porting-guide.rst 140 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707
  1. Porting Guide
  2. =============
  3. Introduction
  4. ------------
  5. Porting Trusted Firmware-A (TF-A) to a new platform involves making some
  6. mandatory and optional modifications for both the cold and warm boot paths.
  7. Modifications consist of:
  8. - Implementing a platform-specific function or variable,
  9. - Setting up the execution context in a certain way, or
  10. - Defining certain constants (for example #defines).
  11. The platform-specific functions and variables are declared in
  12. ``include/plat/common/platform.h``. The firmware provides a default
  13. implementation of variables and functions to fulfill the optional requirements
  14. in order to ease the porting effort. Each platform port can use them as is or
  15. provide their own implementation if the default implementation is inadequate.
  16. .. note::
  17. TF-A historically provided default implementations of platform interfaces
  18. as *weak* functions. This practice is now discouraged and new platform
  19. interfaces as they get introduced in the code base should be *strongly*
  20. defined. We intend to convert existing weak functions over time. Until
  21. then, you will find references to *weak* functions in this document.
  22. Please review the :ref:`Threat Model` documents as part of the porting
  23. effort. Some platform interfaces play a key role in mitigating against some of
  24. the threats. Failing to fulfill these expectations could undermine the security
  25. guarantees offered by TF-A. These platform responsibilities are highlighted in
  26. the threat assessment section, under the "`Mitigations implemented?`" box for
  27. each threat.
  28. Some modifications are common to all Boot Loader (BL) stages. Section 2
  29. discusses these in detail. The subsequent sections discuss the remaining
  30. modifications for each BL stage in detail.
  31. Please refer to the :ref:`Platform Ports Policy` for the policy regarding
  32. compatibility and deprecation of these porting interfaces.
  33. Only Arm development platforms (such as FVP and Juno) may use the
  34. functions/definitions in ``include/plat/arm/common/`` and the corresponding
  35. source files in ``plat/arm/common/``. This is done so that there are no
  36. dependencies between platforms maintained by different people/companies. If you
  37. want to use any of the functionality present in ``plat/arm`` files, please
  38. propose a patch that moves the code to ``plat/common`` so that it can be
  39. discussed.
  40. Common modifications
  41. --------------------
  42. This section covers the modifications that should be made by the platform for
  43. each BL stage to correctly port the firmware stack. They are categorized as
  44. either mandatory or optional.
  45. Common mandatory modifications
  46. ------------------------------
  47. A platform port must enable the Memory Management Unit (MMU) as well as the
  48. instruction and data caches for each BL stage. Setting up the translation
  49. tables is the responsibility of the platform port because memory maps differ
  50. across platforms. A memory translation library (see ``lib/xlat_tables_v2/``) is
  51. provided to help in this setup.
  52. Note that although this library supports non-identity mappings, this is intended
  53. only for re-mapping peripheral physical addresses and allows platforms with high
  54. I/O addresses to reduce their virtual address space. All other addresses
  55. corresponding to code and data must currently use an identity mapping.
  56. Also, the only translation granule size supported in TF-A is 4KB, as various
  57. parts of the code assume that is the case. It is not possible to switch to
  58. 16 KB or 64 KB granule sizes at the moment.
  59. In Arm standard platforms, each BL stage configures the MMU in the
  60. platform-specific architecture setup function, ``blX_plat_arch_setup()``, and uses
  61. an identity mapping for all addresses.
  62. If the build option ``USE_COHERENT_MEM`` is enabled, each platform can allocate a
  63. block of identity mapped secure memory with Device-nGnRE attributes aligned to
  64. page boundary (4K) for each BL stage. All sections which allocate coherent
  65. memory are grouped under ``.coherent_ram``. For ex: Bakery locks are placed in a
  66. section identified by name ``.bakery_lock`` inside ``.coherent_ram`` so that its
  67. possible for the firmware to place variables in it using the following C code
  68. directive:
  69. ::
  70. __section(".bakery_lock")
  71. Or alternatively the following assembler code directive:
  72. ::
  73. .section .bakery_lock
  74. The ``.coherent_ram`` section is a sum of all sections like ``.bakery_lock`` which are
  75. used to allocate any data structures that are accessed both when a CPU is
  76. executing with its MMU and caches enabled, and when it's running with its MMU
  77. and caches disabled. Examples are given below.
  78. The following variables, functions and constants must be defined by the platform
  79. for the firmware to work correctly.
  80. .. _platform_def_mandatory:
  81. File : platform_def.h [mandatory]
  82. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  83. Each platform must ensure that a header file of this name is in the system
  84. include path with the following constants defined. This will require updating
  85. the list of ``PLAT_INCLUDES`` in the ``platform.mk`` file.
  86. Platform ports may optionally use the file ``include/plat/common/common_def.h``,
  87. which provides typical values for some of the constants below. These values are
  88. likely to be suitable for all platform ports.
  89. - **#define : PLATFORM_LINKER_FORMAT**
  90. Defines the linker format used by the platform, for example
  91. ``elf64-littleaarch64``.
  92. - **#define : PLATFORM_LINKER_ARCH**
  93. Defines the processor architecture for the linker by the platform, for
  94. example ``aarch64``.
  95. - **#define : PLATFORM_STACK_SIZE**
  96. Defines the normal stack memory available to each CPU. This constant is used
  97. by ``plat/common/aarch64/platform_mp_stack.S`` and
  98. ``plat/common/aarch64/platform_up_stack.S``.
  99. - **#define : CACHE_WRITEBACK_GRANULE**
  100. Defines the size in bytes of the largest cache line across all the cache
  101. levels in the platform.
  102. - **#define : FIRMWARE_WELCOME_STR**
  103. Defines the character string printed by BL1 upon entry into the ``bl1_main()``
  104. function.
  105. - **#define : PLATFORM_CORE_COUNT**
  106. Defines the total number of CPUs implemented by the platform across all
  107. clusters in the system.
  108. - **#define : PLAT_NUM_PWR_DOMAINS**
  109. Defines the total number of nodes in the power domain topology
  110. tree at all the power domain levels used by the platform.
  111. This macro is used by the PSCI implementation to allocate
  112. data structures to represent power domain topology.
  113. - **#define : PLAT_MAX_PWR_LVL**
  114. Defines the maximum power domain level that the power management operations
  115. should apply to. More often, but not always, the power domain level
  116. corresponds to affinity level. This macro allows the PSCI implementation
  117. to know the highest power domain level that it should consider for power
  118. management operations in the system that the platform implements. For
  119. example, the Base AEM FVP implements two clusters with a configurable
  120. number of CPUs and it reports the maximum power domain level as 1.
  121. - **#define : PLAT_MAX_OFF_STATE**
  122. Defines the local power state corresponding to the deepest power down
  123. possible at every power domain level in the platform. The local power
  124. states for each level may be sparsely allocated between 0 and this value
  125. with 0 being reserved for the RUN state. The PSCI implementation uses this
  126. value to initialize the local power states of the power domain nodes and
  127. to specify the requested power state for a PSCI_CPU_OFF call.
  128. - **#define : PLAT_MAX_RET_STATE**
  129. Defines the local power state corresponding to the deepest retention state
  130. possible at every power domain level in the platform. This macro should be
  131. a value less than PLAT_MAX_OFF_STATE and greater than 0. It is used by the
  132. PSCI implementation to distinguish between retention and power down local
  133. power states within PSCI_CPU_SUSPEND call.
  134. - **#define : PLAT_MAX_PWR_LVL_STATES**
  135. Defines the maximum number of local power states per power domain level
  136. that the platform supports. The default value of this macro is 2 since
  137. most platforms just support a maximum of two local power states at each
  138. power domain level (power-down and retention). If the platform needs to
  139. account for more local power states, then it must redefine this macro.
  140. Currently, this macro is used by the Generic PSCI implementation to size
  141. the array used for PSCI_STAT_COUNT/RESIDENCY accounting.
  142. - **#define : BL1_RO_BASE**
  143. Defines the base address in secure ROM where BL1 originally lives. Must be
  144. aligned on a page-size boundary.
  145. - **#define : BL1_RO_LIMIT**
  146. Defines the maximum address in secure ROM that BL1's actual content (i.e.
  147. excluding any data section allocated at runtime) can occupy.
  148. - **#define : BL1_RW_BASE**
  149. Defines the base address in secure RAM where BL1's read-write data will live
  150. at runtime. Must be aligned on a page-size boundary.
  151. - **#define : BL1_RW_LIMIT**
  152. Defines the maximum address in secure RAM that BL1's read-write data can
  153. occupy at runtime.
  154. - **#define : BL2_BASE**
  155. Defines the base address in secure RAM where BL1 loads the BL2 binary image.
  156. Must be aligned on a page-size boundary. This constant is not applicable
  157. when BL2_IN_XIP_MEM is set to '1'.
  158. - **#define : BL2_LIMIT**
  159. Defines the maximum address in secure RAM that the BL2 image can occupy.
  160. This constant is not applicable when BL2_IN_XIP_MEM is set to '1'.
  161. - **#define : BL2_RO_BASE**
  162. Defines the base address in secure XIP memory where BL2 RO section originally
  163. lives. Must be aligned on a page-size boundary. This constant is only needed
  164. when BL2_IN_XIP_MEM is set to '1'.
  165. - **#define : BL2_RO_LIMIT**
  166. Defines the maximum address in secure XIP memory that BL2's actual content
  167. (i.e. excluding any data section allocated at runtime) can occupy. This
  168. constant is only needed when BL2_IN_XIP_MEM is set to '1'.
  169. - **#define : BL2_RW_BASE**
  170. Defines the base address in secure RAM where BL2's read-write data will live
  171. at runtime. Must be aligned on a page-size boundary. This constant is only
  172. needed when BL2_IN_XIP_MEM is set to '1'.
  173. - **#define : BL2_RW_LIMIT**
  174. Defines the maximum address in secure RAM that BL2's read-write data can
  175. occupy at runtime. This constant is only needed when BL2_IN_XIP_MEM is set
  176. to '1'.
  177. - **#define : BL31_BASE**
  178. Defines the base address in secure RAM where BL2 loads the BL31 binary
  179. image. Must be aligned on a page-size boundary.
  180. - **#define : BL31_LIMIT**
  181. Defines the maximum address in secure RAM that the BL31 image can occupy.
  182. - **#define : PLAT_RSE_COMMS_PAYLOAD_MAX_SIZE**
  183. Defines the maximum message size between AP and RSE. Need to define if
  184. platform supports RSE.
  185. For every image, the platform must define individual identifiers that will be
  186. used by BL1 or BL2 to load the corresponding image into memory from non-volatile
  187. storage. For the sake of performance, integer numbers will be used as
  188. identifiers. The platform will use those identifiers to return the relevant
  189. information about the image to be loaded (file handler, load address,
  190. authentication information, etc.). The following image identifiers are
  191. mandatory:
  192. - **#define : BL2_IMAGE_ID**
  193. BL2 image identifier, used by BL1 to load BL2.
  194. - **#define : BL31_IMAGE_ID**
  195. BL31 image identifier, used by BL2 to load BL31.
  196. - **#define : BL33_IMAGE_ID**
  197. BL33 image identifier, used by BL2 to load BL33.
  198. If Trusted Board Boot is enabled, the following certificate identifiers must
  199. also be defined:
  200. - **#define : TRUSTED_BOOT_FW_CERT_ID**
  201. BL2 content certificate identifier, used by BL1 to load the BL2 content
  202. certificate.
  203. - **#define : TRUSTED_KEY_CERT_ID**
  204. Trusted key certificate identifier, used by BL2 to load the trusted key
  205. certificate.
