"use strict"; // Useful documentation, articles, and source codes for reference: // =============================================================== // // Official Hardware Programming Guide // -> https://pdos.csail.mit.edu/6.828/2011/readings/hardware/SoundBlaster.pdf // // Official Yamaha YMF262 Manual // -> http://map.grauw.nl/resources/sound/yamaha_ymf262.pdf // // OPL3 Programming Guide // -> http://www.fit.vutbr.cz/~arnost/opl/opl3.html // // DOSBox // -> https://sourceforge.net/p/dosbox/code-0/HEAD/tree/dosbox/branches/mamesound/src/hardware/sblaster.cpp // -> https://github.com/duganchen/dosbox/blob/master/src/hardware/sblaster.cpp // -> https://github.com/joncampbell123/dosbox-x/blob/master/src/hardware/sblaster.cpp // // QEMU // -> https://github.com/qemu/qemu/blob/master/hw/audio/sb16.c // -> https://github.com/hackndev/qemu/blob/master/hw/sb16.c // // VirtualBox // -> https://www.virtualbox.org/svn/vbox/trunk/src/VBox/Devices/Audio/DevSB16.cpp // -> https://github.com/mdaniel/virtualbox-org-svn-vbox-trunk/blob/master/src/VBox/Devices/Audio/DevSB16.cpp var // Used for drivers to identify device (DSP command 0xE3). /** @const */ DSP_COPYRIGHT = "COPYRIGHT (C) CREATIVE TECHNOLOGY LTD, 1992.", // Value of the current DSP command that indicates that the // next command/data write in port 2xC should be interpreted // as a command number. /** @const */ DSP_NO_COMMAND = 0, // Size (bytes) of the DSP write/read buffers /** @const */ DSP_BUFSIZE = 64, // Size (bytes) of the buffers containing floating point linear PCM audio. /** @const */ DSP_DACSIZE = 65536, // Size (bytes) of the buffer in which DMA transfers are temporarily // stored before being processed. /** @const */ SB_DMA_BUFSIZE = 65536, // Number of samples to attempt to retrieve per transfer. /** @const */ SB_DMA_BLOCK_SAMPLES = 1024, // Usable DMA channels. /** @const */ SB_DMA0 = 0, /** @const */ SB_DMA1 = 1, /** @const */ SB_DMA3 = 3, /** @const */ SB_DMA5 = 5, /** @const */ SB_DMA6 = 6, /** @const */ SB_DMA7 = 7, // Default DMA channels. /** @const */ SB_DMA_CHANNEL_8BIT = SB_DMA1, /** @const */ SB_DMA_CHANNEL_16BIT = SB_DMA5, // Usable IRQ channels. /** @const */ SB_IRQ2 = 2, /** @const */ SB_IRQ5 = 5, /** @const */ SB_IRQ7 = 7, /** @const */ SB_IRQ10 = 10, // Default IRQ channel. /** @const */ SB_IRQ = SB_IRQ5, // Indices to the irq_triggered register. /** @const */ SB_IRQ_8BIT = 0x1, /** @const */ SB_IRQ_16BIT = 0x2, /** @const */ SB_IRQ_MIDI = 0x1, /** @const */ SB_IRQ_MPU = 0x4; // Probably less efficient, but it's more maintainable, instead // of having a single large unorganised and decoupled table. var DSP_COMMAND_SIZES = new Uint8Array(256); var DSP_COMMAND_HANDLERS = []; var MIXER_READ_HANDLERS = []; var MIXER_WRITE_HANDLERS = []; var MIXER_REGISTER_IS_LEGACY = new Uint8Array(256); var FM_HANDLERS = []; /** * Sound Blaster 16 Emulator, or so it seems. * @constructor * @param {CPU} cpu * @param {BusConnector} bus */ function SB16(cpu, bus) { /** @const @type {CPU} */ this.cpu = cpu; /** @const @type {BusConnector} */ this.bus = bus; // I/O Buffers. this.write_buffer = new ByteQueue(DSP_BUFSIZE); this.read_buffer = new ByteQueue(DSP_BUFSIZE); this.read_buffer_lastvalue = 0; // Current DSP command info. this.command = DSP_NO_COMMAND; this.command_size = 0; // Mixer. this.mixer_current_address = 0; this.mixer_registers = new Uint8Array(256); this.mixer_reset(); // Dummy status and test registers. this.dummy_speaker_enabled = false; this.test_register = 0; // DSP state. this.dsp_highspeed = false; this.dsp_stereo = false; this.dsp_16bit = false; this.dsp_signed = false; // DAC buffer. // The final destination for audio data before being sent off // to Web Audio APIs. // Format: // Floating precision linear PCM, nominal between -1 and 1. this.dac_buffers = [ new FloatQueue(DSP_DACSIZE), new FloatQueue(DSP_DACSIZE), ]; // Direct Memory Access transfer info. this.dma = cpu.devices.dma; this.dma_sample_count = 0; this.dma_bytes_count = 0; this.dma_bytes_left = 0; this.dma_bytes_block = 0; this.dma_irq = 0; this.dma_channel = 0; this.dma_channel_8bit = SB_DMA_CHANNEL_8BIT; this.dma_channel_16bit = SB_DMA_CHANNEL_16BIT; this.dma_autoinit = false; this.dma_buffer = new ArrayBuffer(SB_DMA_BUFSIZE); this.dma_buffer_int8 = new Int8Array(this.dma_buffer); this.dma_buffer_uint8 = new Uint8Array(this.dma_buffer); this.dma_buffer_int16 = new Int16Array(this.dma_buffer); this.dma_buffer_uint16 = new Uint16Array(this.dma_buffer); this.dma_syncbuffer = new v86util.SyncBuffer(this.dma_buffer); this.dma_waiting_transfer = false; this.dma_paused = false; this.sampling_rate = 22050; bus.send("dac-tell-sampling-rate", this.sampling_rate); this.bytes_per_sample = 1; // DMA identification data. this.e2_value = 0xAA; this.e2_count = 0; // ASP data: not understood by me. this.asp_registers = new Uint8Array(256); // MPU. this.mpu_read_buffer = new ByteQueue(DSP_BUFSIZE); this.mpu_read_buffer_lastvalue = 0; // FM Synthesizer. this.fm_current_address0 = 0; this.fm_current_address1 = 0; this.fm_waveform_select_enable = false; // Interrupts. this.irq = SB_IRQ; this.irq_triggered = new Uint8Array(0x10); // IO Ports. // http://homepages.cae.wisc.edu/~brodskye/sb16doc/sb16doc.html#DSPPorts // https://pdos.csail.mit.edu/6.828/2011/readings/hardware/SoundBlaster.pdf