/* * Copyright (c) 2015 The Linux Foundation. All rights reserved. * * Copyright (c) 2003-2013 Broadcom Corporation * * Copyright (c) 2009-2010 Micron Technology, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include /* cmd */ #define ATH79_SPINAND_CMD_READ 0x13 #define ATH79_SPINAND_CMD_READ_RDM 0x03 #define ATH79_SPINAND_CMD_PROG_PAGE_LOAD 0x02 #define ATH79_SPINAND_CMD_PROG_PAGE 0x84 #define ATH79_SPINAND_CMD_PROG_PAGE_EXC 0x10 #define ATH79_SPINAND_CMD_ERASE_BLK 0xd8 #define ATH79_SPINAND_CMD_WR_ENABLE 0x06 #define ATH79_SPINAND_CMD_WR_DISABLE 0x04 #define ATH79_SPINAND_CMD_READ_ID 0x9f #define ATH79_SPINAND_CMD_RESET 0xff #define ATH79_SPINAND_CMD_READ_REG 0x0f #define ATH79_SPINAND_CMD_WRITE_REG 0x1f /* feature/ status reg */ #define ATH79_SPINAND_REG_BLOCK_LOCK 0xa0 #define ATH79_SPINAND_REG_OTP 0xb0 #define ATH79_SPINAND_REG_STATUS 0xc0 /* status */ #define ATH79_SPINAND_STATUS_OIP_MASK 0x01 #define ATH79_SPINAND_STATUS_READY 0 #define ATH79_SPINAND_STATUS_BUSY BIT(1) #define ATH79_SPINAND_STATUS_E_FAIL_MASK 0x04 #define ATH79_SPINAND_STATUS_E_FAIL BIT(2) #define ATH79_SPINAND_STATUS_P_FAIL_MASK 0x08 #define ATH79_SPINAND_STATUS_P_FAIL BIT(3) /* ECC/OTP enable defines */ #define ATH79_SPINAND_REG_ECC_MASK 0x10 #define ATH79_SPINAND_REG_ECC_OFF 0 #define ATH79_SPINAND_REG_ECC_ON BIT(4) #define ATH79_SPINAND_REG_OTP_EN BIT(6) #define ATH79_SPINAND_REG_OTP_PRT BIT(7) /* block lock */ #define ATH79_SPINAND_BL_ALL_UNLOCKED 0 #define ATH79_SPINAND_PAGE_TO_BLOCK(p) ((p) >> 6) #define ATH79_SPINAND_OFS_TO_PAGE(ofs) (((ofs) >> 17) << 6) #define ATH79_SPINAND_BUF_SIZE (2048 * 64) #define ATH79_SPINAND_BITS_PER_WORD(len) ((len) & 0x02 ? 16 : 32) struct ath79_spinand_priv { u8 mfr; u8 ecc_error; int ecc_size; int ecc_bytes; int ecc_strength; struct nand_ecclayout *ecc_layout; struct nand_bbt_descr *badblock_pattern; u8 (*ecc_status)(u8 status); void (*read_rdm_addr)(u32 offset, u8 *addr); int (*program_load)(struct spi_device *spi, u32 offset, u32 len, u8 *wbuf); int (*erase_block)(struct spi_device *spi, u32 page); int (*page_read_to_cache)(struct spi_device *spi, u32 page); int (*program_execute)(struct spi_device *spi, u32 page); }; struct ath79_spinand_state { uint32_t col; uint32_t row; int buf_ptr; u8 *buf; }; struct ath79_spinand_info { struct spi_device *spi; struct ath79_spinand_state *state; void *priv; }; struct ath79_spinand_command { u8 cmd; u32 n_addr; /* Number of address */ u8 addr[3]; /* Reg Offset */ u32 n_dummy; /* Dummy use */ u32 n_tx; /* Number of tx bytes */ u8 *tx_buf; /* Tx buf */ u32 n_rx; /* Number of rx bytes */ u8 *rx_buf; /* Rx buf */ }; static u8 badblock_pattern[] = { 0xff, }; static struct nand_bbt_descr ath79_badblock_pattern_default = { .options = 0, .offs = 0, .len = 1, .pattern = badblock_pattern, }; static struct nand_ecclayout ath79_spinand_oob_128_gd = { .eccbytes = 64, .eccpos = { 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127}, .oobfree = { {.offset = 16, .length = 48}, } }; /* ECC parity code stored in the additional hidden spare area */ static struct nand_ecclayout ath79_spinand_oob_64_mx = { .eccbytes = 0, .eccpos = {}, .oobfree = { {.offset = 4, .length = 4}, {.offset = 20, .length = 4}, {.offset = 36, .length = 4}, {.offset = 52, .length = 4}, } }; static struct nand_ecclayout ath79_spinand_oob_64_win = { .eccbytes = 40, .eccpos = { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31, 40, 41, 42, 43, 44, 45, 46, 47, 56, 57, 58, 59, 60, 61, 62, 63, 72, 73, 74, 75, 76, 77, 78, 79}, .oobfree = { {.offset = 4, .length = 4}, {.offset = 