memory.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739
  1. /*
  2. * memory.c
  3. *
  4. * Copyright (C) 2016 Aleksandar Andrejevic <theflash@sdf.lonestar.org>
  5. *
  6. * This program is free software: you can redistribute it and/or modify
  7. * it under the terms of the GNU Affero General Public License as
  8. * published by the Free Software Foundation, either version 3 of the
  9. * License, or (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU Affero General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Affero General Public License
  17. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include <memory.h>
  20. #include <log.h>
  21. #include <exception.h>
  22. #include <process.h>
  23. #include <syscalls.h>
  24. #include <heap.h>
  25. #include <cpu.h>
  26. #include <semaphore.h>
  27. static void **physical_memory_stack = (void**)MEM_STACK_VIRT_ADDR;
  28. static DECLARE_LOCK(phys_mem_stack_lock);
  29. static page_t *pages = NULL;
  30. static void *current_page_directory = INVALID_PAGE;
  31. static memory_address_space_t kernel_address_space;
  32. static memory_address_space_t mapping_space;
  33. static list_entry_t user_address_spaces = { &user_address_spaces, &user_address_spaces };
  34. static dword_t total_physical_pages = 0;
  35. static dword_t num_free_pages = 0;
  36. static dword_t mem_tree_bitmap[TOTAL_PAGES / 32];
  37. static DECLARE_LOCK(mem_tree_lock);
  38. static semaphore_t temporary_page_semaphore;
  39. static bool_t evicting = FALSE;
  40. static DECLARE_LIST(transition_pages);
  41. static DECLARE_LIST(page_stores);
  42. static DECLARE_LOCK(page_store_lock);
  43. static void *evict_page(void);
  44. static inline void *alloc_physical_page(void)
  45. {
  46. void *page = INVALID_PAGE;
  47. if (!evicting && num_free_pages <= EVICTION_THRESHOLD)
  48. {
  49. evicting = TRUE;
  50. page = evict_page();
  51. evicting = FALSE;
  52. if (page != INVALID_PAGE) return page;
  53. }
  54. lock_acquire(&phys_mem_stack_lock);
  55. if (num_free_pages) page = physical_memory_stack[--num_free_pages];
  56. lock_release(&phys_mem_stack_lock);
  57. return page;
  58. }
  59. static inline void free_physical_page(void *address)
  60. {
  61. lock_acquire(&phys_mem_stack_lock);
  62. physical_memory_stack[num_free_pages++] = address;
  63. lock_release(&phys_mem_stack_lock);
  64. }
  65. static int compare_page(const void *a, const void *b)
  66. {
  67. const page_t *page_a = (const page_t*)a;
  68. const page_t *page_b = (const page_t*)b;
  69. if (page_a->phys_addr < page_b->phys_addr) return -1;
  70. else if (page_a->phys_addr > page_b->phys_addr) return 1;
  71. else return 0;
  72. }
  73. static page_t *get_page(void *physical)
  74. {
  75. page_t key = { .phys_addr = (uintptr_t)physical };
  76. if (pages == NULL) return NULL;
  77. return (page_t*)bsearch(&key, pages, total_physical_pages, sizeof(page_t), compare_page);
  78. }
  79. static inline dword_t reference_page(void *physical)
  80. {
  81. page_t *page = get_page(physical);
  82. if (!page) return 0;
  83. return ++page->ref_count;
  84. }
  85. static inline dword_t dereference_page(void *physical)
  86. {
  87. page_t *page = get_page(physical);
  88. if (!page) return 0;
  89. return --page->ref_count;
  90. }
  91. static dword_t map_page(void *physical, void *virtual, dword_t flags)
  92. {
  93. dword_t i;
  94. dword_t ret = ERR_SUCCESS;
  95. critical_t critical;
  96. dword_t phys_addr = PAGE_ALIGN((dword_t)physical);
  97. dword_t virt_addr = PAGE_ALIGN((dword_t)virtual);
  98. dword_t pd_index = ADDR_TO_PDE(virt_addr), pt_index = ADDR_TO_PTE(virt_addr);
  99. dword_t *page_directory = (dword_t*)PAGE_DIRECTORY_ADDR;
  100. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + (pd_index << 12));
  101. flags &= 0x00000FFF;
  102. enter_critical(&critical);
  103. if (!(page_directory[pd_index] & PAGE_PRESENT))
  104. {
  105. void *table_page = alloc_physical_page();
  106. if (table_page == INVALID_PAGE)
  107. {
  108. ret = ERR_NOMEMORY;
  109. goto done;
  110. }
  111. reference_page(table_page);
  112. page_directory[pd_index] = (dword_t)table_page | PAGE_PRESENT | PAGE_WRITABLE;
  113. cpu_invalidate_tlb(page_table);
  114. for (i = 0; i < PAGE_SIZE / sizeof(dword_t); i++) page_table[i] = 0;
  115. }
  116. page_directory[pd_index] |= flags;
  117. if (page_table[pt_index] & PAGE_PRESENT)
  118. {
  119. ret = ERR_EXISTS;
  120. goto done;
  121. }
  122. reference_page((void*)phys_addr);
  123. page_table[pt_index] = phys_addr | flags | PAGE_PRESENT;
  124. cpu_invalidate_tlb(virtual);
  125. done:
  126. leave_critical(&critical);
  127. return ret;
  128. }
  129. static dword_t unmap_page(void *virtual)
  130. {
  131. dword_t i, ret = ERR_SUCCESS;
  132. critical_t critical;
  133. bool_t empty_dir = TRUE;
  134. dword_t virt_addr = PAGE_ALIGN((dword_t)virtual);
  135. dword_t pd_index = ADDR_TO_PDE(virt_addr), pt_index = ADDR_TO_PTE(virt_addr);
  136. dword_t *page_directory = (dword_t*)PAGE_DIRECTORY_ADDR;
  137. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + (pd_index << 12));
  138. enter_critical(&critical);
  139. if (!(page_directory[pd_index] & PAGE_PRESENT))
  140. {
  141. ret = ERR_NOTFOUND;
  142. goto done;
  143. }
  144. if (!(page_table[pt_index] & PAGE_PRESENT))
  145. {
  146. ret = ERR_NOTFOUND;
  147. goto done;
  148. }
  149. dereference_page((void*)PAGE_ALIGN(page_table[pt_index]));
  150. page_table[pt_index] = 0;
  151. cpu_invalidate_tlb((dword_t*)virt_addr);
  152. for (i = 0; i < PAGE_SIZE / sizeof(dword_t); i++) if (page_table[i])
  153. {
  154. empty_dir = FALSE;
  155. break;
  156. }
  157. if (empty_dir)
  158. {
  159. void *table_page = (void*)PAGE_ALIGN(page_directory[pd_index]);
  160. page_directory[pd_index] = 0;
  161. cpu_invalidate_tlb(page_table);
  162. if (dereference_page(table_page) == 0)
  163. {
  164. free_physical_page(table_page);
  165. }
  166. }
  167. done:
  168. leave_critical(&critical);
  169. return ret;
  170. }
  171. static dword_t get_page_flags(void *virtual)
  172. {
  173. dword_t virt_addr = PAGE_ALIGN((uintptr_t)virtual);
  174. dword_t pd_index = ADDR_TO_PDE(virt_addr), pt_index = ADDR_TO_PTE(virt_addr);
  175. dword_t *page_directory = (dword_t*)PAGE_DIRECTORY_ADDR;
  176. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + (pd_index << 12));
  177. if (!(page_directory[pd_index] & PAGE_PRESENT)) return 0;
  178. if (!(page_table[pt_index] & PAGE_PRESENT)) return 0;
  179. return PAGE_OFFSET(page_table[pt_index]);
  180. }
  181. static dword_t set_page_flags(void *virtual, dword_t flags)
  182. {
  183. dword_t ret = ERR_SUCCESS;
  184. critical_t critical;
  185. dword_t virt_addr = PAGE_ALIGN((dword_t)virtual);
  186. dword_t pd_index = ADDR_TO_PDE(virt_addr), pt_index = ADDR_TO_PTE(virt_addr);
  187. dword_t *page_directory = (dword_t*)PAGE_DIRECTORY_ADDR;
  188. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + (pd_index << 12));
  189. flags &= 0x00000FFF;
  190. enter_critical(&critical);
  191. if (!(page_directory[pd_index] & PAGE_PRESENT))
  192. {
  193. ret = ERR_NOTFOUND;
  194. goto done;
  195. }
  196. if (!(page_table[pt_index] & PAGE_PRESENT))
  197. {
  198. ret = ERR_NOTFOUND;
  199. goto done;
  200. }
  201. page_directory[pd_index] |= flags;
  202. page_table[pt_index] = PAGE_ALIGN(page_table[pt_index]) | flags | PAGE_PRESENT;
  203. cpu_invalidate_tlb((void*)virt_addr);
  204. done:
  205. leave_critical(&critical);
  206. return ret;
  207. }
  208. static void *map_temporary_page(void *physical, dword_t flags)
  209. {
  210. int i;
  211. wait_semaphore(&temporary_page_semaphore, 1, NO_TIMEOUT);
  212. for (i = TEMPORARY_PAGES - 1; i >= temporary_page_semaphore.count ; i--)
  213. {
  214. void *address = (void*)(TEMPORARY_ADDR + i * PAGE_SIZE);
  215. if (get_physical_address(address) == INVALID_PAGE)
  216. {
  217. if (map_page(physical, address, flags) == ERR_SUCCESS) return address;
  218. break;
  219. }
  220. }
  221. return NULL;
  222. }
  223. static void unmap_temporary_page(void *virtual)
  224. {
  225. unmap_page(virtual);
  226. release_semaphore(&temporary_page_semaphore, 1);
  227. }
  228. static inline dword_t alloc_page(void *virtual, dword_t flags)
  229. {
  230. void *phys = alloc_physical_page();
  231. if (phys == INVALID_PAGE) return ERR_NOMEMORY;
  232. dword_t ret = map_page(phys, virtual, flags);
  233. if (ret != ERR_SUCCESS) free_physical_page(phys);
  234. return ret;
  235. }
  236. static inline dword_t free_page(void *virtual)
  237. {
  238. void *phys = get_physical_address(virtual);
  239. if (phys == INVALID_PAGE) return ERR_INVALID;
  240. unmap_page(virtual);
  241. page_t *page = get_page(phys);
  242. if (page != NULL && page->ref_count > 0) free_physical_page(phys);
  243. return ERR_SUCCESS;
  244. }
  245. static void *evict_page_from_address_space(memory_address_space_t *space)
  246. {
  247. void *physical = INVALID_PAGE;
  248. int chances = 2;
  249. dword_t cached_directory[PAGE_SIZE / sizeof(dword_t)];
  250. dword_t *table = NULL;
  251. if (read_physical(space->page_directory, cached_directory, PAGE_SIZE) != ERR_SUCCESS)
  252. {
  253. return INVALID_PAGE;
  254. }
  255. if (!space->evict_blk_ptr) space->evict_blk_ptr = space->evictable_blocks.next;
  256. memory_block_t *block = CONTAINER_OF(space->evict_blk_ptr, memory_block_t, evict_link);
  257. dword_t prev_pd_index = (dword_t)-1;
  258. dword_t address;
  259. dword_t pd_index, pt_index;
  260. while (chances)
  261. {
  262. address = (dword_t)block->address + space->evict_page_num * PAGE_SIZE;
  263. pd_index = ADDR_TO_PDE(address);
  264. pt_index = ADDR_TO_PTE(address);
  265. if (!(cached_directory[pd_index] & PAGE_PRESENT)) goto next;
  266. if (prev_pd_index != pd_index)
  267. {
  268. if (table) unmap_temporary_page(table);
  269. table = map_temporary_page((void*)PAGE_ALIGN(cached_directory[pd_index]),
  270. PAGE_PRESENT | PAGE_WRITABLE);
  271. if (table == NULL) break;
  272. prev_pd_index = pd_index;
  273. }
  274. if (table[pt_index])
  275. {
  276. if (!(table[pt_index] & PAGE_ACCESSED))
  277. {
  278. physical = (void*)PAGE_ALIGN(table[pt_index]);
  279. break;
  280. }
  281. table[pt_index] &= ~PAGE_ACCESSED;
  282. }
  283. next:
  284. space->evict_page_num++;
  285. if (space->evict_page_num == (dword_t)block->size)
  286. {
  287. space->evict_page_num = 0;
  288. space->evict_blk_ptr = space->evict_blk_ptr->next;
  289. if (space->evict_blk_ptr == &space->evictable_blocks)
  290. {
  291. space->evict_blk_ptr = space->evict_blk_ptr->next;
  292. chances--;
  293. }
  294. if (space->evict_blk_ptr == &space->evictable_blocks) break;