cpu.io.register_read_consecutive(0x220, this, this.port2x0_read, this.port2x1_read, this.port2x2_read, this.port2x3_read); cpu.io.register_read_consecutive(0x388, this, this.port2x0_read, this.port2x1_read); cpu.io.register_read_consecutive(0x224, this, this.port2x4_read, this.port2x5_read); cpu.io.register_read(0x226, this, this.port2x6_read); cpu.io.register_read(0x227, this, this.port2x7_read); cpu.io.register_read(0x228, this, this.port2x8_read); cpu.io.register_read(0x229, this, this.port2x9_read); cpu.io.register_read(0x22A, this, this.port2xA_read); cpu.io.register_read(0x22B, this, this.port2xB_read); cpu.io.register_read(0x22C, this, this.port2xC_read); cpu.io.register_read(0x22D, this, this.port2xD_read); cpu.io.register_read_consecutive(0x22E, this, this.port2xE_read, this.port2xF_read); cpu.io.register_write_consecutive(0x220, this, this.port2x0_write, this.port2x1_write, this.port2x2_write, this.port2x3_write); cpu.io.register_write_consecutive(0x388, this, this.port2x0_write, this.port2x1_write); cpu.io.register_write_consecutive(0x224, this, this.port2x4_write, this.port2x5_write); cpu.io.register_write(0x226, this, this.port2x6_write); cpu.io.register_write(0x227, this, this.port2x7_write); cpu.io.register_write_consecutive(0x228, this, this.port2x8_write, this.port2x9_write); cpu.io.register_write(0x22A, this, this.port2xA_write); cpu.io.register_write(0x22B, this, this.port2xB_write); cpu.io.register_write(0x22C, this, this.port2xC_write); cpu.io.register_write(0x22D, this, this.port2xD_write); cpu.io.register_write(0x22E, this, this.port2xE_write); cpu.io.register_write(0x22F, this, this.port2xF_write); cpu.io.register_read_consecutive(0x330, this, this.port3x0_read, this.port3x1_read); cpu.io.register_write_consecutive(0x330, this, this.port3x0_write, this.port3x1_write); this.dma.on_unmask(this.dma_on_unmask, this); bus.register("dac-request-data", function() { this.dac_handle_request(); }, this); bus.register("speaker-has-initialized", function() { this.mixer_reset(); }, this); bus.send("speaker-confirm-initialized"); this.dsp_reset(); } // // General // SB16.prototype.dsp_reset = function() { this.write_buffer.clear(); this.read_buffer.clear(); this.command = DSP_NO_COMMAND; this.command_size = 0; this.dummy_speaker_enabled = false; this.test_register = 0; this.dsp_highspeed = false; this.dsp_stereo = false; this.dsp_16bit = false; this.dsp_signed = false; this.dac_buffers[0].clear(); this.dac_buffers[1].clear(); this.dma_sample_count = 0; this.dma_bytes_count = 0; this.dma_bytes_left = 0; this.dma_bytes_block = 0; this.dma_irq = 0; this.dma_channel = 0; this.dma_autoinit = false; this.dma_buffer_uint8.fill(0); this.dma_waiting_transfer = false; this.dma_paused = false; this.e2_value = 0xAA; this.e2_count = 0; this.sampling_rate = 22050; this.bytes_per_sample = 1; this.lower_irq(SB_IRQ_8BIT); this.irq_triggered.fill(0); this.asp_registers.fill(0); this.asp_registers[5] = 0x01; this.asp_registers[9] = 0xF8; }; SB16.prototype.get_state = function() { var state = []; // state[0] = this.write_buffer; // state[1] = this.read_buffer; state[2] = this.read_buffer_lastvalue; state[3] = this.command; state[4] = this.command_size; state[5] = this.mixer_current_address; state[6] = this.mixer_registers; state[7] = this.dummy_speaker_enabled; state[8] = this.test_register; state[9] = this.dsp_highspeed; state[10] = this.dsp_stereo; state[11] = this.dsp_16bit; state[12] = this.dsp_signed; // state[13] = this.dac_buffers; //state[14] state[15] = this.dma_sample_count; state[16] = this.dma_bytes_count; state[17] = this.dma_bytes_left; state[18] = this.dma_bytes_block; state[19] = this.dma_irq; state[20] = this.dma_channel; state[21] = this.dma_channel_8bit; state[22] = this.dma_channel_16bit; state[23] = this.dma_autoinit; state[24] = this.dma_buffer_uint8; state[25] = this.dma_waiting_transfer; state[26] = this.dma_paused; state[27] = this.sampling_rate; state[28] = this.bytes_per_sample; state[29] = this.e2_value; state[30] = this.e2_count; state[31] = this.asp_registers; // state[32] = this.mpu_read_buffer; state[33] = this.mpu_read_buffer_last_value; state[34] = this.irq; state[35] = this.irq_triggered; //state[36] return state; }; SB16.prototype.set_state = function(state) { // this.write_buffer = state[0]; // this.read_buffer = state[1]; this.read_buffer_lastvalue = state[2]; this.command = state[3]; this.command_size = state[4]; this.mixer_current_address = state[5]; this.mixer_registers = state[6]; this.mixer_full_update(); this.dummy_speaker_enabled = state[7]; this.test_register = state[8]; this.dsp_highspeed = state[9]; this.dsp_stereo = state[10]; this.dsp_16bit = state[11]; this.dsp_signed = state[12]; // this.dac_buffers = state[13]; //state[14] this.dma_sample_count = state[15]; this.dma_bytes_count = state[16]; this.dma_bytes_left = state[17]; this.dma_bytes_block = state[18]; this.dma_irq = state[19]; this.dma_channel = state[20]; this.dma_channel_8bit = state[21]; this.dma_channel_16bit = state[22]; this.dma_autoinit = state[23]; this.dma_buffer_uint8 = state[24]; this.dma_waiting_transfer = state[25]; this.dma_paused = state[26]; this.sampling_rate = state[27]; this.bytes_per_sample = state[28]; this.e2_value = state[29]; this.e2_count = state[30]; this.asp_registers = state[31]; // this.mpu_read_buffer = state[32]; this.mpu_read_buffer_last_value = state[33]; this.irq = state[34]; this.irq_triggered = state[35]; //state[36]; this.dma_buffer = this.dma_buffer_uint8.buffer; this.dma_buffer_int8 = new Int8Array(this.dma_buffer); this.dma_buffer_int16 = new Int16Array(this.dma_buffer); this.dma_buffer_uint16 = new Uint16Array(this.dma_buffer); this.dma_syncbuffer = new v86util.SyncBuffer(this.dma_buffer); if(this.dma_paused) { this.bus.send("dac-disable"); } else { this.bus.send("dac-enable"); } }; // // I/O handlers // SB16.prototype.port2x0_read = function() { dbg_log("220 read: fm music status port (unimplemented)", LOG_SB16); return 0xFF; }; SB16.prototype.port2x1_read = function() { dbg_log("221 read: fm music data port (write only)", LOG_SB16); return 0xFF; }; SB16.prototype.port2x2_read = function() { dbg_log("222 read: advanced fm music status port (unimplemented)", LOG_SB16); return 0xFF; }; SB16.prototype.port2x3_read = function() { dbg_log("223 read: advanced music data port (write only)", LOG_SB16); return 0xFF; }; // Mixer Address Port. SB16.prototype.port2x4_read = function() { dbg_log("224 read: mixer address port", LOG_SB16); return this.mixer_current_address; }; // Mixer Data Port. SB16.prototype.port2x5_read = function() { dbg_log("225 read: mixer data port", LOG_SB16); return this.mixer_read(this.mixer_current_address); }; SB16.prototype.port2x6_read = function() { dbg_log("226 read: (write only)", LOG_SB16); return 0xFF; }; SB16.prototype.port2x7_read = function() { dbg_log("227 read: undocumented", LOG_SB16); return 0xFF; }; SB16.prototype.port2x8_read = function() { dbg_log("228 read: fm music status port (unimplemented)", LOG_SB16); return 0xFF; }; SB16.prototype.port2x9_read = function() { dbg_log("229 read: fm music data port (write only)", LOG_SB16); return 0xFF; }; // Read Data. // Used to access in-bound DSP data. SB16.prototype.port2xA_read = function() { dbg_log("22A read: read data", LOG_SB16); if(this.read_buffer.length) { this.read_buffer_lastvalue = this.read_buffer.shift(); } dbg_log(" <- " + this.read_buffer_lastvalue + " " + h(this.read_buffer_lastvalue) + " '" + String.fromCharCode(this.read_buffer_lastvalue) + "'", LOG_SB16); return this.read_buffer_lastvalue; }; SB16.prototype.port2xB_read = function() { dbg_log("22B read: undocumented", LOG_SB16); return 0xFF; }; // Write-Buffer Status. // Indicates whether the DSP is ready to accept commands or data. SB16.prototype.port2xC_read = function() { dbg_log("22C read: write-buffer status", LOG_SB16); // Always return ready (bit-7 set to low) return 0x7F; }; SB16.prototype.port2xD_read = function() { dbg_log("22D read: undocumented", LOG_SB16); return 0xFF; }; // Read-Buffer Status. // Indicates whether there is any in-bound data available for reading. // Also used to acknowledge DSP 8-bit interrupt. SB16.prototype.port2xE_read = function() { dbg_log("22E read: read-buffer status / irq 8bit ack.", LOG_SB16); if(this.irq_triggered[SB_IRQ_8BIT]) { this.lower_irq(SB_IRQ_8BIT); } var ready = this.read_buffer.length && !this.dsp_highspeed; return (ready << 7) | 0x7F; }; // DSP 16-bit interrupt acknowledgement. SB16.prototype.port2xF_read = function() { dbg_log("22F read: irq 16bit ack", LOG_SB16); this.lower_irq(SB_IRQ_16BIT); return 0; }; // FM Address Port - primary register. SB16.prototype.port2x0_write = function(value) { dbg_log("220 write: (unimplemented) fm register 0 address = " + h(value), LOG_SB16); this.fm_current_address0 = 0; }; // FM Data Port - primary register. SB16.prototype.port2x1_write = function(value) { dbg_log("221 write: (unimplemented) fm register 0 data = " + h(value), LOG_SB16); var handler = FM_HANDLERS[this.fm_current_address0]; if(!handler) { handler = this.fm_default_write; } handler.call(this, value, 0, this.fm_current_address0); }; // FM Address Port - secondary register. SB16.prototype.port2x2_write = function(value) { dbg_log("222 write: (unimplemented) fm register 1 address = " + h(value), LOG_SB16); this.fm_current_address1 = 0; }; // FM Data Port - secondary register. SB16.prototype.port2x3_write = function(value) { dbg_log("223 write: (unimplemented) fm register 1 data =" + h(value), LOG_SB16); var handler = FM_HANDLERS[this.fm_current_address1]; if(!handler) { handler = this.fm_default_write; } handler.call(this, value, 1, this.fm_current_address1); }; // Mixer Address Port. SB16.prototype.port2x4_write = function(value) { dbg_log("224 write: mixer address = " + h(value), LOG_SB16); this.mixer_current_address = value; }; // Mixer Data Port. SB16.prototype.port2x5_write = function(value) { dbg_log("225 write: mixer data = " + h(value), LOG_SB16); this.mixer_write(this.mixer_current_address, value); }; // Reset. // Used to reset the DSP to its default state and to exit highspeed mode. SB16.prototype.port2x6_write = function(yesplease) { dbg_log("226 write: reset = " + h(yesplease), LOG_SB16); if(this.dsp_highspeed) { dbg_log(" -> exit highspeed", LOG_SB16); this.dsp_highspeed = false; } else if(yesplease) { dbg_log(" -> reset", LOG_SB16); this.dsp_reset(); } // Signal completion. this.read_buffer.clear(); this.read_buffer.push(0xAA); }; SB16.prototype.port2x7_write = function(value) { dbg_log("227 write: undocumented", LOG_SB16); }; SB16.prototype.port2x8_write = function(value) { dbg_log("228 write: fm music register port (unimplemented)", LOG_SB16); }; SB16.prototype.port2x9_write = function(value) { dbg_log("229 write: fm music data port (unimplemented)", LOG_SB16); }; SB16.prototype.port2xA_write = function(value) { dbg_log("22A write: dsp read data port (read only)", LOG_SB16); }; SB16.prototype.port2xB_write = function(value) { dbg_log("22B write: undocumented", LOG_SB16); }; // Write Command/Data. // Used to send commands or data to the DSP. SB16.prototype.port2xC_write = function(value) { dbg_log("22C write: write command/data", LOG_SB16); if(this.command === DSP_NO_COMMAND) { // New command. dbg_log("22C write: command = " + h(value), LOG_SB16); this.command = value; this.write_buffer.clear(); this.command_size = DSP_COMMAND_SIZES[value]; } else { // More data for current command. dbg_log("22C write: data: " + h(value), LOG_SB16); this.write_buffer.push(value); } // Perform command when we have all the needed data. if(this.write_buffer.length >= this.command_size) { this.command_do(); } }; SB16.prototype.port2xD_write = function(value) { dbg_log("22D write: undocumented", LOG_SB16); }; SB16.prototype.port2xE_write = function(value) { dbg_log("22E write: dsp read