20, .length = 4}, {.offset = 36, .length = 4}, {.offset = 52, .length = 4}, } }; static inline struct ath79_spinand_state *mtd_to_state(struct mtd_info *mtd) { struct nand_chip *chip = (struct nand_chip *)mtd->priv; struct ath79_spinand_info *info = (struct ath79_spinand_info *)chip->priv; return info->state; } static inline struct ath79_spinand_priv *spi_to_priv(struct spi_device *spi) { struct mtd_info *mtd = dev_get_drvdata(&spi->dev); struct nand_chip *chip = (struct nand_chip *)mtd->priv; struct ath79_spinand_info *info = (struct ath79_spinand_info *)chip->priv; return info->priv; } static inline u8 ath79_spinand_ecc_status(struct spi_device *spi, u8 status) { struct ath79_spinand_priv *priv = spi_to_priv(spi); return priv->ecc_status(status); } static inline u8 ath79_spinand_ecc_error(struct spi_device *spi) { struct ath79_spinand_priv *priv = spi_to_priv(spi); return priv->ecc_error; } static inline void ath79_spinand_read_rdm_addr(struct spi_device *spi, u32 offset, u8 *addr) { struct ath79_spinand_priv *priv = spi_to_priv(spi); priv->read_rdm_addr(offset, addr); } static inline int ath79_spinand_program_load(struct spi_device *spi, u32 offset, u32 len, u8 *wbuf) { struct ath79_spinand_priv *priv = spi_to_priv(spi); return priv->program_load(spi, offset, len, wbuf); } static inline int ath79_spinand_erase_block_erase(struct spi_device *spi, u32 page) { struct ath79_spinand_priv *priv = spi_to_priv(spi); return priv->erase_block(spi, page); } static inline int ath79_spinand_read_page_to_cache(struct spi_device *spi, u32 page) { struct ath79_spinand_priv *priv = spi_to_priv(spi); return priv->page_read_to_cache(spi, page); } static inline int ath79_spinand_program_execute(struct spi_device *spi, u32 page) { struct ath79_spinand_priv *priv = spi_to_priv(spi); return priv->program_execute(spi, page); } static int ath79_spinand_cmd(struct spi_device *spi, struct ath79_spinand_command *cmd) { struct spi_message message; struct spi_transfer x[4]; u8 dummy = 0xff; spi_message_init(&message); memset(x, 0, sizeof(x)); x[0].len = 1; x[0].tx_buf = &cmd->cmd; spi_message_add_tail(&x[0], &message); if (cmd->n_addr) { x[1].len = cmd->n_addr; x[1].tx_buf = cmd->addr; spi_message_add_tail(&x[1], &message); } if (cmd->n_dummy) { x[2].len = cmd->n_dummy; x[2].tx_buf = &dummy; spi_message_add_tail(&x[2], &message); } if (cmd->n_tx) { x[3].len = cmd->n_tx; x[3].tx_buf = cmd->tx_buf; if (!(cmd->n_tx & 1)) x[3].bits_per_word = ATH79_SPINAND_BITS_PER_WORD(cmd->n_tx); spi_message_add_tail(&x[3], &message); } else if (cmd->n_rx) { x[3].len = cmd->n_rx; x[3].rx_buf = cmd->rx_buf; if (!(cmd->n_rx & 1)) x[3].bits_per_word = ATH79_SPINAND_BITS_PER_WORD(cmd->n_rx); spi_message_add_tail(&x[3], &message); } return spi_sync(spi, &message); } static int ath79_spinand_read_id(struct spi_device *spi_nand, u8 *id) { int retval; u8 nand_id[3]; struct ath79_spinand_command cmd = {0}; cmd.cmd = ATH79_SPINAND_CMD_READ_ID; cmd.n_rx = 3; cmd.rx_buf = nand_id; retval = ath79_spinand_cmd(spi_nand, &cmd); if (retval < 0) { dev_err(&spi_nand->dev, "error %d reading id\n", retval); return retval; } if (nand_id[0] == NAND_MFR_GIGADEVICE || nand_id[0] == NAND_MFR_HEYANGTEK) { id[0] = nand_id[0]; id[1] = nand_id[1]; } else { /* Macronix, Micron */ id[0] = nand_id[1]; id[1] = nand_id[2]; } return retval; } static int ath79_spinand_read_status(struct spi_device *spi_nand, uint8_t *status) { struct ath79_spinand_command cmd = {0}; int ret; cmd.cmd = ATH79_SPINAND_CMD_READ_REG; cmd.n_addr = 1; cmd.addr[0] = ATH79_SPINAND_REG_STATUS; cmd.n_rx = 1; cmd.rx_buf = status; ret = ath79_spinand_cmd(spi_nand, &cmd); if (ret < 0) dev_err(&spi_nand->dev, "err: %d read status register\n", ret); return ret; } #define ATH79_SPINAND_MAX_WAIT_JIFFIES (40 * HZ) static int __ath79_wait_till_ready(struct spi_device *spi_nand, u8 *status) { unsigned long deadline; deadline = jiffies + ATH79_SPINAND_MAX_WAIT_JIFFIES; do { if (ath79_spinand_read_status(spi_nand, status)) return -1; else if ((*status & ATH79_SPINAND_STATUS_OIP_MASK) == ATH79_SPINAND_STATUS_READY) break; cond_resched(); } while (!time_after_eq(jiffies, deadline)); return 0; } static int ath79_wait_till_ready(struct spi_device *spi_nand) { u8 stat = 0; if (__ath79_wait_till_ready(spi_nand, &stat)) return -1; if ((stat & ATH79_SPINAND_STATUS_OIP_MASK) == ATH79_SPINAND_STATUS_READY) return 0; return -1; } static int ath79_spinand_get_otp(struct spi_device *spi_nand, u8 *otp) { struct ath79_spinand_command cmd = {0}; int retval; cmd.cmd = ATH79_SPINAND_CMD_READ_REG; cmd.n_addr = 1; cmd.addr[0] = ATH79_SPINAND_REG_OTP; cmd.n_rx = 1; cmd.rx_buf = otp; retval = ath79_spinand_cmd(spi_nand, &cmd); if (retval < 0) dev_err(&spi_nand->dev, "error %d get otp\n", retval); return retval; } static int ath79_spinand_set_otp(struct spi_device *spi_nand, u8 *otp) { int retval; struct ath79_spinand_command cmd = {0}; cmd.cmd = ATH79_SPINAND_CMD_WRITE_REG, cmd.n_addr = 1, cmd.addr[0] = ATH79_SPINAND_REG_OTP, cmd.n_tx = 1, cmd.tx_buf = otp, retval = ath79_spinand_cmd(spi_nand, &cmd); if (retval < 0) dev_err(&spi_nand->dev, "error %d set otp\n", retval); return retval; } static int ath79_spinand_enable_ecc(struct spi_device *spi_nand) { u8 otp = 0; if (ath79_spinand_get_otp(spi_nand, &otp)) return -1; if ((otp & ATH79_SPINAND_REG_ECC_MASK) == ATH79_SPINAND_REG_ECC_ON) return 0; otp |= ATH79_SPINAND_REG_ECC_ON; if (ath79_spinand_set_otp(spi_nand, &otp)) return -1; return ath79_spinand_get_otp(spi_nand, &otp); } static int ath79_spinand_disable_ecc(struct spi_device *spi_nand) { u8 otp = 0; if (ath79_spinand_get_otp(spi_nand, &otp)) return -1; if ((otp & ATH79_SPINAND_REG_ECC_MASK) == ATH79_SPINAND_REG_ECC_OFF) return 0; otp &= ~ATH79_SPINAND_REG_ECC_MASK; if (ath79_spinand_set_otp(spi_nand, &otp)) return -1; return ath79_spinand_get_otp(spi_nand, &otp); } static int ath79_spinand_write_enable(struct spi_device *spi_nand) { struct ath79_spinand_command cmd = {0}; cmd.cmd = ATH79_SPINAND_CMD_WR_ENABLE; return ath79_spinand_cmd(spi_nand, &cmd); } static int ath79_spinand_read_from_cache(struct spi_device *spi_nand, u32 offset, u32 len, u8 *rbuf) { struct ath79_spinand_command cmd = {0}; ath79_spinand_read_rdm_addr(spi_nand, offset, cmd.addr); cmd.cmd = ATH79_SPINAND_CMD_READ_RDM; cmd.n_addr = 3; cmd.n_dummy = 0; cmd.n_rx = len; cmd.rx_buf = rbuf; return ath79_spinand_cmd(spi_nand, &cmd); } static int ath79_spinand_read_page(struct spi_device *spi_nand, u32 page_id, u32 offset, u32 len, u8 *rbuf) { int ret; u8 status = 0; ret = ath79_spinand_read_page_to_cache(spi_nand, page_id); if (ret < 0) { dev_err(&spi_nand->dev, "Read page to cache failed!\n"); return ret; } if (__ath79_wait_till_ready(spi_nand, &status)) { dev_err(&spi_nand->dev, "WAIT timedout!\n"); return -EBUSY; } if ((status & ATH79_SPINAND_STATUS_OIP_MASK) != ATH79_SPINAND_STATUS_READY) return -EBUSY; status = ath79_spinand_ecc_status(spi_nand, status); if (ath79_spinand_ecc_error(spi_nand) == status) { dev_err(&spi_nand->dev, "ecc error, page=%d\n", page_id); return -1; } ret = ath79_spinand_read_from_cache(spi_nand, offset, len, rbuf); if (ret < 0) { dev_err(&spi_nand->dev, "read from cache failed!!