porting-guide.rst 135 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582
  1. Porting Guide
  2. =============
  3. Introduction
  4. ------------
  5. Porting Trusted Firmware-A (TF-A) to a new platform involves making some
  6. mandatory and optional modifications for both the cold and warm boot paths.
  7. Modifications consist of:
  8. - Implementing a platform-specific function or variable,
  9. - Setting up the execution context in a certain way, or
  10. - Defining certain constants (for example #defines).
  11. The platform-specific functions and variables are declared in
  12. ``include/plat/common/platform.h``. The firmware provides a default
  13. implementation of variables and functions to fulfill the optional requirements
  14. in order to ease the porting effort. Each platform port can use them as is or
  15. provide their own implementation if the default implementation is inadequate.
  16. .. note::
  17. TF-A historically provided default implementations of platform interfaces
  18. as *weak* functions. This practice is now discouraged and new platform
  19. interfaces as they get introduced in the code base should be *strongly*
  20. defined. We intend to convert existing weak functions over time. Until
  21. then, you will find references to *weak* functions in this document.
  22. Please review the :ref:`Threat Model` documents as part of the porting
  23. effort. Some platform interfaces play a key role in mitigating against some of
  24. the threats. Failing to fulfill these expectations could undermine the security
  25. guarantees offered by TF-A. These platform responsibilities are highlighted in
  26. the threat assessment section, under the "`Mitigations implemented?`" box for
  27. each threat.
  28. Some modifications are common to all Boot Loader (BL) stages. Section 2
  29. discusses these in detail. The subsequent sections discuss the remaining
  30. modifications for each BL stage in detail.
  31. Please refer to the :ref:`Platform Ports Policy` for the policy regarding
  32. compatibility and deprecation of these porting interfaces.
  33. Only Arm development platforms (such as FVP and Juno) may use the
  34. functions/definitions in ``include/plat/arm/common/`` and the corresponding
  35. source files in ``plat/arm/common/``. This is done so that there are no
  36. dependencies between platforms maintained by different people/companies. If you
  37. want to use any of the functionality present in ``plat/arm`` files, please
  38. propose a patch that moves the code to ``plat/common`` so that it can be
  39. discussed.
  40. Common modifications
  41. --------------------
  42. This section covers the modifications that should be made by the platform for
  43. each BL stage to correctly port the firmware stack. They are categorized as
  44. either mandatory or optional.
  45. Common mandatory modifications
  46. ------------------------------
  47. A platform port must enable the Memory Management Unit (MMU) as well as the
  48. instruction and data caches for each BL stage. Setting up the translation
  49. tables is the responsibility of the platform port because memory maps differ
  50. across platforms. A memory translation library (see ``lib/xlat_tables_v2/``) is
  51. provided to help in this setup.
  52. Note that although this library supports non-identity mappings, this is intended
  53. only for re-mapping peripheral physical addresses and allows platforms with high
  54. I/O addresses to reduce their virtual address space. All other addresses
  55. corresponding to code and data must currently use an identity mapping.
  56. Also, the only translation granule size supported in TF-A is 4KB, as various
  57. parts of the code assume that is the case. It is not possible to switch to
  58. 16 KB or 64 KB granule sizes at the moment.
  59. In Arm standard platforms, each BL stage configures the MMU in the
  60. platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
  61. an identity mapping for all addresses.
  62. If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
  63. block of identity mapped secure memory with Device-nGnRE attributes aligned to
  64. page boundary (4K) for each BL stage. All sections which allocate coherent
  65. memory are grouped under ``.coherent_ram``. For ex: Bakery locks are placed in a
  66. section identified by name ``.bakery_lock`` inside ``.coherent_ram`` so that its
  67. possible for the firmware to place variables in it using the following C code
  68. directive:
  69. ::
  70. __section(".bakery_lock")
  71. Or alternatively the following assembler code directive:
  72. ::
  73. .section .bakery_lock
  74. The ``.coherent_ram`` section is a sum of all sections like ``.bakery_lock`` which are
  75. used to allocate any data structures that are accessed both when a CPU is
  76. executing with its MMU and caches enabled, and when it's running with its MMU
  77. and caches disabled. Examples are given below.
  78. The following variables, functions and constants must be defined by the platform
  79. for the firmware to work correctly.
  80. .. _platform_def_mandatory:
  81. File : platform_def.h [mandatory]
  82. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  83. Each platform must ensure that a header file of this name is in the system
  84. include path with the following constants defined. This will require updating
  85. the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
  86. Platform ports may optionally use the file ``include/plat/common/common_def.h``,
  87. which provides typical values for some of the constants below. These values are
  88. likely to be suitable for all platform ports.
  89. - **#define : PLATFORM_LINKER_FORMAT**
  90. Defines the linker format used by the platform, for example
  91. ``elf64-littleaarch64``.
  92. - **#define : PLATFORM_LINKER_ARCH**
  93. Defines the processor architecture for the linker by the platform, for
  94. example ``aarch64``.
  95. - **#define : PLATFORM_STACK_SIZE**
  96. Defines the normal stack memory available to each CPU. This constant is used
  97. by ``plat/common/aarch64/platform_mp_stack.S`` and
  98. ``plat/common/aarch64/platform_up_stack.S``.
  99. - **#define : CACHE_WRITEBACK_GRANULE**
  100. Defines the size in bytes of the largest cache line across all the cache
  101. levels in the platform.
  102. - **#define : FIRMWARE_WELCOME_STR**
  103. Defines the character string printed by BL1 upon entry into the ``bl1_main()``
  104. function.
  105. - **#define : PLATFORM_CORE_COUNT**
  106. Defines the total number of CPUs implemented by the platform across all
  107. clusters in the system.
  108. - **#define : PLAT_NUM_PWR_DOMAINS**
  109. Defines the total number of nodes in the power domain topology
  110. tree at all the power domain levels used by the platform.
  111. This macro is used by the PSCI implementation to allocate
  112. data structures to represent power domain topology.
  113. - **#define : PLAT_MAX_PWR_LVL**
  114. Defines the maximum power domain level that the power management operations
  115. should apply to. More often, but not always, the power domain level
  116. corresponds to affinity level. This macro allows the PSCI implementation
  117. to know the highest power domain level that it should consider for power
  118. management operations in the system that the platform implements. For
  119. example, the Base AEM FVP implements two clusters with a configurable
  120. number of CPUs and it reports the maximum power domain level as 1.
  121. - **#define : PLAT_MAX_OFF_STATE**
  122. Defines the local power state corresponding to the deepest power down
  123. possible at every power domain level in the platform. The local power
  124. states for each level may be sparsely allocated between 0 and this value
  125. with 0 being reserved for the RUN state. The PSCI implementation uses this
  126. value to initialize the local power states of the power domain nodes and
  127. to specify the requested power state for a PSCI_CPU_OFF call.
  128. - **#define : PLAT_MAX_RET_STATE**
  129. Defines the local power state corresponding to the deepest retention state
  130. possible at every power domain level in the platform. This macro should be
  131. a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
  132. PSCI implementation to distinguish between retention and power down local
  133. power states within PSCI_CPU_SUSPEND call.
  134. - **#define : PLAT_MAX_PWR_LVL_STATES**
  135. Defines the maximum number of local power states per power domain level
  136. that the platform supports. The default value of this macro is 2 since
  137. most platforms just support a maximum of two local power states at each
  138. power domain level (power-down and retention). If the platform needs to
  139. account for more local power states, then it must redefine this macro.
  140. Currently, this macro is used by the Generic PSCI implementation to size
  141. the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
  142. - **#define : BL1_RO_BASE**
  143. Defines the base address in secure ROM where BL1 originally lives. Must be
  144. aligned on a page-size boundary.
  145. - **#define : BL1_RO_LIMIT**
  146. Defines the maximum address in secure ROM that BL1's actual content (i.e.
  147. excluding any data section allocated at runtime) can occupy.
  148. - **#define : BL1_RW_BASE**
  149. Defines the base address in secure RAM where BL1's read-write data will live
  150. at runtime. Must be aligned on a page-size boundary.
  151. - **#define : BL1_RW_LIMIT**
  152. Defines the maximum address in secure RAM that BL1's read-write data can
  153. occupy at runtime.
  154. - **#define : BL2_BASE**
  155. Defines the base address in secure RAM where BL1 loads the BL2 binary image.
  156. Must be aligned on a page-size boundary. This constant is not applicable
  157. when BL2_IN_XIP_MEM is set to '1'.
  158. - **#define : BL2_LIMIT**
  159. Defines the maximum address in secure RAM that the BL2 image can occupy.
  160. This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
  161. - **#define : BL2_RO_BASE**
  162. Defines the base address in secure XIP memory where BL2 RO section originally
  163. lives. Must be aligned on a page-size boundary. This constant is only needed
  164. when BL2_IN_XIP_MEM is set to '1'.
  165. - **#define : BL2_RO_LIMIT**
  166. Defines the maximum address in secure XIP memory that BL2's actual content
  167. (i.e. excluding any data section allocated at runtime) can occupy. This
  168. constant is only needed when BL2_IN_XIP_MEM is set to '1'.
  169. - **#define : BL2_RW_BASE**
  170. Defines the base address in secure RAM where BL2's read-write data will live
  171. at runtime. Must be aligned on a page-size boundary. This constant is only
  172. needed when BL2_IN_XIP_MEM is set to '1'.
  173. - **#define : BL2_RW_LIMIT**
  174. Defines the maximum address in secure RAM that BL2's read-write data can
  175. occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
  176. to '1'.
  177. - **#define : BL31_BASE**
  178. Defines the base address in secure RAM where BL2 loads the BL31 binary
  179. image. Must be aligned on a page-size boundary.
  180. - **#define : BL31_LIMIT**
  181. Defines the maximum address in secure RAM that the BL31 image can occupy.
  182. - **#define : PLAT_RSS_COMMS_PAYLOAD_MAX_SIZE**
  183. Defines the maximum message size between AP and RSS. Need to define if
  184. platform supports RSS.
  185. For every image, the platform must define individual identifiers that will be
  186. used by BL1 or BL2 to load the corresponding image into memory from non-volatile
  187. storage. For the sake of performance, integer numbers will be used as
  188. identifiers. The platform will use those identifiers to return the relevant
  189. information about the image to be loaded (file handler, load address,
  190. authentication information, etc.). The following image identifiers are
  191. mandatory:
  192. - **#define : BL2_IMAGE_ID**
  193. BL2 image identifier, used by BL1 to load BL2.
  194. - **#define : BL31_IMAGE_ID**
  195. BL31 image identifier, used by BL2 to load BL31.
  196. - **#define : BL33_IMAGE_ID**
  197. BL33 image identifier, used by BL2 to load BL33.
  198. If Trusted Board Boot is enabled, the following certificate identifiers must
  199. also be defined:
  200. - **#define : TRUSTED_BOOT_FW_CERT_ID**
  201. BL2 content certificate identifier, used by BL1 to load the BL2 content
  202. certificate.
  203. - **#define : TRUSTED_KEY_CERT_ID**
  204. Trusted key certificate identifier, used by BL2 to load the trusted key
  205. certificate.
  206. - **#define : SOC_FW_KEY_CERT_ID**
  207. BL31 key certificate identifier, used by BL2 to load the BL31 key
  208. certificate.
  209. - **#define : SOC_FW_CONTENT_CERT_ID**
  210. BL31 content certificate identifier, used by BL2 to load the BL31 content
  211. certificate.
  212. - **#define : NON_TRUSTED_FW_KEY_CERT_ID**
  213. BL33 key certificate identifier, used by BL2 to load the BL33 key
  214. certificate.
  215. - **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
  216. BL33 content certificate identifier, used by BL2 to load the BL33 content
  217. certificate.
  218. - **#define : FWU_CERT_ID**
  219. Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
  220. FWU content certificate.
  221. - **#define : PLAT_CRYPTOCELL_BASE**
  222. This defines the base address of Arm® TrustZone® CryptoCell and must be
  223. defined if CryptoCell crypto driver is used for Trusted Board Boot. For
  224. capable Arm platforms, this driver is used if ``ARM_CRYPTOCELL_INTEG`` is
  225. set.
  226. If the AP Firmware Updater Configuration image, BL2U is used, the following
  227. must also be defined:
  228. - **#define : BL2U_BASE**
  229. Defines the base address in secure memory where BL1 copies the BL2U binary
  230. image. Must be aligned on a page-size boundary.
  231. - **#define : BL2U_LIMIT**
  232. Defines the maximum address in secure memory that the BL2U image can occupy.
  233. - **#define : BL2U_IMAGE_ID**
  234. BL2U image identifier, used by BL1 to fetch an image descriptor
  235. corresponding to BL2U.
  236. If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
  237. must also be defined:
  238. - **#define : SCP_BL2U_IMAGE_ID**
  239. SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
  240. corresponding to SCP_BL2U.
  241. .. note::
  242. TF-A does not provide source code for this image.
  243. If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
  244. also be defined:
  245. - **#define : NS_BL1U_BASE**
  246. Defines the base address in non-secure ROM where NS_BL1U executes.
  247. Must be aligned on a page-size boundary.
  248. .. note::
  249. TF-A does not provide source code for this image.
  250. - **#define : NS_BL1U_IMAGE_ID**
  251. NS_BL1U image identifier, used by BL1 to fetch an image descriptor
  252. corresponding to NS_BL1U.
  253. If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
  254. be defined:
  255. - **#define : NS_BL2U_BASE**
  256. Defines the base address in non-secure memory where NS_BL2U executes.
  257. Must be aligned on a page-size boundary.
  258. .. note::
  259. TF-A does not provide source code for this image.
  260. - **#define : NS_BL2U_IMAGE_ID**
  261. NS_BL2U image identifier, used by BL1 to fetch an image descriptor
  262. corresponding to NS_BL2U.
  263. For the the Firmware update capability of TRUSTED BOARD BOOT, the following
  264. macros may also be defined:
  265. - **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
  266. Total number of images that can be loaded simultaneously. If the platform
  267. doesn't specify any value, it defaults to 10.
  268. If a SCP_BL2 image is supported by the platform, the following constants must
  269. also be defined:
  270. - **#define : SCP_BL2_IMAGE_ID**
  271. SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
  272. from platform storage before being transferred to the SCP.
  273. - **#define : SCP_FW_KEY_CERT_ID**
  274. SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
  275. certificate (mandatory when Trusted Board Boot is enabled).
  276. - **#define : SCP_FW_CONTENT_CERT_ID**
  277. SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
  278. content certificate (mandatory when Trusted Board Boot is enabled).
  279. If a BL32 image is supported by the platform, the following constants must
  280. also be defined:
  281. - **#define : BL32_IMAGE_ID**
  282. BL32 image identifier, used by BL2 to load BL32.
  283. - **#define : TRUSTED_OS_FW_KEY_CERT_ID**
  284. BL32 key certificate identifier, used by BL2 to load the BL32 key
  285. certificate (mandatory when Trusted Board Boot is enabled).