buffer status (read only)", LOG_SB16); }; SB16.prototype.port2xF_write = function(value) { dbg_log("22F write: undocumented", LOG_SB16); }; // MPU UART Mode - Data Port SB16.prototype.port3x0_read = function() { dbg_log("330 read: mpu data", LOG_SB16); if(this.mpu_read_buffer.length) { this.mpu_read_buffer_lastvalue = this.mpu_read_buffer.shift(); } dbg_log(" <- " + h(this.mpu_read_buffer_lastvalue), LOG_SB16); return this.mpu_read_buffer_lastvalue; }; SB16.prototype.port3x0_write = function(value) { dbg_log("330 write: mpu data (unimplemented) : " + h(value), LOG_SB16); }; // MPU UART Mode - Status Port SB16.prototype.port3x1_read = function() { dbg_log("331 read: mpu status", LOG_SB16); var status = 0; status |= 0x40 * 0; // Output Ready status |= 0x80 * !this.mpu_read_buffer.length; // Input Ready return status; }; // MPU UART Mode - Command Port SB16.prototype.port3x1_write = function(value) { dbg_log("331 write: mpu command: " + h(value), LOG_SB16); if(value === 0xFF) { // Command acknowledge. this.mpu_read_buffer.clear(); this.mpu_read_buffer.push(0xFE); } }; // // DSP command handlers // SB16.prototype.command_do = function() { var handler = DSP_COMMAND_HANDLERS[this.command]; if(!handler) { handler = this.dsp_default_handler; } handler.call(this); // Reset Inputs. this.command = DSP_NO_COMMAND; this.command_size = 0; this.write_buffer.clear(); }; SB16.prototype.dsp_default_handler = function() { dbg_log("Unhandled command: " + h(this.command), LOG_SB16); }; /** * @param {Array} commands * @param {number} size * @param {function()=} handler */ function register_dsp_command(commands, size, handler) { if(!handler) { handler = SB16.prototype.dsp_default_handler; } for(var i = 0; i < commands.length; i++) { DSP_COMMAND_SIZES[commands[i]] = size; DSP_COMMAND_HANDLERS[commands[i]] = handler; } } function any_first_digit(base) { var commands = []; for(var i = 0; i < 16; i++) { commands.push(base + i); } return commands; } // ASP set register register_dsp_command([0x0E], 2, function() { this.asp_registers[this.write_buffer.shift()] = this.write_buffer.shift(); }); // ASP get register register_dsp_command([0x0F], 1, function() { this.read_buffer.clear(); this.read_buffer.push(this.asp_registers[this.write_buffer.shift()]); }); // 8-bit direct mode single byte digitized sound output. register_dsp_command([0x10], 1, function() { var value = audio_normalize(this.write_buffer.shift(), 127.5, -1); this.dac_buffers[0].push(value); this.dac_buffers[1].push(value); this.bus.send("dac-enable"); }); // 8-bit single-cycle DMA mode digitized sound output. register_dsp_command([0x14, 0x15], 2, function() { this.dma_irq = SB_IRQ_8BIT; this.dma_channel = this.dma_channel_8bit; this.dma_autoinit = false; this.dsp_signed = false; this.dsp_16bit = false; this.dsp_highspeed = false; this.dma_transfer_size_set(); this.dma_transfer_start(); }); // Creative 8-bit to 2-bit ADPCM single-cycle DMA mode digitized sound output. register_dsp_command([0x16], 2); // Creative 8-bit to 2-bit ADPCM single-cycle DMA mode digitzed sound output // with reference byte. register_dsp_command([0x17], 2); // 8-bit auto-init DMA mode digitized sound output. register_dsp_command([0x1C], 0, function() { this.dma_irq = SB_IRQ_8BIT; this.dma_channel = this.dma_channel_8bit; this.dma_autoinit = true; this.dsp_signed = false; this.dsp_16bit = false; this.dsp_highspeed = false; this.dma_transfer_start(); }); // Creative 8-bit to 2-bit ADPCM auto-init DMA mode digitized sound output // with reference byte. register_dsp_command([0x1F], 0); // 8-bit direct mode single byte digitized sound input. register_dsp_command([0x20], 0, function() { // Fake silent input. this.read_buffer.clear(); this.read_buffer.push(0x7f); }); // 8-bit single-cycle DMA mode digitized sound input. register_dsp_command([0x24], 2); // 8-bit auto-init DMA mode digitized sound input. register_dsp_command([0x2C], 0); // Polling mode MIDI input. register_dsp_command([0x30], 0); // Interrupt mode MIDI input. register_dsp_command([0x31], 0); // UART polling mode MIDI I/O. register_dsp_command([0x34], 0); // UART interrupt mode MIDI I/O. register_dsp_command([0x35], 0); // UART polling mode MIDI I/O with time stamping. register_dsp_command([0x36], 0); // UART interrupt mode MIDI I/O with time stamping. register_dsp_command([0x37], 0); // MIDI output. register_dsp_command([0x38], 0); // Set digitized sound transfer Time Constant. register_dsp_command([0x40], 1, function() { // Note: bTimeConstant = 256 * time constant this.sampling_rate_change( 1000000 / (256 - this.write_buffer.shift()) / this.get_channel_count() ); }); // Set digitized sound output sampling rate. // Set digitized sound input sampling rate. register_dsp_command([0x41, 0x42], 2, function() { this.sampling_rate_change((this.write_buffer.shift() << 8) | this.write_buffer.shift()); }); // Set DSP block transfer size. register_dsp_command([0x48], 2, function() { // TODO: should be in bytes, but if this is only used // for 8 bit transfers, then this number is the same // as number of samples? // Wrong: e.g. stereo requires two bytes per sample. this.dma_transfer_size_set(); }); // Creative 8-bit to 4-bit ADPCM single-cycle DMA mode digitized sound output. register_dsp_command([0x74], 2); // Creative 8-bit to 4-bit ADPCM single-cycle DMA mode digitized sound output // with referene byte. register_dsp_command([0x75], 2); // Creative 8-bit to 3-bit ADPCM single-cycle DMA mode digitized sound output. register_dsp_command([0x76], 2); // Creative 8-bit to 3-bit ADPCM single-cycle DMA mode digitized sound output // with referene byte. register_dsp_command([0x77], 2); // Creative 8-bit to 4-bit ADPCM auto-init DMA mode digitized sound