\n"); return ret; } return ret; } static int ath79_spinand_program_data_to_cache(struct spi_device *spi_nand, u32 offset, u32 len, u8 *wbuf) { struct ath79_spinand_command cmd = {0}; cmd.cmd = ATH79_SPINAND_CMD_PROG_PAGE_LOAD; cmd.n_addr = 2; cmd.addr[0] = (u8)(offset >> 8); cmd.addr[1] = (u8)(offset >> 0); cmd.n_tx = len; cmd.tx_buf = wbuf; return ath79_spinand_cmd(spi_nand, &cmd); } static int ath79_spinand_program_page(struct spi_device *spi_nand, u32 page_id, u32 offset, u32 len, u8 *buf, u32 cache_size) { int retval; u8 status = 0; if (unlikely(offset)) { uint8_t *wbuf; unsigned int i, j; wbuf = devm_kzalloc(&spi_nand->dev, cache_size, GFP_KERNEL); if (!wbuf) { dev_err(&spi_nand->dev, "No memory\n"); return -ENOMEM; } if (ath79_spinand_read_page(spi_nand, page_id, 0, cache_size, wbuf)) { devm_kfree(&spi_nand->dev, wbuf); return -1; } for (i = offset, j = 0; i < len; i++, j++) wbuf[i] &= buf[j]; retval = ath79_spinand_program_load(spi_nand, offset, len, wbuf); devm_kfree(&spi_nand->dev, wbuf); } else { retval = ath79_spinand_program_load(spi_nand, offset, len, buf); } if (retval < 0) return retval; retval = ath79_spinand_program_execute(spi_nand, page_id); if (retval < 0) { dev_err(&spi_nand->dev, "program execute failed\n"); return retval; } if (__ath79_wait_till_ready(spi_nand, &status)) { dev_err(&spi_nand->dev, "wait timedout!!!\n"); return -EBUSY; } if ((status & ATH79_SPINAND_STATUS_OIP_MASK) != ATH79_SPINAND_STATUS_READY) return -EBUSY; if ((status & ATH79_SPINAND_STATUS_P_FAIL_MASK) == ATH79_SPINAND_STATUS_P_FAIL) { dev_err(&spi_nand->dev, "program error, page %d\n", page_id); return -1; } return 0; } static int ath79_spinand_erase_block(struct mtd_info *mtd, struct spi_device *spi_nand, u32 page) { int retval; u8 status = 0; retval = ath79_spinand_write_enable(spi_nand); if (retval < 0) { dev_err(&spi_nand->dev, "write enable failed!\n"); return retval; } if (ath79_wait_till_ready(spi_nand)) { dev_err(&spi_nand->dev, "wait timedout!\n"); return -EBUSY; } retval = ath79_spinand_erase_block_erase(spi_nand, page); if (retval < 0) { dev_err(&spi_nand->dev, "erase block failed!\n"); return retval; } if (__ath79_wait_till_ready(spi_nand, &status)) { dev_err(&spi_nand->dev, "wait timedout!\n"); return -EBUSY; } if ((status & ATH79_SPINAND_STATUS_OIP_MASK) != ATH79_SPINAND_STATUS_READY) return -EBUSY; if ((status & ATH79_SPINAND_STATUS_E_FAIL_MASK) == ATH79_SPINAND_STATUS_E_FAIL) { dev_err(&spi_nand->dev, "erase error, block %d\n", ATH79_SPINAND_PAGE_TO_BLOCK(page)); return -1; } return 0; } static int ath79_spinand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required) { chip->write_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); return 0; } static int ath79_spinand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { u8 status; uint8_t *p = buf; struct ath79_spinand_info *info = (struct ath79_spinand_info *)chip->priv; struct spi_device *spi_nand = info->spi; chip->read_buf(mtd, p, chip->ecc.size * chip->ecc.steps); if (oob_required) chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); if (__ath79_wait_till_ready(spi_nand, &status)) { dev_err(&spi_nand->dev, "wait timedout!