  206. - **#define : SOC_FW_KEY_CERT_ID**
  207. BL31 key certificate identifier, used by BL2 to load the BL31 key
  208. certificate.
  209. - **#define : SOC_FW_CONTENT_CERT_ID**
  210. BL31 content certificate identifier, used by BL2 to load the BL31 content
  211. certificate.
  212. - **#define : NON_TRUSTED_FW_KEY_CERT_ID**
  213. BL33 key certificate identifier, used by BL2 to load the BL33 key
  214. certificate.
  215. - **#define : NON_TRUSTED_FW_CONTENT_CERT_ID**
  216. BL33 content certificate identifier, used by BL2 to load the BL33 content
  217. certificate.
  218. - **#define : FWU_CERT_ID**
  219. Firmware Update (FWU) certificate identifier, used by NS_BL1U to load the
  220. FWU content certificate.
  221. If the AP Firmware Updater Configuration image, BL2U is used, the following
  222. must also be defined:
  223. - **#define : BL2U_BASE**
  224. Defines the base address in secure memory where BL1 copies the BL2U binary
  225. image. Must be aligned on a page-size boundary.
  226. - **#define : BL2U_LIMIT**
  227. Defines the maximum address in secure memory that the BL2U image can occupy.
  228. - **#define : BL2U_IMAGE_ID**
  229. BL2U image identifier, used by BL1 to fetch an image descriptor
  230. corresponding to BL2U.
  231. If the SCP Firmware Update Configuration Image, SCP_BL2U is used, the following
  232. must also be defined:
  233. - **#define : SCP_BL2U_IMAGE_ID**
  234. SCP_BL2U image identifier, used by BL1 to fetch an image descriptor
  235. corresponding to SCP_BL2U.
  236. .. note::
  237. TF-A does not provide source code for this image.
  238. If the Non-Secure Firmware Updater ROM, NS_BL1U is used, the following must
  239. also be defined:
  240. - **#define : NS_BL1U_BASE**
  241. Defines the base address in non-secure ROM where NS_BL1U executes.
  242. Must be aligned on a page-size boundary.
  243. .. note::
  244. TF-A does not provide source code for this image.
  245. - **#define : NS_BL1U_IMAGE_ID**
  246. NS_BL1U image identifier, used by BL1 to fetch an image descriptor
  247. corresponding to NS_BL1U.
  248. If the Non-Secure Firmware Updater, NS_BL2U is used, the following must also
  249. be defined:
  250. - **#define : NS_BL2U_BASE**
  251. Defines the base address in non-secure memory where NS_BL2U executes.
  252. Must be aligned on a page-size boundary.
  253. .. note::
  254. TF-A does not provide source code for this image.
  255. - **#define : NS_BL2U_IMAGE_ID**
  256. NS_BL2U image identifier, used by BL1 to fetch an image descriptor
  257. corresponding to NS_BL2U.
  258. For the the Firmware update capability of TRUSTED BOARD BOOT, the following
  259. macros may also be defined:
  260. - **#define : PLAT_FWU_MAX_SIMULTANEOUS_IMAGES**
  261. Total number of images that can be loaded simultaneously. If the platform
  262. doesn't specify any value, it defaults to 10.
  263. If a SCP_BL2 image is supported by the platform, the following constants must
  264. also be defined:
  265. - **#define : SCP_BL2_IMAGE_ID**
  266. SCP_BL2 image identifier, used by BL2 to load SCP_BL2 into secure memory
  267. from platform storage before being transferred to the SCP.
  268. - **#define : SCP_FW_KEY_CERT_ID**
  269. SCP_BL2 key certificate identifier, used by BL2 to load the SCP_BL2 key
  270. certificate (mandatory when Trusted Board Boot is enabled).
  271. - **#define : SCP_FW_CONTENT_CERT_ID**
  272. SCP_BL2 content certificate identifier, used by BL2 to load the SCP_BL2
  273. content certificate (mandatory when Trusted Board Boot is enabled).
  274. If a BL32 image is supported by the platform, the following constants must
  275. also be defined:
  276. - **#define : BL32_IMAGE_ID**
  277. BL32 image identifier, used by BL2 to load BL32.
  278. - **#define : TRUSTED_OS_FW_KEY_CERT_ID**
  279. BL32 key certificate identifier, used by BL2 to load the BL32 key
  280. certificate (mandatory when Trusted Board Boot is enabled).
  281. - **#define : TRUSTED_OS_FW_CONTENT_CERT_ID**
  282. BL32 content certificate identifier, used by BL2 to load the BL32 content
  283. certificate (mandatory when Trusted Board Boot is enabled).
  284. - **#define : BL32_BASE**
  285. Defines the base address in secure memory where BL2 loads the BL32 binary
  286. image. Must be aligned on a page-size boundary.
  287. - **#define : BL32_LIMIT**
  288. Defines the maximum address that the BL32 image can occupy.
  289. If the Test Secure-EL1 Payload (TSP) instantiation of BL32 is supported by the
  290. platform, the following constants must also be defined:
  291. - **#define : TSP_SEC_MEM_BASE**
  292. Defines the base address of the secure memory used by the TSP image on the
  293. platform. This must be at the same address or below ``BL32_BASE``.
  294. - **#define : TSP_SEC_MEM_SIZE**
  295. Defines the size of the secure memory used by the BL32 image on the
  296. platform. ``TSP_SEC_MEM_BASE`` and ``TSP_SEC_MEM_SIZE`` must fully
  297. accommodate the memory required by the BL32 image, defined by ``BL32_BASE``
  298. and ``BL32_LIMIT``.
  299. - **#define : TSP_IRQ_SEC_PHY_TIMER**
  300. Defines the ID of the secure physical generic timer interrupt used by the
  301. TSP's interrupt handling code.
  302. If the platform port uses the translation table library code, the following
  303. constants must also be defined:
  304. - **#define : PLAT_XLAT_TABLES_DYNAMIC**
  305. Optional flag that can be set per-image to enable the dynamic allocation of
  306. regions even when the MMU is enabled. If not defined, only static
  307. functionality will be available, if defined and set to 1 it will also
  308. include the dynamic functionality.
  309. - **#define : MAX_XLAT_TABLES**
  310. Defines the maximum number of translation tables that are allocated by the
  311. translation table library code. To minimize the amount of runtime memory
  312. used, choose the smallest value needed to map the required virtual addresses
  313. for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is enabled for a BL
  314. image, ``MAX_XLAT_TABLES`` must be defined to accommodate the dynamic regions
  315. as well.
  316. - **#define : MAX_MMAP_REGIONS**
  317. Defines the maximum number of regions that are allocated by the translation
  318. table library code. A region consists of physical base address, virtual base
  319. address, size and attributes (Device/Memory, RO/RW, Secure/Non-Secure), as
  320. defined in the ``mmap_region_t`` structure. The platform defines the regions
  321. that should be mapped. Then, the translation table library will create the
  322. corresponding tables and descriptors at runtime. To minimize the amount of
  323. runtime memory used, choose the smallest value needed to register the
  324. required regions for each BL stage. If ``PLAT_XLAT_TABLES_DYNAMIC`` flag is
  325. enabled for a BL image, ``MAX_MMAP_REGIONS`` must be defined to accommodate
  326. the dynamic regions as well.
  327. - **#define : PLAT_VIRT_ADDR_SPACE_SIZE**
  328. Defines the total size of the virtual address space in bytes. For example,
  329. for a 32 bit virtual address space, this value should be ``(1ULL << 32)``.
  330. - **#define : PLAT_PHY_ADDR_SPACE_SIZE**
  331. Defines the total size of the physical address space in bytes. For example,
  332. for a 32 bit physical address space, this value should be ``(1ULL << 32)``.
  333. If the platform port uses the IO storage framework, the following constants
  334. must also be defined:
  335. - **#define : MAX_IO_DEVICES**
  336. Defines the maximum number of registered IO devices. Attempting to register
  337. more devices than this value using ``io_register_device()`` will fail with
  338. -ENOMEM.
  339. - **#define : MAX_IO_HANDLES**
  340. Defines the maximum number of open IO handles. Attempting to open more IO
  341. entities than this value using ``io_open()`` will fail with -ENOMEM.
  342. - **#define : MAX_IO_BLOCK_DEVICES**
  343. Defines the maximum number of registered IO block devices. Attempting to
  344. register more devices this value using ``io_dev_open()`` will fail
  345. with -ENOMEM. MAX_IO_BLOCK_DEVICES should be less than MAX_IO_DEVICES.
  346. With this macro, multiple block devices could be supported at the same
  347. time.
  348. If the platform needs to allocate data within the per-cpu data framework in
  349. BL31, it should define the following macro. Currently this is only required if
  350. the platform decides not to use the coherent memory section by undefining the
  351. ``USE_COHERENT_MEM`` build flag. In this case, the framework allocates the
  352. required memory within the the per-cpu data to minimize wastage.
  353. - **#define : PLAT_PCPU_DATA_SIZE**
  354. Defines the memory (in bytes) to be reserved within the per-cpu data
  355. structure for use by the platform layer.
  356. The following constants are optional. They should be defined when the platform
  357. memory layout implies some image overlaying like in Arm standard platforms.
  358. - **#define : BL31_PROGBITS_LIMIT**
  359. Defines the maximum address in secure RAM that the BL31's progbits sections
  360. can occupy.
  361. - **#define : TSP_PROGBITS_LIMIT**
  362. Defines the maximum address that the TSP's progbits sections can occupy.
  363. If the platform supports OS-initiated mode, i.e. the build option
  364. ``PSCI_OS_INIT_MODE`` is enabled, and if the platform's maximum power domain
  365. level for PSCI_CPU_SUSPEND differs from ``PLAT_MAX_PWR_LVL``, the following
  366. constant must be defined.
  367. - **#define : PLAT_MAX_CPU_SUSPEND_PWR_LVL**
  368. Defines the maximum power domain level that PSCI_CPU_SUSPEND should apply to.
  369. If the platform port uses the PL061 GPIO driver, the following constant may
  370. optionally be defined:
  371. - **PLAT_PL061_MAX_GPIOS**
  372. Maximum number of GPIOs required by the platform. This allows control how
  373. much memory is allocated for PL061 GPIO controllers. The default value is
  374. #. $(eval $(call add_define,PLAT_PL061_MAX_GPIOS))
  375. If the platform port uses the partition driver, the following constant may
  376. optionally be defined:
  377. - **PLAT_PARTITION_MAX_ENTRIES**
  378. Maximum number of partition entries required by the platform. This allows
  379. control how much memory is allocated for partition entries. The default
  380. value is 128.
  381. For example, define the build flag in ``platform.mk``:
  382. PLAT_PARTITION_MAX_ENTRIES := 12
  383. $(eval $(call add_define,PLAT_PARTITION_MAX_ENTRIES))
  384. - **PLAT_PARTITION_BLOCK_SIZE**
  385. The size of partition block. It could be either 512 bytes or 4096 bytes.
  386. The default value is 512.
  387. For example, define the build flag in ``platform.mk``:
  388. PLAT_PARTITION_BLOCK_SIZE := 4096
  389. $(eval $(call add_define,PLAT_PARTITION_BLOCK_SIZE))
  390. If the platform port uses the Arm® Ethos™-N NPU driver, the following
  391. configuration must be performed:
  392. - The NPU SiP service handler must be hooked up. This consists of both the
  393. initial setup (``ethosn_smc_setup``) and the handler itself
  394. (``ethosn_smc_handler``)
  395. If the platform port uses the Arm® Ethos™-N NPU driver with TZMP1 support
  396. enabled, the following constants and configuration must also be defined:
  397. - **ETHOSN_NPU_PROT_FW_NSAID**
  398. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use to
  399. access the protected memory that contains the NPU's firmware.