  286. - **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
  287. BL32 content certificate identifier, used by BL2 to load the BL32 content
  288. certificate (mandatory when Trusted Board Boot is enabled).
  289. - **#define : BL32_BASE**
  290. Defines the base address in secure memory where BL2 loads the BL32 binary
  291. image. Must be aligned on a page-size boundary.
  292. - **#define : BL32_LIMIT**
  293. Defines the maximum address that the BL32 image can occupy.
  294. If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
  295. platform, the following constants must also be defined:
  296. - **#define : TSP_SEC_MEM_BASE**
  297. Defines the base address of the secure memory used by the TSP image on the
  298. platform. This must be at the same address or below ``BL32_BASE``.
  299. - **#define : TSP_SEC_MEM_SIZE**
  300. Defines the size of the secure memory used by the BL32 image on the
  301. platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
  302. accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
  303. and ``BL32_LIMIT``.
  304. - **#define : TSP_IRQ_SEC_PHY_TIMER**
  305. Defines the ID of the secure physical generic timer interrupt used by the
  306. TSP's interrupt handling code.
  307. If the platform port uses the translation table library code, the following
  308. constants must also be defined:
  309. - **#define : PLAT_XLAT_TABLES_DYNAMIC**
  310. Optional flag that can be set per-image to enable the dynamic allocation of
  311. regions even when the MMU is enabled. If not defined, only static
  312. functionality will be available, if defined and set to 1 it will also
  313. include the dynamic functionality.
  314. - **#define : MAX_XLAT_TABLES**
  315. Defines the maximum number of translation tables that are allocated by the
  316. translation table library code. To minimize the amount of runtime memory
  317. used, choose the smallest value needed to map the required virtual addresses
  318. for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
  319. image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
  320. as well.
  321. - **#define : MAX_MMAP_REGIONS**
  322. Defines the maximum number of regions that are allocated by the translation
  323. table library code. A region consists of physical base address, virtual base
  324. address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
  325. defined in the ``mmap_region_t`` structure. The platform defines the regions
  326. that should be mapped. Then, the translation table library will create the
  327. corresponding tables and descriptors at runtime. To minimize the amount of
  328. runtime memory used, choose the smallest value needed to register the
  329. required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
  330. enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
  331. the dynamic regions as well.
  332. - **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
  333. Defines the total size of the virtual address space in bytes. For example,
  334. for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
  335. - **#define : PLAT_PHY_ADDR_SPACE_SIZE**
  336. Defines the total size of the physical address space in bytes. For example,
  337. for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
  338. If the platform port uses the IO storage framework, the following constants
  339. must also be defined:
  340. - **#define : MAX_IO_DEVICES**
  341. Defines the maximum number of registered IO devices. Attempting to register
  342. more devices than this value using ``io_register_device()`` will fail with
  343. -ENOMEM.
  344. - **#define : MAX_IO_HANDLES**
  345. Defines the maximum number of open IO handles. Attempting to open more IO
  346. entities than this value using ``io_open()`` will fail with -ENOMEM.
  347. - **#define : MAX_IO_BLOCK_DEVICES**
  348. Defines the maximum number of registered IO block devices. Attempting to
  349. register more devices this value using ``io_dev_open()`` will fail
  350. with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
  351. With this macro, multiple block devices could be supported at the same
  352. time.
  353. If the platform needs to allocate data within the per-cpu data framework in
  354. BL31, it should define the following macro. Currently this is only required if
  355. the platform decides not to use the coherent memory section by undefining the
  356. ``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
  357. required memory within the the per-cpu data to minimize wastage.
  358. - **#define : PLAT_PCPU_DATA_SIZE**
  359. Defines the memory (in bytes) to be reserved within the per-cpu data
  360. structure for use by the platform layer.
  361. The following constants are optional. They should be defined when the platform
  362. memory layout implies some image overlaying like in Arm standard platforms.
  363. - **#define : BL31_PROGBITS_LIMIT**
  364. Defines the maximum address in secure RAM that the BL31's progbits sections
  365. can occupy.
  366. - **#define : TSP_PROGBITS_LIMIT**
  367. Defines the maximum address that the TSP's progbits sections can occupy.
  368. If the platform supports OS-initiated mode, i.e. the build option
  369. ``PSCI_OS_INIT_MODE`` is enabled, and if the platform's maximum power domain
  370. level for PSCI_CPU_SUSPEND differs from ``PLAT_MAX_PWR_LVL``, the following
  371. constant must be defined.
  372. - **#define : PLAT_MAX_CPU_SUSPEND_PWR_LVL**
  373. Defines the maximum power domain level that PSCI_CPU_SUSPEND should apply to.
  374. If the platform port uses the PL061 GPIO driver, the following constant may
  375. optionally be defined:
  376. - **PLAT_PL061_MAX_GPIOS**
  377. Maximum number of GPIOs required by the platform. This allows control how
  378. much memory is allocated for PL061 GPIO controllers. The default value is
  379. #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
  380. If the platform port uses the partition driver, the following constant may
  381. optionally be defined:
  382. - **PLAT_PARTITION_MAX_ENTRIES**
  383. Maximum number of partition entries required by the platform. This allows
  384. control how much memory is allocated for partition entries. The default
  385. value is 128.
  386. For example, define the build flag in ``platform.mk``:
  387. PLAT_PARTITION_MAX_ENTRIES := 12
  388. $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
  389. - **PLAT_PARTITION_BLOCK_SIZE**
  390. The size of partition block. It could be either 512 bytes or 4096 bytes.
  391. The default value is 512.
  392. For example, define the build flag in ``platform.mk``:
  393. PLAT_PARTITION_BLOCK_SIZE := 4096
  394. $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
  395. If the platform port uses the Arm® Ethos™-N NPU driver, the following
  396. configuration must be performed:
  397. - The NPU SiP service handler must be hooked up. This consists of both the
  398. initial setup (``ethosn_smc_setup``) and the handler itself
  399. (``ethosn_smc_handler``)
  400. If the platform port uses the Arm® Ethos™-N NPU driver with TZMP1 support
  401. enabled, the following constants and configuration must also be defined:
  402. - **ETHOSN_NPU_PROT_FW_NSAID**
  403. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use to
  404. access the protected memory that contains the NPU's firmware.
  405. - **ETHOSN_NPU_PROT_DATA_RW_NSAID**
  406. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
  407. read/write access to the protected memory that contains inference data.
  408. - **ETHOSN_NPU_PROT_DATA_RO_NSAID**
  409. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
  410. read-only access to the protected memory that contains inference data.
  411. - **ETHOSN_NPU_NS_RW_DATA_NSAID**
  412. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
  413. read/write access to the non-protected memory.
  414. - **ETHOSN_NPU_NS_RO_DATA_NSAID**
  415. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
  416. read-only access to the non-protected memory.
  417. - **ETHOSN_NPU_FW_IMAGE_BASE** and **ETHOSN_NPU_FW_IMAGE_LIMIT**
  418. Defines the physical address range that the NPU's firmware will be loaded
  419. into and executed from.
  420. - Configure the platforms TrustZone Controller (TZC) with appropriate regions
  421. of protected memory. At minimum this must include a region for the NPU's
  422. firmware code and a region for protected inference data, and these must be
  423. accessible using the NSAIDs defined above.
  424. - Include the NPU firmware and certificates in the FIP.
  425. - Provide FCONF entries to configure the image source for the NPU firmware
  426. and certificates.
  427. - Add MMU mappings such that:
  428. - BL2 can write the NPU firmware into the region defined by
  429. ``ETHOSN_NPU_FW_IMAGE_BASE`` and ``ETHOSN_NPU_FW_IMAGE_LIMIT``
  430. - BL31 (SiP service) can read the NPU firmware from the same region
  431. - Add the firmware image ID ``ETHOSN_NPU_FW_IMAGE_ID`` to the list of images
  432. loaded by BL2.
  433. Please see the reference implementation code for the Juno platform as an example.
  434. The following constant is optional. It should be defined to override the default
  435. behaviour of the ``assert()`` function (for example, to save memory).
  436. - **PLAT_LOG_LEVEL_ASSERT**
  437. If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
  438. ``assert()`` prints the name of the file, the line number and the asserted
  439. expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
  440. name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
  441. doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
  442. defined, it defaults to ``LOG_LEVEL``.
  443. If the platform port uses the DRTM feature, the following constants must be
  444. defined:
  445. - **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
  446. Maximum Event Log size used by the platform. Platform can decide the maximum
  447. size of the Event Log buffer, depending upon the highest hash algorithm
  448. chosen and the number of components selected to measure during the DRTM
  449. execution flow.
  450. - **#define : PLAT_DRTM_MMAP_ENTRIES**
  451. Number of the MMAP entries used by the DRTM implementation to calculate the
  452. size of address map region of the platform.
  453. File : plat_macros.S [mandatory]
  454. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  455. Each platform must ensure a file of this name is in the system include path with
  456. the following macro defined. In the Arm development platforms, this file is
  457. found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
  458. - **Macro : plat_crash_print_regs**
  459. This macro allows the crash reporting routine to print relevant platform
  460. registers in case of an unhandled exception in BL31. This aids in debugging
  461. and this macro can be defined to be empty in case register reporting is not
  462. desired.
  463. For instance, GIC or interconnect registers may be helpful for
  464. troubleshooting.
  465. Handling Reset
  466. --------------
  467. BL1 by default implements the reset vector where execution starts from a cold
  468. or warm boot. BL31 can be optionally set as a reset vector using the
  469. ``RESET_TO_BL31`` make variable.
  470. For each CPU, the reset vector code is responsible for the following tasks:
  471. #. Distinguishing between a cold boot and a warm boot.
  472. #. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
  473. the CPU is placed in a platform-specific state until the primary CPU
  474. performs the necessary steps to remove it from this state.
  475. #. In the case of a warm boot, ensuring that the CPU jumps to a platform-
  476. specific address in the BL31 image in the same processor mode as it was
  477. when released from reset.
  478. The following functions need to be implemented by the platform port to enable
  479. reset vector code to perform the above tasks.
  480. Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
  481. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  482. ::
  483. Argument : void
  484. Return : uintptr_t
  485. This function is called with the MMU and caches disabled
  486. (``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
  487. distinguishing between a warm and cold reset for the current CPU using
  488. platform-specific means. If it's a warm reset, then it returns the warm
  489. reset entrypoint point provided to ``plat_setup_psci_ops()`` during
  490. BL31 initialization. If it's a cold reset then this function must return zero.
  491. This function does not follow the Procedure Call Standard used by the
  492. Application Binary Interface for the Arm 64-bit architecture. The caller should
  493. not assume that callee saved registers are preserved across a call to this
  494. function.
  495. This function fulfills requirement 1 and 3 listed above.
  496. Note that for platforms that support programming the reset address, it is
  497. expected that a CPU will start executing code directly at the right address,
  498. both on a cold and warm reset. In this case, there is no need to identify the
  499. type of reset nor to query the warm reset entrypoint. Therefore, implementing
  500. this function is not required on such platforms.
  501. Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
  502. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  503. ::
  504. Argument : void
  505. This function is called with the MMU and data caches disabled. It is responsible
  506. for placing the executing secondary CPU in a platform-specific state until the
  507. primary CPU performs the necessary actions to bring it out of that state and
  508. allow entry into the OS. This function must not return.
  509. In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
  510. itself off. The primary CPU is responsible for powering up the secondary CPUs
  511. when normal world software requires them. When booting an EL3 payload instead,
  512. they stay powered on and are put in a holding pen until their mailbox gets
  513. populated.
  514. This function fulfills requirement 2 above.
  515. Note that for platforms that can't release secondary CPUs out of reset, only the
  516. primary CPU will execute the cold boot code. Therefore, implementing this
  517. function is not required on such platforms.
  518. Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
  519. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  520. ::
  521. Argument : void
  522. Return : unsigned int
  523. This function identifies whether the current CPU is the primary CPU or a
  524. secondary CPU. A return value of zero indicates that the CPU is not the
  525. primary CPU, while a non-zero return value indicates that the CPU is the
  526. primary CPU.
  527. Note that for platforms that can't release secondary CPUs out of reset, only the
  528. primary CPU will execute the cold boot code. Therefore, there is no need to
  529. distinguish between primary and secondary CPUs and implementing this function is
  530. not required.
  531. Function : platform_mem_init() [mandatory]
  532. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  533. ::
  534. Argument : void
  535. Return : void
  536. This function is called before any access to data is made by the firmware, in
  537. order to carry out any essential memory initialization.
  538. Function: plat_get_rotpk_info()
  539. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  540. ::
  541. Argument : void *, void **, unsigned int *, unsigned int *
  542. Return : int
  543. This function is mandatory when Trusted Board Boot is enabled. It returns a
  544. pointer to the ROTPK stored in the platform (or a hash of it) and its length.
  545. The ROTPK must be encoded in DER format according to the following ASN.1
  546. structure:
  547. ::
  548. AlgorithmIdentifier ::= SEQUENCE {
  549. algorithm OBJECT IDENTIFIER,
  550. parameters ANY DEFINED BY algorithm OPTIONAL
  551. }
  552. SubjectPublicKeyInfo ::= SEQUENCE {
  553. algorithm AlgorithmIdentifier,
  554. subjectPublicKey BIT STRING
  555. }
  556. In case the function returns a hash of the key:
  557. ::
  558. DigestInfo ::= SEQUENCE {
  559. digestAlgorithm AlgorithmIdentifier,
  560. digest OCTET STRING
  561. }
  562. The function returns 0 on success. Any other value is treated as error by the
  563. Trusted Board Boot. The function also reports extra information related
  564. to the ROTPK in the flags parameter:
  565. ::
  566. ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
  567. hash.
  568. ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
  569. verification while the platform ROTPK is not deployed.
  570. When this flag is set, the function does not need to
  571. return a platform ROTPK, and the authentication
  572. framework uses the ROTPK in the certificate without
  573. verifying it against the platform value. This flag
  574. must not be used in a deployed production environment.
  575. Function: plat_get_nv_ctr()
  576. ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  577. ::
  578. Argument : void *, unsigned int *
  579. Return : int
  580. This function is mandatory when Trusted Board Boot is enabled. It returns the
  581. non-volatile counter value stored in the platform in the second argument. The
  582. cookie in the first argument may be used to select the counter in case the
  583. platform provides more than one (for example, on platforms that use the default
  584. TBBR CoT, the cookie will correspond to the OID values defined in
  585. TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
  586. The function returns 0 on success. Any other value means the counter value could
  587. not be retrieved from the platform.
