/* * x86 CPU test * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #define _GNU_SOURCE #include "compiler.h" #include #include #include #include #include #include #include #include #include #include #include #if !defined(__x86_64__) #define TEST_VM86 #define TEST_SEGS #endif //#define LINUX_VM86_IOPL_FIX //#define TEST_P4_FLAGS //#ifdef __SSE__ #if 1 #define TEST_SSE #define TEST_CMOV 1 #define TEST_FCOMI 1 #else #undef TEST_SSE #define TEST_CMOV 1 #define TEST_FCOMI 1 #endif #if defined(__x86_64__) #define FMT64X "%016lx" #define FMTLX "%016lx" #define X86_64_ONLY(x) x #else #define FMT64X "%016" PRIx64 #define FMTLX "%08lx" #define X86_64_ONLY(x) #endif #ifdef TEST_VM86 #include #endif #define xglue(x, y) x ## y #define glue(x, y) xglue(x, y) #define stringify(s) tostring(s) #define tostring(s) #s #define UNUSED(s) (void)(s) #define CC_C 0x0001 #define CC_P 0x0004 #define CC_A 0x0010 #define CC_Z 0x0040 #define CC_S 0x0080 #define CC_O 0x0800 #define __init_call __attribute__ ((unused,__section__ ("initcall"))) #define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A) #if defined(__x86_64__) static inline long i2l(long v) { return v | ((v ^ 0xabcd) << 32); } #else static inline long i2l(long v) { return v; } #endif #define OP add #include "test-i386.h" #define OP sub #include "test-i386.h" #define OP xor #include "test-i386.h" #define OP and #include "test-i386.h" #define OP or #include "test-i386.h" #define OP cmp #include "test-i386.h" #define OP adc #define OP_CC #include "test-i386.h" #define OP sbb #define OP_CC #include "test-i386.h" #define OP inc #define OP_CC #define OP1 #include "test-i386.h" #define OP dec #define OP_CC #define OP1 #include "test-i386.h" #define OP neg #define OP_CC #define OP1 #include "test-i386.h" #define OP not #define OP_CC #define OP1 #include "test-i386.h" #undef CC_MASK #define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O) #define OP shl #include "test-i386-shift.h" #define OP shr #include "test-i386-shift.h" #define OP sar #include "test-i386-shift.h" #define OP rol #include "test-i386-shift.h" #define OP ror #include "test-i386-shift.h" #define OP rcr #define OP_CC #include "test-i386-shift.h" #define OP rcl #define OP_CC #include "test-i386-shift.h" #define OP shld #define OP_SHIFTD #define OP_NOBYTE #include "test-i386-shift.h" #define OP shrd #define OP_SHIFTD #define OP_NOBYTE #include "test-i386-shift.h" /* XXX: should be more precise ? */ #undef CC_MASK #define CC_MASK (CC_C) #define OP bt #define OP_NOBYTE #include "test-i386-shift.h" #define OP bts #define OP_NOBYTE #include "test-i386-shift.h" #define OP btr #define OP_NOBYTE #include "test-i386-shift.h" #define OP btc #define OP_NOBYTE #include "test-i386-shift.h" /* lea test (modrm support) */ #define TEST_LEAQ(STR)\ {\ asm("lea " STR ", %0"\ : "=r" (res)\ : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\ printf("lea %s = " FMTLX "\n", STR, res);\ } #define TEST_LEA(STR)\ {\ asm("lea " STR ", %0"\ : "=r" (res)\ : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\ printf("lea %s = " FMTLX "\n", STR, res);\ } #define TEST_LEA16(STR)\ {\ asm(".code16 ; .byte 0x67 ; leal " STR ", %0 ; .code32"\ : "=r" (res)\ : "a" (eax), "b" (ebx), "c" (ecx), "d" (edx), "S" (esi), "D" (edi));\ printf("lea %s = %08lx\n", STR, res);\ } void test_lea(void) { long eax, ebx, ecx, edx, esi, edi, res; eax = i2l(0x0001); ebx = i2l(0x0002); ecx = i2l(0x0004); edx = i2l(0x0008); esi = i2l(0x0010); edi = i2l(0x0020); TEST_LEA("0x4000"); TEST_LEA("(%%eax)"); TEST_LEA("(%%ebx)"); TEST_LEA("(%%ecx)"); TEST_LEA("(%%edx)"); TEST_LEA("(%%esi)"); TEST_LEA("(%%edi)"); TEST_LEA("0x40(%%eax)"); TEST_LEA("0x40(%%ebx)"); TEST_LEA("0x40(%%ecx)"); TEST_LEA("0x40(%%edx)"); TEST_LEA("0x40(%%esi)"); TEST_LEA("0x40(%%edi)"); TEST_LEA("0x4000(%%eax)"); TEST_LEA("0x4000(%%ebx)"); TEST_LEA("0x4000(%%ecx)"); TEST_LEA("0x4000(%%edx)"); TEST_LEA("0x4000(%%esi)"); TEST_LEA("0x4000(%%edi)"); TEST_LEA("(%%eax, %%ecx)"); TEST_LEA("(%%ebx, %%edx)"); TEST_LEA("(%%ecx, %%ecx)"); TEST_LEA("(%%edx, %%ecx)"); TEST_LEA("(%%esi, %%ecx)"); TEST_LEA("(%%edi, %%ecx)"); TEST_LEA("0x40(%%eax, %%ecx)"); TEST_LEA("0x4000(%%ebx, %%edx)"); TEST_LEA("(%%ecx, %%ecx, 2)"); TEST_LEA("(%%edx, %%ecx, 4)"); TEST_LEA("(%%esi, %%ecx, 8)"); TEST_LEA("(,%%eax, 2)"); TEST_LEA("(,%%ebx, 4)"); TEST_LEA("(,%%ecx, 8)"); TEST_LEA("0x40(,%%eax, 2)"); TEST_LEA("0x40(,%%ebx, 4)"); TEST_LEA("0x40(,%%ecx, 8)"); TEST_LEA("-10(%%ecx, %%ecx, 2)"); TEST_LEA("-10(%%edx, %%ecx, 4)"); TEST_LEA("-10(%%esi, %%ecx, 8)"); TEST_LEA("0x4000(%%ecx, %%ecx, 2)"); TEST_LEA("0x4000(%%edx, %%ecx, 4)"); TEST_LEA("0x4000(%%esi, %%ecx, 8)"); #if defined(__x86_64__) TEST_LEAQ("0x4000"); TEST_LEAQ("0x4000(%%rip)"); TEST_LEAQ("(%%rax)"); TEST_LEAQ("(%%rbx)"); TEST_LEAQ("(%%rcx)"); TEST_LEAQ("(%%rdx)"); TEST_LEAQ("(%%rsi)"); TEST_LEAQ("(%%rdi)"); TEST_LEAQ("0x40(%%rax)"); TEST_LEAQ("0x40(%%rbx)"); TEST_LEAQ("0x40(%%rcx)"); TEST_LEAQ("0x40(%%rdx)"); TEST_LEAQ("0x40(%%rsi)"); TEST_LEAQ("0x40(%%rdi)"); TEST_LEAQ("0x4000(%%rax)"); TEST_LEAQ("0x4000(%%rbx)"); TEST_LEAQ("0x4000(%%rcx)"); TEST_LEAQ("0x4000(%%rdx)"); TEST_LEAQ("0x4000(%%rsi)"); TEST_LEAQ("0x4000(%%rdi)"); TEST_LEAQ("(%%rax, %%rcx)"); TEST_LEAQ("(%%rbx, %%rdx)"); TEST_LEAQ("(%%rcx, %%rcx)"); TEST_LEAQ("(%%rdx, %%rcx)"); TEST_LEAQ("(%%rsi, %%rcx)"); TEST_LEAQ("(%%rdi, %%rcx)"); TEST_LEAQ("0x40(%%rax, %%rcx)"); TEST_LEAQ("0x4000(%%rbx, %%rdx)"); TEST_LEAQ("(%%rcx, %%rcx, 2)"); TEST_LEAQ("(%%rdx, %%rcx, 4)"); TEST_LEAQ("(%%rsi, %%rcx, 8)"); TEST_LEAQ("(,%%rax, 2)"); TEST_LEAQ("(,%%rbx, 4)"); TEST_LEAQ("(,%%rcx, 8)"); TEST_LEAQ("0x40(,%%rax, 2)"); TEST_LEAQ("0x40(,%%rbx, 4)"); TEST_LEAQ("0x40(,%%rcx, 8)"); TEST_LEAQ("-10(%%rcx, %%rcx, 2)"); TEST_LEAQ("-10(%%rdx, %%rcx, 4)"); TEST_LEAQ("-10(%%rsi, %%rcx, 8)"); TEST_LEAQ("0x4000(%%rcx, %%rcx, 2)"); TEST_LEAQ("0x4000(%%rdx, %%rcx, 4)"); TEST_LEAQ("0x4000(%%rsi, %%rcx, 8)"); #else /* limited 16 bit addressing test */ TEST_LEA16("0x4000"); TEST_LEA16("(%%bx)"); TEST_LEA16("(%%si)"); TEST_LEA16("(%%di)"); TEST_LEA16("0x40(%%bx)"); TEST_LEA16("0x40(%%si)"); TEST_LEA16("0x40(%%di)"); TEST_LEA16("0x4000(%%bx)"); TEST_LEA16("0x4000(%%si)"); TEST_LEA16("(%%bx,%%si)"); TEST_LEA16("(%%bx,%%di)"); TEST_LEA16("0x40(%%bx,%%si)"); TEST_LEA16("0x40(%%bx,%%di)"); TEST_LEA16("0x4000(%%bx,%%si)"); TEST_LEA16("0x4000(%%bx,%%di)"); #endif } #define TEST_JCC(JCC, v1, v2)\ {\ int res;\ asm("movl $1, %0\n\t"\ "cmpl %2, %1\n\t"\ "j" JCC " 1f\n\t"\ "movl $0, %0\n\t"\ "1:\n\t"\ : "=r" (res)\ : "r" (v1), "r" (v2));\ printf("%-10s %d\n", "j" JCC, res);\ \ asm("movl $0, %0\n\t"\ "cmpl %2, %1\n\t"\ "set" JCC " %b0\n\t"\ : "=r" (res)\ : "r" (v1), "r" (v2));\ printf("%-10s %d\n", "set" JCC, res);\ if (TEST_CMOV) {\ long val = i2l(1);\ long res = i2l(0x12345678);\ X86_64_ONLY(\ asm("cmpl %2, %1\n\t"\ "cmov" JCC "q %3, %0\n\t"\ : "=r" (res)\ : "r" (v1), "r" (v2), "m" (val), "0" (res));\ printf("%-10s R=" FMTLX "\n", "cmov" JCC "q", res);)\ asm("cmpl %2, %1\n\t"\ "cmov" JCC "l %k3, %k0\n\t"\ : "=r" (res)\ : "r" (v1), "r" (v2), "m" (val), "0" (res));\ printf("%-10s R=" FMTLX "\n", "cmov" JCC "l", res);\ asm("cmpl %2, %1\n\t"\ "cmov" JCC "w %w3, %w0\n\t"\ : "=r" (res)\ : "r" (v1), "r" (v2), "r" (1), "0" (res));\ printf("%-10s R=" FMTLX "\n", "cmov" JCC "w", res);\ } \ } /* various jump tests */ void test_jcc(void) { TEST_JCC("ne", 1, 1); TEST_JCC("ne", 1, 0); TEST_JCC("e", 1, 1); TEST_JCC("e", 1, 0); TEST_JCC("l", 1, 1); TEST_JCC("l", 1, 0); TEST_JCC("l", 1, -1); TEST_JCC("le", 1, 1); TEST_JCC("le", 1, 0); TEST_JCC("le", 1, -1); TEST_JCC("ge", 1, 1); TEST_JCC("ge", 1, 0); TEST_JCC("ge", -1, 1); TEST_JCC("g", 1, 1); TEST_JCC("g", 1, 0); TEST_JCC("g", 1, -1); TEST_JCC("b", 1, 1); TEST_JCC("b", 1, 0); TEST_JCC("b", 1, -1); TEST_JCC("be", 1, 1); TEST_JCC("be", 1, 0); TEST_JCC("be", 1, -1); TEST_JCC("ae", 1, 1); TEST_JCC("ae", 1, 0); TEST_JCC("ae", 1, -1); TEST_JCC("a", 1, 1); TEST_JCC("a", 1, 0); TEST_JCC("a", 1, -1); TEST_JCC("p", 1, 1); TEST_JCC("p", 1, 0); TEST_JCC("np", 1, 1); TEST_JCC("np", 1, 0); TEST_JCC("o", 0x7fffffff, 0); TEST_JCC("o", 0x7fffffff, -1); TEST_JCC("no", 0x7fffffff, 0); TEST_JCC("no", 0x7fffffff, -1); TEST_JCC("s", 0, 1); TEST_JCC("s", 0, -1); TEST_JCC("s", 0, 0); TEST_JCC("ns", 0, 1); TEST_JCC("ns", 0, -1); TEST_JCC("ns", 0, 0); } #define TEST_LOOP(insn) \ {\ for(i = 0; i < sizeof(ecx_vals) / sizeof(long); i++) {\ ecx = ecx_vals[i];\ for(zf = 0; zf < 2; zf++) {\ asm("test %2, %2\n\t"\ "movl $1, %0\n\t"\ insn " 1f\n\t" \ "movl $0, %0\n\t"\ "1:\n\t"\ : "=a" (res)\ : "c" (ecx), "b" (!zf)); \ printf("%-10s ECX=" FMTLX " ZF=%ld r=%d\n", insn, ecx, zf, res); \ }\ }\ } void test_loop(void) { long ecx, zf; const long ecx_vals[] = { 0, 1, 0x10000, 0x10001, #if defined(__x86_64__) 0x100000000L, 0x100000001L, #endif }; int i, res; #if !defined(__x86_64__) TEST_LOOP("jcxz"); TEST_LOOP("loopw"); TEST_LOOP("loopzw"); TEST_LOOP("loopnzw"); #endif TEST_LOOP("jecxz"); TEST_LOOP("loopl"); TEST_LOOP("loopzl"); TEST_LOOP("loopnzl"); } #undef CC_MASK #ifdef TEST_P4_FLAGS #define CC_MASK (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A) #else #define CC_MASK (CC_O | CC_C) #endif #define OP mul #include "test-i386-muldiv.h" #define OP imul #include "test-i386-muldiv.h" void test_imulw2(long op0, long op1) { long res, s1, s0, flags; s0 = op0; s1 = op1; res = s0; flags = 0; asm volatile ("push %4\n\t" "popf\n\t" "imulw %w2, %w0\n\t" "pushf\n\t" "pop %1\n\t" : "=q" (res), "=g" (flags) : "q" (s1), "0" (res), "1" (flags)); printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n", "imulw", s0, s1, res, flags & CC_MASK); } void test_imull2(long op0, long op1) { long res, s1, s0, flags; s0 = op0; s1 = op1; res = s0; flags = 0; asm volatile ("push %4\n\t" "popf\n\t" "imull %k2, %k0\n\t" "pushf\n\t" "pop %1\n\t" : "=q" (res), "=g" (flags) : "q" (s1), "0" (res), "1" (flags)); printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n", "imull", s0, s1, res, flags & CC_MASK); } #if defined(__x86_64__) void test_imulq2(long op0, long op1) { long res, s1, s0, flags; s0 = op0; s1 = op1; res = s0; flags = 0; asm volatile ("push %4\n\t" "popf\n\t" "imulq %2, %0\n\t" "pushf\n\t" "pop %1\n\t" : "=q" (res), "=g" (flags) : "q" (s1), "0" (res), "1" (flags)); printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n", "imulq", s0, s1, res, flags & CC_MASK); } #endif #define TEST_IMUL_IM(size, rsize, op0, op1)\ {\ long res, flags, s1;\ flags = 0;\ res = 0;\ s1 = op1;\ asm volatile ("push %3\n\t"\ "popf\n\t"\ "imul" size " $" #op0 ", %" rsize "2, %" rsize "0\n\t" \ "pushf\n\t"\ "pop %1\n\t"\ : "=r" (res), "=g" (flags)\ : "r" (s1), "1" (flags), "0" (res));\ printf("%-10s A=" FMTLX " B=" FMTLX " R=" FMTLX " CC=%04lx\n",\ "imul" size " im", (long)op0, (long)op1, res, flags & CC_MASK);\ } #undef CC_MASK #define CC_MASK (0) #define OP div #include "test-i386-muldiv.h" #define OP idiv #include "test-i386-muldiv.h" void test_mul(void) { test_imulb(0x1234561d, 4); test_imulb(3, -4); test_imulb(0x80, 0x80); test_imulb(0x10, 0x10); test_imulw(0, 0x1234001d, 45); test_imulw(0, 23, -45); test_imulw(0, 0x8000, 0x8000); test_imulw(0, 0x100, 0x100); test_imull(0, 0x1234001d, 45); test_imull(0, 23, -45); test_imull(0, 0x80000000, 0x80000000); test_imull(0, 0x10000, 0x10000); test_mulb(0x1234561d, 4); test_mulb(3, -4); test_mulb(0x80, 0x80); test_mulb(0x10, 0x10); test_mulw(0, 0x1234001d, 45); test_mulw(0, 23, -45); test_mulw(0, 0x8000, 0x8000); test_mulw(0, 0x100, 0x100); test_mull(0, 0x1234001d, 45); test_mull(0, 23, -45); test_mull(0, 0x80000000, 0x80000000); test_mull(0, 0x10000, 0x10000); test_mull(0, 0xffffffff, 0xffffffff); test_mull(0, 0xfffffffe, 0xffffffff); test_mull(0, 0xffffffff, 0xfffffffe); test_mull(0, 0xffffffff, 0); test_mull(0, 0xffffffff, 1); test_mull(0, 0xffffffff, 2); test_mull(0, 0xffffffff, 3); test_mull(0, 0, 0xffffffff); test_mull(0, 1, 0xffffffff); test_mull(0, 2, 0xffffffff); test_mull(0, 3, 0xffffffff); test_imulw2(0x1234001d, 45); test_imulw2(23, -45); test_imulw2(0x8000, 0x8000); test_imulw2(0x100, 0x100); test_imull2(0x1234001d, 45); test_imull2(23, -45); test_imull2(0x80000000, 0x80000000); test_imull2(0x10000, 0x10000); TEST_IMUL_IM("w", "w", 45, 0x1234); TEST_IMUL_IM("w", "w", -45, 23); TEST_IMUL_IM("w", "w", 0x8000, 0x80000000); TEST_IMUL_IM("w", "w", 0x7fff, 0x1000); TEST_IMUL_IM("l", "k", 45, 0x1234); TEST_IMUL_IM("l", "k", -45, 23); TEST_IMUL_IM("l", "k", 0x8000, 0x80000000); TEST_IMUL_IM("l", "k", 0x7fff, 0x1000); test_idivb(0x12341678, 0x127e); test_idivb(0x43210123, -5); test_idivb(0x12340004, -1); test_idivb(-20, 3); test_idivb(20, -3); test_idivb(-20, -3); test_idivw(0, 0x12345678, 12347); test_idivw(0, -23223, -45); test_idivw(0, 0x12348000, -1); test_idivw(0x12343, 0x12345678, 0x81238567); test_idivw(-20, 0, 300); test_idivw(20, 0, -300); test_idivw(-20, 0, -300); test_idivl(0, 0x12345678, 12347); test_idivl(0, -233223, -45); test_idivl(0, 0x80000000, -1); test_idivl(0x12343, 0x12345678, 0x81234567); test_divb(0x12341678, 0x127e); test_divb(0x43210123, -5); test_divb(0x12340004, -1); test_divw(0, 0x12345678, 12347); test_divw(0, -23223, -45); test_divw(0, 0x12348000, -1); test_divw(0x12343, 0x12345678, 0x81238567); test_divl(0, 0x12345678, 12347); test_divl(0, -233223, -45); test_divl(0, 0x80000000, -1); test_divl(0x12343, 0x12345678, 0x81234567); test_divl(0xfffffffe, 0xffffffff, 0xffffffff); test_divl(0xffffffe, 0xffffffff, 0xfffffff); test_divl(0xfffffe, 0xffffffff, 0xffffff); test_divl(0xffffe, 0xffffffff, 0xfffff); test_divl(0xfffe, 0xffffffff, 0xffff); test_divl(0xffe, 0xffffffff, 0xfff); test_divl(0xfe, 0xffffffff, 0xff); test_divl(0xe, 0xffffffff, 0xf); test_divl(0x7ffffffe, 0xffffffff, 0x7fffffff); test_divl(0x7fffffe, 0xffffffff, 0x7ffffff); test_divl(0x7ffffe, 0xffffffff, 0x7fffff); test_divl(0x7fffe, 0xffffffff, 0x7ffff); test_divl(0x7ffe, 0xffffffff, 0x7fff); test_divl(0x7fe, 0xffffffff, 0x7ff); test_divl(0x7e, 0xffffffff, 0x7f); test_divl(0x3ffffffe, 0xffffffff, 0x3fffffff); test_divl(0x3fffffe, 0xffffffff, 0x3ffffff); test_divl(0x3ffffe, 0xffffffff, 0x3fffff); test_divl(0x3fffe, 0xffffffff, 0x3ffff); test_divl(0x3ffe, 0xffffffff, 0x3fff); test_divl(0x3fe, 0xffffffff, 0x3ff); test_divl(0x3e, 0xffffffff, 0x3f); test_divl(0x1ffffffe, 0xffffffff, 0x1fffffff); test_divl(0x1fffffe, 0xffffffff, 0x1ffffff); test_divl(0x1ffffe, 0xffffffff, 0x1fffff); test_divl(0x1fffe, 0xffffffff, 0x1ffff); test_divl(0x1ffe, 0xffffffff, 0x1fff); test_divl(0x1fe, 0xffffffff, 0x1ff); test_divl(0x1e, 0xffffffff, 0x1f); int i; for(i = 0; i < 16; i++) { test_divl(0, 0xfffffffe, i + 1); test_divl(0, 0xffffffff, i + 1); test_divl(1, 0xfffffffe, i + 2); test_divl(1, 0xffffffff, i + 2); test_divl(2, 0xfffffffe, i + 3); test_divl(2, 0xffffffff, i + 3); test_divl(3, 0xfffffffe, i + 4); test_divl(3, 0xffffffff, i + 4); test_divl(4, 0xfffffffe, i + 5); test_divl(4, 0xffffffff, i + 5); test_divl(0xfffffffd, 0x00000000 + i, 0xfffffffe); test_divl(0xfffffffd, 0xfffffff0 + i, 0xfffffffe); test_divl(0xfffffffe, 0x00000000 + i, 0xffffffff); test_divl(0xfffffffe, 0xfffffff0 + i, 0xffffffff); test_divl(0, i, 0xfffffffa); test_divl(0, i, 0xfffffffb); test_divl(0, i, 0xfffffffc); test_divl(0, i, 0xfffffffd); test_divl(0, i, 0xfffffffe); test_divl(0, i, 0xffffffff); test_idivl(0, 1, i + 1); test_idivl(-1, -1, i + 1); test_idivl(0, 1, -(i + 1)); test_idivl(-1, -1, -(i + 1)); test_idivl(0, 0x7fffffff, i + 1); test_idivl(-1, 0x80000001, i + 1); test_idivl(0, 0x7fffffff, -(i + 1)); test_idivl(-1, 0x80000001, -(i + 1)); } #if defined(__x86_64__) test_imulq(0, 0x1234001d1234001d, 45); test_imulq(0, 23, -45); test_imulq(0, 0x8000000000000000, 0x8000000000000000); test_imulq(0, 0x100000000, 0x100000000); test_mulq(0, 0x1234001d1234001d, 45); test_mulq(0, 23, -45); test_mulq(0, 0x8000000000000000, 0x8000000000000000); test_mulq(0, 0x100000000, 0x100000000); test_imulq2(0x1234001d1234001d, 45); test_imulq2(23, -45); test_imulq2(0x8000000000000000, 0x8000000000000000); test_imulq2(0x100000000, 0x100000000); TEST_IMUL_IM("q", "", 45, 0x12341234); TEST_IMUL_IM("q", "", -45, 23); TEST_IMUL_IM("q", "", 0x8000, 0x8000000000000000); TEST_IMUL_IM("q", "", 0x7fff, 0x10000000); test_idivq(0, 0x12345678abcdef, 12347); test_idivq(0, -233223, -45); test_idivq(0, 0x8000000000000000, -1); test_idivq(0x12343, 0x12345678, 0x81234567); test_divq(0, 0x12345678abcdef, 12347); test_divq(0, -233223, -45); test_divq(0, 0x8000000000000000, -1); test_divq(0x12343, 0x12345678, 0x81234567); #endif } #define TEST_BSX(op, size, op0)\ {\ long res, val, resz;\ val = op0;\ asm("xor %1, %1\n"\ "mov $0x12345678, %0\n"\ #op " %" size "2, %" size "0 ; setz %b1" \ : "=&r" (res), "=&q" (resz)\ : "r" (val));\ printf("%-10s A=" FMTLX " R=" FMTLX " %ld\n", #op, val, res, resz);\ } void test_bsx(void) { TEST_BSX(bsrw, "w", 0); TEST_BSX(bsrw, "w", 0x12340128); TEST_BSX(bsrw, "w", 0xffffffff); TEST_BSX(bsrw, "w", 0xffff7fff); TEST_BSX(bsfw, "w", 0); TEST_BSX(bsfw, "w", 0x12340128); TEST_BSX(bsfw, "w", 0xffffffff); TEST_BSX(bsfw, "w", 0xfffffff7); TEST_BSX(bsrl, "k", 0); TEST_BSX(bsrl, "k", 0x00340128); TEST_BSX(bsrl, "k", 0xffffffff); TEST_BSX(bsrl, "k", 0x7fffffff); TEST_BSX(bsfl, "k", 0); TEST_BSX(bsfl, "k", 0x00340128); TEST_BSX(bsfl, "k", 