  400. - **ETHOSN_NPU_PROT_DATA_RW_NSAID**
  401. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
  402. read/write access to the protected memory that contains inference data.
  403. - **ETHOSN_NPU_PROT_DATA_RO_NSAID**
  404. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
  405. read-only access to the protected memory that contains inference data.
  406. - **ETHOSN_NPU_NS_RW_DATA_NSAID**
  407. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
  408. read/write access to the non-protected memory.
  409. - **ETHOSN_NPU_NS_RO_DATA_NSAID**
  410. Defines the Non-secure Access IDentity (NSAID) that the NPU shall use for
  411. read-only access to the non-protected memory.
  412. - **ETHOSN_NPU_FW_IMAGE_BASE** and **ETHOSN_NPU_FW_IMAGE_LIMIT**
  413. Defines the physical address range that the NPU's firmware will be loaded
  414. into and executed from.
  415. - Configure the platforms TrustZone Controller (TZC) with appropriate regions
  416. of protected memory. At minimum this must include a region for the NPU's
  417. firmware code and a region for protected inference data, and these must be
  418. accessible using the NSAIDs defined above.
  419. - Include the NPU firmware and certificates in the FIP.
  420. - Provide FCONF entries to configure the image source for the NPU firmware
  421. and certificates.
  422. - Add MMU mappings such that:
  423. - BL2 can write the NPU firmware into the region defined by
  424. ``ETHOSN_NPU_FW_IMAGE_BASE`` and ``ETHOSN_NPU_FW_IMAGE_LIMIT``
  425. - BL31 (SiP service) can read the NPU firmware from the same region
  426. - Add the firmware image ID ``ETHOSN_NPU_FW_IMAGE_ID`` to the list of images
  427. loaded by BL2.
  428. Please see the reference implementation code for the Juno platform as an example.
  429. The following constant is optional. It should be defined to override the default
  430. behaviour of the ``assert()`` function (for example, to save memory).
  431. - **PLAT_LOG_LEVEL_ASSERT**
  432. If ``PLAT_LOG_LEVEL_ASSERT`` is higher or equal than ``LOG_LEVEL_VERBOSE``,
  433. ``assert()`` prints the name of the file, the line number and the asserted
  434. expression. Else if it is higher than ``LOG_LEVEL_INFO``, it prints the file
  435. name and the line number. Else if it is lower than ``LOG_LEVEL_INFO``, it
  436. doesn't print anything to the console. If ``PLAT_LOG_LEVEL_ASSERT`` isn't
  437. defined, it defaults to ``LOG_LEVEL``.
  438. If the platform port uses the DRTM feature, the following constants must be
  439. defined:
  440. - **#define : PLAT_DRTM_EVENT_LOG_MAX_SIZE**
  441. Maximum Event Log size used by the platform. Platform can decide the maximum
  442. size of the Event Log buffer, depending upon the highest hash algorithm
  443. chosen and the number of components selected to measure during the DRTM
  444. execution flow.
  445. - **#define : PLAT_DRTM_MMAP_ENTRIES**
  446. Number of the MMAP entries used by the DRTM implementation to calculate the
  447. size of address map region of the platform.
  448. File : plat_macros.S [mandatory]
  449. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  450. Each platform must ensure a file of this name is in the system include path with
  451. the following macro defined. In the Arm development platforms, this file is
  452. found in ``plat/arm/board/<plat_name>/include/plat_macros.S``.
  453. - **Macro : plat_crash_print_regs**
  454. This macro allows the crash reporting routine to print relevant platform
  455. registers in case of an unhandled exception in BL31. This aids in debugging
  456. and this macro can be defined to be empty in case register reporting is not
  457. desired.
  458. For instance, GIC or interconnect registers may be helpful for
  459. troubleshooting.
  460. Handling Reset
  461. --------------
  462. BL1 by default implements the reset vector where execution starts from a cold
  463. or warm boot. BL31 can be optionally set as a reset vector using the
  464. ``RESET_TO_BL31`` make variable.
  465. For each CPU, the reset vector code is responsible for the following tasks:
  466. #. Distinguishing between a cold boot and a warm boot.
  467. #. In the case of a cold boot and the CPU being a secondary CPU, ensuring that
  468. the CPU is placed in a platform-specific state until the primary CPU
  469. performs the necessary steps to remove it from this state.
  470. #. In the case of a warm boot, ensuring that the CPU jumps to a platform-
  471. specific address in the BL31 image in the same processor mode as it was
  472. when released from reset.
  473. The following functions need to be implemented by the platform port to enable
  474. reset vector code to perform the above tasks.
  475. Function : plat_get_my_entrypoint() [mandatory when PROGRAMMABLE_RESET_ADDRESS == 0]
  476. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  477. ::
  478. Argument : void
  479. Return : uintptr_t
  480. This function is called with the MMU and caches disabled
  481. (``SCTLR_EL3.M`` = 0 and ``SCTLR_EL3.C`` = 0). The function is responsible for
  482. distinguishing between a warm and cold reset for the current CPU using
  483. platform-specific means. If it's a warm reset, then it returns the warm
  484. reset entrypoint point provided to ``plat_setup_psci_ops()`` during
  485. BL31 initialization. If it's a cold reset then this function must return zero.
  486. This function does not follow the Procedure Call Standard used by the
  487. Application Binary Interface for the Arm 64-bit architecture. The caller should
  488. not assume that callee saved registers are preserved across a call to this
  489. function.
  490. This function fulfills requirement 1 and 3 listed above.
  491. Note that for platforms that support programming the reset address, it is
  492. expected that a CPU will start executing code directly at the right address,
  493. both on a cold and warm reset. In this case, there is no need to identify the
  494. type of reset nor to query the warm reset entrypoint. Therefore, implementing
  495. this function is not required on such platforms.
  496. Function : plat_secondary_cold_boot_setup() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
  497. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  498. ::
  499. Argument : void
  500. This function is called with the MMU and data caches disabled. It is responsible
  501. for placing the executing secondary CPU in a platform-specific state until the
  502. primary CPU performs the necessary actions to bring it out of that state and
  503. allow entry into the OS. This function must not return.
  504. In the Arm FVP port, when using the normal boot flow, each secondary CPU powers
  505. itself off. The primary CPU is responsible for powering up the secondary CPUs
  506. when normal world software requires them. When booting an EL3 payload instead,
  507. they stay powered on and are put in a holding pen until their mailbox gets
  508. populated.
  509. This function fulfills requirement 2 above.
  510. Note that for platforms that can't release secondary CPUs out of reset, only the
  511. primary CPU will execute the cold boot code. Therefore, implementing this
  512. function is not required on such platforms.
  513. Function : plat_is_my_cpu_primary() [mandatory when COLD_BOOT_SINGLE_CPU == 0]
  514. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  515. ::
  516. Argument : void
  517. Return : unsigned int
  518. This function identifies whether the current CPU is the primary CPU or a
  519. secondary CPU. A return value of zero indicates that the CPU is not the
  520. primary CPU, while a non-zero return value indicates that the CPU is the
  521. primary CPU.
  522. Note that for platforms that can't release secondary CPUs out of reset, only the
  523. primary CPU will execute the cold boot code. Therefore, there is no need to
  524. distinguish between primary and secondary CPUs and implementing this function is
  525. not required.
  526. Function : platform_mem_init() [mandatory]
  527. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  528. ::
  529. Argument : void
  530. Return : void
  531. This function is called before any access to data is made by the firmware, in
  532. order to carry out any essential memory initialization.
  533. Function: plat_get_rotpk_info()
  534. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  535. ::
  536. Argument : void *, void **, unsigned int *, unsigned int *
  537. Return : int
  538. This function is mandatory when Trusted Board Boot is enabled. It returns a
  539. pointer to the ROTPK stored in the platform (or a hash of it) and its length.
  540. The ROTPK must be encoded in DER format according to the following ASN.1
  541. structure:
  542. ::
  543. AlgorithmIdentifier ::= SEQUENCE {
  544. algorithm OBJECT IDENTIFIER,
  545. parameters ANY DEFINED BY algorithm OPTIONAL
  546. }
  547. SubjectPublicKeyInfo ::= SEQUENCE {
  548. algorithm AlgorithmIdentifier,
  549. subjectPublicKey BIT STRING
  550. }
  551. In case the function returns a hash of the key:
  552. ::
  553. DigestInfo ::= SEQUENCE {
  554. digestAlgorithm AlgorithmIdentifier,
  555. digest OCTET STRING
  556. }
  557. The function returns 0 on success. Any other value is treated as error by the
  558. Trusted Board Boot. The function also reports extra information related
  559. to the ROTPK in the flags parameter:
  560. ::
  561. ROTPK_IS_HASH : Indicates that the ROTPK returned by the platform is a
  562. hash.
  563. ROTPK_NOT_DEPLOYED : This allows the platform to skip certificate ROTPK
  564. verification while the platform ROTPK is not deployed.
  565. When this flag is set, the function does not need to
  566. return a platform ROTPK, and the authentication
  567. framework uses the ROTPK in the certificate without
  568. verifying it against the platform value. This flag
  569. must not be used in a deployed production environment.
  570. Function: plat_get_nv_ctr()
  571. ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  572. ::
  573. Argument : void *, unsigned int *
  574. Return : int
  575. This function is mandatory when Trusted Board Boot is enabled. It returns the
  576. non-volatile counter value stored in the platform in the second argument. The
  577. cookie in the first argument may be used to select the counter in case the
  578. platform provides more than one (for example, on platforms that use the default
  579. TBBR CoT, the cookie will correspond to the OID values defined in
  580. TRUSTED_FW_NVCOUNTER_OID or NON_TRUSTED_FW_NVCOUNTER_OID).
  581. The function returns 0 on success. Any other value means the counter value could
  582. not be retrieved from the platform.
  583. Function: plat_set_nv_ctr()
  584. ~~~~~~~~~~~~~~~~~~~~~~~~~~~
  585. ::
  586. Argument : void *, unsigned int
  587. Return : int
  588. This function is mandatory when Trusted Board Boot is enabled. It sets a new
  589. counter value in the platform. The cookie in the first argument may be used to
  590. select the counter (as explained in plat_get_nv_ctr()). The second argument is
  591. the updated counter value to be written to the NV counter.
  592. The function returns 0 on success. Any other value means the counter value could
  593. not be updated.
  594. Function: plat_set_nv_ctr2()
  595. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  596. ::
  597. Argument : void *, const auth_img_desc_t *, unsigned int
  598. Return : int
  599. This function is optional when Trusted Board Boot is enabled. If this
  600. interface is defined, then ``plat_set_nv_ctr()`` need not be defined. The
  601. first argument passed is a cookie and is typically used to
  602. differentiate between a Non Trusted NV Counter and a Trusted NV
  603. Counter. The second argument is a pointer to an authentication image
  604. descriptor and may be used to decide if the counter is allowed to be
  605. updated or not. The third argument is the updated counter value to
  606. be written to the NV counter.
  607. The function returns 0 on success. Any other value means the counter value
  608. either could not be updated or the authentication image descriptor indicates
  609. that it is not allowed to be updated.
  610. Dynamic Root of Trust for Measurement support (in BL31)
  611. -------------------------------------------------------
  612. The functions mentioned in this section are mandatory, when platform enables
  613. DRTM_SUPPORT build flag.
  614. Function : plat_get_addr_mmap()
  615. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  616. ::
  617. Argument : void
  618. Return : const mmap_region_t *
  619. This function is used to return the address of the platform *address-map* table,
  620. which describes the regions of normal memory, memory mapped I/O
  621. and non-volatile memory.
