123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- # -*- coding: utf-8 -*-
- # Copyright 2020 The Matrix.org Foundation C.I.C.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from typing import Dict, List
- from synapse.util.iterutils import chunk_seq, sorted_topologically
- from tests.unittest import TestCase
- class ChunkSeqTests(TestCase):
- def test_short_seq(self):
- parts = chunk_seq("123", 8)
- self.assertEqual(
- list(parts), ["123"],
- )
- def test_long_seq(self):
- parts = chunk_seq("abcdefghijklmnop", 8)
- self.assertEqual(
- list(parts), ["abcdefgh", "ijklmnop"],
- )
- def test_uneven_parts(self):
- parts = chunk_seq("abcdefghijklmnop", 5)
- self.assertEqual(
- list(parts), ["abcde", "fghij", "klmno", "p"],
- )
- def test_empty_input(self):
- parts = chunk_seq([], 5)
- self.assertEqual(
- list(parts), [],
- )
- class SortTopologically(TestCase):
- def test_empty(self):
- "Test that an empty graph works correctly"
- graph = {} # type: Dict[int, List[int]]
- self.assertEqual(list(sorted_topologically([], graph)), [])
- def test_handle_empty_graph(self):
- "Test that a graph where a node doesn't have an entry is treated as empty"
- graph = {} # type: Dict[int, List[int]]
- # For disconnected nodes the output is simply sorted.
- self.assertEqual(list(sorted_topologically([1, 2], graph)), [1, 2])
- def test_disconnected(self):
- "Test that a graph with no edges work"
- graph = {1: [], 2: []} # type: Dict[int, List[int]]
- # For disconnected nodes the output is simply sorted.
- self.assertEqual(list(sorted_topologically([1, 2], graph)), [1, 2])
- def test_linear(self):
- "Test that a simple `4 -> 3 -> 2 -> 1` graph works"
- graph = {1: [], 2: [1], 3: [2], 4: [3]} # type: Dict[int, List[int]]
- self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
- def test_subset(self):
- "Test that only sorting a subset of the graph works"
- graph = {1: [], 2: [1], 3: [2], 4: [3]} # type: Dict[int, List[int]]
- self.assertEqual(list(sorted_topologically([4, 3], graph)), [3, 4])
- def test_fork(self):
- "Test that a forked graph works"
- graph = {1: [], 2: [1], 3: [1], 4: [2, 3]} # type: Dict[int, List[int]]
- # Valid orderings are `[1, 3, 2, 4]` or `[1, 2, 3, 4]`, but we should
- # always get the same one.
- self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
- def test_duplicates(self):
- "Test that a graph with duplicate edges work"
- graph = {1: [], 2: [1, 1], 3: [2, 2], 4: [3]} # type: Dict[int, List[int]]
- self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
- def test_multiple_paths(self):
- "Test that a graph with multiple paths between two nodes work"
- graph = {1: [], 2: [1], 3: [2], 4: [3, 2, 1]} # type: Dict[int, List[int]]
- self.assertEqual(list(sorted_topologically([4, 3, 2, 1], graph)), [1, 2, 3, 4])
|