  295. block = CONTAINER_OF(space->evict_blk_ptr, memory_block_t, evict_link);
  296. }
  297. }
  298. if (physical == INVALID_PAGE) goto cleanup;
  299. dword_t i;
  300. list_entry_t *ptr;
  301. page_store_t *store = NULL;
  302. byte_t buffer[PAGE_SIZE];
  303. dword_t ret = read_physical(physical, buffer, PAGE_SIZE);
  304. if (ret != ERR_SUCCESS)
  305. {
  306. physical = INVALID_PAGE;
  307. goto cleanup;
  308. }
  309. for (ptr = page_stores.next; ptr != &page_stores; ptr = ptr->next)
  310. {
  311. store = CONTAINER_OF(ptr, page_store_t, link);
  312. for (i = 0; i < store->max_entries; i++) if (!test_bit(store->bitmap, i)) break;
  313. if (i == store->max_entries) continue;
  314. }
  315. if (ptr == &page_stores)
  316. {
  317. physical = INVALID_PAGE;
  318. goto cleanup;
  319. }
  320. page_store_entry_t *entry = (page_store_entry_t*)malloc(sizeof(page_store_entry_t));
  321. if (entry == NULL)
  322. {
  323. physical = INVALID_PAGE;
  324. goto cleanup;
  325. }
  326. space->stats.evicted += PAGE_SIZE;
  327. entry->address = (void*)address;
  328. entry->address_space = space;
  329. entry->number = INVALID_STORE_NUMBER;
  330. entry->physical = INVALID_PAGE;
  331. if (dereference_page(physical) == 0)
  332. {
  333. entry->number = i;
  334. dword_t bytes_written;
  335. ret = syscall_write_file(store->file_handle, buffer, (qword_t)entry->number * (qword_t)PAGE_SIZE, PAGE_SIZE, &bytes_written);
  336. if (ret != ERR_SUCCESS)
  337. {
  338. reference_page(physical);
  339. free(entry);
  340. physical = INVALID_PAGE;
  341. goto cleanup;
  342. }
  343. set_bit(store->bitmap, i);
  344. list_append(&store->entry_list, &entry->link);
  345. for (ptr = transition_pages.next; ptr != &transition_pages; ptr = ptr->next)
  346. {
  347. page_store_entry_t *other_entry = CONTAINER_OF(ptr, page_store_entry_t, link);
  348. if (other_entry->physical == physical)
  349. {
  350. ASSERT(other_entry->number == INVALID_STORE_NUMBER);
  351. list_remove(&other_entry->link);
  352. list_append(&store->entry_list, &other_entry->link);
  353. other_entry->number = entry->number;
  354. other_entry->physical = INVALID_PAGE;
  355. }
  356. }
  357. }
  358. else
  359. {
  360. entry->physical = physical;
  361. list_append(&transition_pages, &entry->link);
  362. physical = INVALID_PAGE;
  363. }
  364. table[pt_index] = 0;
  365. if (space->page_directory == get_page_directory()) cpu_invalidate_tlb((void*)address);
  366. cleanup:
  367. if (table) unmap_temporary_page(table);
  368. return physical;
  369. }
  370. static void *evict_page(void)
  371. {
  372. if (pages == NULL) return INVALID_PAGE;
  373. list_entry_t *ptr;
  374. for (ptr = user_address_spaces.next; ptr != &user_address_spaces; ptr = ptr->next)
  375. {
  376. memory_address_space_t *space = CONTAINER_OF(ptr, memory_address_space_t, link);
  377. void *page = evict_page_from_address_space(space);
  378. if (page != INVALID_PAGE) return page;
  379. }
  380. return evict_page_from_address_space(&kernel_address_space);
  381. }
  382. static memory_block_t *mem_tree_alloc(void)
  383. {
  384. dword_t i;
  385. memory_block_t *block = NULL;
  386. lock_acquire(&mem_tree_lock);
  387. for (i = 0; i < TOTAL_PAGES; i++) if (!test_bit(mem_tree_bitmap, i)) break;
  388. if (i < TOTAL_PAGES)
  389. {
  390. block = (memory_block_t*)(MEM_TREE_BLOCKS + i * sizeof(memory_block_t));
  391. if ((get_physical_address(block) != INVALID_PAGE)
  392. || (alloc_page(block, PAGE_GLOBAL | PAGE_WRITABLE | PAGE_PRESENT) == ERR_SUCCESS))
  393. {
  394. set_bit(mem_tree_bitmap, i);
  395. }
  396. else
  397. {
  398. block = NULL;
  399. }
  400. }
  401. lock_release(&mem_tree_lock);
  402. return block;
  403. }
  404. static void mem_tree_free(memory_block_t *block)
  405. {
  406. dword_t index = ((dword_t)block - MEM_TREE_BLOCKS) / sizeof(memory_block_t);
  407. bool_t busy = FALSE;
  408. dword_t i, page = PAGE_ALIGN((dword_t)block);
  409. lock_acquire(&mem_tree_lock);
  410. clear_bit(mem_tree_bitmap, index);
  411. for (i = page; i < page + PAGE_SIZE; i += sizeof(memory_block_t))
  412. {
  413. index = (i - MEM_TREE_BLOCKS) / sizeof(memory_block_t);
  414. if (test_bit(mem_tree_bitmap, index))
  415. {
  416. busy = TRUE;
  417. break;
  418. }
  419. }
  420. if (!busy) free_page((void*)page);
  421. lock_release(&mem_tree_lock);
  422. }
  423. static memory_block_t *find_block_by_addr_internal(memory_block_t *block, void *address)
  424. {
  425. qword_t key = (qword_t)(dword_t)address;
  426. qword_t start_addr = block->address;
  427. qword_t end_addr = start_addr + block->size * PAGE_SIZE;
  428. if (key >= start_addr && key < end_addr) return block;
  429. if (key < start_addr)
  430. {
  431. if (!block->by_addr_node.left) return NULL;
  432. memory_block_t *left_block = CONTAINER_OF(block->by_addr_node.left, memory_block_t, by_addr_node);
  433. return find_block_by_addr_internal(left_block, address);
  434. }
  435. else
  436. {
  437. if (!block->by_addr_node.right) return NULL;
  438. memory_block_t *right_block = CONTAINER_OF(block->by_addr_node.right, memory_block_t, by_addr_node);
  439. return find_block_by_addr_internal(right_block, address);
  440. }
  441. }
  442. static memory_block_t *find_block_by_addr(memory_address_space_t *space, void *address)
  443. {
  444. if (!space->by_addr_tree.root) return NULL;
  445. memory_block_t *root = CONTAINER_OF(space->by_addr_tree.root, memory_block_t, by_addr_node);
  446. return find_block_by_addr_internal(root, address);
  447. }
  448. static bool_t clone_blocks_recursive(memory_address_space_t *space, memory_block_t *block)
  449. {
  450. memory_block_t *clone = mem_tree_alloc();
  451. if (clone == NULL) return FALSE;
  452. clone->address = block->address;
  453. clone->size = block->size;
  454. block->flags |= MEMORY_BLOCK_COPY_ON_WRITE;
  455. clone->flags = block->flags;
  456. clone->address_space = space;
  457. clone->section = block->section;
  458. avl_tree_insert(&space->by_addr_tree, &clone->by_addr_node);
  459. avl_tree_insert(&space->by_size_tree, &clone->by_size_node);
  460. memory_block_t *left_block = CONTAINER_OF(block->by_addr_node.left, memory_block_t, by_addr_node);
  461. memory_block_t *right_block = CONTAINER_OF(block->by_addr_node.right, memory_block_t, by_addr_node);
  462. if ((block->by_addr_node.left && !clone_blocks_recursive(space, left_block))
  463. || (block->by_addr_node.right && !clone_blocks_recursive(space, right_block)))
  464. {
  465. avl_tree_remove(&space->by_addr_tree, &clone->by_addr_node);
  466. avl_tree_remove(&space->by_size_tree, &clone->by_size_node);
  467. mem_tree_free(clone);
  468. return FALSE;
  469. }
  470. return TRUE;
  471. }
  472. static inline void release_memory_block(memory_block_t *block)
  473. {
  474. dword_t page;
  475. dword_t start_address = (dword_t)block->address;
  476. dword_t end_address = start_address + (dword_t)block->size * PAGE_SIZE;
  477. critical_t critical;
  478. enter_critical(&critical);
  479. void *old_page_dir = get_page_directory();
  480. set_page_directory(block->address_space->page_directory);
  481. for (page = start_address; page < end_address; page += PAGE_SIZE)
  482. {
  483. free_page((void*)page);
  484. }
  485. set_page_directory(old_page_dir);
  486. leave_critical(&critical);
  487. if (block->section)
  488. {
  489. dereference(&block->section->header);
  490. block->section = NULL;
  491. }
  492. list_entry_t *i;
  493. for (i = transition_pages.next; i != &transition_pages; i = i->next)
  494. {
  495. page_store_entry_t *entry = CONTAINER_OF(i, page_store_entry_t, link);
  496. if (entry->address_space == block->address_space
  497. && (dword_t)entry->address >= start_address
  498. && ((dword_t)entry->address < end_address))
  499. {
  500. list_remove(&entry->link);
  501. free(entry);
  502. }
  503. }
  504. lock_acquire(&page_store_lock);
  505. for (i = page_stores.next; i != &page_stores; i = i->next)
  506. {
  507. list_entry_t *j;
  508. page_store_t *store = CONTAINER_OF(i, page_store_t, link);
  509. for (j = store->entry_list.next; j != &store->entry_list; j = j->next)
  510. {
  511. page_store_entry_t *entry = CONTAINER_OF(j, page_store_entry_t, link);
  512. if (entry->address_space == block->address_space
  513. && (dword_t)entry->address >= start_address
  514. && ((dword_t)entry->address < end_address))
  515. {
  516. if (entry->number != INVALID_STORE_NUMBER) clear_bit(store->bitmap, entry->number);
  517. list_remove(&entry->link);
  518. free(entry);
  519. }
  520. }
  521. }
  522. lock_release(&page_store_lock);
  523. }
  524. static void free_blocks_recursive(memory_block_t *block)
  525. {
  526. release_memory_block(block);
  527. if (block->by_addr_node.left)
  528. {
  529. memory_block_t *left_block = CONTAINER_OF(block->by_addr_node.left, memory_block_t, by_addr_node);
  530. free_blocks_recursive(left_block);
  531. }
  532. if (block->by_addr_node.right)
  533. {
  534. memory_block_t *right_block = CONTAINER_OF(block->by_addr_node.right, memory_block_t, by_addr_node);
  535. free_blocks_recursive(right_block);
  536. }
  537. mem_tree_free(block);
  538. }
  539. static memory_block_t *find_free_block_internal(memory_block_t *root, void *address, dword_t size)
  540. {
  541. avl_node_t *ptr;
  542. if (root->by_size_node.left && (dword_t)root->size > size)
  543. {
  544. memory_block_t *left = CONTAINER_OF(root->by_size_node.left, memory_block_t, by_size_node);
  545. memory_block_t *block = find_free_block_internal(left, address, size);
  546. if (block) return block;
  547. }
  548. if ((dword_t)root->size >= size)
  549. {
  550. for (ptr = &root->by_size_node; ptr != NULL; ptr = ptr->next_equal)
  551. {
  552. memory_block_t *block = CONTAINER_OF(ptr, memory_block_t, by_size_node);
  553. if (!(block->flags & MEMORY_BLOCK_FREE)) continue;
  554. if (address != NULL)
  555. {
  556. dword_t block_start = (dword_t)block->address;
  557. dword_t block_end = block_start + ((dword_t)block->size * PAGE_SIZE) - 1;
  558. dword_t needed_start = (dword_t)address;
  559. dword_t needed_end = needed_start + (size * PAGE_SIZE) - 1;
  560. if ((needed_start < block_start) || (needed_end > block_end)) continue;
  561. }
  562. return block;
  563. }
  564. }
  565. if (!root->by_size_node.right) return NULL;
  566. memory_block_t *right = CONTAINER_OF(root->by_size_node.right, memory_block_t, by_size_node);
  567. return find_free_block_internal(right, address, size);
  568. }
  569. static memory_block_t *find_free_block(memory_address_space_t *address_space, void *address, dword_t size)
  570. {
  571. memory_block_t *root_block = CONTAINER_OF(address_space->by_size_tree.root, memory_block_t, by_size_node);