  622. Function : plat_has_non_host_platforms()
  623. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  624. ::
  625. Argument : void
  626. Return : bool
  627. This function returns *true* if the platform has any trusted devices capable of
  628. DMA, otherwise returns *false*.
  629. Function : plat_has_unmanaged_dma_peripherals()
  630. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  631. ::
  632. Argument : void
  633. Return : bool
  634. This function returns *true* if platform uses peripherals whose DMA is not
  635. managed by an SMMU, otherwise returns *false*.
  636. Note -
  637. If the platform has peripherals that are not managed by the SMMU, then the
  638. platform should investigate such peripherals to determine whether they can
  639. be trusted, and such peripherals should be moved under "Non-host platforms"
  640. if they can be trusted.
  641. Function : plat_get_total_num_smmus()
  642. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  643. ::
  644. Argument : void
  645. Return : unsigned int
  646. This function returns the total number of SMMUs in the platform.
  647. Function : plat_enumerate_smmus()
  648. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  649. ::
  650. Argument : void
  651. Return : const uintptr_t *, size_t
  652. This function returns an array of SMMU addresses and the actual number of SMMUs
  653. reported by the platform.
  654. Function : plat_drtm_get_dma_prot_features()
  655. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  656. ::
  657. Argument : void
  658. Return : const plat_drtm_dma_prot_features_t*
  659. This function returns the address of plat_drtm_dma_prot_features_t structure
  660. containing the maximum number of protected regions and bitmap with the types
  661. of DMA protection supported by the platform.
  662. For more details see section 3.3 Table 6 of `DRTM`_ specification.
  663. Function : plat_drtm_dma_prot_get_max_table_bytes()
  664. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  665. ::
  666. Argument : void
  667. Return : uint64_t
  668. This function returns the maximum size of DMA protected regions table in
  669. bytes.
  670. Function : plat_drtm_get_tpm_features()
  671. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  672. ::
  673. Argument : void
  674. Return : const plat_drtm_tpm_features_t*
  675. This function returns the address of *plat_drtm_tpm_features_t* structure
  676. containing PCR usage schema, TPM-based hash, and firmware hash algorithm
  677. supported by the platform.
  678. Function : plat_drtm_get_min_size_normal_world_dce()
  679. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  680. ::
  681. Argument : void
  682. Return : uint64_t
  683. This function returns the size normal-world DCE of the platform.
  684. Function : plat_drtm_get_imp_def_dlme_region_size()
  685. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  686. ::
  687. Argument : void
  688. Return : uint64_t
  689. This function returns the size of implementation defined DLME region
  690. of the platform.
  691. Function : plat_drtm_get_tcb_hash_table_size()
  692. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  693. ::
  694. Argument : void
  695. Return : uint64_t
  696. This function returns the size of TCB hash table of the platform.
  697. Function : plat_drtm_get_tcb_hash_features()
  698. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  699. ::
  700. Argument : void
  701. Return : uint64_t
  702. This function returns the Maximum number of TCB hashes recorded by the
  703. platform.
  704. For more details see section 3.3 Table 6 of `DRTM`_ specification.
  705. Function : plat_drtm_validate_ns_region()
  706. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  707. ::
  708. Argument : uintptr_t, uintptr_t
  709. Return : int
  710. This function validates that given region is within the Non-Secure region
  711. of DRAM. This function takes a region start address and size an input
  712. arguments, and returns 0 on success and -1 on failure.
  713. Function : plat_set_drtm_error()
  714. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  715. ::
  716. Argument : uint64_t
  717. Return : int
  718. This function writes a 64 bit error code received as input into
  719. non-volatile storage and returns 0 on success and -1 on failure.
  720. Function : plat_get_drtm_error()
  721. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  722. ::
  723. Argument : uint64_t*
  724. Return : int
  725. This function reads a 64 bit error code from the non-volatile storage
  726. into the received address, and returns 0 on success and -1 on failure.
  727. Common mandatory function modifications
  728. ---------------------------------------
  729. The following functions are mandatory functions which need to be implemented
  730. by the platform port.
  731. Function : plat_my_core_pos()
  732. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  733. ::
  734. Argument : void
  735. Return : unsigned int
  736. This function returns the index of the calling CPU which is used as a
  737. CPU-specific linear index into blocks of memory (for example while allocating
  738. per-CPU stacks). This function will be invoked very early in the
  739. initialization sequence which mandates that this function should be
  740. implemented in assembly and should not rely on the availability of a C
  741. runtime environment. This function can clobber x0 - x8 and must preserve
  742. x9 - x29.
  743. This function plays a crucial role in the power domain topology framework in
  744. PSCI and details of this can be found in
  745. :ref:`PSCI Power Domain Tree Structure`.
  746. Function : plat_core_pos_by_mpidr()
  747. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  748. ::
  749. Argument : u_register_t
  750. Return : int
  751. This function validates the ``MPIDR`` of a CPU and converts it to an index,
  752. which can be used as a CPU-specific linear index into blocks of memory. In
  753. case the ``MPIDR`` is invalid, this function returns -1. This function will only
  754. be invoked by BL31 after the power domain topology is initialized and can
  755. utilize the C runtime environment. For further details about how TF-A
  756. represents the power domain topology and how this relates to the linear CPU
  757. index, please refer :ref:`PSCI Power Domain Tree Structure`.
  758. Function : plat_get_mbedtls_heap() [when TRUSTED_BOARD_BOOT == 1]
  759. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  760. ::
  761. Arguments : void **heap_addr, size_t *heap_size
  762. Return : int
  763. This function is invoked during Mbed TLS library initialisation to get a heap,
  764. by means of a starting address and a size. This heap will then be used
  765. internally by the Mbed TLS library. Hence, each BL stage that utilises Mbed TLS
  766. must be able to provide a heap to it.
  767. A helper function can be found in `drivers/auth/mbedtls/mbedtls_common.c` in
  768. which a heap is statically reserved during compile time inside every image
  769. (i.e. every BL stage) that utilises Mbed TLS. In this default implementation,
  770. the function simply returns the address and size of this "pre-allocated" heap.
  771. For a platform to use this default implementation, only a call to the helper
  772. from inside plat_get_mbedtls_heap() body is enough and nothing else is needed.
  773. However, by writting their own implementation, platforms have the potential to
  774. optimise memory usage. For example, on some Arm platforms, the Mbed TLS heap is
  775. shared between BL1 and BL2 stages and, thus, the necessary space is not reserved
  776. twice.
  777. On success the function should return 0 and a negative error code otherwise.
  778. Function : plat_get_enc_key_info() [when FW_ENC_STATUS == 0 or 1]
  779. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  780. ::
  781. Arguments : enum fw_enc_status_t fw_enc_status, uint8_t *key,
  782. size_t *key_len, unsigned int *flags, const uint8_t *img_id,
  783. size_t img_id_len
  784. Return : int
  785. This function provides a symmetric key (either SSK or BSSK depending on
  786. fw_enc_status) which is invoked during runtime decryption of encrypted
  787. firmware images. `plat/common/plat_bl_common.c` provides a dummy weak
  788. implementation for testing purposes which must be overridden by the platform
  789. trying to implement a real world firmware encryption use-case.
  790. It also allows the platform to pass symmetric key identifier rather than
  791. actual symmetric key which is useful in cases where the crypto backend provides
  792. secure storage for the symmetric key. So in this case ``ENC_KEY_IS_IDENTIFIER``
  793. flag must be set in ``flags``.
  794. In addition to above a platform may also choose to provide an image specific
  795. symmetric key/identifier using img_id.
  796. On success the function should return 0 and a negative error code otherwise.
  797. Note that this API depends on ``DECRYPTION_SUPPORT`` build flag.
  798. Function : plat_fwu_set_images_source() [when PSA_FWU_SUPPORT == 1]
  799. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  800. ::
  801. Argument : const struct fwu_metadata *metadata
  802. Return : void
  803. This function is mandatory when PSA_FWU_SUPPORT is enabled.
  804. It provides a means to retrieve image specification (offset in
  805. non-volatile storage and length) of active/updated images using the passed
  806. FWU metadata, and update I/O policies of active/updated images using retrieved
  807. image specification information.
  808. Further I/O layer operations such as I/O open, I/O read, etc. on these
  809. images rely on this function call.
  810. In Arm platforms, this function is used to set an I/O policy of the FIP image,
  811. container of all active/updated secure and non-secure images.
  812. Function : plat_fwu_set_metadata_image_source() [when PSA_FWU_SUPPORT == 1]
  813. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  814. ::
  815. Argument : unsigned int image_id, uintptr_t *dev_handle,
  816. uintptr_t *image_spec
  817. Return : int
  818. This function is mandatory when PSA_FWU_SUPPORT is enabled. It is
  819. responsible for setting up the platform I/O policy of the requested metadata
  820. image (either FWU_METADATA_IMAGE_ID or BKUP_FWU_METADATA_IMAGE_ID) that will
  821. be used to load this image from the platform's non-volatile storage.
  822. FWU metadata can not be always stored as a raw image in non-volatile storage
  823. to define its image specification (offset in non-volatile storage and length)
  824. statically in I/O policy.
  825. For example, the FWU metadata image is stored as a partition inside the GUID
  826. partition table image. Its specification is defined in the partition table
  827. that needs to be parsed dynamically.
  828. This function provides a means to retrieve such dynamic information to set
  829. the I/O policy of the FWU metadata image.
  830. Further I/O layer operations such as I/O open, I/O read, etc. on FWU metadata
  831. image relies on this function call.
  832. It returns '0' on success, otherwise a negative error value on error.
  833. Alongside, returns device handle and image specification from the I/O policy
  834. of the requested FWU metadata image.
  835. Function : plat_fwu_get_boot_idx() [when PSA_FWU_SUPPORT == 1]
  836. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  837. ::
  838. Argument : void
  839. Return : uint32_t
  840. This function is mandatory when PSA_FWU_SUPPORT is enabled. It provides the
  841. means to retrieve the boot index value from the platform. The boot index is the
  842. bank from which the platform has booted the firmware images.
  843. By default, the platform will read the metadata structure and try to boot from
  844. the active bank. If the platform fails to boot from the active bank due to
  845. reasons like an Authentication failure, or on crossing a set number of watchdog
  846. resets while booting from the active bank, the platform can then switch to boot
  847. from a different bank. This function then returns the bank that the platform
  848. should boot its images from.
  849. Common optional modifications
  850. -----------------------------
  851. The following are helper functions implemented by the firmware that perform
  852. common platform-specific tasks. A platform may choose to override these
  853. definitions.
  854. Function : plat_set_my_stack()
  855. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  856. ::
  857. Argument : void
  858. Return : void
  859. This function sets the current stack pointer to the normal memory stack that
  860. has been allocated for the current CPU. For BL images that only require a
  861. stack for the primary CPU, the UP version of the function is used. The size
  862. of the stack allocated to each CPU is specified by the platform defined
  863. constant ``PLATFORM_STACK_SIZE``.
  864. Common implementations of this function for the UP and MP BL images are
  865. provided in ``plat/common/aarch64/platform_up_stack.S`` and
  866. ``plat/common/aarch64/platform_mp_stack.S``
  867. Function : plat_get_my_stack()
  868. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  869. ::
  870. Argument : void
  871. Return : uintptr_t
  872. This function returns the base address of the normal memory stack that
  873. has been allocated for the current CPU. For BL images that only require a
  874. stack for the primary CPU, the UP version of the function is used. The size
  875. of the stack allocated to each CPU is specified by the platform defined
  876. constant ``PLATFORM_STACK_SIZE``.