output // with reference byte. register_dsp_command([0x7D], 0); // Creative 8-bit to 3-bit ADPCM auto-init DMA mode digitized sound output // with reference byte. register_dsp_command([0x7F], 0); // Pause DAC for a duration. register_dsp_command([0x80], 2); // 8-bit high-speed auto-init DMA mode digitized sound output. register_dsp_command([0x90], 0, function() { this.dma_irq = SB_IRQ_8BIT; this.dma_channel = this.dma_channel_8bit; this.dma_autoinit = true; this.dsp_signed = false; this.dsp_highspeed = true; this.dsp_16bit = false; this.dma_transfer_start(); }); // 8-bit high-speed single-cycle DMA mode digitized sound input. register_dsp_command([0x91], 0); // 8-bit high-speed auto-init DMA mode digitized sound input. register_dsp_command([0x98], 0); // 8-bit high-speed single-cycle DMA mode digitized sound input. register_dsp_command([0x99], 0); // Set input mode to mono. register_dsp_command([0xA0], 0); // Set input mode to stereo. register_dsp_command([0xA8], 0); // Program 16-bit DMA mode digitized sound I/O. register_dsp_command(any_first_digit(0xB0), 3, function() { if(this.command & (1 << 3)) { // Analogue to digital not implemented. this.dsp_default_handler(); return; } var mode = this.write_buffer.shift(); this.dma_irq = SB_IRQ_16BIT; this.dma_channel = this.dma_channel_16bit; this.dma_autoinit = !!(this.command & (1 << 2)); this.dsp_signed = !!(mode & (1 << 4)); this.dsp_stereo = !!(mode & (1 << 5)); this.dsp_16bit = true; this.dma_transfer_size_set(); this.dma_transfer_start(); }); // Program 8-bit DMA mode digitized sound I/O. register_dsp_command(any_first_digit(0xC0), 3, function() { if(this.command & (1 << 3)) { // Analogue to digital not implemented. this.dsp_default_handler(); return; } var mode = this.write_buffer.shift(); this.dma_irq = SB_IRQ_8BIT; this.dma_channel = this.dma_channel_8bit; this.dma_autoinit = !!(this.command & (1 << 2)); this.dsp_signed = !!(mode & (1 << 4)); this.dsp_stereo = !!(mode & (1 << 5)); this.dsp_16bit = false; this.dma_transfer_size_set(); this.dma_transfer_start(); }); // Pause 8-bit DMA mode digitized sound I/O. register_dsp_command([0xD0], 0, function() { this.dma_paused = true; this.bus.send("dac-disable"); }); // Turn on speaker. // Documented to have no effect on SB16. register_dsp_command([0xD1], 0, function() { this.dummy_speaker_enabled = true; }); // Turn off speaker. // Documented to have no effect on SB16. register_dsp_command([0xD3], 0, function() { this.dummy_speaker_enabled = false; }); // Continue 8-bit DMA mode digitized sound I/O. register_dsp_command([0xD4], 0, function() { this.dma_paused = false; this.bus.send("dac-enable"); }); // Pause 16-bit DMA mode digitized sound I/O. register_dsp_command([0xD5], 0, function() { this.dma_paused = true; this.bus.send("dac-disable"); }); // Continue 16-bit DMA mode digitized sound I/O. register_dsp_command([0xD6], 0, function() { this.dma_paused = false; this.bus.send("dac-enable"); }); // Get speaker status. register_dsp_command([0xD8], 0, function() { this.read_buffer.clear(); this.read_buffer.push(this.dummy_speaker_enabled * 0xFF); }); // Exit 16-bit auto-init DMA mode digitized sound I/O. // Exit 8-bit auto-init mode digitized sound I/O. register_dsp_command([0xD9, 0xDA], 0, function() { this.dma_autoinit = false; }); // DSP identification register_dsp_command([0xE0], 1, function() { this.read_buffer.clear(); this.read_buffer.push(~this.write_buffer.shift()); }); // Get DSP version number. register_dsp_command([0xE1], 0, function() { this.read_buffer.clear(); this.read_buffer.push(4); this.read_buffer.push(5); }); // DMA identification. register_dsp_command([0xE2], 1); // Get DSP copyright. register_dsp_command([0xE3], 0, function() { this.read_buffer.clear(); for(var i = 0; i < DSP_COPYRIGHT.length; i++) { this.read_buffer.push(DSP_COPYRIGHT.charCodeAt(i)); } // Null terminator. this.read_buffer.push(0); }); // Write test register. register_dsp_command([0xE4], 1, function() { this.test_register = this.write_buffer.shift(); }); // Read test register. register_dsp_command([0xE8], 0, function() { this.read_buffer.clear(); this.read_buffer.push(this.test_register); }); // Trigger IRQ register_dsp_command([0xF2, 0xF3], 0, function() { this.raise_irq(); }); // ASP - unknown function var SB_F9 = new Uint8Array(256); SB_F9[0x0E] = 0xFF; SB_F9[0x0F] = 0x07; SB_F9[0x37] = 0x38; register_dsp_command([0xF9], 1, function() { var input = this.write_buffer.shift(); dbg_log("dsp 0xf9: unknown function. input: " + input, LOG_SB16); this.read_buffer.clear(); this.read_buffer.push(SB_F9[input]); }); // // Mixer Handlers (CT1745) // SB16.prototype.mixer_read = function(address) { var handler = MIXER_READ_HANDLERS[address]; var data; if(handler) { data = handler.call(this); } else { data = this.mixer_registers[address]; dbg_log("unhandled mixer register read. addr:" + h(address) + " data:" + h(data), LOG_SB16); } return data; }; SB16.prototype.mixer_write = function(address, data) { var handler = MIXER_WRITE_HANDLERS[address]; if(handler) { handler.call(this, data); } else { dbg_log("unhandled mixer register write. addr:" + h(address) + " data:" + h(data), LOG_SB16); } }; SB16.prototype.mixer_default_read = function() { dbg_log("mixer register read. addr:" + h(this.mixer_current_address), LOG_SB16); return this.mixer_registers[this.mixer_current_address]; }; SB16.prototype.mixer_default_write = function(data) { dbg_log("mixer register write. addr:" + h(this.mixer_current_address) + " data:" + h(data), LOG_SB16); this.mixer_registers[this.mixer_current_address] = data; }; SB16.prototype.mixer_reset = function() { // Values intentionally in decimal. // Default values available at // https://pdos.csail.mit.edu/6.828/2011/readings/hardware/SoundBlaster.pdf