  572. return find_free_block_internal(root_block, address, size);
  573. }
  574. static void *create_page_directory(void)
  575. {
  576. dword_t *current = (dword_t*)PAGE_DIRECTORY_ADDR;
  577. dword_t new_dir_buffer[PAGE_SIZE / sizeof(dword_t)];
  578. memset(&new_dir_buffer[USER_PAGE_START],
  579. 0,
  580. (USER_PAGE_END - USER_PAGE_START + 1) * sizeof(dword_t));
  581. memcpy(&new_dir_buffer[KERNEL_PAGE_START],
  582. &current[KERNEL_PAGE_START],
  583. (KERNEL_PAGE_END - KERNEL_PAGE_START + 1) * sizeof(dword_t));
  584. void *directory = alloc_physical_page();
  585. if (directory == NULL) return NULL;
  586. new_dir_buffer[PAGEDIR_SELF_ENTRY] = (dword_t)directory | PAGE_PRESENT | PAGE_WRITABLE;
  587. write_physical(directory, new_dir_buffer, PAGE_SIZE);
  588. return directory;
  589. }
  590. static void fix_overlapping_sections(multiboot_tag_mmap_t *mmap)
  591. {
  592. multiboot_mmap_entry_t *entry;
  593. for (entry = (multiboot_mmap_entry_t*)(mmap + 1);
  594. (uintptr_t)entry < ((uintptr_t)mmap + mmap->size);
  595. entry = (multiboot_mmap_entry_t*)((uintptr_t)entry + mmap->entry_size))
  596. {
  597. multiboot_mmap_entry_t *ptr;
  598. for (ptr = (multiboot_mmap_entry_t*)(mmap + 1);
  599. (uintptr_t)ptr < (uintptr_t)entry;
  600. ptr = (multiboot_mmap_entry_t*)((uintptr_t)ptr + mmap->entry_size))
  601. {
  602. qword_t entry_end = entry->base + entry->length;
  603. qword_t ptr_end = ptr->base + ptr->length;
  604. if (entry->base > ptr->base && entry->base < ptr_end)
  605. {
  606. entry->base = ptr_end;
  607. if (entry->base >= entry_end) entry->length = 0;
  608. else entry->length = entry_end - entry->base;
  609. }
  610. else if (ptr->base > entry->base && ptr->base < entry_end)
  611. {
  612. ptr->base = entry_end;
  613. if (ptr->base >= ptr_end) ptr->length = 0;
  614. else ptr->length = ptr_end - ptr->base;
  615. }
  616. }
  617. }
  618. }
  619. static inline memory_block_t *combine_blocks_forward(memory_block_t *mem_block)
  620. {
  621. while (TRUE)
  622. {
  623. avl_node_t *next = avl_get_next_node(&mem_block->by_addr_node);
  624. if (!next) break;
  625. memory_block_t *next_block = CONTAINER_OF(next, memory_block_t, by_addr_node);
  626. if (!(next_block->flags & MEMORY_BLOCK_FREE)) break;
  627. size_t new_size = mem_block->size + next_block->size;
  628. avl_tree_change_key(&mem_block->address_space->by_size_tree, &mem_block->by_size_node, &new_size);
  629. avl_tree_remove(&mem_block->address_space->by_addr_tree, &next_block->by_addr_node);
  630. avl_tree_remove(&mem_block->address_space->by_size_tree, &next_block->by_size_node);
  631. mem_tree_free(next_block);
  632. }
  633. return mem_block;
  634. }
  635. static inline memory_block_t *combine_blocks_backward(memory_block_t *mem_block)
  636. {
  637. while (TRUE)
  638. {
  639. avl_node_t *previous = avl_get_previous_node(&mem_block->by_addr_node);
  640. if (!previous) break;
  641. memory_block_t *prev_block = CONTAINER_OF(previous, memory_block_t, by_addr_node);
  642. if (!(prev_block->flags & MEMORY_BLOCK_FREE)) break;
  643. size_t new_size = prev_block->size + mem_block->size;
  644. avl_tree_change_key(&mem_block->address_space->by_size_tree, &prev_block->by_size_node, &new_size);
  645. avl_tree_remove(&mem_block->address_space->by_addr_tree, &mem_block->by_addr_node);
  646. avl_tree_remove(&mem_block->address_space->by_size_tree, &mem_block->by_size_node);
  647. mem_tree_free(mem_block);
  648. mem_block = prev_block;
  649. }
  650. return mem_block;
  651. }
  652. void memory_cleanup(object_t *obj)
  653. {
  654. memory_section_t *section = (memory_section_t*)obj;
  655. if (section->file) dereference(&section->file->header);
  656. }
  657. void *get_page_directory(void)
  658. {
  659. return current_page_directory;
  660. }
  661. void set_page_directory(void *phys_addr)
  662. {
  663. current_page_directory = phys_addr;
  664. cpu_write_page_table_register((uintptr_t)phys_addr);
  665. }
  666. void *get_physical_address(void *virtual)
  667. {
  668. dword_t virt_addr = PAGE_ALIGN((dword_t)virtual);
  669. dword_t pd_index = ADDR_TO_PDE(virt_addr), pt_index = ADDR_TO_PTE(virt_addr);
  670. dword_t *page_directory = (dword_t*)PAGE_DIRECTORY_ADDR;
  671. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + (pd_index << 12));
  672. if (!(page_directory[pd_index] & PAGE_PRESENT)) return INVALID_PAGE;
  673. if (!(page_table[pt_index] & PAGE_PRESENT)) return INVALID_PAGE;
  674. return (void*)(PAGE_ALIGN(page_table[pt_index]) + PAGE_OFFSET((dword_t)virtual));
  675. }
  676. dword_t map_memory_internal(void *physical, void *virtual, uintptr_t size, dword_t page_flags)
  677. {
  678. dword_t i, j;
  679. dword_t phys_addr = PAGE_ALIGN((dword_t)physical);
  680. dword_t virt_addr = PAGE_ALIGN((dword_t)virtual);
  681. size = PAGE_ALIGN_UP(size);
  682. page_flags &= 0xFFF;
  683. for (i = 0; i < size; i += PAGE_SIZE)
  684. {
  685. dword_t ret = map_page((void*)(phys_addr + i), (void*)(virt_addr + i), page_flags);
  686. if (ret != ERR_SUCCESS)
  687. {
  688. for (j = 0; j < i; j += PAGE_SIZE) unmap_page((void*)(virt_addr + j));
  689. return ret;
  690. }
  691. }
  692. return ERR_SUCCESS;
  693. }
  694. void unmap_memory_internal(void *virtual, dword_t size)
  695. {
  696. dword_t i;
  697. dword_t virt_addr = PAGE_ALIGN((dword_t)virtual);
  698. size = PAGE_ALIGN_UP(size);
  699. for (i = 0; i < size; i += PAGE_SIZE)
  700. {
  701. void *page_addr = (void*)(virt_addr + i);
  702. void *physical = get_physical_address(page_addr);
  703. unmap_page(page_addr);
  704. dereference_page(physical);
  705. }
  706. }
  707. dword_t map_memory_in_address_space(memory_address_space_t *address_space,
  708. void *physical,
  709. void **virtual,
  710. uintptr_t size,
  711. dword_t block_flags)
  712. {
  713. dword_t ret;
  714. void *address = (void*)PAGE_ALIGN((uintptr_t)*virtual);
  715. uintptr_t aligned_physical = PAGE_ALIGN((uintptr_t)physical);
  716. if (*virtual != NULL && PAGE_OFFSET((uintptr_t)*virtual) != PAGE_OFFSET((uintptr_t)physical)) return ERR_INVALID;
  717. size = (PAGE_ALIGN_UP((uintptr_t)physical + size - 1) - aligned_physical) >> 12;
  718. lock_acquire(&address_space->lock);
  719. memory_block_t *block = find_free_block(address_space, address, size);
  720. if (block == NULL)
  721. {
  722. lock_release(&address_space->lock);
  723. return ERR_NOMEMORY;
  724. }
  725. dword_t flags = PAGE_GLOBAL;
  726. dword_t real_address = (address != NULL) ? (dword_t)address : (dword_t)block->address;
  727. block_flags &= ~MEMORY_BLOCK_EVICTABLE;
  728. if (block_flags & MEMORY_BLOCK_ACCESSIBLE) flags |= PAGE_PRESENT;
  729. if (block_flags & MEMORY_BLOCK_WRITABLE) flags |= PAGE_WRITABLE;
  730. if (block_flags & MEMORY_BLOCK_USERMODE) flags |= PAGE_USERMODE;
  731. ret = map_memory_internal((void*)aligned_physical, (void*)real_address, size * PAGE_SIZE, flags);
  732. if (ret != ERR_SUCCESS)
  733. {
  734. lock_release(&address_space->lock);
  735. return ret;
  736. }
  737. if ((dword_t)block->address < (dword_t)address)
  738. {
  739. memory_block_t *new_block = mem_tree_alloc();
  740. new_block->flags = MEMORY_BLOCK_FREE;
  741. new_block->address = block->address;
  742. new_block->size = (size_t)(((dword_t)address - block->address) / PAGE_SIZE);
  743. new_block->address_space = address_space;
  744. new_block->section = NULL;
  745. size_t new_size = block->size - new_block->size;
  746. avl_tree_change_key(&address_space->by_size_tree, &block->by_size_node, &new_size);
  747. avl_tree_change_key(&address_space->by_addr_tree, &block->by_addr_node, &address);
  748. avl_tree_insert(&address_space->by_addr_tree, &new_block->by_addr_node);
  749. avl_tree_insert(&address_space->by_size_tree, &new_block->by_size_node);
  750. combine_blocks_backward(new_block);
  751. }
  752. if (block->size > size)
  753. {
  754. memory_block_t *new_block = mem_tree_alloc();
  755. new_block->flags = MEMORY_BLOCK_FREE;
  756. new_block->address = (qword_t)(block->address + (size * PAGE_SIZE));
  757. new_block->size = (qword_t)((dword_t)block->size - size);
  758. new_block->address_space = address_space;
  759. new_block->section = NULL;
  760. avl_tree_change_key(&address_space->by_size_tree, &block->by_size_node, &size);
  761. avl_tree_insert(&address_space->by_addr_tree, &new_block->by_addr_node);
  762. avl_tree_insert(&address_space->by_size_tree, &new_block->by_size_node);
  763. combine_blocks_forward(new_block);
  764. }
  765. block->flags = block_flags;
  766. *virtual = (void*)((dword_t)block->address + PAGE_OFFSET((uintptr_t)physical));
  767. lock_release(&address_space->lock);
  768. return ERR_SUCCESS;
  769. }
  770. dword_t pin_memory(const void *virtual, void **pinned, uintptr_t size, bool_t lock_contents)
  771. {
  772. uintptr_t i;
  773. uintptr_t virt_addr = PAGE_ALIGN((uintptr_t)virtual);
  774. void *address = (void*)PAGE_ALIGN((uintptr_t)*pinned);
  775. size = PAGE_ALIGN_UP(size) >> 12;
  776. memory_address_space_t *address_space = check_usermode(virtual, 1) ? &get_current_process()->memory_space : &kernel_address_space;
  777. lock_acquire_shared(&address_space->lock);
  778. lock_acquire(&mapping_space.lock);
  779. memory_block_t *block = find_free_block(&mapping_space, address, size);
  780. if (block == NULL)
  781. {
  782. lock_release(&address_space->lock);
  783. lock_release(&mapping_space.lock);
  784. return ERR_NOMEMORY;
  785. }
  786. dword_t real_address = (address != NULL) ? (dword_t)address : (dword_t)block->address;
  787. dword_t new_flags = PAGE_PRESENT | PAGE_GLOBAL;
  788. if (!lock_contents) new_flags |= PAGE_WRITABLE;
  789. for (i = 0; i < size; i++)
  790. {
  791. void *virt_page = (void*)(virt_addr + i * PAGE_SIZE);
  792. void *phys_page = get_physical_address(virt_page);
  793. if (lock_contents)
  794. {
  795. memory_block_t *block = find_block_by_addr(address_space, (void*)(virt_addr + i));
  796. ASSERT(block != NULL);
  797. block->flags |= MEMORY_BLOCK_COPY_ON_WRITE;
  798. set_page_flags(virt_page, get_page_flags(virt_page) & ~PAGE_WRITABLE);
  799. }
  800. dword_t ret = map_page(phys_page, (void*)(real_address + i), new_flags);
  801. ASSERT(ret == ERR_SUCCESS);
  802. reference_page(phys_page);
  803. }
  804. if ((dword_t)block->address < (dword_t)address)
  805. {
  806. memory_block_t *new_block = mem_tree_alloc();
  807. new_block->flags = MEMORY_BLOCK_FREE;
  808. new_block->address = block->address;
  809. new_block->size = (size_t)(((dword_t)address - block->address) / PAGE_SIZE);
  810. new_block->address_space = &mapping_space;
  811. new_block->section = NULL;
  812. size_t new_size = block->size - new_block->size;