  877. Common implementations of this function for the UP and MP BL images are
  878. provided in ``plat/common/aarch64/platform_up_stack.S`` and
  879. ``plat/common/aarch64/platform_mp_stack.S``
  880. Function : plat_report_exception()
  881. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  882. ::
  883. Argument : unsigned int
  884. Return : void
  885. A platform may need to report various information about its status when an
  886. exception is taken, for example the current exception level, the CPU security
  887. state (secure/non-secure), the exception type, and so on. This function is
  888. called in the following circumstances:
  889. - In BL1, whenever an exception is taken.
  890. - In BL2, whenever an exception is taken.
  891. The default implementation doesn't do anything, to avoid making assumptions
  892. about the way the platform displays its status information.
  893. For AArch64, this function receives the exception type as its argument.
  894. Possible values for exceptions types are listed in the
  895. ``include/common/bl_common.h`` header file. Note that these constants are not
  896. related to any architectural exception code; they are just a TF-A convention.
  897. For AArch32, this function receives the exception mode as its argument.
  898. Possible values for exception modes are listed in the
  899. ``include/lib/aarch32/arch.h`` header file.
  900. Function : plat_reset_handler()
  901. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  902. ::
  903. Argument : void
  904. Return : void
  905. A platform may need to do additional initialization after reset. This function
  906. allows the platform to do the platform specific initializations. Platform
  907. specific errata workarounds could also be implemented here. The API should
  908. preserve the values of callee saved registers x19 to x29.
  909. The default implementation doesn't do anything. If a platform needs to override
  910. the default implementation, refer to the :ref:`Firmware Design` for general
  911. guidelines.
  912. Function : plat_disable_acp()
  913. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  914. ::
  915. Argument : void
  916. Return : void
  917. This API allows a platform to disable the Accelerator Coherency Port (if
  918. present) during a cluster power down sequence. The default weak implementation
  919. doesn't do anything. Since this API is called during the power down sequence,
  920. it has restrictions for stack usage and it can use the registers x0 - x17 as
  921. scratch registers. It should preserve the value in x18 register as it is used
  922. by the caller to store the return address.
  923. Function : plat_error_handler()
  924. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  925. ::
  926. Argument : int
  927. Return : void
  928. This API is called when the generic code encounters an error situation from
  929. which it cannot continue. It allows the platform to perform error reporting or
  930. recovery actions (for example, reset the system). This function must not return.
  931. The parameter indicates the type of error using standard codes from ``errno.h``.
  932. Possible errors reported by the generic code are:
  933. - ``-EAUTH``: a certificate or image could not be authenticated (when Trusted
  934. Board Boot is enabled)
  935. - ``-ENOENT``: the requested image or certificate could not be found or an IO
  936. error was detected
  937. - ``-ENOMEM``: resources exhausted. TF-A does not use dynamic memory, so this
  938. error is usually an indication of an incorrect array size
  939. The default implementation simply spins.
  940. Function : plat_panic_handler()
  941. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  942. ::
  943. Argument : void
  944. Return : void
  945. This API is called when the generic code encounters an unexpected error
  946. situation from which it cannot recover. This function must not return,
  947. and must be implemented in assembly because it may be called before the C
  948. environment is initialized.
  949. .. note::
  950. The address from where it was called is stored in x30 (Link Register).
  951. The default implementation simply spins.
  952. Function : plat_system_reset()
  953. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  954. ::
  955. Argument : void
  956. Return : void
  957. This function is used by the platform to resets the system. It can be used
  958. in any specific use-case where system needs to be resetted. For example,
  959. in case of DRTM implementation this function reset the system after
  960. writing the DRTM error code in the non-volatile storage. This function
  961. never returns. Failure in reset results in panic.
  962. Function : plat_get_bl_image_load_info()
  963. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  964. ::
  965. Argument : void
  966. Return : bl_load_info_t *
  967. This function returns pointer to the list of images that the platform has
  968. populated to load. This function is invoked in BL2 to load the
  969. BL3xx images.
  970. Function : plat_get_next_bl_params()
  971. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  972. ::
  973. Argument : void
  974. Return : bl_params_t *
  975. This function returns a pointer to the shared memory that the platform has
  976. kept aside to pass TF-A related information that next BL image needs. This
  977. function is invoked in BL2 to pass this information to the next BL
  978. image.
  979. Function : plat_get_stack_protector_canary()
  980. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  981. ::
  982. Argument : void
  983. Return : u_register_t
  984. This function returns a random value that is used to initialize the canary used
  985. when the stack protector is enabled with ENABLE_STACK_PROTECTOR. A predictable
  986. value will weaken the protection as the attacker could easily write the right
  987. value as part of the attack most of the time. Therefore, it should return a
  988. true random number.
  989. .. warning::
  990. For the protection to be effective, the global data need to be placed at
  991. a lower address than the stack bases. Failure to do so would allow an
  992. attacker to overwrite the canary as part of the stack buffer overflow attack.
  993. Function : plat_flush_next_bl_params()
  994. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  995. ::
  996. Argument : void
  997. Return : void
  998. This function flushes to main memory all the image params that are passed to
  999. next image. This function is invoked in BL2 to flush this information
  1000. to the next BL image.
  1001. Function : plat_log_get_prefix()
  1002. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1003. ::
  1004. Argument : unsigned int
  1005. Return : const char *
  1006. This function defines the prefix string corresponding to the `log_level` to be
  1007. prepended to all the log output from TF-A. The `log_level` (argument) will
  1008. correspond to one of the standard log levels defined in debug.h. The platform
  1009. can override the common implementation to define a different prefix string for
  1010. the log output. The implementation should be robust to future changes that
  1011. increase the number of log levels.
  1012. Function : plat_get_soc_version()
  1013. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1014. ::
  1015. Argument : void
  1016. Return : int32_t
  1017. This function returns soc version which mainly consist of below fields
  1018. ::
  1019. soc_version[30:24] = JEP-106 continuation code for the SiP
  1020. soc_version[23:16] = JEP-106 identification code with parity bit for the SiP
  1021. soc_version[15:0] = Implementation defined SoC ID
  1022. Function : plat_get_soc_revision()
  1023. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1024. ::
  1025. Argument : void
  1026. Return : int32_t
  1027. This function returns soc revision in below format
  1028. ::
  1029. soc_revision[0:30] = SOC revision of specific SOC
  1030. Function : plat_is_smccc_feature_available()
  1031. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1032. ::
  1033. Argument : u_register_t
  1034. Return : int32_t
  1035. This function returns SMC_ARCH_CALL_SUCCESS if the platform supports
  1036. the SMCCC function specified in the argument; otherwise returns
  1037. SMC_ARCH_CALL_NOT_SUPPORTED.
  1038. Function : plat_can_cmo()
  1039. ~~~~~~~~~~~~~~~~~~~~~~~~~
  1040. ::
  1041. Argument : void
  1042. Return : uint64_t
  1043. When CONDITIONAL_CMO flag is enabled:
  1044. - This function indicates whether cache management operations should be
  1045. performed. It returns 0 if CMOs should be skipped and non-zero
  1046. otherwise.
  1047. - The function must not clobber x1, x2 and x3. It's also not safe to rely on
  1048. stack. Otherwise obey AAPCS.
  1049. Struct: plat_try_images_ops [optional]
  1050. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1051. This optional structure holds platform hooks for alternative images load.
  1052. It has to be defined in platform code and registered by calling
  1053. plat_setup_try_img_ops() function, passing it the address of the
  1054. plat_try_images_ops struct.
  1055. Function : plat_setup_try_img_ops [optional]
  1056. ............................................
  1057. ::
  1058. Argument : const struct plat_try_images_ops *
  1059. Return : void
  1060. This optional function is called to register platform try images ops, given
  1061. as argument.
  1062. Function : plat_try_images_ops.next_instance [optional]
  1063. .......................................................
  1064. ::
  1065. Argument : unsigned int image_id
  1066. Return : int
  1067. This optional function tries to load images from alternative places.
  1068. In case PSA FWU is not used, it can be any instance or media. If PSA FWU is
  1069. used, it is mandatory that the backup image is on the same media.
  1070. This is required for MTD devices like NAND.
  1071. The argument is the ID of the image for which we are looking for an alternative
  1072. place. It returns 0 in case of success and a negative errno value otherwise.
  1073. Modifications specific to a Boot Loader stage
  1074. ---------------------------------------------
  1075. Boot Loader Stage 1 (BL1)
  1076. -------------------------
  1077. BL1 implements the reset vector where execution starts from after a cold or
  1078. warm boot. For each CPU, BL1 is responsible for the following tasks:
  1079. #. Handling the reset as described in section 2.2
  1080. #. In the case of a cold boot and the CPU being the primary CPU, ensuring that
  1081. only this CPU executes the remaining BL1 code, including loading and passing
  1082. control to the BL2 stage.
  1083. #. Identifying and starting the Firmware Update process (if required).
  1084. #. Loading the BL2 image from non-volatile storage into secure memory at the
  1085. address specified by the platform defined constant ``BL2_BASE``.
  1086. #. Populating a ``meminfo`` structure with the following information in memory,
  1087. accessible by BL2 immediately upon entry.
  1088. ::
  1089. meminfo.total_base = Base address of secure RAM visible to BL2
  1090. meminfo.total_size = Size of secure RAM visible to BL2
  1091. By default, BL1 places this ``meminfo`` structure at the end of secure
  1092. memory visible to BL2.
  1093. It is possible for the platform to decide where it wants to place the
  1094. ``meminfo`` structure for BL2 or restrict the amount of memory visible to
  1095. BL2 by overriding the weak default implementation of
  1096. ``bl1_plat_handle_post_image_load`` API.
  1097. The following functions need to be implemented by the platform port to enable
  1098. BL1 to perform the above tasks.
  1099. Function : bl1_early_platform_setup() [mandatory]
  1100. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1101. ::
  1102. Argument : void
  1103. Return : void
  1104. This function executes with the MMU and data caches disabled. It is only called
  1105. by the primary CPU.
  1106. On Arm standard platforms, this function:
  1107. - Enables a secure instance of SP805 to act as the Trusted Watchdog.
  1108. - Initializes a UART (PL011 console), which enables access to the ``printf``
  1109. family of functions in BL1.
  1110. - Enables issuing of snoop and DVM (Distributed Virtual Memory) requests to
  1111. the CCI slave interface corresponding to the cluster that includes the
  1112. primary CPU.
  1113. Function : bl1_plat_arch_setup() [mandatory]
  1114. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1115. ::
  1116. Argument : void
  1117. Return : void
  1118. This function performs any platform-specific and architectural setup that the
  1119. platform requires. Platform-specific setup might include configuration of
  1120. memory controllers and the interconnect.
  1121. In Arm standard platforms, this function enables the MMU.
  1122. This function helps fulfill requirement 2 above.
  1123. Function : bl1_platform_setup() [mandatory]
  1124. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1125. ::
  1126. Argument : void
  1127. Return : void
  1128. This function executes with the MMU and data caches enabled. It is responsible
  1129. for performing any remaining platform-specific setup that can occur after the
  1130. MMU and data cache have been enabled.
  1131. In Arm standard platforms, this function initializes the storage abstraction
  1132. layer used to load the next bootloader image.
  1133. This function helps fulfill requirement 4 above.
  1134. Function : bl1_plat_sec_mem_layout() [mandatory]
  1135. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1136. ::
  1137. Argument : void
  1138. Return : meminfo *
  1139. This function should only be called on the cold boot path. It executes with the
  1140. MMU and data caches enabled. The pointer returned by this function must point to
  1141. a ``meminfo`` structure containing the extents and availability of secure RAM for
  1142. the BL1 stage.