0xffffffff); TEST_BSX(bsfl, "k", 0xfffffff7); #if defined(__x86_64__) TEST_BSX(bsrq, "", 0); TEST_BSX(bsrq, "", 0x003401281234); TEST_BSX(bsfq, "", 0); TEST_BSX(bsfq, "", 0x003401281234); #endif } #define TEST_POPCNT(size, op0)\ {\ long res, val, resz;\ val = op0;\ asm("xor %1, %1\n"\ "mov $0x12345678, %0\n"\ "popcnt %" size "2, %" size "0 ; pushf; pop %1;" \ : "=&r" (res), "=&q" (resz)\ : "r" (val));\ printf("popcnt A=" FMTLX " R=" FMTLX " flags=%lx\n", val, res, resz);\ } void test_popcnt(void) { TEST_POPCNT("w", 0); } /**********************************************/ union float64u { double d; uint64_t l; }; union float64u q_nan = { .l = 0xFFF8000000000000LL }; union float64u s_nan = { .l = 0xFFF0000000000000LL }; void test_fops(double a, double b) { //int ib = (int)b; //int dest = 0; // XXX: Tests below are disabled since libc (which is statically linked) // contains sse instructions, some of which aren't supported. printf("a=%f b=%f a+b=%f\n", a, b, a + b); printf("a=%f b=%f a-b=%f\n", a, b, a - b); printf("a=%f b=%f a*b=%f\n", a, b, a * b); printf("a=%f b=%f a/b=%f\n", a, b, a / b); printf("a=%f b=%f =%f\n", a, b, a + a + a + 3 * b / a * (a * a * a / b / b / (a + 1.0) - 3.5 + a * b / (3.7 * a / (a - b * b) + 6.5 * a / (b * b * a / -b - a * b) + 5.5 * (b - a)))); printf("a=%f b=%f fmod(a, b)=%f\n", a, b, fmod(a, b)); //printf("a=%f fma(a,b,a)=%f\n", a, fma(a, b, a)); //printf("a=%f fdim(a,b)=%f\n", a, fdim(a, b)); printf("a=%f copysign(a,b)=%f\n", a, copysign(a, b)); printf("a=%f sqrt(a)=%f\n", a, sqrt(a)); //printf("a=%f sin(a)=%f\n", a, sin(a)); //printf("a=%f cos(a)=%f\n", a, cos(a)); //printf("a=%f tan(a)=%f\n", a, tan(a)); //printf("a=%f log(a)=%f\n", a, log(a)); //printf("a=%f log10(a)=%f\n", a, log10(a)); //printf("a=%f log1p(a)=%f\n", a, log1p(a)); //printf("a=%f log2(a)=%f\n", a, log2(a)); //printf("a=%f logb(a)=%f\n", a, logb(a)); //printf("a=%f ilogb(a)=%d\n", a, ilogb(a)); printf("a=%f exp(a)=%f\n", a, exp(a)); //printf("a=%f exp2(a)=%f\n", a, exp2(a)); //printf("a=%f frexp(a)=%f, %d\n", a, frexp(a, &dest), dest); //printf("a=%f ldexp(a,b)=%f\n", a, ldexp(a, ib)); //printf("a=%f scalbn(a,b)=%f\n", a, scalbn(a, ib)); //printf("a=%f sihh(a)=%f\n", a, sinh(a)); //printf("a=%f cosh(a)=%f\n", a, cosh(a)); //printf("a=%f tanh(a)=%f\n", a, tanh(a)); //printf("a=%f fabs(a)=%f\n", a, fabs(a)); //printf("a=%f pow(a,b)=%f\n", a, pow(a,b)); //printf("a=%f b=%f atan2(a, b)=%f\n", a, b, atan2(a, b)); ///* just to test some op combining */ //printf("a=%f asin(sin(a))=%f\n", a, asin(sin(a))); //printf("a=%f acos(cos(a))=%f\n", a, acos(cos(a))); //printf("a=%f atan(tan(a))=%f\n", a, atan(tan(a))); } void fpu_clear_exceptions(void) { struct QEMU_PACKED { uint16_t fpuc; uint16_t dummy1; uint16_t fpus; uint16_t dummy2; uint16_t fptag; uint16_t dummy3; uint32_t ignored[4]; long double fpregs[8]; } float_env32; asm volatile ("fnstenv %0\n" : "=m" (float_env32)); float_env32.fpus &= ~0x7f; asm volatile ("fldenv %0\n" : : "m" (float_env32)); } /* XXX: display exception bits when supported */ #define FPUS_EMASK 0x0000 //#define FPUS_EMASK 0x007f void test_fcmp(double a, double b) { long eflags, fpus; fpu_clear_exceptions(); asm("fcom %2\n" "fstsw %%ax\n" : "=a" (fpus) : "t" (a), "u" (b)); printf("fcom(%f %f)=%04lx\n", a, b, fpus & (0x4500 | FPUS_EMASK)); fpu_clear_exceptions(); asm("fucom %2\n" "fstsw %%ax\n" : "=a" (fpus) : "t" (a), "u" (b)); printf("fucom(%f %f)=%04lx\n", a, b, fpus & (0x4500 | FPUS_EMASK)); if (TEST_FCOMI) { /* test f(u)comi instruction */ fpu_clear_exceptions(); asm("fcomi %3, %2\n" "fstsw %%ax\n" "pushf\n" "pop %0\n" : "=r" (eflags), "=a" (fpus) : "t" (a), "u" (b)); printf("fcomi(%f %f)=%04lx %02lx\n", a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C)); fpu_clear_exceptions(); asm("fucomi %3, %2\n" "fstsw %%ax\n" "pushf\n" "pop %0\n" : "=r" (eflags), "=a" (fpus) : "t" (a), "u" (b)); printf("fucomi(%f %f)=%04lx %02lx\n", a, b, fpus & FPUS_EMASK, eflags & (CC_Z | CC_P | CC_C)); } fpu_clear_exceptions(); asm volatile("fxam\n" "fstsw %%ax\n" : "=a" (fpus) : "t" (a)); printf("fxam(%f)=%04lx\n", a, fpus & 0x4700); fpu_clear_exceptions(); } void test_fcvt(double a) { float fa; long double la; int16_t fpuc; int i; int64_t lla; int ia; int16_t wa; double ra; fa = a; la = a; printf("(float)%f = %f\n", a, fa); printf("(long double)%f = %Lf\n", a, la); printf("a=" FMT64X "\n", *(uint64_t *)&a); printf("la=" FMT64X " %04x\n", *(uint64_t *)&la, *(unsigned short *)((char *)(&la) + 8)); /* test all roundings */ asm volatile ("fstcw %0" : "=m" (fpuc)); for(i=0;i<4;i++) { uint16_t val16; val16 = (fpuc & ~0x0c00) | (i << 10); asm volatile ("fldcw %0" : : "m" (val16)); asm volatile ("fist %0" : "=m" (wa) : "t" (a)); asm volatile ("fistl %0" : "=m" (ia) : "t" (a)); asm volatile ("fistpll %0" : "=m" (lla) : "t" (a) : "st"); asm volatile ("frndint ; fstl %0" : "=m" (ra) : "t" (a)); asm volatile ("fldcw %0" : : "m" (fpuc)); printf("(short)a = %d\n", wa); printf("(int)a = %d\n", ia); printf("(int64_t)a = " FMT64X "\n", lla); printf("rint(a) = %f\n", ra); } } #define TEST(N) \ asm("fld" #N : "=t" (a)); \ printf("fld" #N "= %f\n", a); void test_fconst(void) { double a; TEST(1); TEST(l2t); TEST(l2e); TEST(pi); TEST(lg2); TEST(ln2); TEST(z); } void test_fbcd(double a) { unsigned short bcd[5]; double b; asm("fbstp %0" : "=m" (bcd[0]) : "t" (a) : "st"); asm("fbld %1" : "=t" (b) : "m" (bcd[0])); printf("a=%f bcd=%04x%04x%04x%04x%04x b=%f\n", a, bcd[4], bcd[3], bcd[2], bcd[1], bcd[0], b); } #define TEST_ENV(env, save, restore)\ {\ memset((env), 0xaa, sizeof(*(env)));\ for(i=0;i<5;i++)\ asm volatile ("fldl %0" : : "m" (dtab[i]));\ asm volatile (save " %0\n" : : "m" (*(env)));\ asm volatile (restore " %0\n": : "m" (*(env)));\ for(i=0;i<5;i++)\ asm volatile ("fstpl %0" : "=m" (rtab[i]));\ for(i=0;i<5;i++)\ printf("res[%d]=%f\n", i, rtab[i]);\ printf("fpuc=%04x fpus=%04x fptag=%04x\n",\ (env)->fpuc,\ (env)->fpus & 0xff00,\ (env)->fptag);\ } void test_fenv(void) { struct __attribute__((__packed__)) { uint16_t fpuc; uint16_t dummy1; uint16_t fpus; uint16_t dummy2; uint16_t fptag; uint16_t dummy3; uint32_t ignored[4]; long double fpregs[8]; } float_env32; struct __attribute__((__packed__)) { uint16_t fpuc; uint16_t fpus; uint16_t fptag; uint16_t ignored[4]; long double fpregs[8]; } float_env16; double dtab[8]; double rtab[8]; int i; for(i=0;i<8;i++) dtab[i] = i + 1; //TEST_ENV(&float_env16, "data16 fnstenv", "data16 fldenv"); //TEST_ENV(&float_env16, "data16 fnsave", "data16 frstor"); TEST_ENV(&float_env32, "fnstenv", "fldenv"); TEST_ENV(&float_env32, "fnsave", "frstor"); /* test for ffree */ for(i=0;i<5;i++) asm volatile ("fldl %0" : : "m" (dtab[i])); asm volatile("ffree %st(2)"); asm volatile ("fnstenv %0\n" : : "m" (float_env32)); asm volatile ("fninit"); printf("fptag=%04x\n", float_env32.fptag); } #define TEST_FCMOV(a, b, eflags, CC)\ {\ double res;\ asm("push %3\n"\ "popf\n"\ "fcmov" CC " %2, %0\n"\ : "=t" (res)\ : "0" (a), "u" (b), "g" (eflags));\ printf("fcmov%s eflags=0x%04lx-> %f\n", \ CC, (long)eflags, res);\ } void test_fcmov(void) { double a, b; long eflags, i; a = 1.0; b = 2.0; for(i = 0; i < 4; i++) { eflags = 0; if (i & 1) eflags |= CC_C; if (i & 2) eflags |= CC_Z; TEST_FCMOV(a, b, eflags, "b"); TEST_FCMOV(a, b, eflags, "e"); TEST_FCMOV(a, b, eflags, "be"); TEST_FCMOV(a, b, eflags, "nb"); TEST_FCMOV(a, b, eflags, "ne"); TEST_FCMOV(a, b, eflags, "nbe"); } TEST_FCMOV(a, b, 0, "u"); TEST_FCMOV(a, b, CC_P, "u"); TEST_FCMOV(a, b, 0, "nu"); TEST_FCMOV(a, b, CC_P, "nu"); } void test_floats(void) { test_fops(2, 3); test_fops(1.4, -5); test_fops(-20.5, 128); test_fops(-0.5, -4); test_fcmp(2, -1); test_fcmp(2, 2); test_fcmp(2, 3); test_fcmp(2, q_nan.d); test_fcmp(q_nan.d, -1); test_fcmp(-1.0/0.0, -1); test_fcmp(1.0/0.0, -1); test_fcvt(0.5); test_fcvt(-0.5); test_fcvt(1.0/7.0); test_fcvt(-1.0/9.0); test_fcvt(32768); // largest and smallest, odd and even numbers that have one bit left for the fractional part (2**52-1) test_fcvt(4503599627370494.5); test_fcvt(4503599627370495.5); test_fcvt(-4503599627370494.5); test_fcvt(-4503599627370495.5); test_fcvt(-1e20); test_fcvt(-1.0/0.0); test_fcvt(1.0/0.0); test_fcvt(q_nan.d); test_fconst(); //test_fbcd(1234567890123456.0); //test_fbcd(-123451234567890.0); test_fenv(); if (TEST_CMOV) { test_fcmov(); } } /**********************************************/ #if !defined(__x86_64__) #define TEST_BCD(op, op0, cc_in, cc_mask)\ {\ int res, flags;\ res = op0;\ flags = cc_in;\ asm ("push %3\n\t"\ "popf\n\t"\ #op "\n\t"\ "pushf\n\t"\ "pop %1\n\t"\ : "=a" (res), "=g" (flags)\ : "0" (res), "1" (flags));\ printf("%-10s A=%08x R=%08x