  813. avl_tree_change_key(&mapping_space.by_size_tree, &block->by_size_node, &new_size);
  814. avl_tree_change_key(&mapping_space.by_addr_tree, &block->by_addr_node, &address);
  815. avl_tree_insert(&mapping_space.by_addr_tree, &new_block->by_addr_node);
  816. avl_tree_insert(&mapping_space.by_size_tree, &new_block->by_size_node);
  817. combine_blocks_backward(new_block);
  818. }
  819. if ((dword_t)block->size > size)
  820. {
  821. memory_block_t *new_block = mem_tree_alloc();
  822. new_block->flags = MEMORY_BLOCK_FREE;
  823. new_block->address = (qword_t)(block->address + (size * PAGE_SIZE));
  824. new_block->size = (qword_t)((dword_t)block->size - size);
  825. new_block->address_space = &mapping_space;
  826. new_block->section = NULL;
  827. avl_tree_change_key(&mapping_space.by_size_tree, &block->by_size_node, &size);
  828. avl_tree_insert(&mapping_space.by_addr_tree, &new_block->by_addr_node);
  829. avl_tree_insert(&mapping_space.by_size_tree, &new_block->by_size_node);
  830. combine_blocks_forward(new_block);
  831. }
  832. block->flags = MEMORY_BLOCK_ACCESSIBLE;
  833. if (!lock_contents) block->flags |= MEMORY_BLOCK_WRITABLE;
  834. *pinned = (void*)((dword_t)block->address) + PAGE_OFFSET((uintptr_t)virtual);
  835. lock_release(&address_space->lock);
  836. lock_release(&mapping_space.lock);
  837. return ERR_SUCCESS;
  838. }
  839. dword_t unmap_memory_in_address_space(memory_address_space_t *address_space, void *virtual)
  840. {
  841. lock_acquire(&mapping_space.lock);
  842. uintptr_t aligned_address = PAGE_ALIGN((uintptr_t)virtual);
  843. avl_node_t *node = avl_tree_lookup(&mapping_space.by_addr_tree, &aligned_address);
  844. if (node == NULL)
  845. {
  846. lock_release(&mapping_space.lock);
  847. return ERR_INVALID;
  848. }
  849. memory_block_t *mem_block = CONTAINER_OF(node, memory_block_t, by_addr_node);
  850. if (mem_block->flags & MEMORY_BLOCK_FREE)
  851. {
  852. lock_release(&mapping_space.lock);
  853. return ERR_INVALID;
  854. }
  855. unmap_memory_internal((void*)((dword_t)mem_block->address), (dword_t)mem_block->size * PAGE_SIZE);
  856. mem_block->flags = MEMORY_BLOCK_FREE;
  857. mem_block = combine_blocks_backward(mem_block);
  858. mem_block = combine_blocks_forward(mem_block);
  859. lock_release(&mapping_space.lock);
  860. return ERR_SUCCESS;
  861. }
  862. dword_t map_memory(void *physical, void **virtual, uintptr_t size, dword_t block_flags)
  863. {
  864. return map_memory_in_address_space(&mapping_space, physical, virtual, size, block_flags);
  865. }
  866. dword_t unmap_memory(void *virtual)
  867. {
  868. return unmap_memory_in_address_space(&mapping_space, virtual);
  869. }
  870. dword_t alloc_memory_in_address_space(memory_address_space_t *address_space,
  871. void **address,
  872. dword_t size,
  873. dword_t block_flags,
  874. memory_section_t *section,
  875. qword_t section_offset)
  876. {
  877. void *base_address = (void*)PAGE_ALIGN((uintptr_t)*address);
  878. block_flags &= ~(MEMORY_BLOCK_FREE | MEMORY_BLOCK_COPY_ON_WRITE);
  879. size = PAGE_ALIGN_UP(size) >> 12;
  880. if (size == 0) return ERR_INVALID;
  881. lock_acquire(&address_space->lock);
  882. memory_block_t *block = find_free_block(address_space, base_address, size);
  883. if (block == NULL)
  884. {
  885. lock_release(&address_space->lock);
  886. return ERR_NOMEMORY;
  887. }
  888. if (section)
  889. {
  890. reference(&section->header);
  891. block->section = section;
  892. block->section_offset = section_offset;
  893. if ((section->flags & (MEMORY_SECTION_WRITABLE | MEMORY_SECTION_DIRECT_WRITE)) == MEMORY_SECTION_WRITABLE)
  894. {
  895. block_flags |= MEMORY_BLOCK_COPY_ON_WRITE;
  896. }
  897. }
  898. if ((dword_t)block->address < (dword_t)base_address)
  899. {
  900. memory_block_t *new_block = mem_tree_alloc();
  901. new_block->flags = MEMORY_BLOCK_FREE;
  902. new_block->address = block->address;
  903. new_block->size = (size_t)(((dword_t)base_address - block->address) / PAGE_SIZE);
  904. new_block->address_space = address_space;
  905. new_block->section = NULL;
  906. size_t new_size = block->size - new_block->size;
  907. avl_tree_change_key(&address_space->by_size_tree, &block->by_size_node, &new_size);
  908. avl_tree_change_key(&address_space->by_addr_tree, &block->by_addr_node, &base_address);
  909. avl_tree_insert(&address_space->by_addr_tree, &new_block->by_addr_node);
  910. avl_tree_insert(&address_space->by_size_tree, &new_block->by_size_node);
  911. combine_blocks_backward(new_block);
  912. }
  913. if ((dword_t)block->size > size)
  914. {
  915. memory_block_t *new_block = mem_tree_alloc();
  916. new_block->flags = MEMORY_BLOCK_FREE;
  917. new_block->address = (qword_t)(block->address + (size * PAGE_SIZE));
  918. new_block->size = (qword_t)((dword_t)block->size - size);
  919. new_block->address_space = address_space;
  920. new_block->section = NULL;
  921. avl_tree_change_key(&address_space->by_size_tree, &block->by_size_node, &size);
  922. avl_tree_insert(&address_space->by_addr_tree, &new_block->by_addr_node);
  923. avl_tree_insert(&address_space->by_size_tree, &new_block->by_size_node);
  924. combine_blocks_forward(new_block);
  925. }
  926. block->flags = block_flags;
  927. *address = (void*)((dword_t)block->address);
  928. if (block_flags & MEMORY_BLOCK_EVICTABLE) list_append(&address_space->evictable_blocks, &block->evict_link);
  929. lock_release(&address_space->lock);
  930. return ERR_SUCCESS;
  931. }
  932. dword_t free_memory_in_address_space(memory_address_space_t *address_space, void *address)
  933. {
  934. lock_acquire(&address_space->lock);
  935. uintptr_t aligned_address = PAGE_ALIGN((uintptr_t)address);
  936. avl_node_t *node = avl_tree_lookup(&address_space->by_addr_tree, &aligned_address);
  937. if (node == NULL)
  938. {
  939. lock_release(&address_space->lock);
  940. return ERR_INVALID;
  941. }
  942. memory_block_t *mem_block = CONTAINER_OF(node, memory_block_t, by_addr_node);
  943. if (mem_block->flags & MEMORY_BLOCK_FREE)
  944. {
  945. lock_release(&address_space->lock);
  946. return ERR_INVALID;
  947. }
  948. release_memory_block(mem_block);
  949. if (mem_block->flags & MEMORY_BLOCK_EVICTABLE) list_remove(&mem_block->evict_link);
  950. mem_block->flags = MEMORY_BLOCK_FREE;
  951. mem_block = combine_blocks_backward(mem_block);
  952. mem_block = combine_blocks_forward(mem_block);
  953. lock_release(&address_space->lock);
  954. return ERR_SUCCESS;
  955. }
  956. dword_t commit_pages(void *address, size_t size)
  957. {
  958. uintptr_t i;
  959. uintptr_t first_page = PAGE_ALIGN((uintptr_t)address);
  960. uintptr_t last_page = PAGE_ALIGN_UP(first_page + size - 1);
  961. EH_TRY
  962. {
  963. for (i = first_page; i <= last_page; i += PAGE_SIZE)
  964. {
  965. volatile uintptr_t value = *(volatile uintptr_t*)i;
  966. UNUSED_PARAMETER(value);
  967. }
  968. }
  969. EH_CATCH
  970. {
  971. EH_ESCAPE(return ERR_BADPTR);
  972. }
  973. EH_DONE;
  974. return ERR_SUCCESS;
  975. }
  976. dword_t uncommit_pages(void *address, size_t size)
  977. {
  978. uintptr_t i;
  979. uintptr_t first_page = PAGE_ALIGN((uintptr_t)address);
  980. uintptr_t last_page = PAGE_ALIGN_UP(first_page + size - 1);
  981. EH_TRY
  982. {
  983. for (i = first_page; i <= last_page; i += PAGE_SIZE)
  984. {
  985. volatile uintptr_t value = *(volatile uintptr_t*)i;
  986. UNUSED_PARAMETER(value);
  987. dword_t ret = unmap_page((void*)i);
  988. if (ret != ERR_SUCCESS) return ret;
  989. }
  990. }
  991. EH_CATCH
  992. {
  993. EH_ESCAPE(return ERR_BADPTR);
  994. }
  995. EH_DONE;
  996. return ERR_SUCCESS;
  997. }
  998. dword_t read_physical(void *physical, void *buffer, dword_t size)
  999. {
  1000. critical_t critical;
  1001. dword_t ret = ERR_SUCCESS;
  1002. dword_t page;
  1003. dword_t first_page = PAGE_ALIGN((dword_t)physical);
  1004. dword_t last_page = PAGE_ALIGN((dword_t)physical + size - 1);
  1005. dword_t offset = PAGE_OFFSET((dword_t)physical);
  1006. enter_critical(&critical);
  1007. for (page = first_page; page <= last_page; page += PAGE_SIZE)
  1008. {
  1009. dword_t length = ((page == last_page) ? ((dword_t)physical + size - page) : PAGE_SIZE) - offset;
  1010. void *mapping = map_temporary_page((void*)page, PAGE_PRESENT);
  1011. if (mapping == NULL) return ERR_NOMEMORY;
  1012. memcpy(buffer, (void*)((dword_t)mapping + offset), length);
  1013. unmap_temporary_page(mapping);
  1014. buffer = (void*)((dword_t)buffer + length);
  1015. offset = 0;
  1016. }
  1017. leave_critical(&critical);
  1018. return ret;
  1019. }
  1020. dword_t write_physical(void *physical, void *buffer, dword_t size)
  1021. {
  1022. critical_t critical;
  1023. dword_t ret = ERR_SUCCESS;
  1024. dword_t page;
  1025. dword_t first_page = PAGE_ALIGN((dword_t)physical);
  1026. dword_t last_page = PAGE_ALIGN((dword_t)physical + size - 1);
  1027. dword_t offset = PAGE_OFFSET((dword_t)physical);
  1028. enter_critical(&critical);
  1029. for (page = first_page; page <= last_page; page += PAGE_SIZE)
  1030. {
  1031. dword_t length = ((page == last_page) ? ((dword_t)physical + size - page) : PAGE_SIZE) - offset;
  1032. void *mapping = map_temporary_page((void*)page, PAGE_PRESENT | PAGE_WRITABLE);
  1033. if (mapping == NULL) return ERR_NOMEMORY;
  1034. memcpy((void*)((dword_t)mapping + offset), buffer, length);
  1035. unmap_temporary_page(mapping);
  1036. buffer = (void*)((dword_t)buffer + length);
  1037. offset = 0;
  1038. }
  1039. leave_critical(&critical);
  1040. return ret;
  1041. }
  1042. sysret_t syscall_alloc_memory(handle_t process, void **address, dword_t size, dword_t flags)
  1043. {
  1044. process_t *proc;
  1045. dword_t ret = ERR_SUCCESS;
  1046. void *safe_address;
  1047. void **local_address = address;
  1048. if (get_previous_mode() == USER_MODE)
  1049. {
  1050. flags &= MEMORY_BLOCK_WRITABLE | MEMORY_BLOCK_ACCESSIBLE;
  1051. flags |= MEMORY_BLOCK_USERMODE | MEMORY_BLOCK_EVICTABLE;
  1052. if (!check_usermode(address, sizeof(void*))) return ERR_BADPTR;
  1053. EH_TRY
  1054. {
  1055. safe_address = *address;
  1056. local_address = &safe_address;
  1057. }
  1058. EH_CATCH
  1059. {
  1060. EH_ESCAPE(return ERR_BADPTR);
  1061. }
  1062. EH_DONE;
  1063. }
  1064. if (process != INVALID_HANDLE)
  1065. {
  1066. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc)) return ERR_INVALID;
  1067. }
  1068. else
  1069. {
  1070. proc = get_current_process();
  1071. reference(&proc->header);
  1072. }
  1073. ret = alloc_memory_in_address_space(&proc->memory_space, local_address, size, flags, NULL, 0ULL);
  1074. if (get_previous_mode() == USER_MODE)
  1075. {
