123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502 |
- # Copyright 2021 The Matrix.org Foundation C.I.C.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from twisted.internet import defer, reactor
- from twisted.internet.base import ReactorBase
- from twisted.internet.defer import Deferred
- from twisted.test.proto_helpers import MemoryReactor
- from synapse.server import HomeServer
- from synapse.storage.databases.main.lock import _LOCK_TIMEOUT_MS
- from synapse.util import Clock
- from tests import unittest
- class LockTestCase(unittest.HomeserverTestCase):
- def prepare(self, reactor: MemoryReactor, clock: Clock, hs: HomeServer) -> None:
- self.store = hs.get_datastores().main
- def test_acquire_contention(self) -> None:
- # Track the number of tasks holding the lock.
- # Should be at most 1.
- in_lock = 0
- max_in_lock = 0
- release_lock: "Deferred[None]" = Deferred()
- async def task() -> None:
- nonlocal in_lock
- nonlocal max_in_lock
- lock = await self.store.try_acquire_lock("name", "key")
- if not lock:
- return
- async with lock:
- in_lock += 1
- max_in_lock = max(max_in_lock, in_lock)
- # Block to allow other tasks to attempt to take the lock.
- await release_lock
- in_lock -= 1
- # Start 3 tasks.
- task1 = defer.ensureDeferred(task())
- task2 = defer.ensureDeferred(task())
- task3 = defer.ensureDeferred(task())
- # Give the reactor a kick so that the database transaction returns.
- self.pump()
- release_lock.callback(None)
- # Run the tasks to completion.
- # To work around `Linearizer`s using a different reactor to sleep when
- # contended (#12841), we call `runUntilCurrent` on
- # `twisted.internet.reactor`, which is a different reactor to that used
- # by the homeserver.
- assert isinstance(reactor, ReactorBase)
- self.get_success(task1)
- reactor.runUntilCurrent()
- self.get_success(task2)
- reactor.runUntilCurrent()
- self.get_success(task3)
- # At most one task should have held the lock at a time.
- self.assertEqual(max_in_lock, 1)
- def test_simple_lock(self) -> None:
- """Test that we can take out a lock and that while we hold it nobody
- else can take it out.
- """
- # First to acquire this lock, so it should complete
- lock = self.get_success(self.store.try_acquire_lock("name", "key"))
- assert lock is not None
- # Enter the context manager
- self.get_success(lock.__aenter__())
- # Attempting to acquire the lock again fails.
- lock2 = self.get_success(self.store.try_acquire_lock("name", "key"))
- self.assertIsNone(lock2)
- # Calling `is_still_valid` reports true.
- self.assertTrue(self.get_success(lock.is_still_valid()))
- # Drop the lock
- self.get_success(lock.__aexit__(None, None, None))
- # We can now acquire the lock again.
- lock3 = self.get_success(self.store.try_acquire_lock("name", "key"))
- assert lock3 is not None
- self.get_success(lock3.__aenter__())
- self.get_success(lock3.__aexit__(None, None, None))
- def test_maintain_lock(self) -> None:
- """Test that we don't time out locks while they're still active"""
- lock = self.get_success(self.store.try_acquire_lock("name", "key"))
- assert lock is not None
- self.get_success(lock.__aenter__())
- # Wait for ages with the lock, we should not be able to get the lock.
- self.reactor.advance(5 * _LOCK_TIMEOUT_MS / 1000)
- lock2 = self.get_success(self.store.try_acquire_lock("name", "key"))
- self.assertIsNone(lock2)
- self.get_success(lock.__aexit__(None, None, None))
- def test_timeout_lock(self) -> None:
- """Test that we time out locks if they're not updated for ages"""
- lock = self.get_success(self.store.try_acquire_lock("name", "key"))
- assert lock is not None
- self.get_success(lock.__aenter__())
- # We simulate the process getting stuck by cancelling the looping call
- # that keeps the lock active.
- lock._looping_call.stop()
- # Wait for the lock to timeout.
- self.reactor.advance(2 * _LOCK_TIMEOUT_MS / 1000)
- lock2 = self.get_success(self.store.try_acquire_lock("name", "key"))
- self.assertIsNotNone(lock2)
- self.assertFalse(self.get_success(lock.is_still_valid()))
- def test_drop(self) -> None:
- """Test that dropping the context manager means we stop renewing the lock"""
- lock = self.get_success(self.store.try_acquire_lock("name", "key"))
- self.assertIsNotNone(lock)
- del lock
- # Wait for the lock to timeout.