CCIN=%04x CC=%04x\n",\ #op, op0, res, cc_in, flags & cc_mask);\ } void test_bcd(void) { TEST_BCD(daa, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(daa, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340503, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340506, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340507, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340559, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340560, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x1234059f, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x123405a0, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340503, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340506, 0, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340503, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340506, CC_C, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340503, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(das, 0x12340506, CC_C | CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_A)); TEST_BCD(aaa, 0x12340205, CC_A, (CC_C | CC_A)); TEST_BCD(aaa, 0x12340306, CC_A, (CC_C | CC_A)); TEST_BCD(aaa, 0x1234040a, CC_A, (CC_C | CC_A)); TEST_BCD(aaa, 0x123405fa, CC_A, (CC_C | CC_A)); TEST_BCD(aaa, 0x12340205, 0, (CC_C | CC_A)); TEST_BCD(aaa, 0x12340306, 0, (CC_C | CC_A)); TEST_BCD(aaa, 0x1234040a, 0, (CC_C | CC_A)); TEST_BCD(aaa, 0x123405fa, 0, (CC_C | CC_A)); TEST_BCD(aas, 0x12340205, CC_A, (CC_C | CC_A)); TEST_BCD(aas, 0x12340306, CC_A, (CC_C | CC_A)); TEST_BCD(aas, 0x1234040a, CC_A, (CC_C | CC_A)); TEST_BCD(aas, 0x123405fa, CC_A, (CC_C | CC_A)); TEST_BCD(aas, 0x12340205, 0, (CC_C | CC_A)); TEST_BCD(aas, 0x12340306, 0, (CC_C | CC_A)); TEST_BCD(aas, 0x1234040a, 0, (CC_C | CC_A)); TEST_BCD(aas, 0x123405fa, 0, (CC_C | CC_A)); TEST_BCD(aam, 0x12340547, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)); TEST_BCD(aad, 0x12340407, CC_A, (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)); } #endif #define TEST_XCHG(op, size, opconst)\ {\ long op0, op1;\ op0 = i2l(0x12345678);\ op1 = i2l(0xfbca7654);\ asm(#op " %" size "0, %" size "1" \ : "=q" (op0), opconst (op1) \ : "0" (op0));\ printf("%-10s A=" FMTLX " B=" FMTLX "\n",\ #op, op0, op1);\ } #define TEST_CMPXCHG(op, size, opconst, eax)\ {\ long op0, op1, op2;\ op0 = i2l(0x12345678);\ op1 = i2l(0xfbca7654);\ op2 = i2l(eax);\ asm(#op " %" size "0, %" size "1" \ : "=q" (op0), opconst (op1) \ : "0" (op0), "a" (op2));\ printf("%-10s EAX=" FMTLX " A=" FMTLX " C=" FMTLX "\n",\ #op, op2, op0, op1);\ } void test_xchg(void) { #if defined(__x86_64__) TEST_XCHG(xchgq, "", "+q"); #endif TEST_XCHG(xchgl, "k", "+q"); TEST_XCHG(xchgw, "w", "+q"); TEST_XCHG(xchgb, "b", "+q"); #if defined(__x86_64__) TEST_XCHG(xchgq, "", "=m"); #endif TEST_XCHG(xchgl, "k", "+m"); TEST_XCHG(xchgw, "w", "+m"); TEST_XCHG(xchgb, "b", "+m"); #if defined(__x86_64__) TEST_XCHG(xaddq, "", "+q"); #endif TEST_XCHG(xaddl, "k", "+q"); TEST_XCHG(xaddw, "w", "+q"); TEST_XCHG(xaddb, "b", "+q"); { int res; res = 0x12345678; asm("xaddl %1, %0" : "=r" (res) : "0" (res)); printf("xaddl same res=%08x\n", res); } #if defined(__x86_64__) TEST_XCHG(xaddq, "", "+m"); #endif TEST_XCHG(xaddl, "k", "+m"); TEST_XCHG(xaddw, "w", "+m"); TEST_XCHG(xaddb, "b", "+m"); #if defined(__x86_64__) TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfbca7654); #endif TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfbca7654); TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfbca7654); TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfbca7654); #if defined(__x86_64__) TEST_CMPXCHG(cmpxchgq, "", "+q", 0xfffefdfc); #endif TEST_CMPXCHG(cmpxchgl, "k", "+q", 0xfffefdfc); TEST_CMPXCHG(cmpxchgw, "w", "+q", 0xfffefdfc); TEST_CMPXCHG(cmpxchgb, "b", "+q", 0xfffefdfc); #if defined(__x86_64__) TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfbca7654); #endif TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfbca7654); TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfbca7654); TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfbca7654); #if defined(__x86_64__) TEST_CMPXCHG(cmpxchgq, "", "+m", 0xfffefdfc); #endif TEST_CMPXCHG(cmpxchgl, "k", "+m", 0xfffefdfc); TEST_CMPXCHG(cmpxchgw, "w", "+m", 0xfffefdfc); TEST_CMPXCHG(cmpxchgb, "b", "+m", 0xfffefdfc); { uint64_t op0, op1, op2; long eax, edx; long i, eflags; for(i = 0; i < 2; i++) { op0 = 0x123456789abcdLL; eax = i2l(op0 & 0xffffffff); edx = i2l(op0 >> 32); if (i == 0) op1 = 0xfbca765423456LL; else op1 = op0; op2 = 0x6532432432434LL; asm("cmpxchg8b %2\n" "pushf\n" "pop %3\n" : "=a" (eax), "=d" (edx), "=m" (op1), "=g" (eflags) : "0" (eax), "1" (edx), "m" (op1), "b" ((int)op2), "c" ((int)(op2 >> 32))); printf("cmpxchg8b: eax=" FMTLX " edx=" FMTLX " op1=" FMT64X " CC=%02lx\n", eax, edx, op1, eflags & CC_Z); } } } #ifdef TEST_SEGS /**********************************************/ /* segmentation tests */ #include #include #include #include static inline int modify_ldt(int func, void * ptr, unsigned long bytecount) { int result = syscall(__NR_modify_ldt, func, ptr, bytecount); if(result == -1) { fprintf(stderr, "Error: modify_ldt not available on this kernel. Check MODIFY_LDT_SYSCALL in /proc/config.gz.\n"); exit(1); } return result; } #if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 66) #define modify_ldt_ldt_s user_desc #endif #define MK_SEL(n) (((n) << 3) | 7) uint8_t seg_data1[4096]; uint8_t seg_data2[4096]; #define TEST_LR(op, size, seg, mask)\ {\ int res, res2;\ uint16_t mseg = seg;\ res = 0x12345678;\ asm (op " %" size "2, %" size "0\n" \ "movl $0, %1\n"\ "jnz 1f\n"\ "movl $1, %1\n"\ "1:\n"\ : "=r" (res), "=r" (res2) : "m" (mseg), "0" (res));\ printf(op ": Z=%d %08x\n", res2, res & ~(mask));\ } #define TEST_ARPL(op, size, op1, op2)\ {\ long a, b, c; \ a = (op1); \ b = (op2); \ asm volatile(op " %" size "3, %" size "0\n"\ "movl $0,%1\n"\ "jnz 1f\n"\ "movl $1,%1\n"\ "1:\n"\ : "=r" (a), "=r" (c) : "0" (a), "r" (b)); \ printf(op size " A=" FMTLX " B=" FMTLX " R=" FMTLX " z=%ld\n",\ (long)(op1), (long)(op2), a, c);\ } /* NOTE: we use Linux modify_ldt syscall */ void test_segs(void) { struct modify_ldt_ldt_s ldt; long long ldt_table[3]; int res, res2; char tmp; struct { uint32_t offset; uint16_t seg; } __attribute__((__packed__)) segoff; ldt.entry_number = 1; ldt.base_addr = (unsigned long)&seg_data1; ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12; ldt.seg_32bit = 1; ldt.contents = MODIFY_LDT_CONTENTS_DATA; ldt.read_exec_only = 0; ldt.limit_in_pages = 1; ldt.seg_not_present = 0; ldt.useable = 1; modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */ ldt.entry_number = 2; ldt.base_addr = (unsigned long)&seg_data2; ldt.limit = (sizeof(seg_data2) + 0xfff) >> 12; ldt.seg_32bit = 1; ldt.contents = MODIFY_LDT_CONTENTS_DATA; ldt.read_exec_only = 0; ldt.limit_in_pages = 1; ldt.seg_not_present = 0; ldt.useable = 1; modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */ modify_ldt(0, &ldt_table, sizeof(ldt_table)); /* read ldt entries */ { int i; for(i=0;i<3;i++) printf("%d: %016Lx\n", i, ldt_table[i]); } /* do some tests with fs or gs */ asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1))); seg_data1[1] = 0xaa; seg_data2[1] = 0x55; asm volatile ("fs movzbl 0x1, %0" : "=r" (res)); printf("FS[1] = %02x\n", res); asm volatile ("pushl %%gs\n" "movl %1, %%gs\n" "gs movzbl 0x1, %0\n" "popl %%gs\n" : "=r" (res) : "r" (MK_SEL(2))); printf("GS[1] = %02x\n", res); /* tests with ds/ss (implicit segment case) */ tmp = 0xa5; asm volatile ("pushl %%ebp\n\t" "pushl %%ds\n\t" "movl %2, %%ds\n\t" "movl %3, %%ebp\n\t" "movzbl 0x1, %0\n\t" "movzbl (%%ebp), %1\n\t" "popl %%ds\n\t" "popl %%ebp\n\t" : "=r" (res), "=r" (res2) : "r" (MK_SEL(1)), "r" (&tmp)); printf("DS[1] = %02x\n", res); printf("SS[tmp] = %02x\n", res2); segoff.seg = MK_SEL(2); segoff.offset = 0xabcdef12; asm volatile("lfs %2, %0\n\t" "movl %%fs, %1\n\t" : "=r" (res), "=g" (res2) : "m" (segoff)); printf("FS:reg = %04x:%08x\n", res2, res); TEST_LR("larw", "w", MK_SEL(2), 0x0100); TEST_LR("larl", "", MK_SEL(2), 0x0100); TEST_LR("lslw", "w", MK_SEL(2), 0); TEST_LR("lsll", "", MK_SEL(2), 0); TEST_LR("larw", "w", 0xfff8, 0); TEST_LR("larl", "", 0xfff8, 0); TEST_LR("lslw", "w", 0xfff8, 0); TEST_LR("lsll", "", 0xfff8, 0); TEST_ARPL("arpl", "w", 0x12345678 | 3, 0x762123c | 1); TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 3); TEST_ARPL("arpl", "w", 0x12345678 | 1, 0x762123c | 1); } /* 16 bit code test */ extern char code16_start, code16_end; extern char code16_func1; extern char code16_func2; extern char code16_func3; void test_code16(void) { struct modify_ldt_ldt_s ldt; int res, res2; /* build a