  1076. EH_TRY *address = safe_address;
  1077. EH_DONE;
  1078. }
  1079. dereference(&proc->header);
  1080. return ret;
  1081. }
  1082. sysret_t syscall_free_memory(handle_t process, void *address)
  1083. {
  1084. dword_t ret = ERR_SUCCESS;
  1085. process_t *proc;
  1086. if (process != INVALID_HANDLE)
  1087. {
  1088. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc)) return ERR_INVALID;
  1089. }
  1090. else
  1091. {
  1092. proc = get_current_process();
  1093. reference(&proc->header);
  1094. }
  1095. ret = free_memory_in_address_space(&proc->memory_space, address);
  1096. dereference(&proc->header);
  1097. return ret;
  1098. }
  1099. sysret_t syscall_commit_memory(handle_t process, void *address, dword_t size)
  1100. {
  1101. dword_t ret = ERR_SUCCESS;
  1102. process_t *proc;
  1103. if (get_previous_mode() == USER_MODE && !check_usermode(address, size)) return ERR_BADPTR;
  1104. if (process == INVALID_HANDLE)
  1105. {
  1106. proc = get_current_process();
  1107. reference(&proc->header);
  1108. }
  1109. else
  1110. {
  1111. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc)) return ERR_INVALID;
  1112. }
  1113. if (proc->terminating) return ERR_CANCELED;
  1114. lock_acquire_shared(&proc->memory_space.lock);
  1115. process_t *prev_proc = switch_process(proc);
  1116. ret = commit_pages(address, size);
  1117. switch_process(prev_proc);
  1118. lock_release(&proc->memory_space.lock);
  1119. dereference(&proc->header);
  1120. return ret;
  1121. }
  1122. sysret_t syscall_uncommit_memory(handle_t process, void *address, dword_t size)
  1123. {
  1124. dword_t ret = ERR_SUCCESS;
  1125. process_t *proc;
  1126. if (get_previous_mode() == USER_MODE && !check_usermode(address, size)) return ERR_BADPTR;
  1127. if (process == INVALID_HANDLE)
  1128. {
  1129. proc = get_current_process();
  1130. reference(&proc->header);
  1131. }
  1132. else
  1133. {
  1134. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc)) return ERR_INVALID;
  1135. }
  1136. if (proc->terminating) return ERR_CANCELED;
  1137. lock_acquire_shared(&proc->memory_space.lock);
  1138. process_t *prev_proc = switch_process(proc);
  1139. ret = uncommit_pages(address, size);
  1140. switch_process(prev_proc);
  1141. lock_release(&proc->memory_space.lock);
  1142. dereference(&proc->header);
  1143. return ret;
  1144. }
  1145. sysret_t syscall_set_memory_flags(handle_t process, void *address, dword_t flags)
  1146. {
  1147. dword_t ret = ERR_SUCCESS;
  1148. process_t *proc;
  1149. flags &= ~(MEMORY_BLOCK_FREE | MEMORY_BLOCK_COPY_ON_WRITE);
  1150. if (get_previous_mode() == USER_MODE) flags |= MEMORY_BLOCK_USERMODE | MEMORY_BLOCK_EVICTABLE;
  1151. if (process != INVALID_HANDLE)
  1152. {
  1153. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc)) return ERR_INVALID;
  1154. }
  1155. else
  1156. {
  1157. proc = get_current_process();
  1158. reference(&proc->header);
  1159. }
  1160. process_t *prev_proc = switch_process(proc);
  1161. lock_acquire(&proc->memory_space.lock);
  1162. memory_block_t *block = find_block_by_addr(&proc->memory_space, address);
  1163. if (block == NULL)
  1164. {
  1165. ret = ERR_INVALID;
  1166. goto cleanup;
  1167. }
  1168. if (block->section)
  1169. {
  1170. if ((flags & MEMORY_BLOCK_WRITABLE) && !(block->section->flags & MEMORY_SECTION_WRITABLE))
  1171. {
  1172. ret = ERR_FORBIDDEN;
  1173. goto cleanup;
  1174. }
  1175. }
  1176. if (block->flags & MEMORY_BLOCK_FREE)
  1177. {
  1178. ret = ERR_INVALID;
  1179. goto cleanup;
  1180. }
  1181. dword_t page;
  1182. dword_t start_address = (dword_t)block->address;
  1183. dword_t end_address = start_address + (dword_t)block->size * PAGE_SIZE;
  1184. dword_t page_flags = 0;
  1185. if (flags & MEMORY_BLOCK_ACCESSIBLE) page_flags |= PAGE_PRESENT;
  1186. if (flags & MEMORY_BLOCK_WRITABLE) page_flags |= PAGE_WRITABLE;
  1187. if (flags & MEMORY_BLOCK_USERMODE) page_flags |= PAGE_USERMODE;
  1188. else page_flags |= PAGE_GLOBAL;
  1189. for (page = start_address; page < end_address; page += PAGE_SIZE)
  1190. {
  1191. set_page_flags((void*)page, page_flags);
  1192. }
  1193. if (!(block->flags & MEMORY_BLOCK_EVICTABLE) && (flags & MEMORY_BLOCK_EVICTABLE))
  1194. {
  1195. list_append(&proc->memory_space.evictable_blocks, &block->evict_link);
  1196. }
  1197. else if ((block->flags & MEMORY_BLOCK_EVICTABLE) && !(flags & MEMORY_BLOCK_EVICTABLE))
  1198. {
  1199. list_remove(&block->evict_link);
  1200. }
  1201. block->flags &= MEMORY_BLOCK_COPY_ON_WRITE;
  1202. block->flags |= flags;
  1203. cleanup:
  1204. lock_release(&proc->memory_space.lock);
  1205. switch_process(prev_proc);
  1206. dereference(&proc->header);
  1207. return ret;
  1208. }
  1209. sysret_t syscall_query_memory(handle_t process, void *address, memory_block_info_t *info)
  1210. {
  1211. dword_t ret = ERR_SUCCESS;
  1212. process_t *proc;
  1213. if ((get_previous_mode() == USER_MODE) && !check_usermode(info, sizeof(memory_block_info_t)))
  1214. {
  1215. return ERR_BADPTR;
  1216. }
  1217. if (process != INVALID_HANDLE)
  1218. {
  1219. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc)) return ERR_INVALID;
  1220. }
  1221. else
  1222. {
  1223. proc = get_current_process();
  1224. reference(&proc->header);
  1225. }
  1226. lock_acquire_shared(&proc->memory_space.lock);
  1227. memory_block_t *block = find_block_by_addr(&proc->memory_space, address);
  1228. if (block == NULL)
  1229. {
  1230. ret = ERR_INVALID;
  1231. goto cleanup;
  1232. }
  1233. EH_TRY
  1234. {
  1235. info->address = block->address;
  1236. info->size = block->size;
  1237. info->flags = block->flags;
  1238. }
  1239. EH_CATCH
  1240. {
  1241. ret = ERR_BADPTR;
  1242. }
  1243. EH_DONE;
  1244. cleanup:
  1245. lock_release(&proc->memory_space.lock);
  1246. dereference(&proc->header);
  1247. return ret;
  1248. }
  1249. sysret_t syscall_read_memory(handle_t process, void *address, void *buffer, dword_t size)
  1250. {
  1251. dword_t ret = ERR_SUCCESS;
  1252. process_t *proc;
  1253. byte_t page_cache[PAGE_SIZE];
  1254. if (get_previous_mode() == USER_MODE && !check_usermode(buffer, size)) return ERR_BADPTR;
  1255. if (process == INVALID_HANDLE)
  1256. {
  1257. EH_TRY
  1258. {
  1259. memmove(buffer, address, size);
  1260. return ERR_SUCCESS;
  1261. }
  1262. EH_CATCH
  1263. {
  1264. EH_ESCAPE(return ERR_FORBIDDEN);
  1265. }
  1266. EH_DONE;
  1267. }
  1268. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc)) return ERR_INVALID;
  1269. if (proc->terminating) return ERR_CANCELED;
  1270. lock_acquire_shared(&proc->memory_space.lock);
  1271. dword_t page;
  1272. dword_t first_page = PAGE_ALIGN((dword_t)address);
  1273. dword_t last_page = PAGE_ALIGN((dword_t)address + size - 1);
  1274. dword_t offset = PAGE_OFFSET((dword_t)address);
  1275. for (page = first_page; page <= last_page; page += PAGE_SIZE)
  1276. {
  1277. dword_t length = ((page == last_page) ? ((dword_t)address + size - page) : PAGE_SIZE) - offset;
  1278. process_t *prev_proc = switch_process(proc);
  1279. EH_TRY memcpy(&page_cache[offset], (void*)(page + offset), length);
  1280. EH_CATCH ret = ERR_FORBIDDEN;
  1281. EH_DONE;
  1282. switch_process(prev_proc);
  1283. if (ret != ERR_SUCCESS) break;
  1284. EH_TRY memcpy(buffer, &page_cache[offset], length);
  1285. EH_CATCH ret = ERR_BADPTR;
  1286. EH_DONE;
  1287. buffer = (void*)((dword_t)buffer + length);
  1288. offset = 0;
  1289. if (ret != ERR_SUCCESS) break;
  1290. }
  1291. lock_release(&proc->memory_space.lock);
  1292. dereference(&proc->header);
  1293. return ret;
  1294. }
  1295. sysret_t syscall_write_memory(handle_t process, void *address, void *buffer, dword_t size)
  1296. {
  1297. dword_t ret = ERR_SUCCESS;
  1298. process_t *proc;
  1299. byte_t page_cache[PAGE_SIZE];
  1300. if (get_previous_mode() == USER_MODE && !check_usermode(buffer, size)) return ERR_BADPTR;
  1301. if (process == INVALID_HANDLE)
  1302. {
  1303. EH_TRY
  1304. {
  1305. memmove(address, buffer, size);
  1306. return ERR_SUCCESS;
  1307. }
  1308. EH_CATCH
  1309. {
  1310. EH_ESCAPE(return ERR_FORBIDDEN);
  1311. }
  1312. EH_DONE;
  1313. }
  1314. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc)) return ERR_INVALID;
  1315. if (proc->terminating) return ERR_CANCELED;
  1316. lock_acquire(&proc->memory_space.lock);
  1317. dword_t page;
  1318. dword_t first_page = PAGE_ALIGN((dword_t)address);
  1319. dword_t last_page = PAGE_ALIGN((dword_t)address + size - 1);
  1320. dword_t offset = PAGE_OFFSET((dword_t)address);
  1321. for (page = first_page; page <= last_page; page += PAGE_SIZE)
  1322. {
  1323. dword_t length = ((page == last_page) ? ((dword_t)address + size - page) : PAGE_SIZE) - offset;
  1324. EH_TRY memcpy(&page_cache[offset], buffer, length);
  1325. EH_CATCH ret = ERR_BADPTR;
  1326. EH_DONE;
  1327. if (ret != ERR_SUCCESS) break;
  1328. process_t *prev_proc = switch_process(proc);
  1329. EH_TRY memcpy((void*)(page + offset), &page_cache[offset], length);
  1330. EH_CATCH ret = ERR_FORBIDDEN;
  1331. EH_DONE;
  1332. switch_process(prev_proc);
  1333. buffer = (void*)((dword_t)buffer + length);
  1334. offset = 0;
  1335. if (ret != ERR_SUCCESS) break;
  1336. }
  1337. lock_release(&proc->memory_space.lock);
  1338. dereference(&proc->header);
  1339. return ret;
  1340. }
  1341. void *alloc_pool(void *address, dword_t size, dword_t block_flags)
  1342. {
  1343. size = PAGE_ALIGN_UP(size);
  1344. void *result = address;
  1345. if (alloc_memory_in_address_space(&kernel_address_space,
  1346. &result,
  1347. size,
  1348. block_flags,
  1349. NULL,
  1350. 0ULL) == ERR_SUCCESS)
  1351. {
  1352. return result;
  1353. }
  1354. else
  1355. {
  1356. return NULL;
  1357. }
  1358. }
  1359. void free_pool(void *address)
  1360. {
  1361. free_memory_in_address_space(&kernel_address_space, address);
  1362. }
  1363. sysret_t syscall_create_memory_section(const char *name, handle_t file, size_t max_size, dword_t flags, handle_t *handle)
  1364. {
  1365. dword_t ret = ERR_SUCCESS;
  1366. handle_t safe_handle;
  1367. char *safe_name = NULL;
  1368. flags &= MEMORY_SECTION_WRITABLE | MEMORY_SECTION_DIRECT_WRITE;
  1369. if (flags & MEMORY_SECTION_DIRECT_WRITE) flags |= MEMORY_SECTION_WRITABLE;
  1370. if (get_previous_mode() == USER_MODE)
  1371. {
  1372. dword_t name_length = 0;
  1373. EH_TRY name_length = strlen(name);
  1374. EH_CATCH EH_ESCAPE(return ERR_BADPTR);
  1375. EH_DONE;
  1376. if (!check_usermode(name, name_length + 1)) return ERR_BADPTR;
  1377. if (!check_usermode(handle, sizeof(handle_t))) return ERR_BADPTR;
  1378. safe_name = copy_user_string(name);
  1379. if (safe_name == NULL) return ERR_BADPTR;