- self.reactor.advance(2 * _LOCK_TIMEOUT_MS / 1000)
- lock2 = self.get_success(self.store.try_acquire_lock("name", "key"))
- self.assertIsNotNone(lock2)
- def test_shutdown(self) -> None:
- """Test that shutting down Synapse releases the locks"""
- # Acquire two locks
- lock = self.get_success(self.store.try_acquire_lock("name", "key1"))
- self.assertIsNotNone(lock)
- lock2 = self.get_success(self.store.try_acquire_lock("name", "key2"))
- self.assertIsNotNone(lock2)
- # Now call the shutdown code
- self.get_success(self.store._on_shutdown())
- self.assertEqual(self.store._live_lock_tokens, {})
- class ReadWriteLockTestCase(unittest.HomeserverTestCase):
- """Test the read/write lock implementation."""
- def prepare(self, reactor: MemoryReactor, clock: Clock, hs: HomeServer) -> None:
- self.store = hs.get_datastores().main
- def test_acquire_write_contention(self) -> None:
- """Test that we can only acquire one write lock at a time"""
- # Track the number of tasks holding the lock.
- # Should be at most 1.
- in_lock = 0
- max_in_lock = 0
- release_lock: "Deferred[None]" = Deferred()
- async def task() -> None:
- nonlocal in_lock
- nonlocal max_in_lock
- lock = await self.store.try_acquire_read_write_lock(
- "name", "key", write=True
- )
- if not lock:
- return
- async with lock:
- in_lock += 1
- max_in_lock = max(max_in_lock, in_lock)
- # Block to allow other tasks to attempt to take the lock.
- await release_lock
- in_lock -= 1
- # Start 3 tasks.
- task1 = defer.ensureDeferred(task())
- task2 = defer.ensureDeferred(task())
- task3 = defer.ensureDeferred(task())
- # Give the reactor a kick so that the database transaction returns.
- self.pump()
- release_lock.callback(None)
- # Run the tasks to completion.
- # To work around `Linearizer`s using a different reactor to sleep when
- # contended (#12841), we call `runUntilCurrent` on
- # `twisted.internet.reactor`, which is a different reactor to that used
- # by the homeserver.
- assert isinstance(reactor, ReactorBase)
- self.get_success(task1)
- reactor.runUntilCurrent()
- self.get_success(task2)
- reactor.runUntilCurrent()
- self.get_success(task3)
- # At most one task should have held the lock at a time.
- self.assertEqual(max_in_lock, 1)
- def test_acquire_multiple_reads(self) -> None:
- """Test that we can acquire multiple read locks at a time"""
- # Track the number of tasks holding the lock.
- in_lock = 0
- max_in_lock = 0
- release_lock: "Deferred[None]" = Deferred()
- async def task() -> None:
- nonlocal in_lock
- nonlocal max_in_lock
- lock = await self.store.try_acquire_read_write_lock(
- "name", "key", write=False
- )
- if not lock:
- return
- async with lock:
- in_lock += 1
- max_in_lock = max(max_in_lock, in_lock)
- # Block to allow other tasks to attempt to take the lock.
- await release_lock
- in_lock -= 1
- # Start 3 tasks.
- task1 = defer.ensureDeferred(task())
- task2 = defer.ensureDeferred(task())
- task3 = defer.ensureDeferred(task())
- # Give the reactor a kick so that the database transaction returns.
- self.pump()
- release_lock.callback(None)
- # Run the tasks to completion.
- # To work around `Linearizer`s using a different reactor to sleep when
- # contended (#12841), we call `runUntilCurrent` on
- # `twisted.internet.reactor`, which is a different reactor to that used
- # by the homeserver.
- assert isinstance(reactor, ReactorBase)
- self.get_success(task1)
- reactor.runUntilCurrent()
- self.get_success(task2)
- reactor.runUntilCurrent()
- self.get_success(task3)
- # At most one task should have held the lock at a time.
- self.assertEqual(max_in_lock, 3)
- def test_write_lock_acquired(self) -> None:
- """Test that we can take out a write lock and that while we hold it
- nobody else can take it out.
- """
- # First to acquire this lock, so it should complete
- lock = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- assert lock is not None
- # Enter the context manager
- self.get_success(lock.__aenter__())
- # Attempting to acquire the lock again fails, as both read and write.
- lock2 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- self.assertIsNone(lock2)
- lock3 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=False)
- )
- self.assertIsNone(lock3)
- # Calling `is_still_valid` reports true.
- self.assertTrue(self.get_success(lock.is_still_valid()))
- # Drop the lock
- self.get_success(lock.__aexit__(None, None, None))
- # We can now acquire the lock again.
- lock4 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- assert lock4 is not None
- self.get_success(lock4.__aenter__())
- self.get_success(lock4.__aexit__(None, None, None))
- def test_read_lock_acquired(self) -> None:
- """Test that we can take out a read lock and that while we hold it
- only other reads can use it.