code segment */ ldt.entry_number = 1; ldt.base_addr = (unsigned long)&code16_start; ldt.limit = &code16_end - &code16_start; ldt.seg_32bit = 0; ldt.contents = MODIFY_LDT_CONTENTS_CODE; ldt.read_exec_only = 0; ldt.limit_in_pages = 0; ldt.seg_not_present = 0; ldt.useable = 1; modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */ /* call the first function */ // XXX: Temporarily disabled: Fails to compile on newer gcc, wait for upstream fix #if 0 asm volatile ("lcall %1, %2" : "=a" (res) : "i" (MK_SEL(1)), "i" (&code16_func1): "memory", "cc"); printf("func1() = 0x%08x\n", res); asm volatile ("lcall %2, %3" : "=a" (res), "=c" (res2) : "i" (MK_SEL(1)), "i" (&code16_func2): "memory", "cc"); printf("func2() = 0x%08x spdec=%d\n", res, res2); asm volatile ("lcall %1, %2" : "=a" (res) : "i" (MK_SEL(1)), "i" (&code16_func3): "memory", "cc"); printf("func3() = 0x%08x\n", res); #endif } #endif #if defined(__x86_64__) asm(".globl func_lret\n" "func_lret:\n" "movl $0x87654641, %eax\n" "lretq\n"); #else asm(".globl func_lret\n" "func_lret:\n" "movl $0x87654321, %eax\n" "lret\n" ".globl func_iret\n" "func_iret:\n" "movl $0xabcd4321, %eax\n" "iret\n"); #endif extern char func_lret; extern char func_iret; void test_misc(void) { char table[256]; long res, i; for(i=0;i<256;i++) table[i] = 256 - i; res = 0x12345678; asm ("xlat" : "=a" (res) : "b" (table), "0" (res)); printf("xlat: EAX=" FMTLX "\n", res); #if defined(__x86_64__) #if 0 { /* XXX: see if Intel Core2 and AMD64 behavior really differ. Here we implemented the Intel way which is not compatible yet with QEMU. */ static struct QEMU_PACKED { uint64_t offset; uint16_t seg; } desc; long cs_sel; asm volatile ("mov %%cs, %0" : "=r" (cs_sel)); asm volatile ("push %1\n" "call func_lret\n" : "=a" (res) : "r" (cs_sel) : "memory", "cc"); printf("func_lret=" FMTLX "\n", res); desc.offset = (long)&func_lret; desc.seg = cs_sel; asm volatile ("xor %%rax, %%rax\n" "rex64 lcall *(%%rcx)\n" : "=a" (res) : "c" (&desc) : "memory", "cc"); printf("func_lret2=" FMTLX "\n", res); asm volatile ("push %2\n" "mov $ 1f, %%rax\n" "push %%rax\n" "rex64 ljmp *(%%rcx)\n" "1:\n" : "=a" (res) : "c" (&desc), "b" (cs_sel) : "memory", "cc"); printf("func_lret3=" FMTLX "\n", res); } #endif #else // XXX: Temporarily disabled: Fails to compile on newer gcc, wait for upstream fix #if 0 asm volatile ("push %%cs ; call %1" : "=a" (res) : "m" (func_lret): "memory", "cc"); printf("func_lret=" FMTLX "\n", res); asm volatile ("pushf ; push %%cs ; call %1" : "=a" (res) : "m" (func_iret): "memory", "cc"); printf("func_iret=" FMTLX "\n", res); #endif #endif #if defined(__x86_64__) /* specific popl test */ asm volatile ("push $12345432 ; push $0x9abcdef ; pop (%%rsp) ; pop %0" : "=g" (res)); printf("popl esp=" FMTLX "\n", res); #else /* specific popl test */ asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popl (%%esp) ; popl %0" : "=g" (res)); printf("popl esp=" FMTLX "\n", res); /* specific popw test */ asm volatile ("pushl $12345432 ; pushl $0x9abcdef ; popw (%%esp) ; addl $2, %%esp ; popl %0" : "=g" (res)); printf("popw esp=" FMTLX "\n", res); #endif } uint8_t str_buffer[4096]; #define TEST_STRING1(OP, size, DF, REP)\ {\ long esi, edi, eax, ecx, eflags;\ \ esi = (long)(str_buffer + sizeof(str_buffer) / 2);\ edi = (long)(str_buffer + sizeof(str_buffer) / 2) + 16;\ eax = i2l(0x12345678);\ ecx = 17;\ \ asm volatile ("push $0\n\t"\ "popf\n\t"\ DF "\n\t"\ REP #OP size "\n\t"\ "cld\n\t"\ "pushf\n\t"\ "pop %4\n\t"\ : "=S" (esi), "=D" (edi), "=a" (eax), "=c" (ecx), "=g" (eflags)\ : "0" (esi), "1" (edi), "2" (eax), "3" (ecx));\ printf("%-10s ESI=" FMTLX " EDI=" FMTLX " EAX=" FMTLX " ECX=" FMTLX " EFL=%04x\n",\ REP #OP size, esi, edi, eax, ecx,\ (int)(eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A)));\ } #define TEST_STRING(OP, REP)\ TEST_STRING1(OP, "b", "", REP);\ TEST_STRING1(OP, "w", "", REP);\ TEST_STRING1(OP, "l", "", REP);\ X86_64_ONLY(TEST_STRING1(OP, "q", "", REP));\ TEST_STRING1(OP, "b", "std", REP);\ TEST_STRING1(OP, "w", "std", REP);\ TEST_STRING1(OP, "l", "std", REP);\ X86_64_ONLY(TEST_STRING1(OP, "q", "std", REP)) void test_string(void) { int i; for(i = 0;i < sizeof(str_buffer); i++) str_buffer[i] = i + 0x56; TEST_STRING(stos, ""); TEST_STRING(stos, "rep "); TEST_STRING(lods, ""); /* to verify stos */ TEST_STRING(lods, "rep "); TEST_STRING(movs, ""); TEST_STRING(movs, "rep "); TEST_STRING(lods, ""); /* to verify stos */ /* XXX: better tests */ TEST_STRING(scas, ""); TEST_STRING(scas, "repz "); TEST_STRING(scas, "repnz "); TEST_STRING(cmps, ""); TEST_STRING(cmps, "repz "); TEST_STRING(cmps, "repnz "); } #ifdef TEST_VM86 /* VM86 test */ static inline void set_bit(uint8_t *a, unsigned int bit) { a[bit / 8] |= (1 << (bit % 8)); } static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg) { return (uint8_t *)((seg << 4) + (reg & 0xffff)); } static inline void pushw(struct vm86_regs *r, int val) { r->esp = (r->esp & ~0xffff) | ((r->esp - 2) & 0xffff); *(uint16_t *)seg_to_linear(r->ss, r->esp) = val; } static inline int vm86(int func, struct vm86plus_struct *v86) { return syscall(__NR_vm86, func, v86); } extern char vm86_code_start; extern char vm86_code_end; #define VM86_CODE_CS 0x100 #define VM86_CODE_IP 0x100 void test_vm86(void) { struct vm86plus_struct ctx; struct vm86_regs *r; uint8_t *vm86_mem; int seg, ret; vm86_mem = mmap((void *)0x00000000, 0x110000, PROT_WRITE | PROT_READ | PROT_EXEC, MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0); if (vm86_mem == MAP_FAILED) { printf("ERROR: could not map vm86 memory"); return; } memset(&ctx, 0, sizeof(ctx)); /* init basic registers */ r = &ctx.regs; r->eip = VM86_CODE_IP; r->esp = 0xfffe; seg = VM86_CODE_CS; r->cs = seg; r->ss = seg; r->ds = seg; r->es = seg; r->fs = seg; r->gs = seg; //r->eflags = VIF_MASK; /* move code to proper address. We use the same layout as a .com dos program. */ memcpy(vm86_mem + (VM86_CODE_CS << 4) + VM86_CODE_IP, &vm86_code_start, &vm86_code_end - &vm86_code_start); /* mark int 0x21 as being emulated */ set_bit((uint8_t *)&ctx.int_revectored, 0x21); for(;;) { ret = vm86(VM86_ENTER, &ctx); switch(VM86_TYPE(ret)) { case VM86_INTx: { int int_num, ah, v; int_num = VM86_ARG(ret); if (int_num != 0x21) goto unknown_int; ah = (r->eax >> 8) & 0xff; switch(ah) { case 0x00: /* exit */ goto the_end; case 0x02: /* write char */ { uint8_t c = r->edx; putchar(c); } break; case 0x09: /* write string */ { uint8_t c, *ptr; ptr = seg_to_linear(r->ds, r->edx); for(;;) { c = *ptr++; if (c == '$') break; putchar(c); } r->eax = (r->eax & ~0xff) | '$'; } break; case 0xff: /* extension: write eflags number in edx */ v = (int)r->edx; #ifndef LINUX_VM86_IOPL_FIX v &= ~0x3000; #endif printf("%08x\n", v); break; default: unknown_int: printf("unsupported int 0x%02x\n", int_num); goto the_end; } } break; case VM86_SIGNAL: /* a signal came, we just ignore that */ break; case VM86_STI: break; default: printf("ERROR: unhandled vm86 return code (0x%x)\n", ret); goto the_end; } } the_end: printf("VM86 end\n"); munmap(vm86_mem, 0x110000); } #endif /* exception tests */ #if defined(__i386__) && !defined(REG_EAX) #define REG_EAX EAX #define REG_EBX EBX #define REG_ECX ECX #define REG_EDX EDX #define REG_ESI ESI #define REG_EDI EDI #define REG_EBP EBP #define REG_ESP ESP #define REG_EIP EIP #define REG_EFL EFL #define REG_TRAPNO TRAPNO #define REG_ERR ERR #endif #if defined(__x86_64__) #define REG_EIP REG_RIP #endif jmp_buf jmp_env; int v1; int tab[2]; void sig_handler(int sig, siginfo_t *info, void *puc) { ucontext_t *uc = puc; printf("si_signo=%d si_errno=%d si_code=%d", info->si_signo, info->si_errno, info->si_code); printf(" si_addr=0x%08lx", (unsigned long)info->si_addr); printf("\n"); printf("trapno=" FMTLX " err=" FMTLX, (long)uc->uc_mcontext.gregs[REG_TRAPNO], (long)uc->uc_mcontext.gregs[REG_ERR]); printf(" EIP=" FMTLX, (long)uc->uc_mcontext.gregs[REG_EIP]); printf("\n"); longjmp(jmp_env, 1); } void test_exceptions(void) { struct sigaction act; volatile int val; act.sa_sigaction = sig_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO | SA_NODEFER; sigaction(SIGFPE, &act, NULL); sigaction(SIGILL, &act, NULL); sigaction(SIGSEGV, &act, NULL); sigaction(SIGBUS, &act, NULL); sigaction(SIGTRAP, &act, NULL); /* test division by zero reporting */ printf("DIVZ exception:\n"); if (setjmp(jmp_env) == 0) { /* now divide by zero */ v1 = 0; v1 = 2 / v1; } #if 0 #if !defined(__x86_64__) printf("BOUND exception:\n"); if (setjmp(jmp_env) == 0) { /* bound exception */ tab[0] = 1; tab[1] = 10; asm volatile ("bound %0, %1" : : "r" (11), "m" (tab[0])); } #endif #endif #ifdef TEST_SEGS