\n"); return -EBUSY; } if ((status & ATH79_SPINAND_STATUS_OIP_MASK) != ATH79_SPINAND_STATUS_READY) return -EBUSY; status = ath79_spinand_ecc_status(spi_nand, status); if (ath79_spinand_ecc_error(spi_nand) == status) { pr_info("%s: Internal ECC error\n", __func__); mtd->ecc_stats.failed++; } else if (status) { pr_debug("%s: Internal ECC error corrected\n", __func__); mtd->ecc_stats.corrected++; } return 0; } static void ath79_spinand_select_chip(struct mtd_info *mtd, int dev) { } /* * Mark bad block: the 1st page of the bad block set to zero, include * main area and spare area. * NOTE, irreversible and erase is not recommanded */ static int ath79_spinand_block_markbad(struct mtd_info *mtd, loff_t ofs) { u8 status; struct nand_chip *chip = (struct nand_chip *)mtd->priv; struct ath79_spinand_info *info = (struct ath79_spinand_info *)chip->priv; struct spi_device *spi_nand = info->spi; struct ath79_spinand_state *state = info->state; int page_len = mtd->writesize + mtd->oobsize; int retval, page_id = ATH79_SPINAND_OFS_TO_PAGE(ofs);; memset(state->buf, 0, page_len); retval = ath79_spinand_program_load(spi_nand, 0, page_len, state->buf); if (retval < 0) return retval; retval = ath79_spinand_program_execute(spi_nand, page_id); if (retval < 0) { dev_err(&spi_nand->dev, "program execute failed\n"); return retval; } if (__ath79_wait_till_ready(spi_nand, &status)) { dev_err(&spi_nand->dev, "wait timedout!!!\n"); return -EBUSY; } if ((status & ATH79_SPINAND_STATUS_OIP_MASK) != ATH79_SPINAND_STATUS_READY) return -EBUSY; if ((status & ATH79_SPINAND_STATUS_P_FAIL_MASK) == ATH79_SPINAND_STATUS_P_FAIL) { dev_err(&spi_nand->dev, "program error, page %d\n", page_id); return -1; } return 0; } static uint8_t ath79_spinand_read_byte(struct mtd_info *mtd) { struct ath79_spinand_state *state = mtd_to_state(mtd); return state->buf[state->buf_ptr++]; } static int ath79_spinand_wait(struct mtd_info *mtd, struct nand_chip *chip) { struct ath79_spinand_info *info = (struct ath79_spinand_info *)chip->priv; unsigned long timeo = jiffies; u8 status; if (chip->state == FL_ERASING) timeo += (HZ * 400) / 1000; else timeo += (HZ * 20) / 1000; while (time_before(jiffies, timeo)) { if (ath79_spinand_read_status(info->spi, &status)) return NAND_STATUS_FAIL; if ((status & ATH79_SPINAND_STATUS_OIP_MASK) == ATH79_SPINAND_STATUS_READY) { status = ath79_spinand_ecc_status(info->spi, status); return (ath79_spinand_ecc_error(info->spi) == status) ? NAND_STATUS_FAIL : NAND_STATUS_READY; } cond_resched(); } return NAND_STATUS_FAIL; } static void ath79_spinand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct ath79_spinand_state *state = mtd_to_state(mtd); BUG_ON(ATH79_SPINAND_BUF_SIZE - state->buf_ptr < len); memcpy(state->buf + state->buf_ptr, buf, len); state->buf_ptr += len; } static void ath79_spinand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct ath79_spinand_state *state = mtd_to_state(mtd); memcpy(buf, state->buf + state->buf_ptr, len); state->buf_ptr += len; } static void ath79_spinand_reset(struct spi_device *spi_nand) { struct ath79_spinand_command cmd = {0}; cmd.cmd = ATH79_SPINAND_CMD_RESET; if (ath79_spinand_cmd(spi_nand, &cmd) < 0) pr_info("ath79_spinand reset failed!\n"); /* elapse 1ms before issuing any other command */ udelay(1000); if (ath79_wait_till_ready(spi_nand)) dev_err(&spi_nand->dev, "wait timedout!\n"); } static void ath79_spinand_cmdfunc(struct mtd_info *mtd, unsigned int command, int column, int page) { struct nand_chip *chip = (struct nand_chip *)mtd->priv; struct ath79_spinand_info *info = (struct ath79_spinand_info *)chip->priv; struct ath79_spinand_state *state = info->state; switch (command) { case NAND_CMD_READ1: case NAND_CMD_READ0: state->buf_ptr = 0; ath79_spinand_read_page(info->spi, page, 0x0, mtd->writesize + mtd->oobsize, state->buf); break; case NAND_CMD_READOOB: state->buf_ptr = 0; ath79_spinand_read_page(info->spi, page, mtd->writesize, mtd->oobsize, state->buf); break; case