this.mixer_registers[0x04] = 12 << 4 | 12; this.mixer_registers[0x22] = 12 << 4 | 12; this.mixer_registers[0x26] = 12 << 4 | 12; this.mixer_registers[0x28] = 0; this.mixer_registers[0x2E] = 0; this.mixer_registers[0x0A] = 0; this.mixer_registers[0x30] = 24 << 3; this.mixer_registers[0x31] = 24 << 3; this.mixer_registers[0x32] = 24 << 3; this.mixer_registers[0x33] = 24 << 3; this.mixer_registers[0x34] = 24 << 3; this.mixer_registers[0x35] = 24 << 3; this.mixer_registers[0x36] = 0; this.mixer_registers[0x37] = 0; this.mixer_registers[0x38] = 0; this.mixer_registers[0x39] = 0; this.mixer_registers[0x3B] = 0; this.mixer_registers[0x3C] = 0x1F; this.mixer_registers[0x3D] = 0x15; this.mixer_registers[0x3E] = 0x0B; this.mixer_registers[0x3F] = 0; this.mixer_registers[0x40] = 0; this.mixer_registers[0x41] = 0; this.mixer_registers[0x42] = 0; this.mixer_registers[0x43] = 0; this.mixer_registers[0x44] = 8 << 4; this.mixer_registers[0x45] = 8 << 4; this.mixer_registers[0x46] = 8 << 4; this.mixer_registers[0x47] = 8 << 4; this.mixer_full_update(); }; SB16.prototype.mixer_full_update = function() { // Start at 1. Don't re-reset. for(var i = 1; i < this.mixer_registers.length; i++) { if(MIXER_REGISTER_IS_LEGACY[i]) { // Legacy registers are actually mapped to other register locations. Update // using the new registers rather than the legacy registers. continue; } this.mixer_write(i, this.mixer_registers[i]); } }; /** * @param{number} address * @param{function():number=} handler */ function register_mixer_read(address, handler) { if(!handler) { handler = SB16.prototype.mixer_default_read; } MIXER_READ_HANDLERS[address] = handler; } /** * @param{number} address * @param{function(number)=} handler */ function register_mixer_write(address, handler) { if(!handler) { handler = SB16.prototype.mixer_default_write; } MIXER_WRITE_HANDLERS[address] = handler; } // Legacy registers map each nibble to the last 4 bits of the new registers function register_mixer_legacy(address_old, address_new_left, address_new_right) { MIXER_REGISTER_IS_LEGACY[address_old] = 1; /** @this {SB16} */ MIXER_READ_HANDLERS[address_old] = function() { var left = this.mixer_registers[address_new_left] & 0xF0; var right = this.mixer_registers[address_new_right] >>> 4; return left | right; }; /** @this {SB16} */ MIXER_WRITE_HANDLERS[address_old] = function(data) { this.mixer_registers[address_old] = data; var prev_left = this.mixer_registers[address_new_left]; var prev_right = this.mixer_registers[address_new_right]; var left = (data & 0xF0) | (prev_left & 0x0F); var right = (data << 4 & 0xF0) | (prev_right & 0x0F); this.mixer_write(address_new_left, left); this.mixer_write(address_new_right, right); }; } /** * @param {number} address * @param {number} mixer_source * @param {number} channel */ function register_mixer_volume(address, mixer_source, channel) { MIXER_READ_HANDLERS[address] = SB16.prototype.mixer_default_read; /** @this {SB16} */ MIXER_WRITE_HANDLERS[address] = function(data) { this.mixer_registers[address] = data; this.bus.send("mixer-volume", [ mixer_source, channel, (data >>> 2) - 62 ]); }; } // Reset. register_mixer_read(0x00, function() { this.mixer_reset(); return 0; }); register_mixer_write(0x00); // Legacy Voice Volume Left/Right. register_mixer_legacy(0x04, 0x32, 0x33); // Legacy Mic Volume. TODO. //register_mixer_read(0x0A); //register_mixer_write(0x0A, function(data) //{ // this.mixer_registers[0x0A] = data; // var prev = this.mixer_registers[0x3A]; // this.mixer_write(0x3A, data << 5 | (prev & 0x0F)); //}); // Legacy Master Volume Left/Right. register_mixer_legacy(0x22, 0x30, 0x31); // Legacy Midi Volume Left/Right. register_mixer_legacy(0x26, 0x34, 0x35); // Legacy CD Volume Left/Right. register_mixer_legacy(0x28, 0x36, 0x37); // Legacy Line Volume Left/Right. register_mixer_legacy(0x2E, 0x38, 0x39); // Master Volume Left. register_mixer_volume(0x30, MIXER_SRC_MASTER, MIXER_CHANNEL_LEFT); // Master Volume Right. register_mixer_volume(0x31, MIXER_SRC_MASTER, MIXER_CHANNEL_RIGHT); // Voice Volume Left. register_mixer_volume(0x32, MIXER_SRC_DAC, MIXER_CHANNEL_LEFT); // Voice Volume Right. register_mixer_volume(0x33, MIXER_SRC_DAC, MIXER_CHANNEL_RIGHT); // MIDI Volume Left. TODO. //register_mixer_volume(0x34, MIXER_SRC_SYNTH, MIXER_CHANNEL_LEFT); // MIDI Volume Right. TODO. //register_mixer_volume(0x35, MIXER_SRC_SYNTH, MIXER_CHANNEL_RIGHT); // CD Volume Left. TODO. //register_mixer_volume(0x36, MIXER_SRC_CD, MIXER_CHANNEL_LEFT); // CD Volume Right. TODO. //register_mixer_volume(0x37, MIXER_SRC_CD, MIXER_CHANNEL_RIGHT); // Line Volume Left. TODO. //register_mixer_volume(0x38, MIXER_SRC_LINE, MIXER_CHANNEL_LEFT); // Line Volume Right. TODO. //register_mixer_volume(0x39, MIXER_SRC_LINE, MIXER_CHANNEL_RIGHT); // Mic Volume. TODO. //register_mixer_volume(0x3A, MIXER_SRC_MIC, MIXER_CHANNEL_BOTH); // PC Speaker Volume. register_mixer_read(0x3B); register_mixer_write(0x3B, function(data) { this.mixer_registers[0x3B] = data; this.bus.send("mixer-volume", [MIXER_SRC_PCSPEAKER, MIXER_CHANNEL_BOTH, (data >>> 6) * 6 - 18]); }); // Output Mixer Switches. TODO. //register_mixer_read(0x3C); //register_mixer_write(0x3C, function(data) //{ // this.mixer_registers[0x3C] = data; // // if(data & 0x01) this.bus.send("mixer-connect", [MIXER_SRC_MIC, MIXER_CHANNEL_BOTH]); // else this.bus.send("mixer-disconnect", [MIXER_SRC_MIC, MIXER_CHANNEL_BOTH]); // // if(data & 0x02) this.bus.send("mixer-connect", [MIXER_SRC_CD, MIXER_CHANNEL_RIGHT]); // else this.bus.send("mixer-disconnect", [MIXER_SRC_CD, MIXER_CHANNEL_RIGHT]); // // if(data & 0x04) this.bus.send("mixer-connect", [MIXER_SRC_CD, MIXER_CHANNEL_LEFT]); // else