  1143. ::
  1144. meminfo.total_base = Base address of secure RAM visible to BL1
  1145. meminfo.total_size = Size of secure RAM visible to BL1
  1146. This information is used by BL1 to load the BL2 image in secure RAM. BL1 also
  1147. populates a similar structure to tell BL2 the extents of memory available for
  1148. its own use.
  1149. This function helps fulfill requirements 4 and 5 above.
  1150. Function : bl1_plat_prepare_exit() [optional]
  1151. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1152. ::
  1153. Argument : entry_point_info_t *
  1154. Return : void
  1155. This function is called prior to exiting BL1 in response to the
  1156. ``BL1_SMC_RUN_IMAGE`` SMC request raised by BL2. It should be used to perform
  1157. platform specific clean up or bookkeeping operations before transferring
  1158. control to the next image. It receives the address of the ``entry_point_info_t``
  1159. structure passed from BL2. This function runs with MMU disabled.
  1160. Function : bl1_plat_set_ep_info() [optional]
  1161. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1162. ::
  1163. Argument : unsigned int image_id, entry_point_info_t *ep_info
  1164. Return : void
  1165. This function allows platforms to override ``ep_info`` for the given ``image_id``.
  1166. The default implementation just returns.
  1167. Function : bl1_plat_get_next_image_id() [optional]
  1168. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1169. ::
  1170. Argument : void
  1171. Return : unsigned int
  1172. This and the following function must be overridden to enable the FWU feature.
  1173. BL1 calls this function after platform setup to identify the next image to be
  1174. loaded and executed. If the platform returns ``BL2_IMAGE_ID`` then BL1 proceeds
  1175. with the normal boot sequence, which loads and executes BL2. If the platform
  1176. returns a different image id, BL1 assumes that Firmware Update is required.
  1177. The default implementation always returns ``BL2_IMAGE_ID``. The Arm development
  1178. platforms override this function to detect if firmware update is required, and
  1179. if so, return the first image in the firmware update process.
  1180. Function : bl1_plat_get_image_desc() [optional]
  1181. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1182. ::
  1183. Argument : unsigned int image_id
  1184. Return : image_desc_t *
  1185. BL1 calls this function to get the image descriptor information ``image_desc_t``
  1186. for the provided ``image_id`` from the platform.
  1187. The default implementation always returns a common BL2 image descriptor. Arm
  1188. standard platforms return an image descriptor corresponding to BL2 or one of
  1189. the firmware update images defined in the Trusted Board Boot Requirements
  1190. specification.
  1191. Function : bl1_plat_handle_pre_image_load() [optional]
  1192. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1193. ::
  1194. Argument : unsigned int image_id
  1195. Return : int
  1196. This function can be used by the platforms to update/use image information
  1197. corresponding to ``image_id``. This function is invoked in BL1, both in cold
  1198. boot and FWU code path, before loading the image.
  1199. Function : bl1_plat_calc_bl2_layout() [optional]
  1200. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1201. ::
  1202. Argument : const meminfo_t *bl1_mem_layout, meminfo_t *bl2_mem_layout
  1203. Return : void
  1204. This utility function calculates the memory layout of BL2, representing it in a
  1205. `meminfo_t` structure. The default implementation derives this layout from the
  1206. positioning of BL1’s RW data at the top of the memory layout.
  1207. Function : bl1_plat_handle_post_image_load() [optional]
  1208. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1209. ::
  1210. Argument : unsigned int image_id
  1211. Return : int
  1212. This function can be used by the platforms to update/use image information
  1213. corresponding to ``image_id``. This function is invoked in BL1, both in cold
  1214. boot and FWU code path, after loading and authenticating the image.
  1215. The default weak implementation of this function calculates the amount of
  1216. Trusted SRAM that can be used by BL2 and allocates a ``meminfo_t``
  1217. structure at the beginning of this free memory and populates it. The address
  1218. of ``meminfo_t`` structure is updated in ``arg1`` of the entrypoint
  1219. information to BL2.
  1220. Function : bl1_plat_fwu_done() [optional]
  1221. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1222. ::
  1223. Argument : unsigned int image_id, uintptr_t image_src,
  1224. unsigned int image_size
  1225. Return : void
  1226. BL1 calls this function when the FWU process is complete. It must not return.
  1227. The platform may override this function to take platform specific action, for
  1228. example to initiate the normal boot flow.
  1229. The default implementation spins forever.
  1230. Function : bl1_plat_mem_check() [mandatory]
  1231. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1232. ::
  1233. Argument : uintptr_t mem_base, unsigned int mem_size,
  1234. unsigned int flags
  1235. Return : int
  1236. BL1 calls this function while handling FWU related SMCs, more specifically when
  1237. copying or authenticating an image. Its responsibility is to ensure that the
  1238. region of memory identified by ``mem_base`` and ``mem_size`` is mapped in BL1, and
  1239. that this memory corresponds to either a secure or non-secure memory region as
  1240. indicated by the security state of the ``flags`` argument.
  1241. This function can safely assume that the value resulting from the addition of
  1242. ``mem_base`` and ``mem_size`` fits into a ``uintptr_t`` type variable and does not
  1243. overflow.
  1244. This function must return 0 on success, a non-null error code otherwise.
  1245. The default implementation of this function asserts therefore platforms must
  1246. override it when using the FWU feature.
  1247. Boot Loader Stage 2 (BL2)
  1248. -------------------------
  1249. The BL2 stage is executed only by the primary CPU, which is determined in BL1
  1250. using the ``platform_is_primary_cpu()`` function. BL1 passed control to BL2 at
  1251. ``BL2_BASE``. BL2 executes in Secure EL1 and and invokes
  1252. ``plat_get_bl_image_load_info()`` to retrieve the list of images to load from
  1253. non-volatile storage to secure/non-secure RAM. After all the images are loaded
  1254. then BL2 invokes ``plat_get_next_bl_params()`` to get the list of executable
  1255. images to be passed to the next BL image.
  1256. The following functions must be implemented by the platform port to enable BL2
  1257. to perform the above tasks.
  1258. Function : bl2_early_platform_setup2() [mandatory]
  1259. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1260. ::
  1261. Argument : u_register_t, u_register_t, u_register_t, u_register_t
  1262. Return : void
  1263. This function executes with the MMU and data caches disabled. It is only called
  1264. by the primary CPU. The 4 arguments are passed by BL1 to BL2 and these arguments
  1265. are platform specific.
  1266. On Arm standard platforms, the arguments received are :
  1267. arg0 - Points to load address of FW_CONFIG
  1268. arg1 - ``meminfo`` structure populated by BL1. The platform copies
  1269. the contents of ``meminfo`` as it may be subsequently overwritten by BL2.
  1270. On Arm standard platforms, this function also:
  1271. - Initializes a UART (PL011 console), which enables access to the ``printf``
  1272. family of functions in BL2.
  1273. - Initializes the storage abstraction layer used to load further bootloader
  1274. images. It is necessary to do this early on platforms with a SCP_BL2 image,
  1275. since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
  1276. Function : bl2_plat_arch_setup() [mandatory]
  1277. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1278. ::
  1279. Argument : void
  1280. Return : void
  1281. This function executes with the MMU and data caches disabled. It is only called
  1282. by the primary CPU.
  1283. The purpose of this function is to perform any architectural initialization
  1284. that varies across platforms.
  1285. On Arm standard platforms, this function enables the MMU.
  1286. Function : bl2_platform_setup() [mandatory]
  1287. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1288. ::
  1289. Argument : void
  1290. Return : void
  1291. This function may execute with the MMU and data caches enabled if the platform
  1292. port does the necessary initialization in ``bl2_plat_arch_setup()``. It is only
  1293. called by the primary CPU.
  1294. The purpose of this function is to perform any platform initialization
  1295. specific to BL2.
  1296. In Arm standard platforms, this function performs security setup, including
  1297. configuration of the TrustZone controller to allow non-secure masters access
  1298. to most of DRAM. Part of DRAM is reserved for secure world use.
  1299. Function : bl2_plat_handle_pre_image_load() [optional]
  1300. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1301. ::
  1302. Argument : unsigned int
  1303. Return : int
  1304. This function can be used by the platforms to update/use image information
  1305. for given ``image_id``. This function is currently invoked in BL2 before
  1306. loading each image.
  1307. Function : bl2_plat_handle_post_image_load() [optional]
  1308. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1309. ::
  1310. Argument : unsigned int
  1311. Return : int
  1312. This function can be used by the platforms to update/use image information
  1313. for given ``image_id``. This function is currently invoked in BL2 after
  1314. loading each image.
  1315. Function : bl2_plat_preload_setup [optional]
  1316. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1317. ::
  1318. Argument : void
  1319. Return : void
  1320. This optional function performs any BL2 platform initialization
  1321. required before image loading, that is not done later in
  1322. bl2_platform_setup().
  1323. Boot Loader Stage 2 (BL2) at EL3
  1324. --------------------------------
  1325. When the platform has a non-TF-A Boot ROM it is desirable to jump
  1326. directly to BL2 instead of TF-A BL1. In this case BL2 is expected to
  1327. execute at EL3 instead of executing at EL1. Refer to the :ref:`Firmware Design`
  1328. document for more information.
  1329. All mandatory functions of BL2 must be implemented, except the functions
  1330. bl2_early_platform_setup and bl2_el3_plat_arch_setup, because
  1331. their work is done now by bl2_el3_early_platform_setup and
  1332. bl2_el3_plat_arch_setup. These functions should generally implement
  1333. the bl1_plat_xxx() and bl2_plat_xxx() functionality combined.
  1334. Function : bl2_el3_early_platform_setup() [mandatory]
  1335. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1336. ::
  1337. Argument : u_register_t, u_register_t, u_register_t, u_register_t
  1338. Return : void
  1339. This function executes with the MMU and data caches disabled. It is only called
  1340. by the primary CPU. This function receives four parameters which can be used
  1341. by the platform to pass any needed information from the Boot ROM to BL2.
  1342. On Arm standard platforms, this function does the following:
  1343. - Initializes a UART (PL011 console), which enables access to the ``printf``
  1344. family of functions in BL2.
  1345. - Initializes the storage abstraction layer used to load further bootloader
  1346. images. It is necessary to do this early on platforms with a SCP_BL2 image,
  1347. since the later ``bl2_platform_setup`` must be done after SCP_BL2 is loaded.
  1348. - Initializes the private variables that define the memory layout used.
  1349. Function : bl2_el3_plat_arch_setup() [mandatory]
  1350. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1351. ::
  1352. Argument : void
  1353. Return : void
  1354. This function executes with the MMU and data caches disabled. It is only called
  1355. by the primary CPU.
  1356. The purpose of this function is to perform any architectural initialization
  1357. that varies across platforms.
  1358. On Arm standard platforms, this function enables the MMU.
  1359. Function : bl2_el3_plat_prepare_exit() [optional]
  1360. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1361. ::
  1362. Argument : void
  1363. Return : void
  1364. This function is called prior to exiting BL2 and run the next image.
  1365. It should be used to perform platform specific clean up or bookkeeping
  1366. operations before transferring control to the next image. This function
  1367. runs with MMU disabled.
  1368. FWU Boot Loader Stage 2 (BL2U)
  1369. ------------------------------
  1370. The AP Firmware Updater Configuration, BL2U, is an optional part of the FWU
  1371. process and is executed only by the primary CPU. BL1 passes control to BL2U at
  1372. ``BL2U_BASE``. BL2U executes in Secure-EL1 and is responsible for:
  1373. #. (Optional) Transferring the optional SCP_BL2U binary image from AP secure
  1374. memory to SCP RAM. BL2U uses the SCP_BL2U ``image_info`` passed by BL1.