printf("segment exceptions:\n"); if (setjmp(jmp_env) == 0) { /* load an invalid segment */ asm volatile ("movl %0, %%fs" : : "r" ((0x1234 << 3) | 1)); } if (setjmp(jmp_env) == 0) { /* null data segment is valid */ asm volatile ("movl %0, %%fs" : : "r" (3)); /* null stack segment */ asm volatile ("movl %0, %%ss" : : "r" (3)); } { struct modify_ldt_ldt_s ldt; ldt.entry_number = 1; ldt.base_addr = (unsigned long)&seg_data1; ldt.limit = (sizeof(seg_data1) + 0xfff) >> 12; ldt.seg_32bit = 1; ldt.contents = MODIFY_LDT_CONTENTS_DATA; ldt.read_exec_only = 0; ldt.limit_in_pages = 1; ldt.seg_not_present = 1; ldt.useable = 1; modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */ if (setjmp(jmp_env) == 0) { /* segment not present */ asm volatile ("movl %0, %%fs" : : "r" (MK_SEL(1))); } } #endif /* test SEGV reporting */ printf("PF exception:\n"); if (setjmp(jmp_env) == 0) { val = 1; /* we add a nop to test a weird PC retrieval case */ asm volatile ("nop"); /* now store in an invalid address */ *(char *)0x1234 = 1; } /* test SEGV reporting */ printf("PF exception:\n"); if (setjmp(jmp_env) == 0) { val = 1; /* read from an invalid address */ v1 = *(char *)0x1234; } /* test illegal instruction reporting */ printf("UD2 exception:\n"); if (setjmp(jmp_env) == 0) { /* now execute an invalid instruction */ asm volatile("ud2"); } #if 0 printf("lock nop exception:\n"); if (setjmp(jmp_env) == 0) { /* now execute an invalid instruction */ asm volatile(".byte 0xf0, 0x90"); } #endif printf("INT exception:\n"); if (setjmp(jmp_env) == 0) { asm volatile ("int $0xfd"); } if (setjmp(jmp_env) == 0) { asm volatile ("int $0x01"); } if (setjmp(jmp_env) == 0) { asm volatile (".byte 0xcd, 0x03"); } if (setjmp(jmp_env) == 0) { asm volatile ("int $0x04"); } if (setjmp(jmp_env) == 0) { asm volatile ("int $0x05"); } printf("INT3 exception:\n"); if (setjmp(jmp_env) == 0) { asm volatile ("int3"); } printf("CLI exception:\n"); if (setjmp(jmp_env) == 0) { asm volatile ("cli"); } printf("STI exception:\n"); if (setjmp(jmp_env) == 0) { asm volatile ("cli"); } #if !defined(__x86_64__) printf("INTO exception:\n"); if (setjmp(jmp_env) == 0) { /* overflow exception */ asm volatile ("addl $1, %0 ; into" : : "r" (0x7fffffff)); } #endif printf("OUTB exception:\n"); if (setjmp(jmp_env) == 0) { asm volatile ("outb %%al, %%dx" : : "d" (0x4321), "a" (0)); } printf("INB exception:\n"); if (setjmp(jmp_env) == 0) { asm volatile ("inb %%dx, %%al" : "=a" (val) : "d" (0x4321)); } printf("REP OUTSB exception:\n"); if (setjmp(jmp_env) == 0) { asm volatile ("rep outsb" : : "d" (0x4321), "S" (tab), "c" (1)); } printf("REP INSB exception:\n"); if (setjmp(jmp_env) == 0) { asm volatile ("rep insb" : : "d" (0x4321), "D" (tab), "c" (1)); } printf("HLT exception:\n"); if (setjmp(jmp_env) == 0) { asm volatile ("hlt"); } #if 0 printf("single step exception:\n"); val = 0; if (setjmp(jmp_env) == 0) { asm volatile ("pushf\n" "orl $0x00100, (%%esp)\n" "popf\n" "movl $0xabcd, %0\n" "movl $0x0, %0\n" : "=m" (val) : : "cc", "memory"); } printf("val=0x%x\n", val); #endif } #if !defined(__x86_64__) /* specific precise single step test */ void sig_trap_handler(int sig, siginfo_t *info, void *puc) { ucontext_t *uc = puc; printf("EIP=" FMTLX "\n", (long)uc->uc_mcontext.gregs[REG_EIP]); } const uint8_t sstep_buf1[4] = { 1, 2, 3, 4}; uint8_t sstep_buf2[4]; void test_single_step(void) { struct sigaction act; volatile int val; int i; val = 0; act.sa_sigaction = sig_trap_handler; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; sigaction(SIGTRAP, &act, NULL); asm volatile ("pushf\n" "orl $0x00100, (%%esp)\n" "popf\n" "movl $0xabcd, %0\n" /* jmp test */ "movl $3, %%ecx\n" "1:\n" "addl $1, %0\n" "decl %%ecx\n" "jnz 1b\n" /* movsb: the single step should stop at each movsb iteration */ "movl $sstep_buf1, %%esi\n" "movl $sstep_buf2, %%edi\n" "movl $0, %%ecx\n" "rep movsb\n" "movl $3, %%ecx\n" "rep movsb\n" "movl $1, %%ecx\n" "rep movsb\n" /* cmpsb: the single step should stop at each cmpsb iteration */ "movl $sstep_buf1, %%esi\n" "movl $sstep_buf2, %%edi\n" "movl $0, %%ecx\n" "rep cmpsb\n" "movl $4, %%ecx\n" "rep cmpsb\n" /* getpid() syscall: single step should skip one instruction */ "movl $20, %%eax\n" "int $0x80\n" "movl $0, %%eax\n" /* when modifying SS, trace is not done on the next instruction */ "movl %%ss, %%ecx\n" "movl %%ecx, %%ss\n" "addl $1, %0\n" "movl $1, %%eax\n" "movl %%ecx, %%ss\n" "jmp 1f\n" "addl $1, %0\n" "1:\n" "movl $1, %%eax\n" "pushl %%ecx\n" "popl %%ss\n" "addl $1, %0\n" "movl $1, %%eax\n" "pushf\n" "andl $~0x00100, (%%esp)\n" "popf\n" : "=m" (val) : : "cc", "memory", "eax", "ecx", "esi", "edi"); printf("val=%d\n", val); for(i = 0; i < 4; i++) printf("sstep_buf2[%d] = %d\n", i, sstep_buf2[i]); } /* self modifying code test */ uint8_t code[] = { 0xb8, 0x1, 0x00, 0x00, 0x00, /* movl $1, %eax */ 0xc3, /* ret */ }; asm(".section \".data\"\n" "smc_code2:\n" "movl 4(%esp), %eax\n" "movl %eax, smc_patch_addr2 + 1\n" "nop\n" "nop\n" "nop\n" "nop\n" "nop\n" "nop\n" "nop\n" "nop\n" "smc_patch_addr2:\n" "movl $1, %eax\n" "ret\n" ".previous\n" ); typedef int FuncType(void); extern int smc_code2(int); void test_self_modifying_code(void) { int i; printf("self modifying code:\n"); printf("func1 = 0x%x\n", ((FuncType *)code)()); for(i = 2; i <= 4; i++) { code[1] = i; printf("func%d = 0x%x\n", i, ((FuncType *)code)()); } /* more difficult test : the modified code is just after the modifying instruction. It is forbidden in Intel specs, but it is used by old DOS programs */ for(i = 2; i <= 4; i++) { printf("smc_code2(%d) = %d\n", i, smc_code2(i)); } } #endif long enter_stack[4096]; #if defined(__x86_64__) #define RSP "%%rsp" #define RBP "%%rbp" #else #define RSP "%%esp" #define RBP "%%ebp" #endif #if !defined(__x86_64__) /* causes an infinite loop, disable it for now. */ #define TEST_ENTER(size, stack_type, level) #else #define TEST_ENTER(size, stack_type, level)\ {\ long esp_save, esp_val, ebp_val, ebp_save, i;\ stack_type *ptr, *stack_end, *stack_ptr;\ memset(enter_stack, 0, sizeof(enter_stack));\ stack_end = stack_ptr = (stack_type *)(enter_stack + 4096);\ ebp_val = (long)stack_ptr;\ for(i=1;i<=32;i++)\ *--stack_ptr = i;\ esp_val = (long)stack_ptr;\ asm("mov " RSP ", %[esp_save]\n"\ "mov " RBP ", %[ebp_save]\n"\ "mov %[esp_val], " RSP "\n"\ "mov %[ebp_val], " RBP "\n"\ "enter" size " $8, $" #level "\n"\ "mov " RSP ", %[esp_val]\n"\ "mov " RBP ", %[ebp_val]\n"\ "mov %[esp_save], " RSP "\n"\ "mov %[ebp_save], " RBP "\n"\ : [esp_save] "=r" (esp_save),\ [ebp_save] "=r" (ebp_save),\ [esp_val] "=r" (esp_val),\ [ebp_val] "=r" (ebp_val)\ : "[esp_val]" (esp_val),\ "[ebp_val]" (ebp_val));\ printf("level=%d:\n", level);\ printf("esp_val=" FMTLX "\n", esp_val - (long)stack_end);\ printf("ebp_val=" FMTLX "\n", ebp_val - (long)stack_end);\ for(ptr = (stack_type *)esp_val; ptr < stack_end; ptr++)\ printf(FMTLX "\n", (long)ptr[0]);\ } #endif static void test_enter(void) { #if defined(__x86_64__) TEST_ENTER("q", uint64_t, 0); TEST_ENTER("q", uint64_t, 1); TEST_ENTER("q", uint64_t, 2); TEST_ENTER("q", uint64_t, 31); #else TEST_ENTER("l", uint32_t, 0); TEST_ENTER("l", uint32_t, 1); TEST_ENTER("l", uint32_t, 2); TEST_ENTER("l", uint32_t, 31); #endif TEST_ENTER("w", uint16_t, 0); TEST_ENTER("w", uint16_t, 1); TEST_ENTER("w", uint16_t, 2); TEST_ENTER("w", uint16_t, 31); } #ifdef TEST_SSE typedef int __m64 __attribute__ ((__mode__ (__V2SI__))); typedef float __m128 __attribute__ ((__mode__(__V4SF__))); typedef union { double d[2]; float s[4]; uint32_t l[4]; uint64_t q[2]; __m128 dq; } XMMReg; static uint64_t __attribute__((aligned(16))) test_values[4][2] = { { 0x456723c698694873, 0xdc515cff944a58ec }, { 0x1f297ccd58bad7ab, 0x41f21efba9e3e146 }, { 0x007c62c2085427f8, 0x231be9e8cde7438d }, { 0x0f76255a085427f8, 0xc233e9e8c4c9439a }, }; #define SSE_OP(op) {} /* \ {\ asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\ printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\ #op,\ a.q[1], a.q[0],\ b.q[1], b.q[0],\ r.q[1], r.q[0]);\ } */ #define SSE_OP2(op) {} /* \ {\ int i;\ for(i=0;i<2;i++) {\ a.q[0] = test_values[2*i][0];\ a.q[1] = test_values[2*i][1];\ b.q[0] = test_values[2*i+1][0];\ b.q[1] = test_values[2*i+1][1];\ SSE_OP(op);\ }\ } */ #define MMX_OP2(op)\ {\ int i;\ for(i=0;i<2;i++) {\ a.q[0] = test_values[2*i][0];\ b.q[0] = test_values[2*i+1][0];\ asm volatile (#op " %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0]));\ printf("%-9s: a=" FMT64X " b=" FMT64X " r=" FMT64X "\n",\ #op,\ a.q[0],\ b.q[0],\ r.q[0]);\ }\ SSE_OP2(op);\ } #define SHUF_OP(op, ib)\ {\ int i;\ for(i=0;i<2;i++) {\ a.q[0] = test_values[2*i][0];\ b.q[0] = test_values[2*i+1][0];\ asm volatile (#op " $" #ib ", %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0])); \ printf("%-9s: a=" FMT64X " b=" FMT64X " ib=%02x r=" FMT64X "\n",\ #op,\ a.q[0],\ b.q[0],\ ib,\ r.q[0]);\ }\ } /* #define SHUF_OP(op, ib)\ {\ a.q[0] = test_values[0][0];\ a.q[1] = test_values[0][1];\ b.q[0] = test_values[1][0];\ b.q[1] = test_values[1][1];\ asm volatile (#op " $" #ib ", %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\ printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\ #op,\ a.q[1], a.q[0],\ b.q[1], b.q[0],\ ib,\ r.q[1], r.q[0]);\ } */ #define PSHUF_OP(op, ib)\ {\ int i;\ for(i=0;i<2;i++) {\ a.q[0] = test_values[2*i][0];\ a.q[1] = test_values[2*i][1];\ asm volatile (#op " $" #ib ", %1, %0" : "=x" (r.dq) : "x" (a.dq));\ printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\ #op,\ a.q[1], a.q[0],\ ib,\ r.q[1], r.q[0]);\ }\ } // To use mm0-7 registers instead of xmm registers #define SHIFT_IM(op, ib) \ {\ int i;\ for(i=0;i<2;i++) {\ a.q[0] = test_values[2*i][0];\ asm volatile (#op " $" #ib ", %0" : "=y" (r.q[0]) : "0" (a.q[0]));\ printf("%-9s: a=" FMT64X " ib=%02x r=" FMT64X "\n",\ #op,\ a.q[0],\ ib,\ r.q[0]);\ }\ } /* #define SHIFT_IM(op, ib)\ {\ int i;\ for(i=0;i<2;i++) {\ a.q[0] = test_values[2*i][0];\ a.q[1] = test_values[2*i][1];\ asm volatile (#op " $" #ib ", %0" : "=x" (r.dq) : "0" (a.dq));\ printf("%-9s: a=" FMT64X "" FMT64X " ib=%02x r=" FMT64X "" FMT64X "\n",\ #op,\ a.q[1], a.q[0],\ ib,\ r.q[1], r.q[0]);\ }\ } */ // To use mm0-7 registers instead of xmm registers #define SHIFT_OP(op, ib)\ {\ int i;\ SHIFT_IM(op, ib);\ for(i=0;i<2;i++) {\ a.q[0] = test_values[2*i][0];\ b.q[0] = ib;\ asm volatile (#op " %2, %0" : "=y" (r.q[0]) : "0" (a.q[0]), "y" (b.q[0]));\ printf("%-9s: a=" FMT64X " b=" FMT64X " ib=%02x r=" FMT64X "\n",\ #op,\ a.q[0],\ b.q[0],\ ib,\ r.q[0]);\ }\ } /* #define SHIFT_OP(op, ib)\ {\ int i;\ SHIFT_IM(op, ib);\ for(i=0;i<2;i++) {\ a.q[0] = test_values[2*i][0];\ a.q[1] = test_values[2*i][1];\ b.q[0] = ib;\ b.q[1] = 0;\ asm volatile (#op " %2, %0" : "=x" (r.dq) : "0" (a.dq), "x" (b.dq));\ printf("%-9s: a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\ #op,\ a.q[1], a.q[0],\ b.q[1], b.q[0],\ r.q[1], r.q[0]);\ }\ } */ #define MOVMSK(op)\ {\ int i, reg;\ for(i=0;i<2;i++) {\ a.q[0] = test_values[2*i][0];\ a.q[1] = test_values[2*i][1];\ asm volatile (#op " %1, %0" : "=r" (reg) : "x" (a.dq));\ printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\ #op,\ a.q[1], a.q[0],\ reg);\ }\ } #define SSE_OPS(a) \ SSE_OP(a ## ps);\ SSE_OP(a ## ss); #define SSE_OPD(a) \ SSE_OP(a ## pd);\ SSE_OP(a ## sd); #define SSE_COMI(op, field)\ {\ unsigned int eflags;\ XMMReg a, b;\ a.field[0] = a1;\ b.field[0] = b1;\ asm volatile (#op " %2, %1\n"\ "pushf\n"\ "pop %0\n"\ : "=m" (eflags)\ : "x" (a.dq), "x" (b.dq));\ printf("%-9s: a=%f b=%f cc=%04x\n",\ #op, a1, b1,\ eflags & (CC_C | CC_P | CC_Z | CC_S | CC_O | CC_A));\ } void test_sse_comi(double a1, double b1) { /* SSE_COMI(ucomiss, s); SSE_COMI(ucomisd, d); SSE_COMI(comiss, s); SSE_COMI(comisd, d); */ } #define CVT_OP_XMM(op)\ {\ asm volatile (#op " %1, %0" : "=x" (r.dq) : "x" (a.dq));\ printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "" FMT64X "\n",\ #op,\ a.q[1], a.q[0],\ r.q[1], r.q[0]);\ } /* Force %xmm0 usage to avoid the case where both register index are 0 to test instruction decoding more extensively */ #define CVT_OP_XMM2MMX(op)\ {\ asm volatile (#op " %1, %0" : "=y" (r.q[0]) : "x" (a.dq) \ : "%xmm0"); \ asm volatile("emms\n"); \ printf("%-9s: a=" FMT64X "" FMT64X " r=" FMT64X "\n",\ #op,\ a.q[1], a.q[0],\ r.q[0]);\ } #define CVT_OP_MMX2XMM(op)\ {\ asm volatile (#op " %1, %0" : "=x" (r.dq) : "y" (a.q[0]));\ asm volatile("emms\n"); \ printf("%-9s: a=" FMT64X " r=" FMT64X "" FMT64X "\n",\ #op,\ a.q[0],\ r.q[1], r.q[0]);\ } #define CVT_OP_REG2XMM(op)\ {\ asm volatile (#op " %1, %0" : "=x" (r.dq) : "r" (a.l[0]));\ printf("%-9s: a=%08x r=" FMT64X "" FMT64X "\n",\ #op,\ a.l[0],\ r.q[1], r.q[0]);\ } #define CVT_OP_XMM2REG(op)\ {\ asm volatile (#op " %1, %0" : "=r" (r.l[0]) : "x" (a.dq));\ printf("%-9s: a=" FMT64X "" FMT64X " r=%08x\n",\ #op,\ a.q[1], a.q[0],\ r.l[0]);\ } struct fpxstate { uint16_t fpuc; uint16_t fpus; uint16_t fptag; uint16_t fop; uint32_t fpuip; uint16_t cs_sel; uint16_t dummy0; uint32_t fpudp; uint16_t ds_sel; uint16_t dummy1; uint32_t mxcsr; uint32_t mxcsr_mask; uint8_t fpregs1[8 * 16]; uint8_t xmm_regs[8 * 16]; uint8_t dummy2[224]; }; static struct fpxstate fpx_state __attribute__((aligned(16))); static struct fpxstate fpx_state2 __attribute__((aligned(16))); void test_fxsave(void) { struct fpxstate *fp = &fpx_state; struct fpxstate *fp2 = &fpx_state2; int i, nb_xmm; XMMReg a, b; a.q[0] = test_values[0][0]; a.q[1] = test_values[0][1]; b.q[0] = test_values[1][0]; b.q[1] = test_values[1][1]; asm("movdqa %2, %%xmm0\n" "movdqa %3, %%xmm7\n" #if defined(__x86_64__) "movdqa %2, %%xmm15\n" #endif " fld1\n" " fld1\n" " fldz\n" " fxsave %0\n" " fxrstor %0\n" " fxsave %1\n" " fninit\n" : "=m" (*(uint32_t *)fp2), "=m" (*(uint32_t *)fp) : "m" (a), "m" (b)); printf("fpuc=%04x\n", fp->fpuc); printf("fpus=%04x\n", fp->fpus); printf("fptag=%04x\n", fp->fptag); for(i = 0; i < 3; i++) { printf("ST%d: " FMT64X " %04x\n", i, *(uint64_t *)&fp->fpregs1[i * 16], *(uint16_t *)&fp->fpregs1[i * 16 + 8]); } printf("mxcsr=%08x\n", fp->mxcsr & 0x1f80); #if defined(__x86_64__) nb_xmm = 16; #else nb_xmm = 8; #endif for(i = 0; i < nb_xmm; i++) { printf("xmm%d: " FMT64X "" FMT64X "\n", i, *(uint64_t *)&fp->xmm_regs[i * 16], *(uint64_t *)&fp->xmm_regs[i * 16 + 8]); } } void test_sse(void) { XMMReg r, a, b; int i; MMX_OP2(punpcklbw); MMX_OP2(punpcklwd); MMX_OP2(punpckldq); MMX_OP2(packsswb); MMX_OP2(pcmpgtb); MMX_OP2(pcmpgtw); MMX_OP2(pcmpgtd); MMX_OP2(packuswb); MMX_OP2(punpckhbw); MMX_OP2(punpckhwd); MMX_OP2(punpckhdq); MMX_OP2(packssdw); MMX_OP2(pcmpeqb); MMX_OP2(pcmpeqw); MMX_OP2(pcmpeqd); // MMX_OP2(paddq); MMX_OP2(pmullw); MMX_OP2(psubusb); MMX_OP2(psubusw); // MMX_OP2(pminub); MMX_OP2(pand); MMX_OP2(paddusb); MMX_OP2(paddusw); // MMX_OP2(pmaxub); MMX_OP2(pandn); // MMX_OP2(pmulhuw); MMX_OP2(pmulhw); MMX_OP2(psubsb); MMX_OP2(psubsw); // MMX_OP2(pminsw); MMX_OP2(por); MMX_OP2(paddsb); MMX_OP2(paddsw); // MMX_OP2(pmaxsw); MMX_OP2(pxor); // MMX_OP2(pmuludq); MMX_OP2(pmaddwd); // MMX_OP2(psadbw); MMX_OP2(psubb); MMX_OP2(psubw); MMX_OP2(psubd); // MMX_OP2(psubq); MMX_OP2(paddb); MMX_OP2(paddw); MMX_OP2(psrlw); MMX_OP2(paddd); /* MMX_OP2(pavgb); MMX_OP2(pavgw); asm volatile ("pinsrw $1, %1, %0" : "=y" (r.q[0]) : "r" (0x12345678)); printf("%-9s: r=" FMT64X "\n", "pinsrw", r.q[0]); asm volatile ("pinsrw $5, %1, %0" : "=x" (r.dq) : "r" (0x12345678)); printf("%-9s: r=" FMT64X "" FMT64X "\n", "pinsrw", r.q[1], r.q[0]); a.q[0] = test_values[0][0]; a.q[1] = test_values[0][1]; asm volatile ("pextrw $1, %1, %0" : "=r" (r.l[0]) : "y" (a.q[0])); printf("%-9s: r=%08x\n", "pextrw", r.l[0]); asm volatile ("pextrw $5, %1, %0" : "=r" (r.l[0]) : "x" (a.dq)); printf("%-9s: r=%08x\n", "pextrw", r.l[0]); asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "y" (a.q[0])); printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]); asm volatile ("pmovmskb %1, %0" : "=r" (r.l[0]) : "x" (a.dq)); printf("%-9s: r=%08x\n", "pmovmskb", r.l[0]); { r.q[0] = -1; r.q[1] = -1; a.q[0] = test_values[0][0]; a.q[1] = test_values[0][1]; b.q[0] = test_values[1][0]; b.q[1] = test_values[1][1]; asm volatile("maskmovq %1, %0" : : "y" (a.q[0]), "y" (b.q[0]), "D" (&r) : "memory"); printf("%-9s: r=" FMT64X " a=" FMT64X " b=" FMT64X "\n", "maskmov", r.q[0], a.q[0], b.q[0]); asm volatile("maskmovdqu %1, %0" : : "x" (a.dq), "x" (b.dq), "D" (&r) : "memory"); printf("%-9s: r=" FMT64X "" FMT64X " a=" FMT64X "" FMT64X " b=" FMT64X "" FMT64X "\n", "maskmov", r.q[1], r.q[0], a.q[1], a.q[0], b.q[1], b.q[0]); } asm volatile ("emms"); SSE_OP2(punpcklqdq); SSE_OP2(punpckhqdq); SSE_OP2(andps); SSE_OP2(andpd); SSE_OP2(andnps); SSE_OP2(andnpd); SSE_OP2(orps); SSE_OP2(orpd); SSE_OP2(xorps); SSE_OP2(xorpd); SSE_OP2(unpcklps); SSE_OP2(unpcklpd); SSE_OP2(unpckhps); SSE_OP2(unpckhpd); SHUF_OP(shufps, 0x78); SHUF_OP(shufpd, 0x02); */ SHUF_OP(pshufw, 0x78); SHUF_OP(pshufw, 0x02); /* PSHUF_OP(pshufd, 0x78); PSHUF_OP(pshuflw, 0x78); PSHUF_OP(pshufhw, 0x78); */ SHIFT_OP(psrlw, 7); SHIFT_OP(psrlw, 16); SHIFT_OP(psraw, 7); SHIFT_OP(psraw, 16); SHIFT_OP(psllw, 7); SHIFT_OP(psllw, 16); SHIFT_OP(psrld, 7); SHIFT_OP(psrld, 32); SHIFT_OP(psrad, 7); SHIFT_OP(psrad, 32); SHIFT_OP(pslld, 7); SHIFT_OP(pslld, 32); SHIFT_OP(psrlq, 7); SHIFT_OP(psrlq, 32); SHIFT_OP(psllq, 7); SHIFT_OP(psllq, 32); /* SHIFT_IM(psrldq, 