  588. Function: plat_set_nv_ctr()
  589. ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  590. ::
  591. Argument : void *, unsigned int
  592. Return : int
  593. This function is mandatory when Trusted Board Boot is enabled. It sets a new
  594. counter value in the platform. The cookie in the first argument may be used to
  595. select the counter (as explained in plat_get_nv_ctr()). The second argument is
  596. the updated counter value to be written to the NV counter.
  597. The function returns 0 on success. Any other value means the counter value could
  598. not be updated.
  599. Function: plat_set_nv_ctr2()
  600. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  601. ::
  602. Argument : void *, const auth_img_desc_t *, unsigned int
  603. Return : int
  604. This function is optional when Trusted Board Boot is enabled. If this
  605. interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
  606. first argument passed is a cookie and is typically used to
  607. differentiate between a Non Trusted NV Counter and a Trusted NV
  608. Counter. The second argument is a pointer to an authentication image
  609. descriptor and may be used to decide if the counter is allowed to be
  610. updated or not. The third argument is the updated counter value to
  611. be written to the NV counter.
  612. The function returns 0 on success. Any other value means the counter value
  613. either could not be updated or the authentication image descriptor indicates
  614. that it is not allowed to be updated.
  615. Dynamic Root of Trust for Measurement support (in BL31)
  616. -------------------------------------------------------
  617. The functions mentioned in this section are mandatory, when platform enables
  618. DRTM_SUPPORT build flag.
  619. Function : plat_get_addr_mmap()
  620. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  621. ::
  622. Argument : void
  623. Return : const mmap_region_t *
  624. This function is used to return the address of the platform *address-map* table,
  625. which describes the regions of normal memory, memory mapped I/O
  626. and non-volatile memory.
  627. Function : plat_has_non_host_platforms()
  628. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  629. ::
  630. Argument : void
  631. Return : bool
  632. This function returns *true* if the platform has any trusted devices capable of
  633. DMA, otherwise returns *false*.
  634. Function : plat_has_unmanaged_dma_peripherals()
  635. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  636. ::
  637. Argument : void
  638. Return : bool
  639. This function returns *true* if platform uses peripherals whose DMA is not
  640. managed by an SMMU, otherwise returns *false*.
  641. Note -
  642. If the platform has peripherals that are not managed by the SMMU, then the
  643. platform should investigate such peripherals to determine whether they can
  644. be trusted, and such peripherals should be moved under "Non-host platforms"
  645. if they can be trusted.
  646. Function : plat_get_total_num_smmus()
  647. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  648. ::
  649. Argument : void
  650. Return : unsigned int
  651. This function returns the total number of SMMUs in the platform.
  652. Function : plat_enumerate_smmus()
  653. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  654. ::
  655. Argument : void
  656. Return : const uintptr_t *, size_t
  657. This function returns an array of SMMU addresses and the actual number of SMMUs
  658. reported by the platform.
  659. Function : plat_drtm_get_dma_prot_features()
  660. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  661. ::
  662. Argument : void
  663. Return : const plat_drtm_dma_prot_features_t*
  664. This function returns the address of plat_drtm_dma_prot_features_t structure
  665. containing the maximum number of protected regions and bitmap with the types
  666. of DMA protection supported by the platform.
  667. For more details see section 3.3 Table 6 of `DRTM`_ specification.
  668. Function : plat_drtm_dma_prot_get_max_table_bytes()
  669. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  670. ::
  671. Argument : void
  672. Return : uint64_t
  673. This function returns the maximum size of DMA protected regions table in
  674. bytes.
  675. Function : plat_drtm_get_tpm_features()
  676. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  677. ::
  678. Argument : void
  679. Return : const plat_drtm_tpm_features_t*
  680. This function returns the address of *plat_drtm_tpm_features_t* structure
  681. containing PCR usage schema, TPM-based hash, and firmware hash algorithm
  682. supported by the platform.
  683. Function : plat_drtm_get_min_size_normal_world_dce()
  684. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  685. ::
  686. Argument : void
  687. Return : uint64_t
  688. This function returns the size normal-world DCE of the platform.
  689. Function : plat_drtm_get_imp_def_dlme_region_size()
  690. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  691. ::
  692. Argument : void
  693. Return : uint64_t
  694. This function returns the size of implementation defined DLME region
  695. of the platform.
  696. Function : plat_drtm_get_tcb_hash_table_size()
  697. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  698. ::
  699. Argument : void
  700. Return : uint64_t
  701. This function returns the size of TCB hash table of the platform.
  702. Function : plat_drtm_get_tcb_hash_features()
  703. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  704. ::
  705. Argument : void
  706. Return : uint64_t
  707. This function returns the Maximum number of TCB hashes recorded by the
  708. platform.
  709. For more details see section 3.3 Table 6 of `DRTM`_ specification.
  710. Function : plat_drtm_validate_ns_region()
  711. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  712. ::
  713. Argument : uintptr_t, uintptr_t
  714. Return : int
  715. This function validates that given region is within the Non-Secure region
  716. of DRAM. This function takes a region start address and size an input
  717. arguments, and returns 0 on success and -1 on failure.
  718. Function : plat_set_drtm_error()
  719. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  720. ::
  721. Argument : uint64_t
  722. Return : int
  723. This function writes a 64 bit error code received as input into
  724. non-volatile storage and returns 0 on success and -1 on failure.
  725. Function : plat_get_drtm_error()
  726. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  727. ::
  728. Argument : uint64_t*
  729. Return : int
  730. This function reads a 64 bit error code from the non-volatile storage
  731. into the received address, and returns 0 on success and -1 on failure.
  732. Common mandatory function modifications
  733. ---------------------------------------
  734. The following functions are mandatory functions which need to be implemented
  735. by the platform port.
  736. Function : plat_my_core_pos()
  737. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  738. ::
  739. Argument : void
  740. Return : unsigned int
  741. This function returns the index of the calling CPU which is used as a
  742. CPU-specific linear index into blocks of memory (for example while allocating
  743. per-CPU stacks). This function will be invoked very early in the
  744. initialization sequence which mandates that this function should be
  745. implemented in assembly and should not rely on the availability of a C
  746. runtime environment. This function can clobber x0 - x8 and must preserve
  747. x9 - x29.
  748. This function plays a crucial role in the power domain topology framework in
  749. PSCI and details of this can be found in
  750. :ref:`PSCI Power Domain Tree Structure`.
  751. Function : plat_core_pos_by_mpidr()
  752. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  753. ::
  754. Argument : u_register_t
  755. Return : int
  756. This function validates the ``MPIDR`` of a CPU and converts it to an index,
  757. which can be used as a CPU-specific linear index into blocks of memory. In
  758. case the ``MPIDR`` is invalid, this function returns -1. This function will only
  759. be invoked by BL31 after the power domain topology is initialized and can
  760. utilize the C runtime environment. For further details about how TF-A
  761. represents the power domain topology and how this relates to the linear CPU
  762. index, please refer :ref:`PSCI Power Domain Tree Structure`.
  763. Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
  764. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  765. ::
  766. Arguments : void **heap_addr, size_t *heap_size
  767. Return : int
  768. This function is invoked during Mbed TLS library initialisation to get a heap,
  769. by means of a starting address and a size. This heap will then be used
  770. internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
  771. must be able to provide a heap to it.
  772. A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
  773. which a heap is statically reserved during compile time inside every image
  774. (i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
  775. the function simply returns the address and size of this "pre-allocated" heap.
  776. For a platform to use this default implementation, only a call to the helper
  777. from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
  778. However, by writting their own implementation, platforms have the potential to
  779. optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
  780. shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
  781. twice.
  782. On success the function should return 0 and a negative error code otherwise.
  783. Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
  784. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  785. ::
  786. Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
  787. size_t *key_len, unsigned int *flags, const uint8_t *img_id,
  788. size_t img_id_len
  789. Return : int
  790. This function provides a symmetric key (either SSK or BSSK depending on
  791. fw_enc_status) which is invoked during runtime decryption of encrypted
  792. firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
  793. implementation for testing purposes which must be overridden by the platform
  794. trying to implement a real world firmware encryption use-case.
  795. It also allows the platform to pass symmetric key identifier rather than
  796. actual symmetric key which is useful in cases where the crypto backend provides
  797. secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
  798. flag must be set in ``flags``.
  799. In addition to above a platform may also choose to provide an image specific
  800. symmetric key/identifier using img_id.
  801. On success the function should return 0 and a negative error code otherwise.
  802. Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
  803. Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
  804. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  805. ::
  806. Argument : const struct fwu_metadata *metadata
  807. Return : void
  808. This function is mandatory when PSA_FWU_SUPPORT is enabled.
  809. It provides a means to retrieve image specification (offset in
  810. non-volatile storage and length) of active/updated images using the passed
  811. FWU metadata, and update I/O policies of active/updated images using retrieved
  812. image specification information.
  813. Further I/O layer operations such as I/O open, I/O read, etc. on these
  814. images rely on this function call.
  815. In Arm platforms, this function is used to set an I/O policy of the FIP image,
  816. container of all active/updated secure and non-secure images.
  817. Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
  818. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  819. ::
  820. Argument : unsigned int image_id, uintptr_t *dev_handle,
  821. uintptr_t *image_spec
  822. Return : int
  823. This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
  824. responsible for setting up the platform I/O policy of the requested metadata
  825. image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
  826. be used to load this image from the platform's non-volatile storage.
  827. FWU metadata can not be always stored as a raw image in non-volatile storage
  828. to define its image specification (offset in non-volatile storage and length)
  829. statically in I/O policy.
  830. For example, the FWU metadata image is stored as a partition inside the GUID
  831. partition table image. Its specification is defined in the partition table
  832. that needs to be parsed dynamically.
  833. This function provides a means to retrieve such dynamic information to set
  834. the I/O policy of the FWU metadata image.
  835. Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
  836. image relies on this function call.
  837. It returns '0' on success, otherwise a negative error value on error.
  838. Alongside, returns device handle and image specification from the I/O policy
  839. of the requested FWU metadata image.
  840. Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
  841. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  842. ::
  843. Argument : void
  844. Return : uint32_t
  845. This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
  846. means to retrieve the boot index value from the platform. The boot index is the
  847. bank from which the platform has booted the firmware images.
  848. By default, the platform will read the metadata structure and try to boot from
  849. the active bank. If the platform fails to boot from the active bank due to
  850. reasons like an Authentication failure, or on crossing a set number of watchdog
  851. resets while booting from the active bank, the platform can then switch to boot
  852. from a different bank. This function then returns the bank that the platform
  853. should boot its images from.
  854. Common optional modifications
  855. -----------------------------
  856. The following are helper functions implemented by the firmware that perform
  857. common platform-specific tasks. A platform may choose to override these
  858. definitions.
  859. Function : plat_set_my_stack()
  860. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  861. ::
  862. Argument : void
  863. Return : void
  864. This function sets the current stack pointer to the normal memory stack that
  865. has been allocated for the current CPU. For BL images that only require a
  866. stack for the primary CPU, the UP version of the function is used. The size
  867. of the stack allocated to each CPU is specified by the platform defined
  868. constant ``PLATFORM_STACK_SIZE``.
  869. Common implementations of this function for the UP and MP BL images are
  870. provided in ``plat/common/aarch64/platform_up_stack.S`` and
  871. ``plat/common/aarch64/platform_mp_stack.S``
  872. Function : plat_get_my_stack()
  873. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  874. ::
  875. Argument : void
  876. Return : uintptr_t
  877. This function returns the base address of the normal memory stack that
  878. has been allocated for the current CPU. For BL images that only require a
  879. stack for the primary CPU, the UP version of the function is used. The size
  880. of the stack allocated to each CPU is specified by the platform defined
  881. constant ``PLATFORM_STACK_SIZE``.
  882. Common implementations of this function for the UP and MP BL images are
  883. provided in ``plat/common/aarch64/platform_up_stack.S`` and
  884. ``plat/common/aarch64/platform_mp_stack.S``
  885. Function : plat_report_exception()
  886. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  887. ::
  888. Argument : unsigned int
  889. Return : void
  890. A platform may need to report various information about its status when an
  891. exception is taken, for example the current exception level, the CPU security
  892. state (secure/non-secure), the exception type, and so on. This function is
  893. called in the following circumstances:
  894. - In BL1, whenever an exception is taken.
  895. - In BL2, whenever an exception is taken.
  896. The default implementation doesn't do anything, to avoid making assumptions
  897. about the way the platform displays its status information.
  898. For AArch64, this function receives the exception type as its argument.
  899. Possible values for exceptions types are listed in the
  900. ``include/common/bl_common.h`` header file. Note that these constants are not
  901. related to any architectural exception code; they are just a TF-A convention.
  902. For AArch32, this function receives the exception mode as its argument.
  903. Possible values for exception modes are listed in the
  904. ``include/lib/aarch32/arch.h`` header file.
  905. Function : plat_reset_handler()
  906. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  907. ::
  908. Argument : void
  909. Return : void
  910. A platform may need to do additional initialization after reset. This function
  911. allows the platform to do the platform specific initializations. Platform
  912. specific errata workarounds could also be implemented here. The API should
  913. preserve the values of callee saved registers x19 to x29.
  914. The default implementation doesn't do anything. If a platform needs to override
  915. the default implementation, refer to the :ref:`Firmware Design` for general
  916. guidelines.
  917. Function : plat_disable_acp()
  918. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  919. ::
  920. Argument : void
  921. Return : void
  922. This API allows a platform to disable the Accelerator Coherency Port (if
  923. present) during a cluster power down sequence. The default weak implementation
  924. doesn't do anything. Since this API is called during the power down sequence,
  925. it has restrictions for stack usage and it can use the registers x0 - x17 as
  926. scratch registers. It should preserve the value in x18 register as it is used
  927. by the caller to store the return address.
  928. Function : plat_error_handler()
  929. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  930. ::
  931. Argument : int
  932. Return : void
  933. This API is called when the generic code encounters an error situation from
  934. which it cannot continue. It allows the platform to perform error reporting or
  935. recovery actions (for example, reset the system). This function must not return.
  936. The parameter indicates the type of error using standard codes from ``errno.h``.
  937. Possible errors reported by the generic code are:
  938. - ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
  939. Board Boot is enabled)
  940. - ``-ENOENT``: the requested image or certificate could not be found or an IO
  941. error was detected
  942. - ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
  943. error is usually an indication of an incorrect array size
  944. The default implementation simply spins.
  945. Function : plat_panic_handler()
  946. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  947. ::
  948. Argument : void
  949. Return : void
  950. This API is called when the generic code encounters an unexpected error
  951. situation from which it cannot recover. This function must not return,
  952. and must be implemented in assembly because it may be called before the C
  953. environment is initialized.