- """
- # First to acquire this lock, so it should complete
- lock = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=False)
- )
- assert lock is not None
- # Enter the context manager
- self.get_success(lock.__aenter__())
- # Attempting to acquire the write lock fails
- lock2 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- self.assertIsNone(lock2)
- # Attempting to acquire a read lock succeeds
- lock3 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=False)
- )
- assert lock3 is not None
- self.get_success(lock3.__aenter__())
- # Calling `is_still_valid` reports true.
- self.assertTrue(self.get_success(lock.is_still_valid()))
- # Drop the first lock
- self.get_success(lock.__aexit__(None, None, None))
- # Attempting to acquire the write lock still fails, as lock3 is still
- # active.
- lock4 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- self.assertIsNone(lock4)
- # Drop the still open third lock
- self.get_success(lock3.__aexit__(None, None, None))
- # We can now acquire the lock again.
- lock5 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- assert lock5 is not None
- self.get_success(lock5.__aenter__())
- self.get_success(lock5.__aexit__(None, None, None))
- def test_maintain_lock(self) -> None:
- """Test that we don't time out locks while they're still active (lock is
- renewed in the background if the process is still alive)"""
- lock = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- assert lock is not None
- self.get_success(lock.__aenter__())
- # Wait for ages with the lock, we should not be able to get the lock.
- self.reactor.advance(5 * _LOCK_TIMEOUT_MS / 1000)
- self.pump()
- lock2 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- self.assertIsNone(lock2)
- self.get_success(lock.__aexit__(None, None, None))
- def test_timeout_lock(self) -> None:
- """Test that we time out locks if they're not updated for ages"""
- lock = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- assert lock is not None
- self.get_success(lock.__aenter__())
- # We simulate the process getting stuck by cancelling the looping call
- # that keeps the lock active.
- lock._looping_call.stop()
- # Wait for the lock to timeout.
- self.reactor.advance(2 * _LOCK_TIMEOUT_MS / 1000)
- lock2 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- self.assertIsNotNone(lock2)
- self.assertFalse(self.get_success(lock.is_still_valid()))
- def test_drop(self) -> None:
- """Test that dropping the context manager means we stop renewing the lock"""
- lock = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- self.assertIsNotNone(lock)
- del lock
- # Wait for the lock to timeout.
- self.reactor.advance(2 * _LOCK_TIMEOUT_MS / 1000)
- lock2 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- self.assertIsNotNone(lock2)
- def test_shutdown(self) -> None:
- """Test that shutting down Synapse releases the locks"""
- # Acquire two locks
- lock = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key", write=True)
- )
- self.assertIsNotNone(lock)
- lock2 = self.get_success(
- self.store.try_acquire_read_write_lock("name", "key2", write=True)
- )
- self.assertIsNotNone(lock2)
- # Now call the shutdown code
- self.get_success(self.store._on_shutdown())
- self.assertEqual(self.store._live_read_write_lock_tokens, {})
- def test_acquire_multiple_locks(self) -> None:
- """Tests that acquiring multiple locks at once works."""
- # Take out multiple locks and ensure that we can't get those locks out
- # again.
- lock = self.get_success(
- self.store.try_acquire_multi_read_write_lock(
- [("name1", "key1"), ("name2", "key2")], write=True
- )
- )
- self.assertIsNotNone(lock)
- assert lock is not None
- self.get_success(lock.__aenter__())
- lock2 = self.get_success(
- self.store.try_acquire_read_write_lock("name1", "key1", write=True)
- )
- self.assertIsNone(lock2)
- lock3 = self.get_success(
- self.store.try_acquire_read_write_lock("name2", "key2", write=False)
- )
- self.assertIsNone(lock3)
- # Overlapping locks attempts will fail, and won't lock any locks.
- lock4 = self.get_success(
- self.store.try_acquire_multi_read_write_lock(
- [("name1", "key1"), ("name3", "key3")], write=True
- )
- )
- self.assertIsNone(lock4)
- lock5 = self.get_success(
- self.store.try_acquire_read_write_lock("name3", "key3", write=True)
- )
- self.assertIsNotNone(lock5)
- assert lock5 is not None
- self.get_success(lock5.__aenter__())
- self.get_success(lock5.__aexit__(None, None, None))
- # Once we release the lock we can take out the locks again.
- self.get_success(lock.__aexit__(None, None, None))
- lock6 = self.get_success(
- self.store.try_acquire_read_write_lock("name1", "key1", write=True)
- )
- self.assertIsNotNone(lock6)
- assert lock6 is not None
- self.get_success(lock6.__aenter__())
- self.get_success(lock6.__aexit__(None, None, None))
|