tstack.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. /*% cc -gpc %
  2. * These transformation routines maintain stacks of transformations
  3. * and their inverses.
  4. * t=pushmat(t) push matrix stack
  5. * t=popmat(t) pop matrix stack
  6. * rot(t, a, axis) multiply stack top by rotation
  7. * qrot(t, q) multiply stack top by rotation, q is unit quaternion
  8. * scale(t, x, y, z) multiply stack top by scale
  9. * move(t, x, y, z) multiply stack top by translation
  10. * xform(t, m) multiply stack top by m
  11. * ixform(t, m, inv) multiply stack top by m. inv is the inverse of m.
  12. * look(t, e, l, u) multiply stack top by viewing transformation
  13. * persp(t, fov, n, f) multiply stack top by perspective transformation
  14. * viewport(t, r, aspect)
  15. * multiply stack top by window->viewport transformation.
  16. */
  17. #include <u.h>
  18. #include <libc.h>
  19. #include <draw.h>
  20. #include <geometry.h>
  21. Space *pushmat(Space *t){
  22. Space *v;
  23. v=malloc(sizeof(Space));
  24. if(t==0){
  25. ident(v->t);
  26. ident(v->tinv);
  27. }
  28. else
  29. *v=*t;
  30. v->next=t;
  31. return v;
  32. }
  33. Space *popmat(Space *t){
  34. Space *v;
  35. if(t==0) return 0;
  36. v=t->next;
  37. free(t);
  38. return v;
  39. }
  40. void rot(Space *t, double theta, int axis){
  41. double s=sin(radians(theta)), c=cos(radians(theta));
  42. Matrix m, inv;
  43. register i=(axis+1)%3, j=(axis+2)%3;
  44. ident(m);
  45. m[i][i] = c;
  46. m[i][j] = -s;
  47. m[j][i] = s;
  48. m[j][j] = c;
  49. ident(inv);
  50. inv[i][i] = c;
  51. inv[i][j] = s;
  52. inv[j][i] = -s;
  53. inv[j][j] = c;
  54. ixform(t, m, inv);
  55. }
  56. void qrot(Space *t, Quaternion q){
  57. Matrix m, inv;
  58. int i, j;
  59. qtom(m, q);
  60. for(i=0;i!=4;i++) for(j=0;j!=4;j++) inv[i][j]=m[j][i];
  61. ixform(t, m, inv);
  62. }
  63. void scale(Space *t, double x, double y, double z){
  64. Matrix m, inv;
  65. ident(m);
  66. m[0][0]=x;
  67. m[1][1]=y;
  68. m[2][2]=z;
  69. ident(inv);
  70. inv[0][0]=1/x;
  71. inv[1][1]=1/y;
  72. inv[2][2]=1/z;
  73. ixform(t, m, inv);
  74. }
  75. void move(Space *t, double x, double y, double z){
  76. Matrix m, inv;
  77. ident(m);
  78. m[0][3]=x;
  79. m[1][3]=y;
  80. m[2][3]=z;
  81. ident(inv);
  82. inv[0][3]=-x;
  83. inv[1][3]=-y;
  84. inv[2][3]=-z;
  85. ixform(t, m, inv);
  86. }
  87. void xform(Space *t, Matrix m){
  88. Matrix inv;
  89. if(invertmat(m, inv)==0) return;
  90. ixform(t, m, inv);
  91. }
  92. void ixform(Space *t, Matrix m, Matrix inv){
  93. matmul(t->t, m);
  94. matmulr(t->tinv, inv);
  95. }
  96. /*
  97. * multiply the top of the matrix stack by a view-pointing transformation
  98. * with the eyepoint at e, looking at point l, with u at the top of the screen.
  99. * The coordinate system is deemed to be right-handed.
  100. * The generated transformation transforms this view into a view from
  101. * the origin, looking in the positive y direction, with the z axis pointing up,
  102. * and x to the right.
  103. */
  104. void look(Space *t, Point3 e, Point3 l, Point3 u){
  105. Matrix m, inv;
  106. Point3 r;
  107. l=unit3(sub3(l, e));
  108. u=unit3(vrem3(sub3(u, e), l));
  109. r=cross3(l, u);
  110. /* make the matrix to transform from (rlu) space to (xyz) space */
  111. ident(m);
  112. m[0][0]=r.x; m[0][1]=r.y; m[0][2]=r.z;
  113. m[1][0]=l.x; m[1][1]=l.y; m[1][2]=l.z;
  114. m[2][0]=u.x; m[2][1]=u.y; m[2][2]=u.z;
  115. ident(inv);
  116. inv[0][0]=r.x; inv[0][1]=l.x; inv[0][2]=u.x;
  117. inv[1][0]=r.y; inv[1][1]=l.y; inv[1][2]=u.y;
  118. inv[2][0]=r.z; inv[2][1]=l.z; inv[2][2]=u.z;
  119. ixform(t, m, inv);
  120. move(t, -e.x, -e.y, -e.z);
  121. }
  122. /*
  123. * generate a transformation that maps the frustum with apex at the origin,
  124. * apex angle=fov and clipping planes y=n and y=f into the double-unit cube.
  125. * plane y=n maps to y'=-1, y=f maps to y'=1
  126. */
  127. int persp(Space *t, double fov, double n, double f){
  128. Matrix m;
  129. double z;
  130. if(n<=0 || f<=n || fov<=0 || 180<=fov) /* really need f!=n && sin(v)!=0 */
  131. return -1;
  132. z=1/tan(radians(fov)/2);
  133. m[0][0]=z; m[0][1]=0; m[0][2]=0; m[0][3]=0;
  134. m[1][0]=0; m[1][1]=(f+n)/(f-n); m[1][2]=0; m[1][3]=f*(1-m[1][1]);
  135. m[2][0]=0; m[2][1]=0; m[2][2]=z; m[2][3]=0;
  136. m[3][0]=0; m[3][1]=1; m[3][2]=0; m[3][3]=0;
  137. xform(t, m);
  138. return 0;
  139. }
  140. /*
  141. * Map the unit-cube window into the given screen viewport.
  142. * r has min at the top left, max just outside the lower right. Aspect is the
  143. * aspect ratio (dx/dy) of the viewport's pixels (not of the whole viewport!)
  144. * The whole window is transformed to fit centered inside the viewport with equal
  145. * slop on either top and bottom or left and right, depending on the viewport's
  146. * aspect ratio.
  147. * The window is viewed down the y axis, with x to the left and z up. The viewport
  148. * has x increasing to the right and y increasing down. The window's y coordinates
  149. * are mapped, unchanged, into the viewport's z coordinates.
  150. */
  151. void viewport(Space *t, Rectangle r, double aspect){
  152. Matrix m;
  153. double xc, yc, wid, hgt, scale;
  154. xc=.5*(r.min.x+r.max.x);
  155. yc=.5*(r.min.y+r.max.y);
  156. wid=(r.max.x-r.min.x)*aspect;
  157. hgt=r.max.y-r.min.y;
  158. scale=.5*(wid<hgt?wid:hgt);
  159. ident(m);
  160. m[0][0]=scale;
  161. m[0][3]=xc;
  162. m[1][1]=0;
  163. m[1][2]=-scale;
  164. m[1][3]=yc;
  165. m[2][1]=1;
  166. m[2][2]=0;
  167. /* should get inverse by hand */
  168. xform(t, m);
  169. }