this.bus.send("mixer-disconnect", [MIXER_SRC_CD, MIXER_CHANNEL_LEFT]); // // if(data & 0x08) this.bus.send("mixer-connect", [MIXER_SRC_LINE, MIXER_CHANNEL_RIGHT]); // else this.bus.send("mixer-disconnect", [MIXER_SRC_LINE, MIXER_CHANNEL_RIGHT]); // // if(data & 0x10) this.bus.send("mixer-connect", [MIXER_SRC_LINE, MIXER_CHANNEL_LEFT]); // else this.bus.send("mixer-disconnect", [MIXER_SRC_LINE, MIXER_CHANNEL_LEFT]); //}); // Input Mixer Left Switches. TODO. //register_mixer_read(0x3D); //register_mixer_write(0x3D); // Input Mixer Right Switches. TODO. //register_mixer_read(0x3E); //register_mixer_write(0x3E); // Input Gain Left. TODO. //register_mixer_read(0x3F); //register_mixer_write(0x3F); // Input Gain Right. TODO. //register_mixer_read(0x40); //register_mixer_write(0x40); // Output Gain Left. register_mixer_read(0x41); register_mixer_write(0x41, function(data) { this.mixer_registers[0x41] = data; this.bus.send("mixer-gain-left", (data >>> 6) * 6); }); // Output Gain Right. register_mixer_read(0x42); register_mixer_write(0x42, function(data) { this.mixer_registers[0x42] = data; this.bus.send("mixer-gain-right", (data >>> 6) * 6); }); // Mic AGC. TODO. //register_mixer_read(0x43); //register_mixer_write(0x43); // Treble Left. register_mixer_read(0x44); register_mixer_write(0x44, function(data) { this.mixer_registers[0x44] = data; data >>>= 3; this.bus.send("mixer-treble-left", data - (data < 16 ? 14 : 16)); }); // Treble Right. register_mixer_read(0x45); register_mixer_write(0x45, function(data) { this.mixer_registers[0x45] = data; data >>>= 3; this.bus.send("mixer-treble-right", data - (data < 16 ? 14 : 16)); }); // Bass Left. register_mixer_read(0x46); register_mixer_write(0x46, function(data) { this.mixer_registers[0x46] = data; data >>>= 3; this.bus.send("mixer-bass-right", data - (data < 16 ? 14 : 16)); }); // Bass Right. register_mixer_read(0x47); register_mixer_write(0x47, function(data) { this.mixer_registers[0x47] = data; data >>>= 3; this.bus.send("mixer-bass-right", data - (data < 16 ? 14 : 16)); }); // IRQ Select. register_mixer_read(0x80, function() { switch(this.irq) { case SB_IRQ2: return 0x1; case SB_IRQ5: return 0x2; case SB_IRQ7: return 0x4; case SB_IRQ10: return 0x8; default: return 0x0; } }); register_mixer_write(0x80, function(bits) { if(bits & 0x1) this.irq = SB_IRQ2; if(bits & 0x2) this.irq = SB_IRQ5; if(bits & 0x4) this.irq = SB_IRQ7; if(bits & 0x8) this.irq = SB_IRQ10; }); // DMA Select. register_mixer_read(0x81, function() { var ret = 0; switch(this.dma_channel_8bit) { case SB_DMA0: ret |= 0x1; break; case SB_DMA1: ret |= 0x2; break; // Channel 2 is hardwired to floppy disk. case SB_DMA3: ret |= 0x8; break; } switch(this.dma_channel_16bit) { // Channel 4 cannot be used. case SB_DMA5: ret |= 0x20; break; case SB_DMA6: ret |= 0x40; break; case SB_DMA7: ret |= 0x80; break; } return ret; }); register_mixer_write(0x81, function(bits) { if(bits & 0x1) this.dma_channel_8bit = SB_DMA0; if(bits & 0x2) this.dma_channel_8bit = SB_DMA1; if(bits & 0x8) this.dma_channel_8bit = SB_DMA3; if(bits & 0x20) this.dma_channel_16bit = SB_DMA5; if(bits & 0x40) this.dma_channel_16bit = SB_DMA6; if(bits & 0x80) this.dma_channel_16bit = SB_DMA7; }); // IRQ Status. register_mixer_read(0x82, function() { var ret = 0x20; for(var i = 0; i < 16; i++) { ret |= i * this.irq_triggered[i]; } return ret; }); // // FM Handlers // SB16.prototype.fm_default_write = function(data, register, address) { dbg_log("unhandled fm register write. addr:" + register + "|" + h(address) + " data:" + h(data), LOG_SB16); // No need to save into a dummy register as the registers are write-only. }; /** * @param{Array} addresses * @param{function(number, number, number)=} handler */ function register_fm_write(addresses, handler) { if(!handler) { handler = SB16.prototype.fm_default_write; } for(var i = 0; i < addresses.length; i++) { FM_HANDLERS[addresses[i]] = handler; } } function between(start, end) { var a = []; for(var i = start; i <= end; i++) { a.push(i); } return a; } /** @const */ var SB_FM_OPERATORS_BY_OFFSET = new Uint8Array(32); SB_FM_OPERATORS_BY_OFFSET[0x00] = 0; SB_FM_OPERATORS_BY_OFFSET[0x01] = 1; SB_FM_OPERATORS_BY_OFFSET[0x02] = 2; SB_FM_OPERATORS_BY_OFFSET[0x03] = 3; SB_FM_OPERATORS_BY_OFFSET[0x04] = 4; SB_FM_OPERATORS_BY_OFFSET[0x05] = 5; SB_FM_OPERATORS_BY_OFFSET[0x08] = 6; SB_FM_OPERATORS_BY_OFFSET[0x09] = 7; SB_FM_OPERATORS_BY_OFFSET[0x0A] = 8; SB_FM_OPERATORS_BY_OFFSET[0x0B] = 9; SB_FM_OPERATORS_BY_OFFSET[0x0C] = 10; SB_FM_OPERATORS_BY_OFFSET[0x0D] = 11; SB_FM_OPERATORS_BY_OFFSET[0x10] = 12; SB_FM_OPERATORS_BY_OFFSET[0x11] = 13; SB_FM_OPERATORS_BY_OFFSET[0x12] = 14; SB_FM_OPERATORS_BY_OFFSET[0x13] = 15; SB_FM_OPERATORS_BY_OFFSET[0x14] = 16; SB_FM_OPERATORS_BY_OFFSET[0x15] = 17; function get_fm_operator(register, offset) { return register * 18 + SB_FM_OPERATORS_BY_OFFSET[offset]; } register_fm_write([0x01], function(bits, register, address) { this.fm_waveform_select_enable[register] = bits & 0x20 > 0; this.fm_update_waveforms(); }); // Timer 1 Count. register_fm_write([0x02]); // Timer 2 Count. register_fm_write([0x03]); register_fm_write([0x04], function(bits, register, address) { switch(register) { case 0: // if(bits & 0x80) // { // // IQR Reset // } // else // { // // Timer masks and on/off // } break; case 1: // Four-operator enable break; } }); register_fm_write([0x05], function(bits, register, address) { if(register === 0) { // No registers documented here. this.fm_default_write(bits, register, address); } else { // OPL3 Mode Enable } }); register_fm_write([0x08], function(bits, register, address) { // Composite sine wave on/off // Note select (keyboard split selection method) }); register_fm_write(between(0x20, 