16); SHIFT_IM(psrldq, 7); SHIFT_IM(pslldq, 16); SHIFT_IM(pslldq, 7); MOVMSK(movmskps); MOVMSK(movmskpd); */ /* FPU specific ops */ /* { uint32_t mxcsr; asm volatile("stmxcsr %0" : "=m" (mxcsr)); printf("mxcsr=%08x\n", mxcsr & 0x1f80); asm volatile("ldmxcsr %0" : : "m" (mxcsr)); } test_sse_comi(2, -1); test_sse_comi(2, 2); test_sse_comi(2, 3); test_sse_comi(2, q_nan.d); test_sse_comi(q_nan.d, -1); for(i = 0; i < 2; i++) { a.s[0] = 2.7; a.s[1] = 3.4; a.s[2] = 4; a.s[3] = -6.3; b.s[0] = 45.7; b.s[1] = 353.4; b.s[2] = 4; b.s[3] = 56.3; if (i == 1) { a.s[0] = q_nan.d; b.s[3] = q_nan.d; } SSE_OPS(add); SSE_OPS(mul); SSE_OPS(sub); SSE_OPS(min); SSE_OPS(div); SSE_OPS(max); SSE_OPS(sqrt); SSE_OPS(cmpeq); SSE_OPS(cmplt); SSE_OPS(cmple); SSE_OPS(cmpunord); SSE_OPS(cmpneq); SSE_OPS(cmpnlt); SSE_OPS(cmpnle); SSE_OPS(cmpord); a.d[0] = 2.7; a.d[1] = -3.4; b.d[0] = 45.7; b.d[1] = -53.4; if (i == 1) { a.d[0] = q_nan.d; b.d[1] = q_nan.d; } SSE_OPD(add); SSE_OPD(mul); SSE_OPD(sub); SSE_OPD(min); SSE_OPD(div); SSE_OPD(max); SSE_OPD(sqrt); SSE_OPD(cmpeq); SSE_OPD(cmplt); SSE_OPD(cmple); SSE_OPD(cmpunord); SSE_OPD(cmpneq); SSE_OPD(cmpnlt); SSE_OPD(cmpnle); SSE_OPD(cmpord); } */ /* float to float/int */ /* a.s[0] = 2.7; a.s[1] = 3.4; a.s[2] = 4; a.s[3] = -6.3; CVT_OP_XMM(cvtps2pd); CVT_OP_XMM(cvtss2sd); CVT_OP_XMM2MMX(cvtps2pi); CVT_OP_XMM2MMX(cvttps2pi); CVT_OP_XMM2REG(cvtss2si); CVT_OP_XMM2REG(cvttss2si); CVT_OP_XMM(cvtps2dq); CVT_OP_XMM(cvttps2dq); a.d[0] = 2.6; a.d[1] = -3.4; CVT_OP_XMM(cvtpd2ps); CVT_OP_XMM(cvtsd2ss); CVT_OP_XMM2MMX(cvtpd2pi); CVT_OP_XMM2MMX(cvttpd2pi); CVT_OP_XMM2REG(cvtsd2si); CVT_OP_XMM2REG(cvttsd2si); CVT_OP_XMM(cvtpd2dq); CVT_OP_XMM(cvttpd2dq); */ /* sse/mmx moves */ /* CVT_OP_XMM2MMX(movdq2q); CVT_OP_MMX2XMM(movq2dq); */ /* int to float */ /* a.l[0] = -6; a.l[1] = 2; a.l[2] = 100; a.l[3] = -60000; CVT_OP_MMX2XMM(cvtpi2ps); CVT_OP_MMX2XMM(cvtpi2pd); CVT_OP_REG2XMM(cvtsi2ss); CVT_OP_REG2XMM(cvtsi2sd); CVT_OP_XMM(cvtdq2ps); CVT_OP_XMM(cvtdq2pd); */ /* XXX: test PNI insns */ #if 0 // SSE_OP2(movshdup); #endif asm volatile ("emms"); } #endif #define TEST_CONV_RAX(op)\ {\ unsigned long a, r;\ a = i2l(0x8234a6f8);\ r = a;\ asm volatile(#op : "=a" (r) : "0" (r));\ printf("%-10s A=" FMTLX " R=" FMTLX "\n", #op, a, r);\ } #define TEST_CONV_RAX_RDX(op)\ {\ unsigned long a, d, r, rh; \ a = i2l(0x8234a6f8);\ d = i2l(0x8345a1f2);\ r = a;\ rh = d;\ asm volatile(#op : "=a" (r), "=d" (rh) : "0" (r), "1" (rh)); \ printf("%-10s A=" FMTLX " R=" FMTLX ":" FMTLX "\n", #op, a, r, rh); \ } void test_conv(void) { TEST_CONV_RAX(cbw); TEST_CONV_RAX(cwde); #if defined(__x86_64__) TEST_CONV_RAX(cdqe); #endif TEST_CONV_RAX_RDX(cwd); TEST_CONV_RAX_RDX(cdq); #if defined(__x86_64__) TEST_CONV_RAX_RDX(cqo); #endif { unsigned long a, r; a = i2l(0x12345678); asm volatile("bswapl %k0" : "=r" (r) : "0" (a)); printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapl", a, r); } #if defined(__x86_64__) { unsigned long a, r; a = i2l(0x12345678); asm volatile("bswapq %0" : "=r" (r) : "0" (a)); printf("%-10s: A=" FMTLX " R=" FMTLX "\n", "bswapq", a, r); } #endif } void fatal(char *msg) { fprintf(stderr, "*** FATAL ERROR: %s\n", (msg ? msg : "no message")); fflush(stderr); abort(); } void byte_read(uint8_t* buffer, uint16_t offset, size_t num_bytes) { printf("%-12s: offset=%x value=", "byte_r", offset); size_t i = num_bytes; while(i > 0) { i--; printf("%02" PRIx8, buffer[offset + i]); } printf("\n"); } uint64_t seq_counter = 0x8070605040302010; uint64_t get_seq64() { seq_counter += 0x0101010101010101; return seq_counter; } void byte_write_seq(uint8_t* target, uint16_t offset, size_t num_bytes) { printf("%-12s: offset=%x value=", "byte_w", offset); size_t i = num_bytes; while(i > 0) { i--; uint8_t byte = get_seq64(); target[offset + i] = byte; printf("%02" PRIx8, byte); } printf("\n"); } #define GENERATE_CHUNK_READ(INSTR, BITS, CONSTR) \ void chunk_read ## BITS(uint8_t* addr, uint16_t offset) \ { \ uint ## BITS ## _t chunk = 0; \ asm volatile(INSTR " %1, %0" : \ "=" CONSTR (chunk) : \ "m" (*(addr + offset)), "0" (chunk)); \ printf("%-12s: offset=%x value=%" PRIx ## BITS "\n", \ "chunk" #BITS "_r", \ offset, \ chunk); \ } #define GENERATE_CHUNK_WRITE(INSTR, BITS, CONSTR) \ void chunk_write ## BITS(uint8_t* addr, uint16_t offset) \ { \ uint ## BITS ## _t chunk = get_seq64(); \ asm volatile(INSTR " %0, %1" : \ "=" CONSTR (chunk) : \ "m" (*(addr + offset)), "0" (chunk)); \ printf("%-12s: offset=%x value=%" PRIx ## BITS "\n", \ "chunk" #BITS "_w", \ offset, \ chunk); \ } #define GENERATE_CHUNK_FNS(INSTR, BITS, CONSTR) \ GENERATE_CHUNK_READ(INSTR, BITS, CONSTR) \ GENERATE_CHUNK_WRITE(INSTR, BITS, CONSTR) #define TEST_CHUNK_READ(BITS, ADDR, OFFSET) \ byte_write_seq(ADDR, OFFSET, (BITS) >> 3); \ chunk_read ## BITS(ADDR, OFFSET); #define TEST_CHUNK_WRITE(BITS, ADDR, OFFSET) \ chunk_write ## BITS(ADDR, OFFSET); \ byte_read(ADDR, OFFSET, (BITS) >> 3); #define TEST_CHUNK_READ_WRITE(BITS, ADDR, OFFSET) \ byte_write_seq(ADDR, OFFSET, (BITS) >> 3); \ chunk_read_write ## BITS(ADDR, OFFSET); \ byte_read(ADDR, OFFSET, (BITS) >> 3); \ // Based on BITS, we calculate the offset where cross-page reads/writes would begin #define TEST_CROSS_PAGE(BITS, ADDR) \ for(size_t offset = (PAGE_SIZE + 1 - (BITS >> 3)); \ offset < PAGE_SIZE; offset++) \ { \ TEST_CHUNK_READ(BITS, ADDR, offset); \ TEST_CHUNK_WRITE(BITS, ADDR, offset); \ TEST_CHUNK_READ_WRITE(BITS, ADDR, offset); \ } GENERATE_CHUNK_FNS("movw", 16, "r"); GENERATE_CHUNK_FNS("mov", 32, "r"); #ifdef TEST_SSE GENERATE_CHUNK_FNS("movq", 64, "y"); void chunk_read_write16(uint8_t* addr, uint16_t offset) { uint16_t chunk = get_seq64(); asm volatile("addw %0, %1" : "=r" (chunk) : "m" (*(addr + offset)), "0" (chunk)); printf("%-12s: offset=%x value=%" PRIx16 "\n", "chunk16_rw", offset, chunk); } void chunk_read_write32(uint8_t* addr, uint16_t offset) { uint32_t chunk = get_seq64(); asm volatile("add %0, %1" : "=r" (chunk) : "m" (*(addr + offset)), "0" (chunk)); printf("%-12s: offset=%x value=%" PRIx32 "\n", "chunk32_rw", offset, chunk); } // No 64 or 128-bit read-write x86 instructions support a memory address as the destination void chunk_read_write64(uint8_t* addr, uint16_t offset) { UNUSED(addr); UNUSED(offset); } void chunk_read_write128(uint8_t* addr, uint16_t offset) { UNUSED(addr); UNUSED(offset); } void chunk_read128(uint8_t* addr, uint16_t offset) { XMMReg chunk; chunk.q[0] = chunk.q[1] = 0.0; asm volatile("movdqu %1, %0" : "=x" (chunk.dq) : "m" (*(addr + offset)), "0" (chunk.dq) ); printf("%-12s: offset=%x value=" FMT64X FMT64X "\n", "chunk128_r", offset, chunk.q[1], chunk.q[0]); } void chunk_write128(uint8_t* addr, uint16_t offset) { XMMReg chunk; chunk.q[0] = get_seq64(); chunk.q[1] = get_seq64(); asm volatile("movdqu %0, %1" : "=x" (chunk.dq) : "m" (*(addr + offset)), "0" (chunk.dq) ); printf("%-12s: offset=%x value=" FMT64X FMT64X "\n", "chunk128_w", offset, chunk.q[1], chunk.q[0]); } #endif void test_page_boundaries() { // mmap 2 consecutive pages uint8_t *const page0 = mmap(NULL, 2 * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); // throwaway mmap to reduce likelhood of page0 and page1 mapping to consecutive physical frames uint8_t *const throwaway = mmap(NULL, PAGE_SIZE, PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); uint8_t *const page1 = mmap(page0 + PAGE_SIZE, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0); if(page0 == MAP_FAILED || throwaway == MAP_FAILED || page1 == MAP_FAILED) { fatal("mmap"); } // Trigger page-faults causing virtual pages to be allocated to physical frames page0[0] = 0x42; throwaway[0] = 0x42; page1[0] = 0x42; TEST_CROSS_PAGE(16, page0); TEST_CROSS_PAGE(32, page0); #ifdef TEST_SSE TEST_CROSS_PAGE(64, page0); TEST_CROSS_PAGE(128, page0); #endif munmap(page0, PAGE_SIZE); munmap(page1, PAGE_SIZE); } extern void *__start_initcall; extern void *__stop_initcall; int main(int argc, char **argv) { // Uncomment to disable buffering, useful for debugging segfaults //setvbuf(stdout, NULL, _IONBF, 0); void **ptr; void (*func)(void); ptr = &__start_initcall; while (ptr != &__stop_initcall) { func = *ptr++; func(); } test_bsx(); test_popcnt(); test_mul(); test_jcc(); test_loop(); test_floats(); #if !defined(__x86_64__) test_bcd(); #endif test_xchg(); test_string(); test_misc(); test_lea(); #ifdef TEST_SEGS test_segs(); test_code16(); #endif #ifdef TEST_VM86 test_vm86(); #endif #if !defined(__x86_64__) test_exceptions(); test_self_modifying_code(); //test_single_step(); #endif test_enter(); test_conv(); #ifdef TEST_SSE test_sse(); //test_fxsave(); #endif test_page_boundaries(); return 0; }