  954. .. note::
  955. The address from where it was called is stored in x30 (Link Register).
  956. The default implementation simply spins.
  957. Function : plat_system_reset()
  958. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  959. ::
  960. Argument : void
  961. Return : void
  962. This function is used by the platform to resets the system. It can be used
  963. in any specific use-case where system needs to be resetted. For example,
  964. in case of DRTM implementation this function reset the system after
  965. writing the DRTM error code in the non-volatile storage. This function
  966. never returns. Failure in reset results in panic.
  967. Function : plat_get_bl_image_load_info()
  968. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  969. ::
  970. Argument : void
  971. Return : bl_load_info_t *
  972. This function returns pointer to the list of images that the platform has
  973. populated to load. This function is invoked in BL2 to load the
  974. BL3xx images.
  975. Function : plat_get_next_bl_params()
  976. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  977. ::
  978. Argument : void
  979. Return : bl_params_t *
  980. This function returns a pointer to the shared memory that the platform has
  981. kept aside to pass TF-A related information that next BL image needs. This
  982. function is invoked in BL2 to pass this information to the next BL
  983. image.
  984. Function : plat_get_stack_protector_canary()
  985. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  986. ::
  987. Argument : void
  988. Return : u_register_t
  989. This function returns a random value that is used to initialize the canary used
  990. when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
  991. value will weaken the protection as the attacker could easily write the right
  992. value as part of the attack most of the time. Therefore, it should return a
  993. true random number.
  994. .. warning::
  995. For the protection to be effective, the global data need to be placed at
  996. a lower address than the stack bases. Failure to do so would allow an
  997. attacker to overwrite the canary as part of the stack buffer overflow attack.
  998. Function : plat_flush_next_bl_params()
  999. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1000. ::
  1001. Argument : void
  1002. Return : void
  1003. This function flushes to main memory all the image params that are passed to
  1004. next image. This function is invoked in BL2 to flush this information
  1005. to the next BL image.
  1006. Function : plat_log_get_prefix()
  1007. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1008. ::
  1009. Argument : unsigned int
  1010. Return : const char *
  1011. This function defines the prefix string corresponding to the `log_level` to be
  1012. prepended to all the log output from TF-A. The `log_level` (argument) will
  1013. correspond to one of the standard log levels defined in debug.h. The platform
  1014. can override the common implementation to define a different prefix string for
  1015. the log output. The implementation should be robust to future changes that
  1016. increase the number of log levels.
  1017. Function : plat_get_soc_version()
  1018. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1019. ::
  1020. Argument : void
  1021. Return : int32_t
  1022. This function returns soc version which mainly consist of below fields
  1023. ::
  1024. soc_version[30:24] = JEP-106 continuation code for the SiP
  1025. soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
  1026. soc_version[15:0] = Implementation defined SoC ID
  1027. Function : plat_get_soc_revision()
  1028. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1029. ::
  1030. Argument : void
  1031. Return : int32_t
  1032. This function returns soc revision in below format
  1033. ::
  1034. soc_revision[0:30] = SOC revision of specific SOC
  1035. Function : plat_is_smccc_feature_available()
  1036. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1037. ::
  1038. Argument : u_register_t
  1039. Return : int32_t
  1040. This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
  1041. the SMCCC function specified in the argument; otherwise returns
  1042. SMC_ARCH_CALL_NOT_SUPPORTED.
  1043. Function : plat_can_cmo()
  1044. ~~~~~~~~~~~~~~~~~~~~~~~~~
  1045. ::
  1046. Argument : void
  1047. Return : uint64_t
  1048. When CONDITIONAL_CMO flag is enabled:
  1049. - This function indicates whether cache management operations should be
  1050. performed. It returns 0 if CMOs should be skipped and non-zero
  1051. otherwise.
  1052. - The function must not clobber x1, x2 and x3. It's also not safe to rely on
  1053. stack. Otherwise obey AAPCS.
  1054. Modifications specific to a Boot Loader stage
  1055. ---------------------------------------------
  1056. Boot Loader Stage 1 (BL1)
  1057. -------------------------
  1058. BL1 implements the reset vector where execution starts from after a cold or
  1059. warm boot. For each CPU, BL1 is responsible for the following tasks:
  1060. #. Handling the reset as described in section 2.2
  1061. #. In the case of a cold boot and the CPU being the primary CPU, ensuring that
  1062. only this CPU executes the remaining BL1 code, including loading and passing
  1063. control to the BL2 stage.
  1064. #. Identifying and starting the Firmware Update process (if required).
  1065. #. Loading the BL2 image from non-volatile storage into secure memory at the
  1066. address specified by the platform defined constant ``BL2_BASE``.
  1067. #. Populating a ``meminfo`` structure with the following information in memory,
  1068. accessible by BL2 immediately upon entry.
  1069. ::
  1070. meminfo.total_base = Base address of secure RAM visible to BL2
  1071. meminfo.total_size = Size of secure RAM visible to BL2
  1072. By default, BL1 places this ``meminfo`` structure at the end of secure
  1073. memory visible to BL2.
  1074. It is possible for the platform to decide where it wants to place the
  1075. ``meminfo`` structure for BL2 or restrict the amount of memory visible to
  1076. BL2 by overriding the weak default implementation of
  1077. ``bl1_plat_handle_post_image_load`` API.
  1078. The following functions need to be implemented by the platform port to enable
  1079. BL1 to perform the above tasks.
  1080. Function : bl1_early_platform_setup() [mandatory]
  1081. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1082. ::
  1083. Argument : void
  1084. Return : void
  1085. This function executes with the MMU and data caches disabled. It is only called
  1086. by the primary CPU.
  1087. On Arm standard platforms, this function:
  1088. - Enables a secure instance of SP805 to act as the Trusted Watchdog.
  1089. - Initializes a UART (PL011 console), which enables access to the ``printf``
  1090. family of functions in BL1.
  1091. - Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
  1092. the CCI slave interface corresponding to the cluster that includes the
  1093. primary CPU.
  1094. Function : bl1_plat_arch_setup() [mandatory]
  1095. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1096. ::
  1097. Argument : void
  1098. Return : void
  1099. This function performs any platform-specific and architectural setup that the
  1100. platform requires. Platform-specific setup might include configuration of
  1101. memory controllers and the interconnect.
  1102. In Arm standard platforms, this function enables the MMU.
  1103. This function helps fulfill requirement 2 above.
  1104. Function : bl1_platform_setup() [mandatory]
  1105. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1106. ::
  1107. Argument : void
  1108. Return : void
  1109. This function executes with the MMU and data caches enabled. It is responsible
  1110. for performing any remaining platform-specific setup that can occur after the
  1111. MMU and data cache have been enabled.
  1112. if support for multiple boot sources is required, it initializes the boot
  1113. sequence used by plat_try_next_boot_source().
  1114. In Arm standard platforms, this function initializes the storage abstraction
  1115. layer used to load the next bootloader image.
  1116. This function helps fulfill requirement 4 above.
  1117. Function : bl1_plat_sec_mem_layout() [mandatory]
  1118. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1119. ::
  1120. Argument : void
  1121. Return : meminfo *
  1122. This function should only be called on the cold boot path. It executes with the
  1123. MMU and data caches enabled. The pointer returned by this function must point to
  1124. a ``meminfo`` structure containing the extents and availability of secure RAM for
  1125. the BL1 stage.
  1126. ::
  1127. meminfo.total_base = Base address of secure RAM visible to BL1
  1128. meminfo.total_size = Size of secure RAM visible to BL1
  1129. This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
  1130. populates a similar structure to tell BL2 the extents of memory available for
  1131. its own use.
  1132. This function helps fulfill requirements 4 and 5 above.
  1133. Function : bl1_plat_prepare_exit() [optional]
  1134. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1135. ::
  1136. Argument : entry_point_info_t *
  1137. Return : void
  1138. This function is called prior to exiting BL1 in response to the
  1139. ``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
  1140. platform specific clean up or bookkeeping operations before transferring
  1141. control to the next image. It receives the address of the ``entry_point_info_t``
  1142. structure passed from BL2. This function runs with MMU disabled.
  1143. Function : bl1_plat_set_ep_info() [optional]
  1144. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1145. ::
  1146. Argument : unsigned int image_id, entry_point_info_t *ep_info
  1147. Return : void
  1148. This function allows platforms to override ``ep_info`` for the given ``image_id``.
  1149. The default implementation just returns.
  1150. Function : bl1_plat_get_next_image_id() [optional]
  1151. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1152. ::
  1153. Argument : void
  1154. Return : unsigned int
  1155. This and the following function must be overridden to enable the FWU feature.
  1156. BL1 calls this function after platform setup to identify the next image to be
  1157. loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
  1158. with the normal boot sequence, which loads and executes BL2. If the platform
  1159. returns a different image id, BL1 assumes that Firmware Update is required.
  1160. The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
  1161. platforms override this function to detect if firmware update is required, and
  1162. if so, return the first image in the firmware update process.
  1163. Function : bl1_plat_get_image_desc() [optional]
  1164. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1165. ::
  1166. Argument : unsigned int image_id
  1167. Return : image_desc_t *
  1168. BL1 calls this function to get the image descriptor information ``image_desc_t``
  1169. for the provided ``image_id`` from the platform.
  1170. The default implementation always returns a common BL2 image descriptor. Arm
  1171. standard platforms return an image descriptor corresponding to BL2 or one of
  1172. the firmware update images defined in the Trusted Board Boot Requirements
  1173. specification.
  1174. Function : bl1_plat_handle_pre_image_load() [optional]
  1175. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1176. ::
  1177. Argument : unsigned int image_id
  1178. Return : int
  1179. This function can be used by the platforms to update/use image information
  1180. corresponding to ``image_id``. This function is invoked in BL1, both in cold
  1181. boot and FWU code path, before loading the image.
  1182. Function : bl1_plat_handle_post_image_load() [optional]
  1183. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1184. ::
  1185. Argument : unsigned int image_id
  1186. Return : int
  1187. This function can be used by the platforms to update/use image information
  1188. corresponding to ``image_id``. This function is invoked in BL1, both in cold
  1189. boot and FWU code path, after loading and authenticating the image.
  1190. The default weak implementation of this function calculates the amount of
  1191. Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
  1192. structure at the beginning of this free memory and populates it. The address
  1193. of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
  1194. information to BL2.
  1195. Function : bl1_plat_fwu_done() [optional]
  1196. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1197. ::
  1198. Argument : unsigned int image_id, uintptr_t image_src,
  1199. unsigned int image_size
  1200. Return : void
  1201. BL1 calls this function when the FWU process is complete. It must not return.
  1202. The platform may override this function to take platform specific action, for
  1203. example to initiate the normal boot flow.
  1204. The default implementation spins forever.
  1205. Function : bl1_plat_mem_check() [mandatory]
  1206. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1207. ::
  1208. Argument : uintptr_t mem_base, unsigned int mem_size,
  1209. unsigned int flags
  1210. Return : int
  1211. BL1 calls this function while handling FWU related SMCs, more specifically when
  1212. copying or authenticating an image. Its responsibility is to ensure that the
  1213. region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
  1214. that this memory corresponds to either a secure or non-secure memory region as
  1215. indicated by the security state of the ``flags`` argument.
  1216. This function can safely assume that the value resulting from the addition of
  1217. ``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
  1218. overflow.
  1219. This function must return 0 on success, a non-null error code otherwise.
  1220. The default implementation of this function asserts therefore platforms must
  1221. override it when using the FWU feature.
  1222. Boot Loader Stage 2 (BL2)
  1223. -------------------------
  1224. The BL2 stage is executed only by the primary CPU, which is determined in BL1
  1225. using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
  1226. ``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
  1227. ``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
  1228. non-volatile storage to secure/non-secure RAM. After all the images are loaded
  1229. then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
  1230. images to be passed to the next BL image.
  1231. The following functions must be implemented by the platform port to enable BL2
  1232. to perform the above tasks.
  1233. Function : bl2_early_platform_setup2() [mandatory]
  1234. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1235. ::
  1236. Argument : u_register_t, u_register_t, u_register_t, u_register_t
  1237. Return : void
  1238. This function executes with the MMU and data caches disabled. It is only called
  1239. by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
  1240. are platform specific.
  1241. On Arm standard platforms, the arguments received are :
  1242. arg0 - Points to load address of FW_CONFIG
  1243. arg1 - ``meminfo`` structure populated by BL1. The platform copies
  1244. the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
  1245. On Arm standard platforms, this function also:
  1246. - Initializes a UART (PL011 console), which enables access to the ``printf``
  1247. family of functions in BL2.
  1248. - Initializes the storage abstraction layer used to load further bootloader
  1249. images. It is necessary to do this early on platforms with a SCP_BL2 image,
  1250. since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
  1251. Function : bl2_plat_arch_setup() [mandatory]
  1252. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1253. ::
  1254. Argument : void
  1255. Return : void
  1256. This function executes with the MMU and data caches disabled. It is only called
  1257. by the primary CPU.
  1258. The purpose of this function is to perform any architectural initialization
  1259. that varies across platforms.
  1260. On Arm standard platforms, this function enables the MMU.
  1261. Function : bl2_platform_setup() [mandatory]
  1262. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1263. ::
  1264. Argument : void
  1265. Return : void
  1266. This function may execute with the MMU and data caches enabled if the platform
  1267. port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
  1268. called by the primary CPU.
  1269. The purpose of this function is to perform any platform initialization
  1270. specific to BL2.
  1271. In Arm standard platforms, this function performs security setup, including
  1272. configuration of the TrustZone controller to allow non-secure masters access
  1273. to most of DRAM. Part of DRAM is reserved for secure world use.
  1274. Function : bl2_plat_handle_pre_image_load() [optional]
  1275. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1276. ::
  1277. Argument : unsigned int
  1278. Return : int
  1279. This function can be used by the platforms to update/use image information
  1280. for given ``image_id``. This function is currently invoked in BL2 before
  1281. loading each image.
  1282. Function : bl2_plat_handle_post_image_load() [optional]
  1283. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1284. ::
  1285. Argument : unsigned int
  1286. Return : int
  1287. This function can be used by the platforms to update/use image information
  1288. for given ``image_id``. This function is currently invoked in BL2 after
  1289. loading each image.
  1290. Function : bl2_plat_preload_setup [optional]
  1291. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1292. ::
  1293. Argument : void
  1294. Return : void
  1295. This optional function performs any BL2 platform initialization
  1296. required before image loading, that is not done later in
  1297. bl2_platform_setup(). Specifically, if support for multiple
  1298. boot sources is required, it initializes the boot sequence used by
  1299. plat_try_next_boot_source().
  1300. Function : plat_try_next_boot_source() [optional]
  1301. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1302. ::
  1303. Argument : void
  1304. Return : int
  1305. This optional function passes to the next boot source in the redundancy
  1306. sequence.
