123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- #include <u.h>
- #include <libc.h>
- #include <draw.h>
- #include <geometry.h>
- /*
- * Routines whose names end in 3 work on points in Affine 3-space.
- * They ignore w in all arguments and produce w=1 in all results.
- * Routines whose names end in 4 work on points in Projective 3-space.
- */
- Point3 add3(Point3 a, Point3 b){
- a.x+=b.x;
- a.y+=b.y;
- a.z+=b.z;
- a.w=1.;
- return a;
- }
- Point3 sub3(Point3 a, Point3 b){
- a.x-=b.x;
- a.y-=b.y;
- a.z-=b.z;
- a.w=1.;
- return a;
- }
- Point3 neg3(Point3 a){
- a.x=-a.x;
- a.y=-a.y;
- a.z=-a.z;
- a.w=1.;
- return a;
- }
- Point3 div3(Point3 a, double b){
- a.x/=b;
- a.y/=b;
- a.z/=b;
- a.w=1.;
- return a;
- }
- Point3 mul3(Point3 a, double b){
- a.x*=b;
- a.y*=b;
- a.z*=b;
- a.w=1.;
- return a;
- }
- int eqpt3(Point3 p, Point3 q){
- return p.x==q.x && p.y==q.y && p.z==q.z;
- }
- /*
- * Are these points closer than eps, in a relative sense
- */
- int closept3(Point3 p, Point3 q, double eps){
- return 2.*dist3(p, q)<eps*(len3(p)+len3(q));
- }
- double dot3(Point3 p, Point3 q){
- return p.x*q.x+p.y*q.y+p.z*q.z;
- }
- Point3 cross3(Point3 p, Point3 q){
- Point3 r;
- r.x=p.y*q.z-p.z*q.y;
- r.y=p.z*q.x-p.x*q.z;
- r.z=p.x*q.y-p.y*q.x;
- r.w=1.;
- return r;
- }
- double len3(Point3 p){
- return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
- }
- double dist3(Point3 p, Point3 q){
- p.x-=q.x;
- p.y-=q.y;
- p.z-=q.z;
- return sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
- }
- Point3 unit3(Point3 p){
- double len=sqrt(p.x*p.x+p.y*p.y+p.z*p.z);
- p.x/=len;
- p.y/=len;
- p.z/=len;
- p.w=1.;
- return p;
- }
- Point3 midpt3(Point3 p, Point3 q){
- p.x=.5*(p.x+q.x);
- p.y=.5*(p.y+q.y);
- p.z=.5*(p.z+q.z);
- p.w=1.;
- return p;
- }
- Point3 lerp3(Point3 p, Point3 q, double alpha){
- p.x+=(q.x-p.x)*alpha;
- p.y+=(q.y-p.y)*alpha;
- p.z+=(q.z-p.z)*alpha;
- p.w=1.;
- return p;
- }
- /*
- * Reflect point p in the line joining p0 and p1
- */
- Point3 reflect3(Point3 p, Point3 p0, Point3 p1){
- Point3 a, b;
- a=sub3(p, p0);
- b=sub3(p1, p0);
- return add3(a, mul3(b, 2*dot3(a, b)/dot3(b, b)));
- }
- /*
- * Return the nearest point on segment [p0,p1] to point testp
- */
- Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp){
- double num, den;
- Point3 q, r;
- q=sub3(p1, p0);
- r=sub3(testp, p0);
- num=dot3(q, r);;
- if(num<=0) return p0;
- den=dot3(q, q);
- if(num>=den) return p1;
- return add3(p0, mul3(q, num/den));
- }
- /*
- * distance from point p to segment [p0,p1]
- */
- #define SMALL 1e-8 /* what should this value be? */
- double pldist3(Point3 p, Point3 p0, Point3 p1){
- Point3 d, e;
- double dd, de, dsq;
- d=sub3(p1, p0);
- e=sub3(p, p0);
- dd=dot3(d, d);
- de=dot3(d, e);
- if(dd<SMALL*SMALL) return len3(e);
- dsq=dot3(e, e)-de*de/dd;
- if(dsq<SMALL*SMALL) return 0;
- return sqrt(dsq);
- }
- /*
- * vdiv3(a, b) is the magnitude of the projection of a onto b
- * measured in units of the length of b.
- * vrem3(a, b) is the component of a perpendicular to b.
- */
- double vdiv3(Point3 a, Point3 b){
- return (a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z);
- }
- Point3 vrem3(Point3 a, Point3 b){
- double quo=(a.x*b.x+a.y*b.y+a.z*b.z)/(b.x*b.x+b.y*b.y+b.z*b.z);
- a.x-=b.x*quo;
- a.y-=b.y*quo;
- a.z-=b.z*quo;
- a.w=1.;
- return a;
- }
- /*
- * Compute face (plane) with given normal, containing a given point
- */
- Point3 pn2f3(Point3 p, Point3 n){
- n.w=-dot3(p, n);
- return n;
- }
- /*
- * Compute face containing three points
- */
- Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2){
- Point3 p01, p02;
- p01=sub3(p1, p0);
- p02=sub3(p2, p0);
- return pn2f3(p0, cross3(p01, p02));
- }
- /*
- * Compute point common to three faces.
- * Cramer's rule, yuk.
- */
- Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2){
- double det;
- Point3 p;
- det=dot3(f0, cross3(f1, f2));
- if(fabs(det)<SMALL){ /* parallel planes, bogus answer */
- p.x=0.;
- p.y=0.;
- p.z=0.;
- p.w=0.;
- return p;
- }
- p.x=(f0.w*(f2.y*f1.z-f1.y*f2.z)
- +f1.w*(f0.y*f2.z-f2.y*f0.z)+f2.w*(f1.y*f0.z-f0.y*f1.z))/det;
- p.y=(f0.w*(f2.z*f1.x-f1.z*f2.x)
- +f1.w*(f0.z*f2.x-f2.z*f0.x)+f2.w*(f1.z*f0.x-f0.z*f1.x))/det;
- p.z=(f0.w*(f2.x*f1.y-f1.x*f2.y)
- +f1.w*(f0.x*f2.y-f2.x*f0.y)+f2.w*(f1.x*f0.y-f0.x*f1.y))/det;
- p.w=1.;
- return p;
- }
- /*
- * pdiv4 does perspective division to convert a projective point to affine coordinates.
- */
- Point3 pdiv4(Point3 a){
- if(a.w==0) return a;
- a.x/=a.w;
- a.y/=a.w;
- a.z/=a.w;
- a.w=1.;
- return a;
- }
- Point3 add4(Point3 a, Point3 b){
- a.x+=b.x;
- a.y+=b.y;
- a.z+=b.z;
- a.w+=b.w;
- return a;
- }
- Point3 sub4(Point3 a, Point3 b){
- a.x-=b.x;
- a.y-=b.y;
- a.z-=b.z;
- a.w-=b.w;
- return a;
- }
|