0x35), function(bits, register, address) { var operator = get_fm_operator(register, address - 0x20); // Tremolo // Vibrato // Sustain // KSR Envelope Scaling // Frequency Multiplication Factor }); register_fm_write(between(0x40, 0x55), function(bits, register, address) { var operator = get_fm_operator(register, address - 0x40); // Key Scale Level // Output Level }); register_fm_write(between(0x60, 0x75), function(bits, register, address) { var operator = get_fm_operator(register, address - 0x60); // Attack Rate // Decay Rate }); register_fm_write(between(0x80, 0x95), function(bits, register, address) { var operator = get_fm_operator(register, address - 0x80); // Sustain Level // Release Rate }); register_fm_write(between(0xA0, 0xA8), function(bits, register, address) { var channel = address - 0xA0; // Frequency Number (Lower 8 bits) }); register_fm_write(between(0xB0, 0xB8), function(bits, register, address) { // Key-On // Block Number // Frequency Number (Higher 2 bits) }); register_fm_write([0xBD], function(bits, register, address) { // Tremelo Depth // Vibrato Depth // Percussion Mode // Bass Drum Key-On // Snare Drum Key-On // Tom-Tom Key-On // Cymbal Key-On // Hi-Hat Key-On }); register_fm_write(between(0xC0, 0xC8), function(bits, register, address) { // Right Speaker Enable // Left Speaker Enable // Feedback Modulation Factor // Synthesis Type }); register_fm_write(between(0xE0, 0xF5), function(bits, register, address) { var operator = get_fm_operator(register, address - 0xE0); // Waveform Select }); // // FM behaviours // SB16.prototype.fm_update_waveforms = function() { // To be implemented. }; // // General behaviours // SB16.prototype.sampling_rate_change = function(rate) { this.sampling_rate = rate; this.bus.send("dac-tell-sampling-rate", rate); }; SB16.prototype.get_channel_count = function() { return this.dsp_stereo ? 2 : 1; }; SB16.prototype.dma_transfer_size_set = function() { this.dma_sample_count = 1 + (this.write_buffer.shift() << 0) + (this.write_buffer.shift() << 8); }; SB16.prototype.dma_transfer_start = function() { dbg_log("begin dma transfer", LOG_SB16); // (1) Setup appropriate settings. this.bytes_per_sample = 1; if(this.dsp_16bit) this.bytes_per_sample *= 2; // Don't count stereo interleaved bits apparently. // Disabling this line is needed for sounds to work correctly, // especially double buffering autoinit mode. // Learnt the hard way. // if(this.dsp_stereo) this.bytes_per_sample *= 2; this.dma_bytes_count = this.dma_sample_count * this.bytes_per_sample; this.dma_bytes_block = SB_DMA_BLOCK_SAMPLES * this.bytes_per_sample; // Ensure block size is small enough but not too small, and is divisible by 4 var max_bytes_block = Math.max(this.dma_bytes_count >> 2 & ~0x3, 32); this.dma_bytes_block = Math.min(max_bytes_block, this.dma_bytes_block); // (2) Wait until channel is unmasked (if not already) this.dma_waiting_transfer = true; if(!this.dma.channel_mask[this.dma_channel]) { this.dma_on_unmask(this.dma_channel); } }; SB16.prototype.dma_on_unmask = function(channel) { if(channel !== this.dma_channel || !this.dma_waiting_transfer) { return; } // (3) Configure amount of bytes left to transfer and tell speaker adapter // to start requesting transfers this.dma_waiting_transfer = false; this.dma_bytes_left = this.dma_bytes_count; this.dma_paused = false; this.bus.send("dac-enable"); }; SB16.prototype.dma_transfer_next = function() { dbg_log("dma transfering next block", LOG_SB16); var size = Math.min(this.dma_bytes_left, this.dma_bytes_block); var samples = Math.floor(size / this.bytes_per_sample); this.dma.do_write(this.dma_syncbuffer, 0, size, this.dma_channel, (error) => { dbg_log("dma block transfer " + (error ? "unsuccessful" : "successful"), LOG_SB16); if(error) return; this.dma_to_dac(samples); this.dma_bytes_left -= size; if(!this.dma_bytes_left) { // Completed requested transfer of given size. this.raise_irq(this.dma_irq); if(this.dma_autoinit) { // Restart the transfer. this.dma_bytes_left = this.dma_bytes_count; } } }); }; SB16.prototype.dma_to_dac = function(sample_count) { var amplitude = this.dsp_16bit ? 32767.5 : 127.5; var offset = this.dsp_signed ? 0 : -1; var repeats = this.dsp_stereo ? 1 : 2; var buffer; if(this.dsp_16bit) { buffer = this.dsp_signed ? this.dma_buffer_int16 : this.dma_buffer_uint16; } else { buffer = this.dsp_signed ? this.dma_buffer_int8 : this.dma_buffer_uint8; } var channel = 0; for(var i = 0; i < sample_count; i++) { var sample = audio_normalize(buffer[i], amplitude, offset); for(var j = 0; j < repeats; j++) { this.dac_buffers[channel].push(sample); channel ^= 1; } } this.dac_send(); }; SB16.prototype.dac_handle_request = function() { if(!this.dma_bytes_left || this.dma_paused) { // No more data to transfer or is paused. Send whatever is in the buffers. this.dac_send(); } else { this.dma_transfer_next(); } }; SB16.prototype.dac_send = function() { if(!this.dac_buffers[0].length) { return; } var out0 = this.dac_buffers[0].shift_block(this.dac_buffers[0].length); var out1 = this.dac_buffers[1].shift_block(this.dac_buffers[1].length); this.bus.send("dac-send-data", [out0, out1], [out0.buffer, out1.buffer]); }; SB16.prototype.raise_irq = function(type) { dbg_log("raise irq", LOG_SB16); this.irq_triggered[type] = 1; this.cpu.device_raise_irq(this.irq); }; SB16.prototype.lower_irq = function(type) { dbg_log("lower irq", LOG_SB16); this.irq_triggered[type] = 0; this.cpu.device_lower_irq(this.irq); }; // // Helpers // function audio_normalize(value, amplitude, offset) { return audio_clip(value / amplitude + offset, -1, 1); } function audio_clip(value, low, high) { return (value < low) * low + (value > high) * high + (low <= value && value <= high) * value; }