd is a reconstruction of the parsed command. Fmt is often simply %r

EXAMPLES
This interface is not used in any distributed 9P servers. It was lifted from the Plan 9 kernel.
Almost any kernel driver (/sys/src/9/%/dev*.c)is a good example.

SOURCE
/sys/src/1lib9p/parse.c

SEE ALSO
9p(2)

278

9PFID(2)

NAME

9PFID(2)

Fid, Fidpool, allocfidpool, freefidpool, allocfid, closefid, lookupfid, removefid, Req, Reqpool,
allocreqpool, freereqpool, allocreq, closereq, lookupreq, removereq - 9P fid, request tracking

SYNOPSIS
#include
#include
#include
#include
#include

typedef s

{
ulong
char
char
Qid
File
void

} Fid;

typedef s

{
ulong
Fcall
Fcall
Reqg
void
Fid
Fid
Fid

} Req;

Fidpool*

void

Fid*

Fid*

Fid*

void

Reqgpool*

void

Reqg*

Reqg*

Reqg*

void

DESCRIPTION

<u.h>
<libc.h>
<fcall.h>
<thread.h>
<9p.h>

truct Fid

fid;

omode; /* -1 if not open */
*uid;

qid;

*file;

*aux;

truct Req

tag;
ifcall;
ofcall;
*oldreq;
*aux;
*fid;
*afid;
*newfid;

allocfidpool(void (*destroy) (Fid*))
freefidpool (Fidpool *p)
allocfid(Fidpool *p, ulong fid)
lookupfid(Fidpool *p, ulong fid)
removefid(Fidpool *p, ulong fid);
closefid(Fid *f)

allocregpool(void (*destroy) (Req*))
freeregpool (Regpool *p)
allocreq(Regpool *p, ulong tag)
lookupreq(Regpool *p, ulong tag)
removereq(Reqpool *p, ulong tag);
closereq(Req *f)

These routines provide management of Fid and Req structures from Fidpools and Regpools.
They are primarily used by the 9P server loop described in 9p(2).

Fid structures are intended to represent active fids in a 9P connection, as Chan structures do in
the Plan 9 kernel. The fid element is the integer fid used in the 9P connection. Omode is the
mode under which the fid was opened, or —1 if this fid has not been opened yet. Note that in
addition to the values OREAD, OWRITE, and ORDWR, omode can contain the various flags permis-
sible in an open call. To ignore the flags, use omode&0OMASK. Omode should not be changed by
the client. The fid derives from a successful authentication by uid. Qid contains the qid
returned in the last successful walk or create transaction involving the fid. In a file tree-based
server, the Fid’s file element points at a File structure (see 9pfile(2)) corresponding to the
fid. The aux member is intended for use by the client to hold information specific to a particular

279

9PFID(2) 9PFID(2)

Fid. With the exception of aux, these elements should be treated as read-only by the client.

Allocfidpool creates a new Fidpool. Freefidpool destroys such a pool. Allocfid returns a new
Fid whose fid number is fid. There must not already be an extant Fid with that number in the
pool. Once a Fid has been allocated, it can be looked up by fid number using lookupfid. Fids
are reference counted: both allocfid and lookupfid increment the reference count on the Fid struc-
ture before returning. When a reference to a Fid is no longer needed, closefid should be called to
note the destruction of the reference. When the last reference to a Fid is removed, if destroy
(supplied when creating the fid pool) is not zero, it is called with the Fid as a parameter. It
should perform whatever cleanup is necessary regarding the aux element. Removefid is equiva-
lent to lookupfid but also removes the Fid from the pool. Note that due to lingering references,
the return of removefid may not mean that destroy has been called.

Allocreqgpool, freereqpool, allocreq, lookupreq, closereq, and removereq are analogous but operate
on Regpools and Req structures.

SOURCE
/sys/src/1ib9p

SEE ALSO
9p(2), 9pfile(2)

280

9PFILE(2)

NAME
Tree, alloctree, freetree, File, createfile, closefile,
closedirfile, hasperm - in-memory file hierarchy

9PFILE(2)

removefile, walkfile, opendirfile, readdirfile,

ulong mode,

*name, char *uid,

uchar *buf, long n)

int p)

SYNOPSIS
#include <u.h>
#include <libc.h>
#include <fcall.h>
#include <thread.h>
#include <9p.h>
typedef struct File
{
Ref;
Dir;
void*aux;
} File;
typedef struct Tree
{
File *root;
} Tree;
Tree* alloctree(char *uid, char *gid,
void (*destroy)(File*))
void freetree(Tree *tree)
File* createfile(File *dir, char
ulong mode, void *aux)
int removefile(File *file)
void closefile(File *file)
File* walkfile(File *dir, char *path)
Readdir* opendirfile(File *dir)
long readdirfile(Readdir *rdir,
void closedirfile(Readdir *rdir)
int hasperm(File *file, char *uid,
DESCRIPTION

Files and Trees provide an in-memory file hierarchy intended for use in 9P file servers.

Alloctree creates a new tree of files, and freetree destroys it. The root of the tree (also the root
element in the structure) will have mode mode and be owned by user uid and group gid. Destroy is
used when freeing File structures and is described later.

Files (including directories) other than the root are created using createfile, which attempts to
create a file named name in the directory dir. If created, the file will have owner uid and have a
group inherited from the directory. Mode and the permissions of dir are used to calculate the per-
mission bits for the file as described in open(5). It is permissible for name to be a slash-separated

path rather than a single element.

Removefile removes a file from the file tree. The file will not be freed u