  1307. This function moves the current boot redundancy source to the next
  1308. element in the boot sequence. If there are no more boot sources then it
  1309. must return 0, otherwise it must return 1. The default implementation
  1310. of this always returns 0.
  1311. Boot Loader Stage 2 (BL2) at EL3
  1312. --------------------------------
  1313. When the platform has a non-TF-A Boot ROM it is desirable to jump
  1314. directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
  1315. execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
  1316. document for more information.
  1317. All mandatory functions of BL2 must be implemented, except the functions
  1318. bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
  1319. their work is done now by bl2_el3_early_platform_setup and
  1320. bl2_el3_plat_arch_setup. These functions should generally implement
  1321. the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
  1322. Function : bl2_el3_early_platform_setup() [mandatory]
  1323. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1324. ::
  1325. Argument : u_register_t, u_register_t, u_register_t, u_register_t
  1326. Return : void
  1327. This function executes with the MMU and data caches disabled. It is only called
  1328. by the primary CPU. This function receives four parameters which can be used
  1329. by the platform to pass any needed information from the Boot ROM to BL2.
  1330. On Arm standard platforms, this function does the following:
  1331. - Initializes a UART (PL011 console), which enables access to the ``printf``
  1332. family of functions in BL2.
  1333. - Initializes the storage abstraction layer used to load further bootloader
  1334. images. It is necessary to do this early on platforms with a SCP_BL2 image,
  1335. since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
  1336. - Initializes the private variables that define the memory layout used.
  1337. Function : bl2_el3_plat_arch_setup() [mandatory]
  1338. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1339. ::
  1340. Argument : void
  1341. Return : void
  1342. This function executes with the MMU and data caches disabled. It is only called
  1343. by the primary CPU.
  1344. The purpose of this function is to perform any architectural initialization
  1345. that varies across platforms.
  1346. On Arm standard platforms, this function enables the MMU.
  1347. Function : bl2_el3_plat_prepare_exit() [optional]
  1348. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1349. ::
  1350. Argument : void
  1351. Return : void
  1352. This function is called prior to exiting BL2 and run the next image.
  1353. It should be used to perform platform specific clean up or bookkeeping
  1354. operations before transferring control to the next image. This function
  1355. runs with MMU disabled.
  1356. FWU Boot Loader Stage 2 (BL2U)
  1357. ------------------------------
  1358. The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
  1359. process and is executed only by the primary CPU. BL1 passes control to BL2U at
  1360. ``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
  1361. #. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
  1362. memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
  1363. ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
  1364. should be copied from. Subsequent handling of the SCP_BL2U image is
  1365. implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
  1366. If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
  1367. #. Any platform specific setup required to perform the FWU process. For
  1368. example, Arm standard platforms initialize the TZC controller so that the
  1369. normal world can access DDR memory.
  1370. The following functions must be implemented by the platform port to enable
  1371. BL2U to perform the tasks mentioned above.
  1372. Function : bl2u_early_platform_setup() [mandatory]
  1373. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1374. ::
  1375. Argument : meminfo *mem_info, void *plat_info
  1376. Return : void
  1377. This function executes with the MMU and data caches disabled. It is only
  1378. called by the primary CPU. The arguments to this function is the address
  1379. of the ``meminfo`` structure and platform specific info provided by BL1.
  1380. The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
  1381. private storage as the original memory may be subsequently overwritten by BL2U.
  1382. On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
  1383. to extract SCP_BL2U image information, which is then copied into a private
  1384. variable.
  1385. Function : bl2u_plat_arch_setup() [mandatory]
  1386. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1387. ::
  1388. Argument : void
  1389. Return : void
  1390. This function executes with the MMU and data caches disabled. It is only
  1391. called by the primary CPU.
  1392. The purpose of this function is to perform any architectural initialization
  1393. that varies across platforms, for example enabling the MMU (since the memory
  1394. map differs across platforms).
  1395. Function : bl2u_platform_setup() [mandatory]
  1396. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1397. ::
  1398. Argument : void
  1399. Return : void
  1400. This function may execute with the MMU and data caches enabled if the platform
  1401. port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
  1402. called by the primary CPU.
  1403. The purpose of this function is to perform any platform initialization
  1404. specific to BL2U.
  1405. In Arm standard platforms, this function performs security setup, including
  1406. configuration of the TrustZone controller to allow non-secure masters access
  1407. to most of DRAM. Part of DRAM is reserved for secure world use.
  1408. Function : bl2u_plat_handle_scp_bl2u() [optional]
  1409. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1410. ::
  1411. Argument : void
  1412. Return : int
  1413. This function is used to perform any platform-specific actions required to
  1414. handle the SCP firmware. Typically it transfers the image into SCP memory using
  1415. a platform-specific protocol and waits until SCP executes it and signals to the
  1416. Application Processor (AP) for BL2U execution to continue.
  1417. This function returns 0 on success, a negative error code otherwise.
  1418. This function is included if SCP_BL2U_BASE is defined.
  1419. Boot Loader Stage 3-1 (BL31)
  1420. ----------------------------
  1421. During cold boot, the BL31 stage is executed only by the primary CPU. This is
  1422. determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
  1423. control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
  1424. CPUs. BL31 executes at EL3 and is responsible for:
  1425. #. Re-initializing all architectural and platform state. Although BL1 performs
  1426. some of this initialization, BL31 remains resident in EL3 and must ensure
  1427. that EL3 architectural and platform state is completely initialized. It
  1428. should make no assumptions about the system state when it receives control.
  1429. #. Passing control to a normal world BL image, pre-loaded at a platform-
  1430. specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
  1431. populated by BL2 in memory to do this.
  1432. #. Providing runtime firmware services. Currently, BL31 only implements a
  1433. subset of the Power State Coordination Interface (PSCI) API as a runtime
  1434. service. See :ref:`psci_in_bl31` below for details of porting the PSCI
  1435. implementation.
  1436. #. Optionally passing control to the BL32 image, pre-loaded at a platform-
  1437. specific address by BL2. BL31 exports a set of APIs that allow runtime
  1438. services to specify the security state in which the next image should be
  1439. executed and run the corresponding image. On ARM platforms, BL31 uses the
  1440. ``bl_params`` list populated by BL2 in memory to do this.
  1441. If BL31 is a reset vector, It also needs to handle the reset as specified in
  1442. section 2.2 before the tasks described above.
  1443. The following functions must be implemented by the platform port to enable BL31
  1444. to perform the above tasks.
  1445. Function : bl31_early_platform_setup2() [mandatory]
  1446. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1447. ::
  1448. Argument : u_register_t, u_register_t, u_register_t, u_register_t
  1449. Return : void
  1450. This function executes with the MMU and data caches disabled. It is only called
  1451. by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
  1452. platform specific.
  1453. In Arm standard platforms, the arguments received are :
  1454. arg0 - The pointer to the head of `bl_params_t` list
  1455. which is list of executable images following BL31,
  1456. arg1 - Points to load address of SOC_FW_CONFIG if present
  1457. except in case of Arm FVP and Juno platform.
  1458. In case of Arm FVP and Juno platform, points to load address
  1459. of FW_CONFIG.
  1460. arg2 - Points to load address of HW_CONFIG if present
  1461. arg3 - A special value to verify platform parameters from BL2 to BL31. Not
  1462. used in release builds.
  1463. The function runs through the `bl_param_t` list and extracts the entry point
  1464. information for BL32 and BL33. It also performs the following:
  1465. - Initialize a UART (PL011 console), which enables access to the ``printf``
  1466. family of functions in BL31.
  1467. - Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
  1468. CCI slave interface corresponding to the cluster that includes the primary
  1469. CPU.
  1470. Function : bl31_plat_arch_setup() [mandatory]
  1471. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1472. ::
  1473. Argument : void
  1474. Return : void
  1475. This function executes with the MMU and data caches disabled. It is only called
  1476. by the primary CPU.
  1477. The purpose of this function is to perform any architectural initialization
  1478. that varies across platforms.
  1479. On Arm standard platforms, this function enables the MMU.
  1480. Function : bl31_platform_setup() [mandatory]
  1481. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1482. ::
  1483. Argument : void
  1484. Return : void
  1485. This function may execute with the MMU and data caches enabled if the platform
  1486. port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
  1487. called by the primary CPU.
  1488. The purpose of this function is to complete platform initialization so that both
  1489. BL31 runtime services and normal world software can function correctly.
  1490. On Arm standard platforms, this function does the following:
  1491. - Initialize the generic interrupt controller.
  1492. Depending on the GIC driver selected by the platform, the appropriate GICv2
  1493. or GICv3 initialization will be done, which mainly consists of:
  1494. - Enable secure interrupts in the GIC CPU interface.
  1495. - Disable the legacy interrupt bypass mechanism.
  1496. - Configure the priority mask register to allow interrupts of all priorities
  1497. to be signaled to the CPU interface.
  1498. - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
  1499. - Target all secure SPIs to CPU0.
  1500. - Enable these secure interrupts in the GIC distributor.
  1501. - Configure all other interrupts as non-secure.
  1502. - Enable signaling of secure interrupts in the GIC distributor.
  1503. - Enable system-level implementation of the generic timer counter through the
  1504. memory mapped interface.
  1505. - Grant access to the system counter timer module
  1506. - Initialize the power controller device.
  1507. In particular, initialise the locks that prevent concurrent accesses to the
  1508. power controller device.
  1509. Function : bl31_plat_runtime_setup() [optional]
  1510. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1511. ::
  1512. Argument : void
  1513. Return : void
  1514. The purpose of this function is allow the platform to perform any BL31 runtime
  1515. setup just prior to BL31 exit during cold boot. The default weak
  1516. implementation of this function will invoke ``console_switch_state()`` to switch
  1517. console output to consoles marked for use in the ``runtime`` state.
  1518. Function : bl31_plat_get_next_image_ep_info() [mandatory]
  1519. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1520. ::
  1521. Argument : uint32_t
  1522. Return : entry_point_info *
  1523. This function may execute with the MMU and data caches enabled if the platform
  1524. port does the necessary initializations in ``bl31_plat_arch_setup()``.
  1525. This function is called by ``bl31_main()`` to retrieve information provided by
  1526. BL2 for the next image in the security state specified by the argument. BL31
  1527. uses this information to pass control to that image in the specified security
  1528. state. This function must return a pointer to the ``entry_point_info`` structure
  1529. (that was copied during ``bl31_early_platform_setup()``) if the image exists. It
  1530. should return NULL otherwise.
  1531. Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
  1532. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1533. ::
  1534. Argument : uintptr_t, size_t *, uintptr_t, size_t
  1535. Return : int
  1536. This function returns the Platform attestation token.
  1537. The parameters of the function are:
  1538. arg0 - A pointer to the buffer where the Platform token should be copied by
  1539. this function. The buffer must be big enough to hold the Platform
  1540. token.
  1541. arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
  1542. function returns the platform token length in this parameter.
  1543. arg2 - A pointer to the buffer where the challenge object is stored.
  1544. arg3 - The length of the challenge object in bytes. Possible values are 32,
  1545. 48 and 64.
  1546. The function returns 0 on success, -EINVAL on failure.
  1547. Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
  1548. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1549. ::
  1550. Argument : uintptr_t, size_t *, unsigned int
  1551. Return : int
  1552. This function returns the delegated realm attestation key which will be used to
  1553. sign Realm attestation token. The API currently only supports P-384 ECC curve
  1554. key.
  1555. The parameters of the function are:
  1556. arg0 - A pointer to the buffer where the attestation key should be copied
  1557. by this function. The buffer must be big enough to hold the
  1558. attestation key.
  1559. arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
  1560. function returns the attestation key length in this parameter.
  1561. arg2 - The type of the elliptic curve to which the requested attestation key
  1562. belongs.
  1563. The function returns 0 on success, -EINVAL on failure.
  1564. Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
  1565. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1566. ::
  1567. Argument : uintptr_t *
  1568. Return : size_t
  1569. This function returns the size of the shared area between EL3 and RMM (or 0 on
  1570. failure). A pointer to the shared area (or a NULL pointer on failure) is stored
  1571. in the pointer passed as argument.
  1572. Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
  1573. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1574. ::
  1575. Arguments : rmm_manifest_t *manifest
  1576. Return : int
  1577. When ENABLE_RME is enabled, this function populates a boot manifest for the
  1578. RMM image and stores it in the area specified by manifest.
  1579. When ENABLE_RME is disabled, this function is not used.
  1580. Function : bl31_plat_enable_mmu [optional]
  1581. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1582. ::
  1583. Argument : uint32_t
  1584. Return : void
  1585. This function enables the MMU. The boot code calls this function with MMU and
  1586. caches disabled. This function should program necessary registers to enable
  1587. translation, and upon return, the MMU on the calling PE must be enabled.
  1588. The function must honor flags passed in the first argument. These flags are
  1589. defined by the translation library, and can be found in the file
  1590. ``include/lib/xlat_tables/xlat_mmu_helpers.h``.
  1591. On DynamIQ systems, this function must not use stack while enabling MMU, which
  1592. is how the function in xlat table library version 2 is implemented.
  1593. Function : plat_init_apkey [optional]
  1594. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1595. ::
  1596. Argument : void
  1597. Return : uint128_t
  1598. This function returns the 128-bit value which can be used to program ARMv8.3
  1599. pointer authentication keys.
  1600. The value should be obtained from a reliable source of randomness.
  1601. This function is only needed if ARMv8.3 pointer authentication is used in the
  1602. Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
  1603. Function : plat_get_syscnt_freq2() [mandatory]
  1604. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1605. ::
  1606. Argument : void
  1607. Return : unsigned int
  1608. This function is used by the architecture setup code to retrieve the counter
  1609. frequency for the CPU's generic timer. This value will be programmed into the
  1610. ``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
  1611. of the system counter, which is retrieved from the first entry in the frequency
  1612. modes table.
  1613. #define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
  1614. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1615. When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
  1616. bytes) aligned to the cache line boundary that should be allocated per-cpu to
  1617. accommodate all the bakery locks.
  1618. If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
  1619. calculates the size of the ``.bakery_lock`` input section, aligns it to the
  1620. nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
  1621. and stores the result in a linker symbol. This constant prevents a platform
  1622. from relying on the linker and provide a more efficient mechanism for
  1623. accessing per-cpu bakery lock information.
  1624. If this constant is defined and its value is not equal to the value
  1625. calculated by the linker then a link time assertion is raised. A compile time
  1626. assertion is raised if the value of the constant is not aligned to the cache
  1627. line boundary.
  1628. .. _porting_guide_sdei_requirements:
  1629. SDEI porting requirements
  1630. ~~~~~~~~~~~~~~~~~~~~~~~~~
  1631. The |SDEI| dispatcher requires the platform to provide the following macros
  1632. and functions, of which some are optional, and some others mandatory.
  1633. Macros
  1634. ......