  1375. ``SCP_BL2U_BASE`` defines the address in AP secure memory where SCP_BL2U
  1376. should be copied from. Subsequent handling of the SCP_BL2U image is
  1377. implemented by the platform specific ``bl2u_plat_handle_scp_bl2u()`` function.
  1378. If ``SCP_BL2U_BASE`` is not defined then this step is not performed.
  1379. #. Any platform specific setup required to perform the FWU process. For
  1380. example, Arm standard platforms initialize the TZC controller so that the
  1381. normal world can access DDR memory.
  1382. The following functions must be implemented by the platform port to enable
  1383. BL2U to perform the tasks mentioned above.
  1384. Function : bl2u_early_platform_setup() [mandatory]
  1385. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1386. ::
  1387. Argument : meminfo *mem_info, void *plat_info
  1388. Return : void
  1389. This function executes with the MMU and data caches disabled. It is only
  1390. called by the primary CPU. The arguments to this function is the address
  1391. of the ``meminfo`` structure and platform specific info provided by BL1.
  1392. The platform may copy the contents of the ``mem_info`` and ``plat_info`` into
  1393. private storage as the original memory may be subsequently overwritten by BL2U.
  1394. On Arm CSS platforms ``plat_info`` is interpreted as an ``image_info_t`` structure,
  1395. to extract SCP_BL2U image information, which is then copied into a private
  1396. variable.
  1397. Function : bl2u_plat_arch_setup() [mandatory]
  1398. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1399. ::
  1400. Argument : void
  1401. Return : void
  1402. This function executes with the MMU and data caches disabled. It is only
  1403. called by the primary CPU.
  1404. The purpose of this function is to perform any architectural initialization
  1405. that varies across platforms, for example enabling the MMU (since the memory
  1406. map differs across platforms).
  1407. Function : bl2u_platform_setup() [mandatory]
  1408. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1409. ::
  1410. Argument : void
  1411. Return : void
  1412. This function may execute with the MMU and data caches enabled if the platform
  1413. port does the necessary initialization in ``bl2u_plat_arch_setup()``. It is only
  1414. called by the primary CPU.
  1415. The purpose of this function is to perform any platform initialization
  1416. specific to BL2U.
  1417. In Arm standard platforms, this function performs security setup, including
  1418. configuration of the TrustZone controller to allow non-secure masters access
  1419. to most of DRAM. Part of DRAM is reserved for secure world use.
  1420. Function : bl2u_plat_handle_scp_bl2u() [optional]
  1421. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1422. ::
  1423. Argument : void
  1424. Return : int
  1425. This function is used to perform any platform-specific actions required to
  1426. handle the SCP firmware. Typically it transfers the image into SCP memory using
  1427. a platform-specific protocol and waits until SCP executes it and signals to the
  1428. Application Processor (AP) for BL2U execution to continue.
  1429. This function returns 0 on success, a negative error code otherwise.
  1430. This function is included if SCP_BL2U_BASE is defined.
  1431. Boot Loader Stage 3-1 (BL31)
  1432. ----------------------------
  1433. During cold boot, the BL31 stage is executed only by the primary CPU. This is
  1434. determined in BL1 using the ``platform_is_primary_cpu()`` function. BL1 passes
  1435. control to BL31 at ``BL31_BASE``. During warm boot, BL31 is executed by all
  1436. CPUs. BL31 executes at EL3 and is responsible for:
  1437. #. Re-initializing all architectural and platform state. Although BL1 performs
  1438. some of this initialization, BL31 remains resident in EL3 and must ensure
  1439. that EL3 architectural and platform state is completely initialized. It
  1440. should make no assumptions about the system state when it receives control.
  1441. #. Passing control to a normal world BL image, pre-loaded at a platform-
  1442. specific address by BL2. On ARM platforms, BL31 uses the ``bl_params`` list
  1443. populated by BL2 in memory to do this.
  1444. #. Providing runtime firmware services. Currently, BL31 only implements a
  1445. subset of the Power State Coordination Interface (PSCI) API as a runtime
  1446. service. See :ref:`psci_in_bl31` below for details of porting the PSCI
  1447. implementation.
  1448. #. Optionally passing control to the BL32 image, pre-loaded at a platform-
  1449. specific address by BL2. BL31 exports a set of APIs that allow runtime
  1450. services to specify the security state in which the next image should be
  1451. executed and run the corresponding image. On ARM platforms, BL31 uses the
  1452. ``bl_params`` list populated by BL2 in memory to do this.
  1453. If BL31 is a reset vector, It also needs to handle the reset as specified in
  1454. section 2.2 before the tasks described above.
  1455. The following functions must be implemented by the platform port to enable BL31
  1456. to perform the above tasks.
  1457. Function : bl31_early_platform_setup2() [mandatory]
  1458. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1459. ::
  1460. Argument : u_register_t, u_register_t, u_register_t, u_register_t
  1461. Return : void
  1462. This function executes with the MMU and data caches disabled. It is only called
  1463. by the primary CPU. BL2 can pass 4 arguments to BL31 and these arguments are
  1464. platform specific.
  1465. In Arm standard platforms, the arguments received are :
  1466. arg0 - The pointer to the head of `bl_params_t` list
  1467. which is list of executable images following BL31,
  1468. arg1 - Points to load address of SOC_FW_CONFIG if present
  1469. except in case of Arm FVP and Juno platform.
  1470. In case of Arm FVP and Juno platform, points to load address
  1471. of FW_CONFIG.
  1472. arg2 - Points to load address of HW_CONFIG if present
  1473. arg3 - A special value to verify platform parameters from BL2 to BL31. Not
  1474. used in release builds.
  1475. The function runs through the `bl_param_t` list and extracts the entry point
  1476. information for BL32 and BL33. It also performs the following:
  1477. - Initialize a UART (PL011 console), which enables access to the ``printf``
  1478. family of functions in BL31.
  1479. - Enable issuing of snoop and DVM (Distributed Virtual Memory) requests to the
  1480. CCI slave interface corresponding to the cluster that includes the primary
  1481. CPU.
  1482. Function : bl31_plat_arch_setup() [mandatory]
  1483. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1484. ::
  1485. Argument : void
  1486. Return : void
  1487. This function executes with the MMU and data caches disabled. It is only called
  1488. by the primary CPU.
  1489. The purpose of this function is to perform any architectural initialization
  1490. that varies across platforms.
  1491. On Arm standard platforms, this function enables the MMU.
  1492. Function : bl31_platform_setup() [mandatory]
  1493. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1494. ::
  1495. Argument : void
  1496. Return : void
  1497. This function may execute with the MMU and data caches enabled if the platform
  1498. port does the necessary initialization in ``bl31_plat_arch_setup()``. It is only
  1499. called by the primary CPU.
  1500. The purpose of this function is to complete platform initialization so that both
  1501. BL31 runtime services and normal world software can function correctly.
  1502. On Arm standard platforms, this function does the following:
  1503. - Initialize the generic interrupt controller.
  1504. Depending on the GIC driver selected by the platform, the appropriate GICv2
  1505. or GICv3 initialization will be done, which mainly consists of:
  1506. - Enable secure interrupts in the GIC CPU interface.
  1507. - Disable the legacy interrupt bypass mechanism.
  1508. - Configure the priority mask register to allow interrupts of all priorities
  1509. to be signaled to the CPU interface.
  1510. - Mark SGIs 8-15 and the other secure interrupts on the platform as secure.
  1511. - Target all secure SPIs to CPU0.
  1512. - Enable these secure interrupts in the GIC distributor.
  1513. - Configure all other interrupts as non-secure.
  1514. - Enable signaling of secure interrupts in the GIC distributor.
  1515. - Enable system-level implementation of the generic timer counter through the
  1516. memory mapped interface.
  1517. - Grant access to the system counter timer module
  1518. - Initialize the power controller device.
  1519. In particular, initialise the locks that prevent concurrent accesses to the
  1520. power controller device.
  1521. Function : bl31_plat_runtime_setup() [optional]
  1522. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1523. ::
  1524. Argument : void
  1525. Return : void
  1526. The purpose of this function is allow the platform to perform any BL31 runtime
  1527. setup just prior to BL31 exit during cold boot. The default weak
  1528. implementation of this function will invoke ``console_switch_state()`` to switch
  1529. console output to consoles marked for use in the ``runtime`` state.
  1530. Function : bl31_plat_get_next_image_ep_info() [mandatory]
  1531. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1532. ::
  1533. Argument : uint32_t
  1534. Return : entry_point_info *
  1535. This function may execute with the MMU and data caches enabled if the platform
  1536. port does the necessary initializations in ``bl31_plat_arch_setup()``.
  1537. This function is called by ``bl31_main()`` to retrieve information provided by
  1538. BL2 for the next image in the security state specified by the argument. BL31
  1539. uses this information to pass control to that image in the specified security
  1540. state. This function must return a pointer to the ``entry_point_info`` structure
  1541. (that was copied during ``bl31_early_platform_setup()``) if the image exists. It
  1542. should return NULL otherwise.
  1543. Function : plat_rmmd_get_cca_attest_token() [mandatory when ENABLE_RME == 1]
  1544. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1545. ::
  1546. Argument : uintptr_t, size_t *, uintptr_t, size_t, size_t *
  1547. Return : int
  1548. This function returns the Platform attestation token. If the full token does
  1549. not fit in the buffer, the function will return a hunk of the token and
  1550. indicate how many bytes were copied and how many are pending. Multiple calls
  1551. to this function may be needed to retrieve the entire token.
  1552. The parameters of the function are:
  1553. arg0 - A pointer to the buffer where the Platform token should be copied by
  1554. this function. If the platform token does not completely fit in the
  1555. buffer, the function may return a piece of the token only.
  1556. arg1 - Contains the size (in bytes) of the buffer passed in arg0. In
  1557. addition, this parameter is used by the function to return the size
  1558. of the platform token length hunk copied to the buffer.
  1559. arg2 - A pointer to the buffer where the challenge object is stored.
  1560. arg3 - The length of the challenge object in bytes. Possible values are 32,
  1561. 48 and 64. This argument must be zero for subsequent calls to
  1562. retrieve the remaining hunks of the token.
  1563. arg4 - Returns the remaining length of the token (in bytes) that is yet to
  1564. be returned in further calls.
  1565. The function returns 0 on success, -EINVAL on failure and -EAGAIN if the
  1566. resource associated with the platform token retrieval is busy.
  1567. Function : plat_rmmd_get_cca_realm_attest_key() [mandatory when ENABLE_RME == 1]
  1568. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1569. ::
  1570. Argument : uintptr_t, size_t *, unsigned int
  1571. Return : int
  1572. This function returns the delegated realm attestation key which will be used to
  1573. sign Realm attestation token. The API currently only supports P-384 ECC curve
  1574. key.
  1575. The parameters of the function are:
  1576. arg0 - A pointer to the buffer where the attestation key should be copied
  1577. by this function. The buffer must be big enough to hold the
  1578. attestation key.
  1579. arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
  1580. function returns the attestation key length in this parameter.
  1581. arg2 - The type of the elliptic curve to which the requested attestation key
  1582. belongs.
  1583. The function returns 0 on success, -EINVAL on failure.
  1584. Function : plat_rmmd_get_el3_rmm_shared_mem() [when ENABLE_RME == 1]
  1585. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1586. ::
  1587. Argument : uintptr_t *
  1588. Return : size_t
  1589. This function returns the size of the shared area between EL3 and RMM (or 0 on
  1590. failure). A pointer to the shared area (or a NULL pointer on failure) is stored
  1591. in the pointer passed as argument.