  1380. }
  1381. else
  1382. {
  1383. safe_name = (char*)name;
  1384. }
  1385. memory_section_t *section = (memory_section_t*)malloc(sizeof(memory_section_t));
  1386. if (section == NULL)
  1387. {
  1388. ret = ERR_NOMEMORY;
  1389. goto cleanup;
  1390. }
  1391. file_instance_t *file_instance = NULL;
  1392. if (file != INVALID_HANDLE)
  1393. {
  1394. if (!reference_by_handle(file, OBJECT_FILE_INSTANCE, (object_t**)&file_instance))
  1395. {
  1396. ret = ERR_INVALID;
  1397. goto cleanup;
  1398. }
  1399. }
  1400. list_init(&section->page_list);
  1401. section->flags = flags;
  1402. section->size = max_size;
  1403. section->file = file != INVALID_HANDLE ? file_instance : NULL;
  1404. init_object(&section->header, safe_name, OBJECT_MEMORY);
  1405. ret = create_object(&section->header);
  1406. if (ret != ERR_SUCCESS)
  1407. {
  1408. if (file_instance) dereference(&file_instance->header);
  1409. if (section->header.name) free(section->header.name);
  1410. free(section);
  1411. section = NULL;
  1412. goto cleanup;
  1413. }
  1414. ret = open_object(&section->header, 0, &safe_handle);
  1415. if (ret == ERR_SUCCESS)
  1416. {
  1417. EH_TRY
  1418. {
  1419. *handle = safe_handle;
  1420. }
  1421. EH_CATCH
  1422. {
  1423. syscall_close_object(safe_handle);
  1424. ret = ERR_BADPTR;
  1425. }
  1426. EH_DONE;
  1427. }
  1428. cleanup:
  1429. if (section) dereference(&section->header);
  1430. if (get_previous_mode() == USER_MODE) free(safe_name);
  1431. return ret;
  1432. }
  1433. sysret_t syscall_open_memory_section(const char *name, handle_t *handle)
  1434. {
  1435. handle_t safe_handle;
  1436. char *safe_name = NULL;
  1437. if (get_previous_mode() == USER_MODE)
  1438. {
  1439. dword_t name_length = 0;
  1440. EH_TRY name_length = strlen(name);
  1441. EH_CATCH EH_ESCAPE(return ERR_BADPTR);
  1442. EH_DONE;
  1443. if (!check_usermode(name, name_length + 1)) return ERR_BADPTR;
  1444. if (!check_usermode(handle, sizeof(handle_t))) return ERR_BADPTR;
  1445. safe_name = copy_user_string(name);
  1446. if (safe_name == NULL) return ERR_NOMEMORY;
  1447. }
  1448. else safe_name = (char*)name;
  1449. dword_t ret = open_object_by_name(safe_name, OBJECT_MEMORY, 0, &safe_handle);
  1450. EH_TRY
  1451. {
  1452. *handle = safe_handle;
  1453. }
  1454. EH_CATCH
  1455. {
  1456. syscall_close_object(safe_handle);
  1457. ret = ERR_BADPTR;
  1458. }
  1459. EH_DONE;
  1460. if (get_previous_mode() == USER_MODE) free(safe_name);
  1461. return ret;
  1462. }
  1463. sysret_t syscall_map_memory_section(handle_t process, handle_t section, void **address, qword_t offset, size_t size, dword_t flags)
  1464. {
  1465. dword_t ret = ERR_SUCCESS;
  1466. process_t *proc = NULL;
  1467. memory_section_t *mem_sec = NULL;
  1468. void *safe_address;
  1469. if (PAGE_OFFSET(offset) != 0) return ERR_INVALID;
  1470. if (process != INVALID_HANDLE)
  1471. {
  1472. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc))
  1473. {
  1474. ret = ERR_INVALID;
  1475. goto cleanup;
  1476. }
  1477. }
  1478. else
  1479. {
  1480. proc = get_current_process();
  1481. reference(&proc->header);
  1482. }
  1483. if (!reference_by_handle(section, OBJECT_MEMORY, (object_t**)&mem_sec))
  1484. {
  1485. ret = ERR_INVALID;
  1486. goto cleanup;
  1487. }
  1488. if (get_previous_mode() == USER_MODE)
  1489. {
  1490. if (!check_usermode(address, sizeof(void*)))
  1491. {
  1492. ret = ERR_BADPTR;
  1493. goto cleanup;
  1494. }
  1495. EH_TRY safe_address = *address;
  1496. EH_CATCH ret = ERR_BADPTR;
  1497. EH_DONE;
  1498. if (ret != ERR_SUCCESS) goto cleanup;
  1499. }
  1500. else
  1501. {
  1502. safe_address = *address;
  1503. }
  1504. if ((flags & MEMORY_BLOCK_WRITABLE) && !(mem_sec->flags & MEMORY_SECTION_WRITABLE))
  1505. {
  1506. ret = ERR_FORBIDDEN;
  1507. goto cleanup;
  1508. }
  1509. ret = alloc_memory_in_address_space(&proc->memory_space, &safe_address, size, flags, mem_sec, offset);
  1510. if (ret != ERR_SUCCESS) goto cleanup;
  1511. EH_TRY *address = safe_address;
  1512. EH_DONE;
  1513. cleanup:
  1514. if (proc) dereference(&proc->header);
  1515. if (mem_sec) dereference(&mem_sec->header);
  1516. return ret;
  1517. }
  1518. sysret_t syscall_flush_memory_section(handle_t process, void *address)
  1519. {
  1520. dword_t ret = ERR_SUCCESS;
  1521. process_t *proc = NULL;
  1522. if (process != INVALID_HANDLE)
  1523. {
  1524. if (!reference_by_handle(process, OBJECT_PROCESS, (object_t**)&proc))
  1525. {
  1526. ret = ERR_INVALID;
  1527. goto cleanup;
  1528. }
  1529. }
  1530. else
  1531. {
  1532. proc = get_current_process();
  1533. reference(&proc->header);
  1534. }
  1535. lock_acquire_shared(&proc->memory_space.lock);
  1536. memory_block_t *block = find_block_by_addr(&proc->memory_space, address);
  1537. if (block == NULL || block->section == NULL)
  1538. {
  1539. ret = ERR_INVALID;
  1540. goto cleanup;
  1541. }
  1542. if (block->section->file == NULL) goto cleanup;
  1543. list_entry_t *ptr;
  1544. for (ptr = block->section->page_list.next; ptr != &block->section->page_list; ptr = ptr->next)
  1545. {
  1546. dword_t bytes_written;
  1547. byte_t buffer[PAGE_SIZE];
  1548. shared_page_t *shared = CONTAINER_OF(ptr, shared_page_t, link);
  1549. ret = read_physical(shared->physical, buffer, PAGE_SIZE);
  1550. if (ret != ERR_SUCCESS) continue;
  1551. file_instance_t *file = block->section->file;
  1552. lock_acquire(&file->global->volume->lock);
  1553. ret = file->global->volume->driver->write_file(file, buffer, shared->offset, PAGE_SIZE, &bytes_written);
  1554. lock_release(&file->global->volume->lock);
  1555. if (ret != ERR_SUCCESS) break;
  1556. }
  1557. cleanup:
  1558. lock_release(&proc->memory_space.lock);
  1559. dereference(&proc->header);
  1560. return ret;
  1561. }
  1562. sysret_t syscall_add_page_file(const char *path, dword_t max_entries)
  1563. {
  1564. dword_t ret;
  1565. char *safe_path = NULL;
  1566. if (max_entries == INVALID_STORE_NUMBER) max_entries--;
  1567. if (get_previous_mode() == USER_MODE)
  1568. {
  1569. if (!check_privileges(PRIVILEGE_SET_PAGE_FILE)) return ERR_FORBIDDEN;
  1570. if (path)
  1571. {
  1572. dword_t path_length = 0;
  1573. EH_TRY path_length = strlen(path);
  1574. EH_CATCH EH_ESCAPE(return ERR_BADPTR);
  1575. EH_DONE;
  1576. if (!check_usermode(path, path_length + 1)) return ERR_BADPTR;
  1577. safe_path = copy_user_string(path);
  1578. if (!safe_path) return ERR_NOMEMORY;
  1579. }
  1580. }
  1581. else safe_path = (char*)path;
  1582. page_store_t *store = (page_store_t*)malloc(sizeof(page_store_t));
  1583. if (store == NULL)
  1584. {
  1585. ret = ERR_NOMEMORY;
  1586. goto cleanup;
  1587. }
  1588. store->bitmap = malloc((max_entries + 7) / 8);
  1589. if (store->bitmap == NULL)
  1590. {
  1591. free(store);
  1592. ret = ERR_NOMEMORY;
  1593. goto cleanup;
  1594. }
  1595. memset(store->bitmap, 0, (max_entries + 7) / 8);
  1596. store->num_entries = 0;
  1597. store->max_entries = max_entries;
  1598. list_init(&store->entry_list);
  1599. ret = syscall(SYSCALL_OPEN_FILE,
  1600. safe_path,
  1601. &store->file_handle,
  1602. FILE_MODE_READ
  1603. | FILE_MODE_WRITE
  1604. | FILE_MODE_NO_CACHE
  1605. | FILE_MODE_DELETE_ON_CLOSE
  1606. | FILE_MODE_CREATE
  1607. | FILE_MODE_TRUNCATE,
  1608. 0);
  1609. if (ret != ERR_SUCCESS)
  1610. {
  1611. free(store->bitmap);
  1612. free(store);
  1613. goto cleanup;
  1614. }
  1615. lock_acquire(&page_store_lock);
  1616. list_append(&page_stores, &store->link);
  1617. lock_release(&page_store_lock);
  1618. cleanup:
  1619. if (get_previous_mode() == USER_MODE) free(safe_path);
  1620. return ret;
  1621. }
  1622. sysret_t syscall_remove_page_file(const char *path)
  1623. {
  1624. dword_t ret = ERR_SUCCESS;
  1625. char *safe_path = NULL;
  1626. if (get_previous_mode() == USER_MODE)
  1627. {
  1628. if (!check_privileges(PRIVILEGE_SET_PAGE_FILE)) return ERR_FORBIDDEN;
  1629. if (path)
  1630. {
  1631. dword_t path_length = 0;
  1632. EH_TRY path_length = strlen(path);
  1633. EH_CATCH EH_ESCAPE(return ERR_BADPTR);
  1634. EH_DONE;
  1635. if (!check_usermode(path, path_length + 1)) return ERR_BADPTR;
  1636. safe_path = copy_user_string(path);
  1637. if (!safe_path) return ERR_NOMEMORY;
  1638. }
  1639. }
  1640. else safe_path = (char*)path;
  1641. list_entry_t *ptr;
  1642. page_store_t *store;
  1643. lock_acquire(&page_store_lock);
  1644. for (ptr = page_stores.next; ptr != &page_stores; ptr = ptr->next)
  1645. {
  1646. store = CONTAINER_OF(ptr, page_store_t, link);
  1647. char *name_buffer = NULL;
  1648. size_t name_buffer_size = 256;
  1649. while (TRUE)
  1650. {
  1651. char *name_buffer = malloc(name_buffer_size);
  1652. if (!name_buffer) break;
  1653. ret = syscall(SYSCALL_QUERY_FILE, store->file_handle, name_buffer, name_buffer_size);
  1654. if (ret != ERR_SUCCESS) free(name_buffer);
  1655. if (ret != ERR_SMALLBUF) break;
  1656. name_buffer_size *= 2;
  1657. }
  1658. if (ret == ERR_SUCCESS)
  1659. {
  1660. bool_t found = strcmp(name_buffer, safe_path) == 0;
  1661. if (name_buffer) free(name_buffer);
  1662. if (found) break;
  1663. }
  1664. }
  1665. if (ptr == &page_stores)
  1666. {
  1667. ret = ERR_NOTFOUND;
  1668. lock_release(&page_store_lock);
  1669. goto cleanup;
  1670. }
  1671. list_remove(&store->link);
  1672. lock_release(&page_store_lock);
  1673. for (ptr = store->entry_list.next; ptr != &store->entry_list; ptr = ptr->next)
  1674. {
  1675. process_t *old_process;
  1676. byte_t buffer[PAGE_SIZE];
  1677. dword_t bytes_read;
  1678. dword_t page_flags = 0;
  1679. page_store_entry_t *entry = CONTAINER_OF(ptr, page_store_entry_t, link);
  1680. ret = syscall_read_file(store->file_handle, buffer, (qword_t)entry->number * (qword_t)PAGE_SIZE, PAGE_SIZE, &bytes_read);
  1681. if (ret != ERR_SUCCESS) break;
  1682. lock_acquire(&entry->address_space->lock);
  1683. memory_block_t *block = find_block_by_addr(entry->address_space, entry->address);
  1684. if (block->flags & MEMORY_BLOCK_ACCESSIBLE) page_flags |= PAGE_PRESENT;
  1685. if ((block->flags & (MEMORY_BLOCK_WRITABLE | MEMORY_BLOCK_COPY_ON_WRITE))
  1686. == MEMORY_BLOCK_WRITABLE)
  1687. {
  1688. page_flags |= PAGE_WRITABLE;
  1689. }
  1690. if (block->flags & MEMORY_BLOCK_USERMODE) page_flags |= PAGE_USERMODE;
  1691. else page_flags |= PAGE_GLOBAL;
  1692. if (entry->address_space != &kernel_address_space)
  1693. {
  1694. old_process = switch_process(CONTAINER_OF(entry->address_space, process_t, memory_space));
  1695. }
  1696. ret = alloc_page(entry->address, page_flags);
  1697. if (ret != ERR_SUCCESS) goto loop_cleanup;
  1698. list_entry_t *p;