  1635. Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
  1636. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1637. This macro must be defined to the EL3 exception priority level associated with
  1638. Normal |SDEI| events on the platform. This must have a higher value
  1639. (therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
  1640. Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
  1641. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1642. This macro must be defined to the EL3 exception priority level associated with
  1643. Critical |SDEI| events on the platform. This must have a lower value
  1644. (therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
  1645. **Note**: |SDEI| exception priorities must be the lowest among Secure
  1646. priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
  1647. be higher than Normal |SDEI| priority.
  1648. Functions
  1649. .........
  1650. Function: int plat_sdei_validate_entry_point() [optional]
  1651. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1652. ::
  1653. Argument: uintptr_t ep, unsigned int client_mode
  1654. Return: int
  1655. This function validates the entry point address of the event handler provided by
  1656. the client for both event registration and *Complete and Resume* |SDEI| calls.
  1657. The function ensures that the address is valid in the client translation regime.
  1658. The second argument is the exception level that the client is executing in. It
  1659. can be Non-Secure EL1 or Non-Secure EL2.
  1660. The function must return ``0`` for successful validation, or ``-1`` upon failure.
  1661. The default implementation always returns ``0``. On Arm platforms, this function
  1662. translates the entry point address within the client translation regime and
  1663. further ensures that the resulting physical address is located in Non-secure
  1664. DRAM.
  1665. Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
  1666. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1667. ::
  1668. Argument: uint64_t
  1669. Argument: unsigned int
  1670. Return: void
  1671. |SDEI| specification requires that a PE comes out of reset with the events
  1672. masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
  1673. |SDEI| events on the PE. No |SDEI| events can be dispatched until such
  1674. time.
  1675. Should a PE receive an interrupt that was bound to an |SDEI| event while the
  1676. events are masked on the PE, the dispatcher implementation invokes the function
  1677. ``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
  1678. interrupt and the interrupt ID are passed as parameters.
  1679. The default implementation only prints out a warning message.
  1680. .. _porting_guide_trng_requirements:
  1681. TRNG porting requirements
  1682. ~~~~~~~~~~~~~~~~~~~~~~~~~
  1683. The |TRNG| backend requires the platform to provide the following values
  1684. and mandatory functions.
  1685. Values
  1686. ......
  1687. value: uuid_t plat_trng_uuid [mandatory]
  1688. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1689. This value must be defined to the UUID of the TRNG backend that is specific to
  1690. the hardware after ``plat_entropy_setup`` function is called. This value must
  1691. conform to the SMCCC calling convention; The most significant 32 bits of the
  1692. UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
  1693. w0 indicates failure to get a TRNG source.
  1694. Functions
  1695. .........
  1696. Function: void plat_entropy_setup(void) [mandatory]
  1697. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1698. ::
  1699. Argument: none
  1700. Return: none
  1701. This function is expected to do platform-specific initialization of any TRNG
  1702. hardware. This may include generating a UUID from a hardware-specific seed.
  1703. Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
  1704. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1705. ::
  1706. Argument: uint64_t *
  1707. Return: bool
  1708. Out : when the return value is true, the entropy has been written into the
  1709. storage pointed to
  1710. This function writes entropy into storage provided by the caller. If no entropy
  1711. is available, it must return false and the storage must not be written.
  1712. .. _psci_in_bl31:
  1713. Power State Coordination Interface (in BL31)
  1714. --------------------------------------------
  1715. The TF-A implementation of the PSCI API is based around the concept of a
  1716. *power domain*. A *power domain* is a CPU or a logical group of CPUs which
  1717. share some state on which power management operations can be performed as
  1718. specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
  1719. a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
  1720. *power domains* are arranged in a hierarchical tree structure and each
  1721. *power domain* can be identified in a system by the cpu index of any CPU that
  1722. is part of that domain and a *power domain level*. A processing element (for
  1723. example, a CPU) is at level 0. If the *power domain* node above a CPU is a
  1724. logical grouping of CPUs that share some state, then level 1 is that group of
  1725. CPUs (for example, a cluster), and level 2 is a group of clusters (for
  1726. example, the system). More details on the power domain topology and its
  1727. organization can be found in :ref:`PSCI Power Domain Tree Structure`.
  1728. BL31's platform initialization code exports a pointer to the platform-specific
  1729. power management operations required for the PSCI implementation to function
  1730. correctly. This information is populated in the ``plat_psci_ops`` structure. The
  1731. PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
  1732. power management operations on the power domains. For example, the target
  1733. CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
  1734. handler (if present) is called for the CPU power domain.
  1735. The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
  1736. describe composite power states specific to a platform. The PSCI implementation
  1737. defines a generic representation of the power-state parameter, which is an
  1738. array of local power states where each index corresponds to a power domain
  1739. level. Each entry contains the local power state the power domain at that power
  1740. level could enter. It depends on the ``validate_power_state()`` handler to
  1741. convert the power-state parameter (possibly encoding a composite power state)
  1742. passed in a PSCI ``CPU_SUSPEND`` call to this representation.
  1743. The following functions form part of platform port of PSCI functionality.
  1744. Function : plat_psci_stat_accounting_start() [optional]
  1745. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1746. ::
  1747. Argument : const psci_power_state_t *
  1748. Return : void
  1749. This is an optional hook that platforms can implement for residency statistics
  1750. accounting before entering a low power state. The ``pwr_domain_state`` field of
  1751. ``state_info`` (first argument) can be inspected if stat accounting is done
  1752. differently at CPU level versus higher levels. As an example, if the element at
  1753. index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
  1754. state, special hardware logic may be programmed in order to keep track of the
  1755. residency statistics. For higher levels (array indices > 0), the residency
  1756. statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
  1757. default implementation will use PMF to capture timestamps.
  1758. Function : plat_psci_stat_accounting_stop() [optional]
  1759. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1760. ::
  1761. Argument : const psci_power_state_t *
  1762. Return : void
  1763. This is an optional hook that platforms can implement for residency statistics
  1764. accounting after exiting from a low power state. The ``pwr_domain_state`` field
  1765. of ``state_info`` (first argument) can be inspected if stat accounting is done
  1766. differently at CPU level versus higher levels. As an example, if the element at
  1767. index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
  1768. state, special hardware logic may be programmed in order to keep track of the
  1769. residency statistics. For higher levels (array indices > 0), the residency
  1770. statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
  1771. default implementation will use PMF to capture timestamps.
  1772. Function : plat_psci_stat_get_residency() [optional]
  1773. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1774. ::
  1775. Argument : unsigned int, const psci_power_state_t *, unsigned int
  1776. Return : u_register_t
  1777. This is an optional interface that is is invoked after resuming from a low power
  1778. state and provides the time spent resident in that low power state by the power
  1779. domain at a particular power domain level. When a CPU wakes up from suspend,
  1780. all its parent power domain levels are also woken up. The generic PSCI code
  1781. invokes this function for each parent power domain that is resumed and it
  1782. identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
  1783. argument) describes the low power state that the power domain has resumed from.
  1784. The current CPU is the first CPU in the power domain to resume from the low
  1785. power state and the ``last_cpu_idx`` (third parameter) is the index of the last
  1786. CPU in the power domain to suspend and may be needed to calculate the residency
  1787. for that power domain.
  1788. Function : plat_get_target_pwr_state() [optional]
  1789. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1790. ::
  1791. Argument : unsigned int, const plat_local_state_t *, unsigned int
  1792. Return : plat_local_state_t
  1793. The PSCI generic code uses this function to let the platform participate in
  1794. state coordination during a power management operation. The function is passed
  1795. a pointer to an array of platform specific local power state ``states`` (second
  1796. argument) which contains the requested power state for each CPU at a particular
  1797. power domain level ``lvl`` (first argument) within the power domain. The function
  1798. is expected to traverse this array of upto ``ncpus`` (third argument) and return
  1799. a coordinated target power state by the comparing all the requested power
  1800. states. The target power state should not be deeper than any of the requested
  1801. power states.
  1802. A weak definition of this API is provided by default wherein it assumes
  1803. that the platform assigns a local state value in order of increasing depth
  1804. of the power state i.e. for two power states X & Y, if X < Y
  1805. then X represents a shallower power state than Y. As a result, the
  1806. coordinated target local power state for a power domain will be the minimum
  1807. of the requested local power state values.
  1808. Function : plat_get_power_domain_tree_desc() [mandatory]
  1809. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1810. ::
  1811. Argument : void
  1812. Return : const unsigned char *
  1813. This function returns a pointer to the byte array containing the power domain
  1814. topology tree description. The format and method to construct this array are
  1815. described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
  1816. initialization code requires this array to be described by the platform, either
  1817. statically or dynamically, to initialize the power domain topology tree. In case
  1818. the array is populated dynamically, then plat_core_pos_by_mpidr() and
  1819. plat_my_core_pos() should also be implemented suitably so that the topology tree
  1820. description matches the CPU indices returned by these APIs. These APIs together
  1821. form the platform interface for the PSCI topology framework.
  1822. Function : plat_setup_psci_ops() [mandatory]
  1823. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1824. ::
  1825. Argument : uintptr_t, const plat_psci_ops **
  1826. Return : int
  1827. This function may execute with the MMU and data caches enabled if the platform
  1828. port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
  1829. called by the primary CPU.
  1830. This function is called by PSCI initialization code. Its purpose is to let
  1831. the platform layer know about the warm boot entrypoint through the
  1832. ``sec_entrypoint`` (first argument) and to export handler routines for
  1833. platform-specific psci power management actions by populating the passed
  1834. pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
  1835. A description of each member of this structure is given below. Please refer to
  1836. the Arm FVP specific implementation of these handlers in
  1837. ``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
  1838. platform wants to support, the associated operation or operations in this
  1839. structure must be provided and implemented (Refer section 4 of
  1840. :ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
  1841. function in a platform port, the operation should be removed from this
  1842. structure instead of providing an empty implementation.
  1843. plat_psci_ops.cpu_standby()
  1844. ...........................
  1845. Perform the platform-specific actions to enter the standby state for a cpu
  1846. indicated by the passed argument. This provides a fast path for CPU standby
  1847. wherein overheads of PSCI state management and lock acquisition is avoided.
  1848. For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
  1849. the suspend state type specified in the ``power-state`` parameter should be
  1850. STANDBY and the target power domain level specified should be the CPU. The
  1851. handler should put the CPU into a low power retention state (usually by
  1852. issuing a wfi instruction) and ensure that it can be woken up from that
  1853. state by a normal interrupt. The generic code expects the handler to succeed.
  1854. plat_psci_ops.pwr_domain_on()
  1855. .............................
  1856. Perform the platform specific actions to power on a CPU, specified
  1857. by the ``MPIDR`` (first argument). The generic code expects the platform to
  1858. return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
  1859. plat_psci_ops.pwr_domain_off_early() [optional]
  1860. ...............................................
  1861. This optional function performs the platform specific actions to check if
  1862. powering off the calling CPU and its higher parent power domain levels as
  1863. indicated by the ``target_state`` (first argument) is possible or allowed.
  1864. The ``target_state`` encodes the platform coordinated target local power states
  1865. for the CPU power domain and its parent power domain levels.
  1866. For this handler, the local power state for the CPU power domain will be a
  1867. power down state where as it could be either power down, retention or run state
  1868. for the higher power domain levels depending on the result of state
  1869. coordination. The generic code expects PSCI_E_DENIED return code if the
  1870. platform thinks that CPU_OFF should not proceed on the calling CPU.
  1871. plat_psci_ops.pwr_domain_off()
  1872. ..............................
  1873. Perform the platform specific actions to prepare to power off the calling CPU
  1874. and its higher parent power domain levels as indicated by the ``target_state``
  1875. (first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
  1876. The ``target_state`` encodes the platform coordinated target local power states
  1877. for the CPU power domain and its parent power domain levels. The handler
  1878. needs to perform power management operation corresponding to the local state
  1879. at each power level.
  1880. For this handler, the local power state for the CPU power domain will be a
  1881. power down state where as it could be either power down, retention or run state
  1882. for the higher power domain levels depending on the result of state
  1883. coordination. The generic code expects the handler to succeed.
  1884. plat_psci_ops.pwr_domain_validate_suspend() [optional]
  1885. ......................................................
  1886. This is an optional function that is only compiled into the build if the build
  1887. option ``PSCI_OS_INIT_MODE`` is enabled.
  1888. If implemented, this function allows the platform to perform platform specific
  1889. validations based on hardware states. The generic code expects this function to
  1890. return PSCI_E_SUCCESS on success, or either PSCI_E_DENIED or
  1891. PSCI_E_INVALID_PARAMS as appropriate for any invalid requests.
  1892. plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
  1893. ...........................................................
  1894. This optional function may be used as a performance optimization to replace
  1895. or complement pwr_domain_suspend() on some platforms. Its calling semantics
  1896. are identical to pwr_domain_suspend(), except the PSCI implementation only
  1897. calls this function when suspending to a power down state, and it guarantees
  1898. that data caches are enabled.
  1899. When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
  1900. before calling pwr_domain_suspend(). If the target_state corresponds to a
  1901. power down state and it is safe to perform some or all of the platform
  1902. specific actions in that function with data caches enabled, it may be more
  1903. efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
  1904. = 1, data caches remain enabled throughout, and so there is no advantage to
  1905. moving platform specific actions to this function.
  1906. plat_psci_ops.pwr_domain_suspend()
  1907. ..................................
  1908. Perform the platform specific actions to prepare to suspend the calling
  1909. CPU and its higher parent power domain levels as indicated by the
  1910. ``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
  1911. API implementation.
  1912. The ``target_state`` has a similar meaning as described in
  1913. the ``pwr_domain_off()`` operation. It encodes the platform coordinated
  1914. target local power states for the CPU power domain and its parent
  1915. power domain levels. The handler needs to perform power management operation
  1916. corresponding to the local state at each power level. The generic code
  1917. expects the handler to succeed.
  1918. The difference between turning a power domain off versus suspending it is that
  1919. in the former case, the power domain is expected to re-initialize its state
  1920. when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
  1921. case, the power domain is expected to save enough state so that it can resume
  1922. execution by restoring this state when its powered on (see
  1923. ``pwr_domain_suspend_finish()``).
  1924. When suspending a core, the platform can also choose to power off the GICv3
  1925. Redistributor and ITS through an implementation-defined sequence. To achieve
  1926. this safely, the ITS context must be saved first. The architectural part is
  1927. implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
  1928. sequence is implementation defined and it is therefore the responsibility of
  1929. the platform code to implement the necessary sequence. Then the GIC
  1930. Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
  1931. Powering off the Redistributor requires the implementation to support it and it
  1932. is the responsibility of the platform code to execute the right implementation
  1933. defined sequence.