NAND_CMD_RNDOUT: state->buf_ptr = column; break; case NAND_CMD_READID: state->buf_ptr = 0; ath79_spinand_read_id(info->spi, (u8 *)state->buf); break; case NAND_CMD_PARAM: state->buf_ptr = 0; break; /* ERASE1 stores the block and page address */ case NAND_CMD_ERASE1: ath79_spinand_erase_block(mtd, info->spi, page); break; /* ERASE2 uses the block and page address from ERASE1 */ case NAND_CMD_ERASE2: break; /* SEQIN sets up the addr buffer and all registers except the length */ case NAND_CMD_SEQIN: state->col = column; state->row = page; state->buf_ptr = 0; break; /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ case NAND_CMD_PAGEPROG: ath79_spinand_program_page(info->spi, state->row, state->col, state->buf_ptr, state->buf, mtd->writesize + mtd->oobsize); break; case NAND_CMD_STATUS: ath79_spinand_get_otp(info->spi, state->buf); if (!(state->buf[0] & ATH79_SPINAND_REG_OTP_PRT)) state->buf[0] = ATH79_SPINAND_REG_OTP_PRT; state->buf_ptr = 0; break; /* RESET command */ case NAND_CMD_RESET: if (ath79_wait_till_ready(info->spi)) dev_err(&info->spi->dev, "WAIT timedout!!!\n"); /* a minimum of 250us must elapse before issuing RESET cmd*/ udelay(250); ath79_spinand_reset(info->spi); break; default: dev_err(&mtd->dev, "Unknown CMD: 0x%x\n", command); } } static int ath79_spinand_lock_block(struct spi_device *spi_nand, u8 lock) { struct ath79_spinand_command cmd = {0}; int ret; cmd.cmd = ATH79_SPINAND_CMD_WRITE_REG; cmd.n_addr = 1; cmd.addr[0] = ATH79_SPINAND_REG_BLOCK_LOCK; cmd.n_tx = 1; cmd.tx_buf = &lock; ret = ath79_spinand_cmd(spi_nand, &cmd); if (ret < 0) dev_err(&spi_nand->dev, "error %d lock block\n", ret); return ret; } /* * ECCSR[2:0] ECC Status * ------------------------------------------- * 000 no bit errors were detected * 001 bit errors(<3) corrected * 010 bit errors(=4) corrected * 011 bit errors(=5) corrected * 100 bit errors(=6) corrected * 101 bit errors(=7) corrected * 110 bit errors(=8) corrected * 111 uncorrectable */ static inline u8 ath79_spinand_eccsr_gd(u8 status) { return status >> 4 & 0x7; } /* * ECCSR[1:0] ECC Status * ------------------------------------------- * 00 no bit errors were detected * 01 bit errors(1~4) corrected * 10 uncorrectable * 11 reserved */ static inline u8 ath79_spinand_eccsr_common(u8 status) { return status >> 4 & 0x3; } static inline void ath79_spinand_read_rdm_addr_gd(u32 offset, u8 *addr) { addr[0] = 0xff; /* dummy byte */ addr[1] = (u8)(offset >> 8); addr[2] = (u8)(offset >> 0); } static inline void ath79_spinand_read_rdm_addr_common(u32 offset, u8 *addr) { addr[0] = (u8)(offset >> 8); addr[1] = (u8)(offset >> 0); addr[2] = 0xff; /* dummy byte */ } static inline int ath79_spinand_program_load_gd(struct spi_device *spi, u32 offset, u32 len, u8 *wbuf) { int retval; retval = ath79_spinand_program_data_to_cache(spi, offset, len, wbuf); if (retval < 0) { dev_err(&spi->dev, "program data to cache failed\n"); return retval; } retval = ath79_spinand_write_enable(spi); if (retval < 0) { dev_err(&spi->dev, "write enable failed!!\n"); return retval; } if (ath79_wait_till_ready(spi)) { dev_err(&spi->dev, "wait timedout!!!\n"); return -EBUSY; } return 0; } static inline int ath79_spinand_program_load_common(struct spi_device *spi, u32 offset, u32 len, u8 *wbuf) { int retval; retval = ath79_spinand_write_enable(spi); if (retval < 0) { dev_err(&spi->dev, "write enable failed!!\n"); return retval; } retval = ath79_spinand_program_data_to_cache(spi, offset, len, wbuf); if (retval < 0) { dev_err(&spi->dev, "program data to cache failed\n"); return retval; } if (ath79_wait_till_ready(spi)) { dev_err(&spi->dev, "wait timedout!!!