  1699. for (p = store->entry_list.next; p != &store->entry_list; p = ptr->next)
  1700. {
  1701. page_store_entry_t *other_entry = CONTAINER_OF(ptr, page_store_entry_t, link);
  1702. if (entry != other_entry && other_entry->number == entry->number)
  1703. {
  1704. list_remove(&other_entry->link);
  1705. list_append(&transition_pages, &other_entry->link);
  1706. other_entry->physical = get_physical_address(entry->address);
  1707. other_entry->number = INVALID_STORE_NUMBER;
  1708. }
  1709. }
  1710. clear_bit(store->bitmap, entry->number);
  1711. list_remove(&entry->link);
  1712. memcpy(entry->address, buffer, PAGE_SIZE);
  1713. free(entry);
  1714. loop_cleanup:
  1715. if (entry->address_space != &kernel_address_space) switch_process(old_process);
  1716. lock_release(&entry->address_space->lock);
  1717. }
  1718. free(store);
  1719. cleanup:
  1720. if (ret != ERR_SUCCESS)
  1721. {
  1722. lock_acquire(&page_store_lock);
  1723. list_append(&page_stores, &store->link);
  1724. lock_release(&page_store_lock);
  1725. }
  1726. if (get_previous_mode() == USER_MODE) free(safe_path);
  1727. return ret;
  1728. }
  1729. static int compare_address(const void *key1, const void *key2)
  1730. {
  1731. const uintptr_t first = *(const uintptr_t*)key1;
  1732. const uintptr_t second = *(const uintptr_t*)key2;
  1733. if (first < second) return -1;
  1734. else if (first == second) return 0;
  1735. else return 1;
  1736. }
  1737. static int compare_size(const void *key1, const void *key2)
  1738. {
  1739. const size_t first = *(const size_t*)key1;
  1740. const size_t second = *(const size_t*)key2;
  1741. if (first < second) return -1;
  1742. else if (first == second) return 0;
  1743. else return 1;
  1744. }
  1745. dword_t create_address_space(void *base_address, dword_t page_count, memory_address_space_t *mem_space)
  1746. {
  1747. dword_t ret = ERR_NOMEMORY;
  1748. mem_space->pool_address = base_address;
  1749. mem_space->pool_size = page_count;
  1750. AVL_TREE_INIT(&mem_space->by_addr_tree, memory_block_t, by_addr_node, address, compare_address);
  1751. AVL_TREE_INIT(&mem_space->by_size_tree, memory_block_t, by_size_node, size, compare_size);
  1752. lock_init(&mem_space->lock);
  1753. list_init(&mem_space->evictable_blocks);
  1754. mem_space->evict_blk_ptr = NULL;
  1755. mem_space->evict_page_num = 0;
  1756. mem_space->stats.used_virtual = 0;
  1757. mem_space->stats.committed = 0;
  1758. mem_space->stats.evicted = 0;
  1759. mem_space->stats.shared = 0;
  1760. if (get_page_directory() != INVALID_PAGE)
  1761. {
  1762. mem_space->page_directory = create_page_directory();
  1763. if (mem_space->page_directory == NULL) return ret;
  1764. }
  1765. else
  1766. {
  1767. dword_t *boot_directory = (dword_t*)PAGE_DIRECTORY_ADDR;
  1768. mem_space->page_directory = (void*)PAGE_ALIGN(boot_directory[PAGEDIR_SELF_ENTRY]);
  1769. }
  1770. memory_block_t *initial = mem_tree_alloc();
  1771. if (initial != NULL)
  1772. {
  1773. initial->address = (uintptr_t)base_address;
  1774. initial->size = page_count;
  1775. initial->flags = MEMORY_BLOCK_FREE;
  1776. initial->address_space = mem_space;
  1777. initial->section = NULL;
  1778. avl_tree_insert(&mem_space->by_addr_tree, &initial->by_addr_node);
  1779. avl_tree_insert(&mem_space->by_size_tree, &initial->by_size_node);
  1780. ret = ERR_SUCCESS;
  1781. }
  1782. if (mem_space != &kernel_address_space)
  1783. {
  1784. list_append(&user_address_spaces, &mem_space->link);
  1785. }
  1786. return ret;
  1787. }
  1788. dword_t clone_address_space(memory_address_space_t *original, memory_address_space_t *clone)
  1789. {
  1790. dword_t i;
  1791. dword_t ret = ERR_SUCCESS;
  1792. lock_acquire_shared(&original->lock);
  1793. clone->pool_address = original->pool_address;
  1794. clone->pool_size = original->pool_size;
  1795. AVL_TREE_INIT(&clone->by_addr_tree, memory_block_t, by_addr_node, address, NULL);
  1796. AVL_TREE_INIT(&clone->by_size_tree, memory_block_t, by_size_node, size, NULL);
  1797. lock_init(&clone->lock);
  1798. list_init(&clone->evictable_blocks);
  1799. clone->evict_blk_ptr = NULL;
  1800. clone->evict_page_num = 0;
  1801. clone->stats.used_virtual = original->stats.used_virtual;
  1802. clone->stats.committed = original->stats.committed;
  1803. clone->stats.evicted = original->stats.evicted;
  1804. clone->stats.shared = original->stats.committed;
  1805. if (original->by_addr_tree.root != NULL)
  1806. {
  1807. memory_block_t *root_block = CONTAINER_OF(original->by_addr_tree.root, memory_block_t, by_addr_node);
  1808. if (!clone_blocks_recursive(clone, root_block))
  1809. {
  1810. ret = ERR_NOMEMORY;
  1811. goto cleanup;
  1812. }
  1813. }
  1814. if (!(clone->page_directory = create_page_directory()))
  1815. {
  1816. ret = ERR_NOMEMORY;
  1817. goto cleanup;
  1818. }
  1819. dword_t *clone_dir = map_temporary_page(clone->page_directory, PAGE_PRESENT | PAGE_WRITABLE);
  1820. bool_t this_directory = original->page_directory == get_page_directory();
  1821. dword_t *original_dir;
  1822. if (this_directory) original_dir = (dword_t*)PAGE_DIRECTORY_ADDR;
  1823. else original_dir = map_temporary_page(original->page_directory, PAGE_PRESENT | PAGE_WRITABLE);
  1824. for (i = USER_PAGE_START; i <= USER_PAGE_END; i++)
  1825. {
  1826. reference_page((void*)PAGE_ALIGN(original_dir[i]));
  1827. original_dir[i] &= ~PAGE_WRITABLE;
  1828. clone_dir[i] = original_dir[i];
  1829. if (this_directory) cpu_invalidate_tlb((void*)(i << 12));
  1830. }
  1831. if (!this_directory) unmap_temporary_page(original_dir);
  1832. unmap_temporary_page(clone_dir);
  1833. list_append(&user_address_spaces, &clone->link);
  1834. cleanup:
  1835. lock_release(&original->lock);
  1836. return ret;
  1837. }
  1838. void bump_address_space(memory_address_space_t *mem_space)
  1839. {
  1840. list_remove(&mem_space->link);
  1841. list_append(&user_address_spaces, &mem_space->link);
  1842. }
  1843. void delete_address_space(memory_address_space_t *mem_space)
  1844. {
  1845. ASSERT(get_page_directory() != mem_space->page_directory);
  1846. lock_acquire(&mem_space->lock);
  1847. if (mem_space->by_addr_tree.root)
  1848. {
  1849. memory_block_t *root = CONTAINER_OF(mem_space->by_addr_tree.root, memory_block_t, by_addr_node);
  1850. free_blocks_recursive(root);
  1851. mem_space->by_addr_tree.root = mem_space->by_size_tree.root = NULL;
  1852. }
  1853. free_physical_page(mem_space->page_directory);
  1854. mem_space->page_directory = NULL;
  1855. lock_release(&mem_space->lock);
  1856. }
  1857. static bool_t find_evicted_page(memory_block_t *block, void *address, page_store_t **store, page_store_entry_t **entry)
  1858. {
  1859. list_entry_t *i;
  1860. for (i = transition_pages.next; i != &transition_pages; i = i->next)
  1861. {
  1862. *entry = CONTAINER_OF(i, page_store_entry_t, link);
  1863. if ((*entry)->address_space == block->address_space
  1864. && PAGE_ALIGN((dword_t)(*entry)->address) == PAGE_ALIGN((dword_t)address))
  1865. {
  1866. return TRUE;
  1867. }
  1868. }
  1869. for (i = page_stores.next; i != &page_stores; i = i->next)
  1870. {
  1871. list_entry_t *j;
  1872. *store = CONTAINER_OF(i, page_store_t, link);
  1873. for (j = (*store)->entry_list.next; j != &(*store)->entry_list; j = j->next)
  1874. {
  1875. *entry = CONTAINER_OF(j, page_store_entry_t, link);
  1876. if ((*entry)->address_space == block->address_space
  1877. && PAGE_ALIGN((dword_t)(*entry)->address) == PAGE_ALIGN((dword_t)address))
  1878. {
  1879. return TRUE;
  1880. }
  1881. }
  1882. }
  1883. return FALSE;
  1884. }
  1885. bool_t memory_fault_handler(void *address, registers_t *regs)
  1886. {
  1887. int i;
  1888. page_error_t problem;
  1889. dword_t aligned_address = PAGE_ALIGN((dword_t)address);
  1890. dword_t pd_index = ADDR_TO_PDE((dword_t)address);
  1891. dword_t pt_index = ADDR_TO_PTE((dword_t)address);
  1892. dword_t *page_directory = (dword_t*)PAGE_DIRECTORY_ADDR;
  1893. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + (pd_index << 12));
  1894. process_t *proc = get_current_process();
  1895. memory_address_space_t *address_space = (proc != NULL && check_usermode(address, 1))
  1896. ? &proc->memory_space : &kernel_address_space;
  1897. memory_block_t *block = find_block_by_addr(address_space, address);
  1898. if (block == NULL) return FALSE;
  1899. if (!(regs->error_code & PAGE_ERROR_PRESENT_FLAG))
  1900. {
  1901. problem = PAGE_ERROR_NOTPRESENT;
  1902. }
  1903. else if (!(block->flags & MEMORY_BLOCK_USERMODE)
  1904. && (regs->error_code & PAGE_ERROR_USERMODE_FLAG))
  1905. {
  1906. problem = PAGE_ERROR_UNPRIVILEGED;
  1907. }
  1908. else if (regs->error_code & PAGE_ERROR_WRITE_FLAG)
  1909. {
  1910. problem = PAGE_ERROR_READONLY;
  1911. }
  1912. else
  1913. {
  1914. KERNEL_CRASH_WITH_REGS("Unknown paging problem", regs);
  1915. }
  1916. if ((block->flags & MEMORY_BLOCK_ACCESSIBLE) && (problem == PAGE_ERROR_NOTPRESENT))
  1917. {
  1918. page_store_t *store = NULL;
  1919. page_store_entry_t *entry = NULL;
  1920. byte_t buffer[PAGE_SIZE];
  1921. dword_t bytes_read;
  1922. dword_t page_flags = 0;
  1923. if (find_evicted_page(block, address, &store, &entry))
  1924. {
  1925. if (block->flags & MEMORY_BLOCK_ACCESSIBLE) page_flags |= PAGE_PRESENT;
  1926. if ((block->flags & (MEMORY_BLOCK_WRITABLE | MEMORY_BLOCK_COPY_ON_WRITE))
  1927. == MEMORY_BLOCK_WRITABLE)
  1928. {
  1929. page_flags |= PAGE_WRITABLE;
  1930. }
  1931. if (block->flags & MEMORY_BLOCK_USERMODE) page_flags |= PAGE_USERMODE;
  1932. else page_flags |= PAGE_GLOBAL;
  1933. if (entry->number != INVALID_STORE_NUMBER)
  1934. {
  1935. cpu_enable_interrupts();
  1936. dword_t ret = syscall_read_file(store->file_handle, buffer, (qword_t)entry->number * (qword_t)PAGE_SIZE, PAGE_SIZE, &bytes_read);
  1937. cpu_disable_interrupts();
  1938. if ((page_directory[pd_index] & PAGE_PRESENT) && (page_table[pt_index] & PAGE_PRESENT))
  1939. {
  1940. return TRUE;
  1941. }
  1942. if (ret != ERR_SUCCESS) return FALSE;
  1943. ret = alloc_page((void*)aligned_address, page_flags);
  1944. if (ret != ERR_SUCCESS) return FALSE;
  1945. list_entry_t *ptr;
  1946. for (ptr = store->entry_list.next; ptr != &store->entry_list; ptr = ptr->next)
  1947. {
  1948. page_store_entry_t *other_entry = CONTAINER_OF(ptr, page_store_entry_t, link);
  1949. if (entry != other_entry && other_entry->number == entry->number)
  1950. {
  1951. list_remove(&other_entry->link);
  1952. list_append(&transition_pages, &other_entry->link);
  1953. other_entry->physical = get_physical_address((void*)aligned_address);
  1954. other_entry->number = INVALID_STORE_NUMBER;
  1955. }
  1956. }