  1934. When a system suspend is requested, the platform can also make use of the
  1935. ``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
  1936. it has saved the context of the Redistributors and ITS of all the cores in the
  1937. system. The context of the Distributor can be large and may require it to be
  1938. allocated in a special area if it cannot fit in the platform's global static
  1939. data, for example in DRAM. The Distributor can then be powered down using an
  1940. implementation-defined sequence.
  1941. plat_psci_ops.pwr_domain_pwr_down_wfi()
  1942. .......................................
  1943. This is an optional function and, if implemented, is expected to perform
  1944. platform specific actions including the ``wfi`` invocation which allows the
  1945. CPU to powerdown. Since this function is invoked outside the PSCI locks,
  1946. the actions performed in this hook must be local to the CPU or the platform
  1947. must ensure that races between multiple CPUs cannot occur.
  1948. The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
  1949. operation and it encodes the platform coordinated target local power states for
  1950. the CPU power domain and its parent power domain levels. This function must
  1951. not return back to the caller (by calling wfi in an infinite loop to ensure
  1952. some CPUs power down mitigations work properly).
  1953. If this function is not implemented by the platform, PSCI generic
  1954. implementation invokes ``psci_power_down_wfi()`` for power down.
  1955. plat_psci_ops.pwr_domain_on_finish()
  1956. ....................................
  1957. This function is called by the PSCI implementation after the calling CPU is
  1958. powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
  1959. It performs the platform-specific setup required to initialize enough state for
  1960. this CPU to enter the normal world and also provide secure runtime firmware
  1961. services.
  1962. The ``target_state`` (first argument) is the prior state of the power domains
  1963. immediately before the CPU was turned on. It indicates which power domains
  1964. above the CPU might require initialization due to having previously been in
  1965. low power states. The generic code expects the handler to succeed.
  1966. plat_psci_ops.pwr_domain_on_finish_late() [optional]
  1967. ...........................................................
  1968. This optional function is called by the PSCI implementation after the calling
  1969. CPU is fully powered on with respective data caches enabled. The calling CPU and
  1970. the associated cluster are guaranteed to be participating in coherency. This
  1971. function gives the flexibility to perform any platform-specific actions safely,
  1972. such as initialization or modification of shared data structures, without the
  1973. overhead of explicit cache maintainace operations.
  1974. The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
  1975. operation. The generic code expects the handler to succeed.
  1976. plat_psci_ops.pwr_domain_suspend_finish()
  1977. .........................................
  1978. This function is called by the PSCI implementation after the calling CPU is
  1979. powered on and released from reset in response to an asynchronous wakeup
  1980. event, for example a timer interrupt that was programmed by the CPU during the
  1981. ``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
  1982. setup required to restore the saved state for this CPU to resume execution
  1983. in the normal world and also provide secure runtime firmware services.
  1984. The ``target_state`` (first argument) has a similar meaning as described in
  1985. the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
  1986. to succeed.
  1987. If the Distributor, Redistributors or ITS have been powered off as part of a
  1988. suspend, their context must be restored in this function in the reverse order
  1989. to how they were saved during suspend sequence.
  1990. plat_psci_ops.system_off()
  1991. ..........................
  1992. This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
  1993. call. It performs the platform-specific system poweroff sequence after
  1994. notifying the Secure Payload Dispatcher.
  1995. plat_psci_ops.system_reset()
  1996. ............................
  1997. This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
  1998. call. It performs the platform-specific system reset sequence after
  1999. notifying the Secure Payload Dispatcher.
  2000. plat_psci_ops.validate_power_state()
  2001. ....................................
  2002. This function is called by the PSCI implementation during the ``CPU_SUSPEND``
  2003. call to validate the ``power_state`` parameter of the PSCI API and if valid,
  2004. populate it in ``req_state`` (second argument) array as power domain level
  2005. specific local states. If the ``power_state`` is invalid, the platform must
  2006. return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
  2007. normal world PSCI client.
  2008. plat_psci_ops.validate_ns_entrypoint()
  2009. ......................................
  2010. This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
  2011. ``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
  2012. parameter passed by the normal world. If the ``entry_point`` is invalid,
  2013. the platform must return PSCI_E_INVALID_ADDRESS as error, which is
  2014. propagated back to the normal world PSCI client.
  2015. plat_psci_ops.get_sys_suspend_power_state()
  2016. ...........................................
  2017. This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
  2018. call to get the ``req_state`` parameter from platform which encodes the power
  2019. domain level specific local states to suspend to system affinity level. The
  2020. ``req_state`` will be utilized to do the PSCI state coordination and
  2021. ``pwr_domain_suspend()`` will be invoked with the coordinated target state to
  2022. enter system suspend.
  2023. plat_psci_ops.get_pwr_lvl_state_idx()
  2024. .....................................
  2025. This is an optional function and, if implemented, is invoked by the PSCI
  2026. implementation to convert the ``local_state`` (first argument) at a specified
  2027. ``pwr_lvl`` (second argument) to an index between 0 and
  2028. ``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
  2029. supports more than two local power states at each power domain level, that is
  2030. ``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
  2031. local power states.
  2032. plat_psci_ops.translate_power_state_by_mpidr()
  2033. ..............................................
  2034. This is an optional function and, if implemented, verifies the ``power_state``
  2035. (second argument) parameter of the PSCI API corresponding to a target power
  2036. domain. The target power domain is identified by using both ``MPIDR`` (first
  2037. argument) and the power domain level encoded in ``power_state``. The power domain
  2038. level specific local states are to be extracted from ``power_state`` and be
  2039. populated in the ``output_state`` (third argument) array. The functionality
  2040. is similar to the ``validate_power_state`` function described above and is
  2041. envisaged to be used in case the validity of ``power_state`` depend on the
  2042. targeted power domain. If the ``power_state`` is invalid for the targeted power
  2043. domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
  2044. function is not implemented, then the generic implementation relies on
  2045. ``validate_power_state`` function to translate the ``power_state``.
  2046. This function can also be used in case the platform wants to support local
  2047. power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
  2048. APIs as described in Section 5.18 of `PSCI`_.
  2049. plat_psci_ops.get_node_hw_state()
  2050. .................................
  2051. This is an optional function. If implemented this function is intended to return
  2052. the power state of a node (identified by the first parameter, the ``MPIDR``) in
  2053. the power domain topology (identified by the second parameter, ``power_level``),
  2054. as retrieved from a power controller or equivalent component on the platform.
  2055. Upon successful completion, the implementation must map and return the final
  2056. status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
  2057. must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
  2058. appropriate.
  2059. Implementations are not expected to handle ``power_levels`` greater than
  2060. ``PLAT_MAX_PWR_LVL``.
  2061. plat_psci_ops.system_reset2()
  2062. .............................
  2063. This is an optional function. If implemented this function is
  2064. called during the ``SYSTEM_RESET2`` call to perform a reset
  2065. based on the first parameter ``reset_type`` as specified in
  2066. `PSCI`_. The parameter ``cookie`` can be used to pass additional
  2067. reset information. If the ``reset_type`` is not supported, the
  2068. function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
  2069. resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
  2070. and vendor reset can return other PSCI error codes as defined
  2071. in `PSCI`_. On success this function will not return.
  2072. plat_psci_ops.write_mem_protect()
  2073. .................................
  2074. This is an optional function. If implemented it enables or disables the
  2075. ``MEM_PROTECT`` functionality based on the value of ``val``.
  2076. A non-zero value enables ``MEM_PROTECT`` and a value of zero
  2077. disables it. Upon encountering failures it must return a negative value
  2078. and on success it must return 0.
  2079. plat_psci_ops.read_mem_protect()
  2080. ................................
  2081. This is an optional function. If implemented it returns the current
  2082. state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
  2083. failures it must return a negative value and on success it must
  2084. return 0.
  2085. plat_psci_ops.mem_protect_chk()
  2086. ...............................
  2087. This is an optional function. If implemented it checks if a memory
  2088. region defined by a base address ``base`` and with a size of ``length``
  2089. bytes is protected by ``MEM_PROTECT``. If the region is protected
  2090. then it must return 0, otherwise it must return a negative number.
  2091. .. _porting_guide_imf_in_bl31:
  2092. Interrupt Management framework (in BL31)
  2093. ----------------------------------------
  2094. BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
  2095. generated in either security state and targeted to EL1 or EL2 in the non-secure
  2096. state or EL3/S-EL1 in the secure state. The design of this framework is
  2097. described in the :ref:`Interrupt Management Framework`
  2098. A platform should export the following APIs to support the IMF. The following
  2099. text briefly describes each API and its implementation in Arm standard
  2100. platforms. The API implementation depends upon the type of interrupt controller
  2101. present in the platform. Arm standard platform layer supports both
  2102. `Arm Generic Interrupt Controller version 2.0 (GICv2)`_
  2103. and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
  2104. FVP can be configured to use either GICv2 or GICv3 depending on the build flag
  2105. ``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
  2106. details).
  2107. See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
  2108. Function : plat_interrupt_type_to_line() [mandatory]
  2109. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2110. ::
  2111. Argument : uint32_t, uint32_t
  2112. Return : uint32_t
  2113. The Arm processor signals an interrupt exception either through the IRQ or FIQ
  2114. interrupt line. The specific line that is signaled depends on how the interrupt
  2115. controller (IC) reports different interrupt types from an execution context in
  2116. either security state. The IMF uses this API to determine which interrupt line
  2117. the platform IC uses to signal each type of interrupt supported by the framework
  2118. from a given security state. This API must be invoked at EL3.
  2119. The first parameter will be one of the ``INTR_TYPE_*`` values (see
  2120. :ref:`Interrupt Management Framework`) indicating the target type of the
  2121. interrupt, the second parameter is the security state of the originating
  2122. execution context. The return result is the bit position in the ``SCR_EL3``
  2123. register of the respective interrupt trap: IRQ=1, FIQ=2.
  2124. In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
  2125. configured as FIQs and Non-secure interrupts as IRQs from either security
  2126. state.
  2127. In the case of Arm standard platforms using GICv3, the interrupt line to be
  2128. configured depends on the security state of the execution context when the
  2129. interrupt is signalled and are as follows:
  2130. - The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
  2131. NS-EL0/1/2 context.
  2132. - The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
  2133. in the NS-EL0/1/2 context.
  2134. - The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
  2135. context.
  2136. Function : plat_ic_get_pending_interrupt_type() [mandatory]
  2137. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2138. ::
  2139. Argument : void
  2140. Return : uint32_t
  2141. This API returns the type of the highest priority pending interrupt at the
  2142. platform IC. The IMF uses the interrupt type to retrieve the corresponding
  2143. handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
  2144. pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
  2145. ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
  2146. In the case of Arm standard platforms using GICv2, the *Highest Priority
  2147. Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
  2148. the pending interrupt. The type of interrupt depends upon the id value as
  2149. follows.
  2150. #. id < 1022 is reported as a S-EL1 interrupt
  2151. #. id = 1022 is reported as a Non-secure interrupt.
  2152. #. id = 1023 is reported as an invalid interrupt type.
  2153. In the case of Arm standard platforms using GICv3, the system register
  2154. ``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
  2155. is read to determine the id of the pending interrupt. The type of interrupt
  2156. depends upon the id value as follows.
  2157. #. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
  2158. #. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
  2159. #. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
  2160. #. All other interrupt id's are reported as EL3 interrupt.
  2161. Function : plat_ic_get_pending_interrupt_id() [mandatory]
  2162. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2163. ::
  2164. Argument : void
  2165. Return : uint32_t
  2166. This API returns the id of the highest priority pending interrupt at the
  2167. platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
  2168. pending.
  2169. In the case of Arm standard platforms using GICv2, the *Highest Priority
  2170. Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
  2171. pending interrupt. The id that is returned by API depends upon the value of
  2172. the id read from the interrupt controller as follows.
  2173. #. id < 1022. id is returned as is.
  2174. #. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
  2175. (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
  2176. This id is returned by the API.
  2177. #. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
  2178. In the case of Arm standard platforms using GICv3, if the API is invoked from
  2179. EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
  2180. group 0 Register*, is read to determine the id of the pending interrupt. The id
  2181. that is returned by API depends upon the value of the id read from the
  2182. interrupt controller as follows.
  2183. #. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
  2184. #. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
  2185. register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
  2186. Register* is read to determine the id of the group 1 interrupt. This id
  2187. is returned by the API as long as it is a valid interrupt id
  2188. #. If the id is any of the special interrupt identifiers,
  2189. ``INTR_ID_UNAVAILABLE`` is returned.
  2190. When the API invoked from S-EL1 for GICv3 systems, the id read from system
  2191. register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
  2192. Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
  2193. ``INTR_ID_UNAVAILABLE`` is returned.
  2194. Function : plat_ic_acknowledge_interrupt() [mandatory]
  2195. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2196. ::
  2197. Argument : void
  2198. Return : uint32_t
  2199. This API is used by the CPU to indicate to the platform IC that processing of
  2200. the highest pending interrupt has begun. It should return the raw, unmodified
  2201. value obtained from the interrupt controller when acknowledging an interrupt.
  2202. The actual interrupt number shall be extracted from this raw value using the API
  2203. `plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
  2204. This function in Arm standard platforms using GICv2, reads the *Interrupt
  2205. Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
  2206. priority pending interrupt from pending to active in the interrupt controller.
  2207. It returns the value read from the ``GICC_IAR``, unmodified.
  2208. In the case of Arm standard platforms using GICv3, if the API is invoked
  2209. from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
  2210. Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
  2211. reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
  2212. group 1*. The read changes the state of the highest pending interrupt from
  2213. pending to active in the interrupt controller. The value read is returned
  2214. unmodified.
  2215. The TSP uses this API to start processing of the secure physical timer
  2216. interrupt.
  2217. Function : plat_ic_end_of_interrupt() [mandatory]
  2218. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2219. ::
  2220. Argument : uint32_t
  2221. Return : void
  2222. This API is used by the CPU to indicate to the platform IC that processing of
  2223. the interrupt corresponding to the id (passed as the parameter) has
  2224. finished. The id should be the same as the id returned by the
  2225. ``plat_ic_acknowledge_interrupt()`` API.
  2226. Arm standard platforms write the id to the *End of Interrupt Register*
  2227. (``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
  2228. system register in case of GICv3 depending on where the API is invoked from,
  2229. EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
  2230. controller.
  2231. The TSP uses this API to finish processing of the secure physical timer
  2232. interrupt.