\n"); return -EBUSY; } return 0; } static inline int __ath79_spinand_execute_cmd_common(struct spi_device *spi, u32 page, u8 cmd_id) { struct ath79_spinand_command cmd = {0}; cmd.cmd = cmd_id; cmd.n_addr = 3; cmd.addr[0] = (u8)(page >> 16); cmd.addr[1] = (u8)(page >> 8); cmd.addr[2] = (u8)(page >> 0); return ath79_spinand_cmd(spi, &cmd); } static inline int __ath79_spinand_execute_cmd_win(struct spi_device *spi, u32 page, u8 cmd_id) { struct ath79_spinand_command cmd = {0}; cmd.cmd = cmd_id; cmd.n_addr = 3; cmd.addr[0] = 0; cmd.addr[1] = (u8)(page >> 8); cmd.addr[2] = (u8)(page >> 0); return ath79_spinand_cmd(spi, &cmd); } static inline int ath79_spinand_erase_block_erase_common(struct spi_device *spi_nand, u32 page) { return __ath79_spinand_execute_cmd_common(spi_nand, page, ATH79_SPINAND_CMD_ERASE_BLK); } static inline int ath79_spinand_erase_block_erase_win(struct spi_device *spi_nand, u32 page) { return __ath79_spinand_execute_cmd_win(spi_nand, page, ATH79_SPINAND_CMD_ERASE_BLK); } static inline int ath79_spinand_page_read_to_cache_common(struct spi_device *spi_nand, u32 page) { return __ath79_spinand_execute_cmd_common(spi_nand, page, ATH79_SPINAND_CMD_READ); } static inline int ath79_spinand_page_read_to_cache_win(struct spi_device *spi_nand, u32 page) { return __ath79_spinand_execute_cmd_win(spi_nand, page, ATH79_SPINAND_CMD_READ); } static inline int ath79_spinand_program_execute_common(struct spi_device *spi_nand, u32 page) { return __ath79_spinand_execute_cmd_common(spi_nand, page, ATH79_SPINAND_CMD_PROG_PAGE_EXC); } static inline int ath79_spinand_program_execute_win(struct spi_device *spi_nand, u32 page) { return __ath79_spinand_execute_cmd_win(spi_nand, page, ATH79_SPINAND_CMD_PROG_PAGE_EXC); } static struct ath79_spinand_priv ath79_spinand_ids[] = { { /* Giga Device */ NAND_MFR_GIGADEVICE, /* manufacturer */ 0x07, /* ecc error code */ SZ_512, /* ecc size */ 16, /* ecc bytes */ 1, /* ecc strength */ &ath79_spinand_oob_128_gd, /* ecc layout */ &ath79_badblock_pattern_default, /* bad block pattern */ ath79_spinand_eccsr_gd, /* get ecc status */ ath79_spinand_read_rdm_addr_gd, /* wrap address for 03h command */ ath79_spinand_program_load_gd, /* program load data to cache */ ath79_spinand_erase_block_erase_common, /* erase block */ ath79_spinand_page_read_to_cache_common,/* page read to cache */ ath79_spinand_program_execute_common, /* program execute */ }, { /* Macronix */ NAND_MFR_MACRONIX, /* manufacturer*/ 0x02, /* ecc error code */ SZ_512, /* ecc size */ 7, /* ecc bytes */ 1, /* ecc strength */ &ath79_spinand_oob_64_mx, /* ecc layout */ &ath79_badblock_pattern_default, /* bad block pattern */ ath79_spinand_eccsr_common, /* get ecc status */ ath79_spinand_read_rdm_addr_common, /* wrap address for 03h command */ ath79_spinand_program_load_common, /* program load data to cache */ ath79_spinand_erase_block_erase_common, /* erase block */ ath79_spinand_page_read_to_cache_common,/* page read to cache */ ath79_spinand_program_execute_common, /* program execute */ }, { /* Winbond */ NAND_MFR_WINBOND, /* manufacturer*/ 0x02, /* ecc error code */ SZ_512, /* ecc size */ 10, /* ecc bytes */ 1, /* ecc strength */ &ath79_spinand_oob_64_win, /* ecc layout */ &ath79_badblock_pattern_default, /* bad block pattern */ ath79_spinand_eccsr_common, /* get ecc status */ ath79_spinand_read_rdm_addr_common, /* wrap address for 03h command */ ath79_spinand_program_load_common, /* program load data