  1957. clear_bit(store->bitmap, entry->number);
  1958. list_remove(&entry->link);
  1959. free(entry);
  1960. memcpy((void*)aligned_address, buffer, PAGE_SIZE);
  1961. address_space->stats.evicted -= PAGE_SIZE;
  1962. return TRUE;
  1963. }
  1964. else
  1965. {
  1966. if (map_page(entry->physical, entry->address, page_flags) == ERR_SUCCESS)
  1967. {
  1968. list_remove(&entry->link);
  1969. free(entry);
  1970. address_space->stats.evicted -= PAGE_SIZE;
  1971. return TRUE;
  1972. }
  1973. }
  1974. return FALSE;
  1975. }
  1976. else
  1977. {
  1978. list_entry_t *ptr;
  1979. shared_page_t *page = NULL;
  1980. qword_t offset = block->section_offset + (qword_t)aligned_address - (qword_t)block->address;
  1981. page_flags = PAGE_PRESENT;
  1982. if (block->flags & MEMORY_BLOCK_WRITABLE) page_flags |= PAGE_WRITABLE;
  1983. if (block->flags & MEMORY_BLOCK_USERMODE) page_flags |= PAGE_USERMODE;
  1984. else page_flags |= PAGE_GLOBAL;
  1985. if (block->section && offset < (qword_t)block->section->size)
  1986. {
  1987. ASSERT(PAGE_OFFSET(offset) == 0);
  1988. for (ptr = block->section->page_list.next; ptr != &block->section->page_list; ptr = ptr->next)
  1989. {
  1990. page = CONTAINER_OF(ptr, shared_page_t, link);
  1991. if (page->offset == offset) break;
  1992. }
  1993. if (ptr != &block->section->page_list)
  1994. {
  1995. return (map_page(page->physical, (void*)aligned_address, page_flags) == ERR_SUCCESS);
  1996. }
  1997. }
  1998. memset(buffer, 0, PAGE_SIZE);
  1999. if (block->section && block->section->file && offset < (qword_t)block->section->size)
  2000. {
  2001. cpu_enable_interrupts();
  2002. file_instance_t *file = block->section->file;
  2003. lock_acquire_shared(&file->global->volume->lock);
  2004. dword_t ret = file->global->volume->driver->read_file(file, buffer, offset, PAGE_SIZE, &bytes_read);
  2005. lock_release(&file->global->volume->lock);
  2006. cpu_disable_interrupts();
  2007. if (ret != ERR_SUCCESS && ret != ERR_BEYOND) return FALSE;
  2008. }
  2009. dword_t ret = alloc_page((void*)aligned_address, page_flags | PAGE_WRITABLE);
  2010. if (ret != ERR_SUCCESS) return FALSE;
  2011. memcpy((void*)aligned_address, buffer, PAGE_SIZE);
  2012. set_page_flags((void*)aligned_address, page_flags);
  2013. if (block->section && offset < (qword_t)block->section->size)
  2014. {
  2015. page = (shared_page_t*)malloc(sizeof(shared_page_t));
  2016. if (page == NULL)
  2017. {
  2018. free_page((void*)aligned_address);
  2019. return FALSE;
  2020. }
  2021. page->physical = get_physical_address((void*)aligned_address);
  2022. page->offset = offset;
  2023. list_append(&block->section->page_list, &page->link);
  2024. }
  2025. address_space->stats.committed += PAGE_SIZE;
  2026. return TRUE;
  2027. }
  2028. }
  2029. if ((block->flags & (MEMORY_BLOCK_COPY_ON_WRITE | MEMORY_BLOCK_WRITABLE))
  2030. == (MEMORY_BLOCK_COPY_ON_WRITE | MEMORY_BLOCK_WRITABLE)
  2031. && (problem == PAGE_ERROR_READONLY))
  2032. {
  2033. if (!(page_directory[pd_index] & PAGE_WRITABLE))
  2034. {
  2035. void *table_phys = (void*)PAGE_ALIGN(page_directory[pd_index]);
  2036. if (get_page(table_phys)->ref_count > 1)
  2037. {
  2038. void *table_copy = alloc_physical_page();
  2039. if (table_copy == NULL) return FALSE;
  2040. dword_t *temporary = map_temporary_page(table_copy, PAGE_PRESENT | PAGE_WRITABLE);
  2041. if (temporary == NULL)
  2042. {
  2043. free_physical_page(table_copy);
  2044. return FALSE;
  2045. }
  2046. for (i = 0; i < PAGE_SIZE / sizeof(dword_t); i++)
  2047. {
  2048. if (page_table[i])
  2049. {
  2050. reference_page((void*)PAGE_ALIGN(page_table[i]));
  2051. temporary[i] = page_table[i] & ~PAGE_WRITABLE;
  2052. }
  2053. }
  2054. unmap_temporary_page(temporary);
  2055. reference_page(table_copy);
  2056. dereference_page(table_phys);
  2057. page_directory[pd_index] = PAGE_ALIGN((dword_t)table_copy)
  2058. | PAGE_OFFSET(page_directory[pd_index])
  2059. | PAGE_WRITABLE;
  2060. cpu_invalidate_tlb(page_table);
  2061. }
  2062. else
  2063. {
  2064. page_directory[pd_index] |= PAGE_WRITABLE;
  2065. cpu_invalidate_tlb(page_table);
  2066. for (i = 0; i < PAGE_SIZE / sizeof(dword_t); i++)
  2067. {
  2068. page_table[i] &= ~PAGE_WRITABLE;
  2069. cpu_invalidate_tlb((void*)((pd_index << 22) | (i << 12)));
  2070. }
  2071. }
  2072. }
  2073. if (!(page_table[pt_index] & PAGE_WRITABLE))
  2074. {
  2075. void *phys = (void*)PAGE_ALIGN(page_table[pt_index]);
  2076. if (get_page(phys)->ref_count > 1)
  2077. {
  2078. void *page_copy = alloc_physical_page();
  2079. if (page_copy == NULL) return FALSE;
  2080. write_physical(page_copy, (void*)PAGE_ALIGN((dword_t)address), PAGE_SIZE);
  2081. reference_page(page_copy);
  2082. dereference_page(phys);
  2083. page_table[pt_index] = PAGE_ALIGN((dword_t)page_copy)
  2084. | PAGE_OFFSET(page_table[pt_index])
  2085. | PAGE_WRITABLE;
  2086. cpu_invalidate_tlb((void*)aligned_address);
  2087. }
  2088. else
  2089. {
  2090. page_table[pt_index] |= PAGE_WRITABLE;
  2091. cpu_invalidate_tlb((void*)aligned_address);
  2092. }
  2093. }
  2094. return TRUE;
  2095. }
  2096. return FALSE;
  2097. }
  2098. void memory_init(multiboot_tag_mmap_t *mmap, uintptr_t lowest_physical)
  2099. {
  2100. dword_t i, j;
  2101. dword_t *page_directory = (dword_t*)PAGE_DIRECTORY_ADDR;
  2102. fix_overlapping_sections(mmap);
  2103. log_write(LOG_NORMAL, "Memory map:\nBase\t\t\tLength\t\t\tType\n");
  2104. log_write(LOG_NORMAL, "------------------------------------------------------------\n");
  2105. multiboot_mmap_entry_t *entry;
  2106. for (entry = (multiboot_mmap_entry_t*)(mmap + 1);
  2107. (uintptr_t)entry < ((uintptr_t)mmap + mmap->size);
  2108. entry = (multiboot_mmap_entry_t*)((uintptr_t)entry + mmap->entry_size))
  2109. {
  2110. log_write(LOG_NORMAL, "0x%08X%08X\t0x%08X%08X\t%s\n",
  2111. entry->base_high,
  2112. entry->base_low,
  2113. entry->length_high,
  2114. entry->length_low,
  2115. (entry->type == 1) ? "Usable" : "Not Usable");
  2116. if (entry->type == 1
  2117. && entry->base_high == 0
  2118. && entry->length_high == 0
  2119. && entry->length_low < (0xFFFFFFFF - entry->base_low)
  2120. && entry->length_low > 0)
  2121. {
  2122. dword_t start_addr = entry->base_low;
  2123. if (start_addr < lowest_physical) start_addr = lowest_physical;
  2124. start_addr = PAGE_ALIGN_UP(start_addr);
  2125. dword_t end_addr = PAGE_ALIGN_UP(entry->base_low + entry->length_low);
  2126. dword_t page = end_addr - PAGE_SIZE;
  2127. while (page >= start_addr)
  2128. {
  2129. dword_t stack_address = (dword_t)&physical_memory_stack[num_free_pages];
  2130. dword_t pd_index = ADDR_TO_PDE(stack_address);
  2131. dword_t pt_index = ADDR_TO_PTE(stack_address);
  2132. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + pd_index * PAGE_SIZE);
  2133. if (!(page_directory[pd_index] & PAGE_PRESENT))
  2134. {
  2135. page_directory[pd_index] = start_addr | PAGE_PRESENT | PAGE_WRITABLE | PAGE_GLOBAL;
  2136. start_addr += PAGE_SIZE;
  2137. cpu_invalidate_tlb(page_table);
  2138. memset(page_table, 0, PAGE_SIZE);
  2139. total_physical_pages++;
  2140. continue;
  2141. }
  2142. if (!(page_table[pt_index] & PAGE_PRESENT))
  2143. {
  2144. page_table[pt_index] = start_addr | PAGE_PRESENT | PAGE_WRITABLE | PAGE_GLOBAL;
  2145. start_addr += PAGE_SIZE;
  2146. cpu_invalidate_tlb((void*)stack_address);
  2147. total_physical_pages++;
  2148. continue;
  2149. }
  2150. free_physical_page((void*)page);
  2151. page -= PAGE_SIZE;
  2152. }
  2153. }
  2154. }
  2155. log_write(LOG_NORMAL, "------------------------------------------------------------\n");
  2156. total_physical_pages += num_free_pages;
  2157. pages = (page_t*)(KERNEL_POOL_START - total_physical_pages * sizeof(page_t));
  2158. for (i = PAGE_ALIGN((uintptr_t)pages); i < KERNEL_POOL_START; i += PAGE_SIZE)
  2159. {
  2160. dword_t pd_index = ADDR_TO_PDE(i);
  2161. dword_t pt_index = ADDR_TO_PTE(i);
  2162. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + pd_index * PAGE_SIZE);
  2163. if (!(page_directory[pd_index] & PAGE_PRESENT))
  2164. {
  2165. page_directory[pd_index] = (uintptr_t)alloc_physical_page() | PAGE_PRESENT | PAGE_WRITABLE | PAGE_GLOBAL;
  2166. cpu_invalidate_tlb(page_table);
  2167. memset(page_table, 0, PAGE_SIZE);
  2168. }
  2169. if (!(page_table[pt_index] & PAGE_PRESENT))
  2170. {
  2171. page_table[pt_index] = (uintptr_t)alloc_physical_page() | PAGE_PRESENT | PAGE_WRITABLE | PAGE_GLOBAL;
  2172. cpu_invalidate_tlb((void*)i);
  2173. }
  2174. }
  2175. dword_t pages_inserted = 0;
  2176. for (i = 0; i < num_free_pages; i++)
  2177. {
  2178. pages[pages_inserted].phys_addr = PAGE_ALIGN((dword_t)physical_memory_stack[i]);
  2179. pages[pages_inserted].ref_count = 0;
  2180. pages_inserted++;
  2181. }
  2182. for (i = KERNEL_PAGE_START; i <= KERNEL_PAGE_END; i++)
  2183. {
  2184. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + i * PAGE_SIZE);
  2185. if (!(page_directory[i] & PAGE_PRESENT)) continue;
  2186. for (j = 0; j < PAGE_SIZE / sizeof(dword_t); j++)
  2187. {
  2188. if (PAGE_ALIGN(page_table[j]) < lowest_physical) continue;
  2189. if (page_table[j] & PAGE_PRESENT)
  2190. {
  2191. pages[pages_inserted].phys_addr = PAGE_ALIGN((dword_t)page_table[j]);
  2192. pages[pages_inserted].ref_count = 0;
  2193. pages_inserted++;
  2194. }
  2195. }
  2196. }
  2197. ASSERT(pages_inserted == total_physical_pages);
  2198. qsort(pages, total_physical_pages, sizeof(page_t), compare_page);
  2199. init_semaphore(&temporary_page_semaphore, TEMPORARY_PAGES, TEMPORARY_PAGES);
  2200. if (create_address_space((void*)KERNEL_POOL_START,
  2201. (KERNEL_POOL_END - KERNEL_POOL_START + PAGE_SIZE - 1) / PAGE_SIZE,
  2202. &kernel_address_space) != ERR_SUCCESS)
  2203. {
  2204. KERNEL_CRASH("Unable to create kernel address space");
  2205. }
  2206. if (create_address_space((void*)MAPPING_START,
  2207. (MAPPING_END - MAPPING_START + PAGE_SIZE - 1) / PAGE_SIZE,
  2208. &mapping_space) != ERR_SUCCESS)
  2209. {
  2210. KERNEL_CRASH("Unable to create mapping space");
  2211. }
  2212. set_page_directory((void*)PAGE_ALIGN(page_directory[PAGEDIR_SELF_ENTRY]));
  2213. for (i = KERNEL_PAGE_START; i <= KERNEL_PAGE_END; i++)
  2214. {
  2215. dword_t *page_table = (dword_t*)(PAGE_TABLE_ADDR + i * PAGE_SIZE);
  2216. if (!(page_directory[i] & PAGE_PRESENT)) continue;
  2217. for (j = 0; j < PAGE_SIZE / sizeof(dword_t); j++)
  2218. {
  2219. if (page_table[j] & PAGE_PRESENT) reference_page((void*)PAGE_ALIGN(page_table[j]));
  2220. }
  2221. }
  2222. for (i = USER_PAGE_START; i <= USER_PAGE_END; i++) page_directory[i] = 0;
  2223. set_page_directory(get_page_directory());
  2224. }