  2233. Function : plat_ic_get_interrupt_type() [mandatory]
  2234. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2235. ::
  2236. Argument : uint32_t
  2237. Return : uint32_t
  2238. This API returns the type of the interrupt id passed as the parameter.
  2239. ``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
  2240. interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
  2241. returned depending upon how the interrupt has been configured by the platform
  2242. IC. This API must be invoked at EL3.
  2243. Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
  2244. and Non-secure interrupts as Group1 interrupts. It reads the group value
  2245. corresponding to the interrupt id from the relevant *Interrupt Group Register*
  2246. (``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
  2247. In the case of Arm standard platforms using GICv3, both the *Interrupt Group
  2248. Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
  2249. (``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
  2250. as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
  2251. Common helper functions
  2252. -----------------------
  2253. Function : elx_panic()
  2254. ~~~~~~~~~~~~~~~~~~~~~~
  2255. ::
  2256. Argument : void
  2257. Return : void
  2258. This API is called from assembly files when reporting a critical failure
  2259. that has occured in lower EL and is been trapped in EL3. This call
  2260. **must not** return.
  2261. Function : el3_panic()
  2262. ~~~~~~~~~~~~~~~~~~~~~~
  2263. ::
  2264. Argument : void
  2265. Return : void
  2266. This API is called from assembly files when encountering a critical failure that
  2267. cannot be recovered from. This function assumes that it is invoked from a C
  2268. runtime environment i.e. valid stack exists. This call **must not** return.
  2269. Function : panic()
  2270. ~~~~~~~~~~~~~~~~~~
  2271. ::
  2272. Argument : void
  2273. Return : void
  2274. This API called from C files when encountering a critical failure that cannot
  2275. be recovered from. This function in turn prints backtrace (if enabled) and calls
  2276. el3_panic(). This call **must not** return.
  2277. Crash Reporting mechanism (in BL31)
  2278. -----------------------------------
  2279. BL31 implements a crash reporting mechanism which prints the various registers
  2280. of the CPU to enable quick crash analysis and debugging. This mechanism relies
  2281. on the platform implementing ``plat_crash_console_init``,
  2282. ``plat_crash_console_putc`` and ``plat_crash_console_flush``.
  2283. The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
  2284. implementation of all of them. Platforms may include this file to their
  2285. makefiles in order to benefit from them. By default, they will cause the crash
  2286. output to be routed over the normal console infrastructure and get printed on
  2287. consoles configured to output in crash state. ``console_set_scope()`` can be
  2288. used to control whether a console is used for crash output.
  2289. .. note::
  2290. Platforms are responsible for making sure that they only mark consoles for
  2291. use in the crash scope that are able to support this, i.e. that are written
  2292. in assembly and conform with the register clobber rules for putc()
  2293. (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
  2294. In some cases (such as debugging very early crashes that happen before the
  2295. normal boot console can be set up), platforms may want to control crash output
  2296. more explicitly. These platforms may instead provide custom implementations for
  2297. these. They are executed outside of a C environment and without a stack. Many
  2298. console drivers provide functions named ``console_xxx_core_init/putc/flush``
  2299. that are designed to be used by these functions. See Arm platforms (like juno)
  2300. for an example of this.
  2301. Function : plat_crash_console_init [mandatory]
  2302. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2303. ::
  2304. Argument : void
  2305. Return : int
  2306. This API is used by the crash reporting mechanism to initialize the crash
  2307. console. It must only use the general purpose registers x0 through x7 to do the
  2308. initialization and returns 1 on success.
  2309. Function : plat_crash_console_putc [mandatory]
  2310. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2311. ::
  2312. Argument : int
  2313. Return : int
  2314. This API is used by the crash reporting mechanism to print a character on the
  2315. designated crash console. It must only use general purpose registers x1 and
  2316. x2 to do its work. The parameter and the return value are in general purpose
  2317. register x0.
  2318. Function : plat_crash_console_flush [mandatory]
  2319. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2320. ::
  2321. Argument : void
  2322. Return : void
  2323. This API is used by the crash reporting mechanism to force write of all buffered
  2324. data on the designated crash console. It should only use general purpose
  2325. registers x0 through x5 to do its work.
  2326. .. _External Abort handling and RAS Support:
  2327. External Abort handling and RAS Support
  2328. ---------------------------------------
  2329. Function : plat_ea_handler
  2330. ~~~~~~~~~~~~~~~~~~~~~~~~~~
  2331. ::
  2332. Argument : int
  2333. Argument : uint64_t
  2334. Argument : void *
  2335. Argument : void *
  2336. Argument : uint64_t
  2337. Return : void
  2338. This function is invoked by the RAS framework for the platform to handle an
  2339. External Abort received at EL3. The intention of the function is to attempt to
  2340. resolve the cause of External Abort and return; if that's not possible, to
  2341. initiate orderly shutdown of the system.
  2342. The first parameter (``int ea_reason``) indicates the reason for External Abort.
  2343. Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
  2344. The second parameter (``uint64_t syndrome``) is the respective syndrome
  2345. presented to EL3 after having received the External Abort. Depending on the
  2346. nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
  2347. can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
  2348. The third parameter (``void *cookie``) is unused for now. The fourth parameter
  2349. (``void *handle``) is a pointer to the preempted context. The fifth parameter
  2350. (``uint64_t flags``) indicates the preempted security state. These parameters
  2351. are received from the top-level exception handler.
  2352. If ``RAS_FFH_SUPPORT`` is set to ``1``, the default implementation of this
  2353. function iterates through RAS handlers registered by the platform. If any of the
  2354. RAS handlers resolve the External Abort, no further action is taken.
  2355. If ``RAS_FFH_SUPPORT`` is set to ``0``, or if none of the platform RAS handlers
  2356. could resolve the External Abort, the default implementation prints an error
  2357. message, and panics.
  2358. Function : plat_handle_uncontainable_ea
  2359. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2360. ::
  2361. Argument : int
  2362. Argument : uint64_t
  2363. Return : void
  2364. This function is invoked by the RAS framework when an External Abort of
  2365. Uncontainable type is received at EL3. Due to the critical nature of
  2366. Uncontainable errors, the intention of this function is to initiate orderly
  2367. shutdown of the system, and is not expected to return.
  2368. This function must be implemented in assembly.
  2369. The first and second parameters are the same as that of ``plat_ea_handler``.
  2370. The default implementation of this function calls
  2371. ``report_unhandled_exception``.
  2372. Function : plat_handle_double_fault
  2373. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2374. ::
  2375. Argument : int
  2376. Argument : uint64_t
  2377. Return : void
  2378. This function is invoked by the RAS framework when another External Abort is
  2379. received at EL3 while one is already being handled. I.e., a call to
  2380. ``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
  2381. this function is to initiate orderly shutdown of the system, and is not expected
  2382. recover or return.
  2383. This function must be implemented in assembly.
  2384. The first and second parameters are the same as that of ``plat_ea_handler``.
  2385. The default implementation of this function calls
  2386. ``report_unhandled_exception``.
  2387. Function : plat_handle_el3_ea
  2388. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2389. ::
  2390. Return : void
  2391. This function is invoked when an External Abort is received while executing in
  2392. EL3. Due to its critical nature, the intention of this function is to initiate
  2393. orderly shutdown of the system, and is not expected recover or return.
  2394. This function must be implemented in assembly.
  2395. The default implementation of this function calls
  2396. ``report_unhandled_exception``.
  2397. Function : plat_handle_rng_trap
  2398. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2399. ::
  2400. Argument : uint64_t
  2401. Argument : cpu_context_t *
  2402. Return : int
  2403. This function is invoked by BL31's exception handler when there is a synchronous
  2404. system register trap caused by access to the RNDR or RNDRRS registers. It allows
  2405. platforms implementing ``FEAT_RNG_TRAP`` and enabling ``ENABLE_FEAT_RNG_TRAP`` to
  2406. emulate those system registers by returing back some entropy to the lower EL.
  2407. The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
  2408. syndrome register, which encodes the instruction that was trapped. The interesting
  2409. information in there is the target register (``get_sysreg_iss_rt()``).
  2410. The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
  2411. lower exception level, at the time when the execution of the ``mrs`` instruction
  2412. was trapped. Its content can be changed, to put the entropy into the target
  2413. register.
  2414. The return value indicates how to proceed:
  2415. - When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
  2416. - When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
  2417. to the same instruction, so its execution will be repeated.
  2418. - When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
  2419. to the next instruction.
  2420. This function needs to be implemented by a platform if it enables FEAT_RNG_TRAP.
  2421. Function : plat_handle_impdef_trap
  2422. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2423. ::
  2424. Argument : uint64_t
  2425. Argument : cpu_context_t *
  2426. Return : int
  2427. This function is invoked by BL31's exception handler when there is a synchronous
  2428. system register trap caused by access to the implementation defined registers.
  2429. It allows platforms enabling ``IMPDEF_SYSREG_TRAP`` to emulate those system
  2430. registers choosing to program bits of their choice.
  2431. The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
  2432. syndrome register, which encodes the instruction that was trapped.
  2433. The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
  2434. lower exception level, at the time when the execution of the ``mrs`` instruction
  2435. was trapped.
  2436. The return value indicates how to proceed:
  2437. - When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
  2438. - When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
  2439. to the same instruction, so its execution will be repeated.
  2440. - When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
  2441. to the next instruction.
  2442. This function needs to be implemented by a platform if it enables
  2443. IMPDEF_SYSREG_TRAP.
  2444. Build flags
  2445. -----------
  2446. There are some build flags which can be defined by the platform to control
  2447. inclusion or exclusion of certain BL stages from the FIP image. These flags
  2448. need to be defined in the platform makefile which will get included by the
  2449. build system.
  2450. - **NEED_BL33**
  2451. By default, this flag is defined ``yes`` by the build system and ``BL33``
  2452. build option should be supplied as a build option. The platform has the
  2453. option of excluding the BL33 image in the ``fip`` image by defining this flag
  2454. to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
  2455. are used, this flag will be set to ``no`` automatically.
  2456. - **ARM_ARCH_MAJOR and ARM_ARCH_MINOR**
  2457. By default, ARM_ARCH_MAJOR.ARM_ARCH_MINOR is set to 8.0 in ``defaults.mk``,
  2458. if the platform makefile/build defines or uses the correct ARM_ARCH_MAJOR and
  2459. ARM_ARCH_MINOR then mandatory Architectural features available for that Arch
  2460. version will be enabled by default and any optional Arch feature supported by
  2461. the Architecture and available in TF-A can be enabled from platform specific
  2462. makefile. Look up to ``arch_features.mk`` for details pertaining to mandatory
  2463. and optional Arch specific features.
  2464. Platform include paths
  2465. ----------------------
  2466. Platforms are allowed to add more include paths to be passed to the compiler.
  2467. The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
  2468. particular for the file ``platform_def.h``.
  2469. Example:
  2470. .. code:: c
  2471. PLAT_INCLUDES += -Iinclude/plat/myplat/include
  2472. C Library
  2473. ---------
  2474. To avoid subtle toolchain behavioral dependencies, the header files provided
  2475. by the compiler are not used. The software is built with the ``-nostdinc`` flag
  2476. to ensure no headers are included from the toolchain inadvertently. Instead the
  2477. required headers are included in the TF-A source tree. The library only
  2478. contains those C library definitions required by the local implementation. If
  2479. more functionality is required, the needed library functions will need to be
  2480. added to the local implementation.
  2481. Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
  2482. been written specifically for TF-A. Some implementation files have been obtained
  2483. from `FreeBSD`_, others have been written specifically for TF-A as well. The
  2484. files can be found in ``include/lib/libc`` and ``lib/libc``.
  2485. SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
  2486. can be obtained from http://github.com/freebsd/freebsd.
  2487. Storage abstraction layer
  2488. -------------------------
  2489. In order to improve platform independence and portability a storage abstraction
  2490. layer is used to load data from non-volatile platform storage. Currently
  2491. storage access is only required by BL1 and BL2 phases and performed inside the
  2492. ``load_image()`` function in ``bl_common.c``.
  2493. .. uml:: resources/diagrams/plantuml/io_framework_usage_overview.puml
  2494. It is mandatory to implement at least one storage driver. For the Arm
  2495. development platforms the Firmware Image Package (FIP) driver is provided as
  2496. the default means to load data from storage (see :ref:`firmware_design_fip`).
  2497. The storage layer is described in the header file
  2498. ``include/drivers/io/io_storage.h``. The implementation of the common library is
  2499. in ``drivers/io/io_storage.c`` and the driver files are located in
  2500. ``drivers/io/``.
  2501. .. uml:: resources/diagrams/plantuml/io_arm_class_diagram.puml
  2502. Each IO driver must provide ``io_dev_*`` structures, as described in
  2503. ``drivers/io/io_driver.h``. These are returned via a mandatory registration
  2504. function that is called on platform initialization. The semi-hosting driver
  2505. implementation in ``io_semihosting.c`` can be used as an example.
  2506. Each platform should register devices and their drivers via the storage
  2507. abstraction layer. These drivers then need to be initialized by bootloader
  2508. phases as required in their respective ``blx_platform_setup()`` functions.
  2509. .. uml:: resources/diagrams/plantuml/io_dev_registration.puml
  2510. The storage abstraction layer provides mechanisms (``io_dev_init()``) to
  2511. initialize storage devices before IO operations are called.
  2512. .. uml:: resources/diagrams/plantuml/io_dev_init_and_check.puml
  2513. The basic operations supported by the layer
  2514. include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
  2515. Drivers do not have to implement all operations, but each platform must
  2516. provide at least one driver for a device capable of supporting generic
  2517. operations such as loading a bootloader image.
  2518. The current implementation only allows for known images to be loaded by the
  2519. firmware. These images are specified by using their identifiers, as defined in
  2520. ``include/plat/common/common_def.h`` (or a separate header file included from
  2521. there). The platform layer (``plat_get_image_source()``) then returns a reference
  2522. to a device and a driver-specific ``spec`` which will be understood by the driver
  2523. to allow access to the image data.
  2524. The layer is designed in such a way that is it possible to chain drivers with
  2525. other drivers. For example, file-system drivers may be implemented on top of
  2526. physical block devices, both represented by IO devices with corresponding
  2527. drivers. In such a case, the file-system "binding" with the block device may
  2528. be deferred until the file-system device is initialised.
  2529. The abstraction currently depends on structures being statically allocated
  2530. by the drivers and callers, as the system does not yet provide a means of
  2531. dynamically allocating memory. This may also have the affect of limiting the
  2532. amount of open resources per driver.
  2533. Measured Boot Platform Interface
  2534. --------------------------------
  2535. Enabling the MEASURED_BOOT flag adds extra platform requirements. Please refer
  2536. to :ref:`Measured Boot Design` for more details.
  2537. --------------
  2538. *Copyright (c) 2013-2023, Arm Limited and Contributors. All rights reserved.*
  2539. .. _PSCI: https://developer.arm.com/documentation/den0022/latest/
  2540. .. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
  2541. .. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
  2542. .. _FreeBSD: https://www.freebsd.org
  2543. .. _SCC: http://www.simple-cc.org/
  2544. .. _DRTM: https://developer.arm.com/documentation/den0113/a