to cache */ ath79_spinand_erase_block_erase_win, /* erase block */ ath79_spinand_page_read_to_cache_win, /* page read to cache */ ath79_spinand_program_execute_win, /* program execute */ }, { /* HeYang Tek (the same as Giga Device) */ NAND_MFR_HEYANGTEK, /* manufacturer */ 0x07, /* ecc error code */ SZ_512, /* ecc size */ 16, /* ecc bytes */ 1, /* ecc strength */ &ath79_spinand_oob_128_gd, /* ecc layout */ &ath79_badblock_pattern_default, /* bad block pattern */ ath79_spinand_eccsr_gd, /* get ecc status */ ath79_spinand_read_rdm_addr_gd, /* wrap address for 03h command */ ath79_spinand_program_load_gd, /* program load data to cache */ ath79_spinand_erase_block_erase_common, /* erase block */ ath79_spinand_page_read_to_cache_common,/* page read to cache */ ath79_spinand_program_execute_common, /* program execute */ }, }; static void *ath79_spinand_priv_data_get(struct spi_device *spi_nand) { u8 id[3]; int i; ath79_spinand_read_id(spi_nand, id); for (i = 0; i < ARRAY_SIZE(ath79_spinand_ids); i++) if (ath79_spinand_ids[i].mfr == id[0]) return &ath79_spinand_ids[i]; return NULL; } static int ath79_spinand_probe(struct spi_device *spi_nand) { struct mtd_info *mtd; struct nand_chip *chip; struct ath79_spinand_info *info; struct ath79_spinand_state *state; struct ath79_spinand_priv *priv_data; priv_data = ath79_spinand_priv_data_get(spi_nand); if (!priv_data) return -ENXIO; info = devm_kzalloc(&spi_nand->dev, sizeof(struct ath79_spinand_info), GFP_KERNEL); if (!info) return -ENOMEM; info->spi = spi_nand; ath79_spinand_lock_block(spi_nand, ATH79_SPINAND_BL_ALL_UNLOCKED); ath79_spinand_disable_ecc(spi_nand); state = devm_kzalloc(&spi_nand->dev, sizeof(struct ath79_spinand_state), GFP_KERNEL); if (!state) return -ENOMEM; info->state = state; info->priv = priv_data; state->buf_ptr = 0; state->buf = devm_kzalloc(&spi_nand->dev, ATH79_SPINAND_BUF_SIZE, GFP_KERNEL); if (!state->buf) return -ENOMEM; chip = devm_kzalloc(&spi_nand->dev, sizeof(struct nand_chip), GFP_KERNEL); if (!chip) return -ENOMEM; chip->ecc.mode = NAND_ECC_HW; chip->ecc.size = priv_data->ecc_size; chip->ecc.bytes = priv_data->ecc_bytes; chip->ecc.strength = priv_data->ecc_strength; chip->ecc.layout = priv_data->ecc_layout; chip->badblock_pattern = priv_data->badblock_pattern; chip->ecc.read_page = ath79_spinand_read_page_hwecc; chip->ecc.write_page = ath79_spinand_write_page_hwecc; chip->priv = info; chip->read_buf = ath79_spinand_read_buf; chip->write_buf = ath79_spinand_write_buf; chip->read_byte = ath79_spinand_read_byte; chip->cmdfunc = ath79_spinand_cmdfunc; chip->waitfunc = ath79_spinand_wait; chip->options = NAND_CACHEPRG | NAND_NO_SUBPAGE_WRITE; chip->select_chip = ath79_spinand_select_chip; chip->block_markbad = ath79_spinand_block_markbad; mtd = devm_kzalloc(&spi_nand->dev, sizeof(struct mtd_info), GFP_KERNEL); if (!mtd) return -ENOMEM; dev_set_drvdata(&spi_nand->dev, mtd); mtd->priv = chip; mtd->name = dev_name(&spi_nand->dev); mtd->owner = THIS_MODULE; if (nand_scan(mtd, 1)) return -ENXIO; ath79_spinand_enable_ecc(spi_nand); return mtd_device_parse_register(mtd, NULL, NULL, NULL, 0); } static int ath79_spinand_remove(struct spi_device *spi) { mtd_device_unregister(dev_get_drvdata(&spi->dev)); return 0; } static struct spi_driver ath79_spinand_driver = { .driver = { .name = "ath79-spinand", .bus = &spi_bus_type, .owner = THIS_MODULE, }, .probe = ath79_spinand_probe, .remove = ath79_spinand_remove, }; module_spi_driver(ath79_spinand_driver); MODULE_DESCRIPTION("SPI NAND driver for Giga Device/Macronix"); MODULE_LICENSE("GPL v2");