  1592. Function : plat_rmmd_load_manifest() [when ENABLE_RME == 1]
  1593. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1594. ::
  1595. Arguments : rmm_manifest_t *manifest
  1596. Return : int
  1597. When ENABLE_RME is enabled, this function populates a boot manifest for the
  1598. RMM image and stores it in the area specified by manifest.
  1599. When ENABLE_RME is disabled, this function is not used.
  1600. Function : plat_rmmd_el3_token_sign_push_req() [mandatory when RMMD_ENABLE_EL3_TOKEN_SIGN == 1]
  1601. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1602. ::
  1603. Arguments : const struct el3_token_sign_request *req
  1604. Return : int
  1605. Queue realm attestation token signing request from the RMM in EL3. The interface between
  1606. the RMM and EL3 is modeled as a queue but the underlying implementation may be different,
  1607. so long as the semantics of queuing and the error codes are used as defined below.
  1608. See :ref:`el3_token_sign_request_struct` for definition of the request structure.
  1609. Optional interface from the RMM-EL3 interface v0.4 onwards.
  1610. The parameters of the functions are:
  1611. arg0: Pointer to the token sign request to be pushed to EL3.
  1612. The structure must be located in the RMM-EL3 shared
  1613. memory buffer and must be locked before use.
  1614. Return codes:
  1615. - E_RMM_OK On Success.
  1616. - E_RMM_INVAL If the arguments are invalid.
  1617. - E_RMM_AGAIN Indicates that the request was not queued since the
  1618. queue in EL3 is full. This may also be returned for any reason
  1619. or situation in the system, that prevents accepting the request
  1620. from the RMM.
  1621. - E_RMM_UNK If the SMC is not implemented or if interface
  1622. version is < 0.4.
  1623. Function : plat_rmmd_el3_token_sign_pull_resp() [mandatory when RMMD_ENABLE_EL3_TOKEN_SIGN == 1]
  1624. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1625. ::
  1626. Arguments : struct el3_token_sign_response *resp
  1627. Return : int
  1628. Populate the attestation signing response in the ``resp`` parameter. The interface between
  1629. the RMM and EL3 is modeled as a queue for responses but the underlying implementation may
  1630. be different, so long as the semantics of queuing and the error codes are used as defined
  1631. below.
  1632. See :ref:`el3_token_sign_response_struct` for definition of the response structure.
  1633. Optional interface from the RMM-EL3 interface v0.4 onwards.
  1634. The parameters of the functions are:
  1635. resp: Pointer to the token sign response to get from EL3.
  1636. The structure must be located in the RMM-EL3 shared
  1637. memory buffer and must be locked before use.
  1638. Return:
  1639. - E_RMM_OK On Success.
  1640. - E_RMM_INVAL If the arguments are invalid.
  1641. - E_RMM_AGAIN Indicates that a response is not ready yet.
  1642. - E_RMM_UNK If the SMC is not implemented or if interface
  1643. version is < 0.4.
  1644. Function : plat_rmmd_el3_token_sign_get_rak_pub() [mandatory when RMMD_ENABLE_EL3_TOKEN_SIGN == 1]
  1645. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1646. ::
  1647. Argument : uintptr_t, size_t *, unsigned int
  1648. Return : int
  1649. This function returns the public portion of the realm attestation key which will be used to
  1650. sign Realm attestation token. Typically, with delegated attestation, the private key is
  1651. returned, however, there may be platforms where the private key bits are better protected
  1652. in a platform specific manner such that the private key is not exposed. In such cases,
  1653. the RMM will only cache the public key and forward any requests such as signing, that
  1654. uses the private key to EL3. The API currently only supports P-384 ECC curve key.
  1655. This is an optional interface from the RMM-EL3 interface v0.4 onwards.
  1656. The parameters of the function are:
  1657. arg0 - A pointer to the buffer where the public key should be copied
  1658. by this function. The buffer must be big enough to hold the
  1659. attestation key.
  1660. arg1 - Contains the size (in bytes) of the buffer passed in arg0. The
  1661. function returns the attestation key length in this parameter.
  1662. arg2 - The type of the elliptic curve to which the requested attestation key
  1663. belongs.
  1664. The function returns E_RMM_OK on success, RMM_E_INVAL if arguments are invalid and
  1665. E_RMM_UNK if the SMC is not implemented or if interface version is < 0.4.
  1666. Function : bl31_plat_enable_mmu [optional]
  1667. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1668. ::
  1669. Argument : uint32_t
  1670. Return : void
  1671. This function enables the MMU. The boot code calls this function with MMU and
  1672. caches disabled. This function should program necessary registers to enable
  1673. translation, and upon return, the MMU on the calling PE must be enabled.
  1674. The function must honor flags passed in the first argument. These flags are
  1675. defined by the translation library, and can be found in the file
  1676. ``include/lib/xlat_tables/xlat_mmu_helpers.h``.
  1677. On DynamIQ systems, this function must not use stack while enabling MMU, which
  1678. is how the function in xlat table library version 2 is implemented.
  1679. Function : plat_init_apkey [optional]
  1680. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1681. ::
  1682. Argument : void
  1683. Return : uint128_t
  1684. This function returns the 128-bit value which can be used to program ARMv8.3
  1685. pointer authentication keys.
  1686. The value should be obtained from a reliable source of randomness.
  1687. This function is only needed if ARMv8.3 pointer authentication is used in the
  1688. Trusted Firmware by building with ``BRANCH_PROTECTION`` option set to non-zero.
  1689. Function : plat_get_syscnt_freq2() [mandatory]
  1690. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1691. ::
  1692. Argument : void
  1693. Return : unsigned int
  1694. This function is used by the architecture setup code to retrieve the counter
  1695. frequency for the CPU's generic timer. This value will be programmed into the
  1696. ``CNTFRQ_EL0`` register. In Arm standard platforms, it returns the base frequency
  1697. of the system counter, which is retrieved from the first entry in the frequency
  1698. modes table.
  1699. #define : PLAT_PERCPU_BAKERY_LOCK_SIZE [optional]
  1700. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1701. When ``USE_COHERENT_MEM = 0``, this constant defines the total memory (in
  1702. bytes) aligned to the cache line boundary that should be allocated per-cpu to
  1703. accommodate all the bakery locks.
  1704. If this constant is not defined when ``USE_COHERENT_MEM = 0``, the linker
  1705. calculates the size of the ``.bakery_lock`` input section, aligns it to the
  1706. nearest ``CACHE_WRITEBACK_GRANULE``, multiplies it with ``PLATFORM_CORE_COUNT``
  1707. and stores the result in a linker symbol. This constant prevents a platform
  1708. from relying on the linker and provide a more efficient mechanism for
  1709. accessing per-cpu bakery lock information.
  1710. If this constant is defined and its value is not equal to the value
  1711. calculated by the linker then a link time assertion is raised. A compile time
  1712. assertion is raised if the value of the constant is not aligned to the cache
  1713. line boundary.
  1714. .. _porting_guide_sdei_requirements:
  1715. SDEI porting requirements
  1716. ~~~~~~~~~~~~~~~~~~~~~~~~~
  1717. The |SDEI| dispatcher requires the platform to provide the following macros
  1718. and functions, of which some are optional, and some others mandatory.
  1719. Macros
  1720. ......
  1721. Macro: PLAT_SDEI_NORMAL_PRI [mandatory]
  1722. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1723. This macro must be defined to the EL3 exception priority level associated with
  1724. Normal |SDEI| events on the platform. This must have a higher value
  1725. (therefore of lower priority) than ``PLAT_SDEI_CRITICAL_PRI``.
  1726. Macro: PLAT_SDEI_CRITICAL_PRI [mandatory]
  1727. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1728. This macro must be defined to the EL3 exception priority level associated with
  1729. Critical |SDEI| events on the platform. This must have a lower value
  1730. (therefore of higher priority) than ``PLAT_SDEI_NORMAL_PRI``.
  1731. **Note**: |SDEI| exception priorities must be the lowest among Secure
  1732. priorities. Among the |SDEI| exceptions, Critical |SDEI| priority must
  1733. be higher than Normal |SDEI| priority.
  1734. Functions
  1735. .........
  1736. Function: int plat_sdei_validate_entry_point() [optional]
  1737. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1738. ::
  1739. Argument: uintptr_t ep, unsigned int client_mode
  1740. Return: int
  1741. This function validates the entry point address of the event handler provided by
  1742. the client for both event registration and *Complete and Resume* |SDEI| calls.
  1743. The function ensures that the address is valid in the client translation regime.
  1744. The second argument is the exception level that the client is executing in. It
  1745. can be Non-Secure EL1 or Non-Secure EL2.
  1746. The function must return ``0`` for successful validation, or ``-1`` upon failure.
  1747. The default implementation always returns ``0``. On Arm platforms, this function
  1748. translates the entry point address within the client translation regime and
  1749. further ensures that the resulting physical address is located in Non-secure
  1750. DRAM.
  1751. Function: void plat_sdei_handle_masked_trigger(uint64_t mpidr, unsigned int intr) [optional]
  1752. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1753. ::
  1754. Argument: uint64_t
  1755. Argument: unsigned int
  1756. Return: void
  1757. |SDEI| specification requires that a PE comes out of reset with the events
  1758. masked. The client therefore is expected to call ``PE_UNMASK`` to unmask
  1759. |SDEI| events on the PE. No |SDEI| events can be dispatched until such
  1760. time.
  1761. Should a PE receive an interrupt that was bound to an |SDEI| event while the
  1762. events are masked on the PE, the dispatcher implementation invokes the function
  1763. ``plat_sdei_handle_masked_trigger``. The MPIDR of the PE that received the
  1764. interrupt and the interrupt ID are passed as parameters.
  1765. The default implementation only prints out a warning message.
  1766. .. _porting_guide_trng_requirements:
  1767. TRNG porting requirements
  1768. ~~~~~~~~~~~~~~~~~~~~~~~~~
  1769. The |TRNG| backend requires the platform to provide the following values
  1770. and mandatory functions.
  1771. Values
  1772. ......
  1773. value: uuid_t plat_trng_uuid [mandatory]
  1774. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1775. This value must be defined to the UUID of the TRNG backend that is specific to
  1776. the hardware after ``plat_entropy_setup`` function is called. This value must
  1777. conform to the SMCCC calling convention; The most significant 32 bits of the
  1778. UUID must not equal ``0xffffffff`` or the signed integer ``-1`` as this value in
  1779. w0 indicates failure to get a TRNG source.
  1780. Functions
  1781. .........
  1782. Function: void plat_entropy_setup(void) [mandatory]
  1783. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1784. ::
  1785. Argument: none
  1786. Return: none
  1787. This function is expected to do platform-specific initialization of any TRNG
  1788. hardware. This may include generating a UUID from a hardware-specific seed.
  1789. Function: bool plat_get_entropy(uint64_t \*out) [mandatory]
  1790. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  1791. ::
  1792. Argument: uint64_t *
  1793. Return: bool
  1794. Out : when the return value is true, the entropy has been written into the
  1795. storage pointed to
  1796. This function writes entropy into storage provided by the caller. If no entropy
  1797. is available, it must return false and the storage must not be written.
  1798. .. _psci_in_bl31:
  1799. Power State Coordination Interface (in BL31)
  1800. --------------------------------------------
  1801. The TF-A implementation of the PSCI API is based around the concept of a
  1802. *power domain*. A *power domain* is a CPU or a logical group of CPUs which
  1803. share some state on which power management operations can be performed as
  1804. specified by `PSCI`_. Each CPU in the system is assigned a cpu index which is
  1805. a unique number between ``0`` and ``PLATFORM_CORE_COUNT - 1``. The
  1806. *power domains* are arranged in a hierarchical tree structure and each
  1807. *power domain* can be identified in a system by the cpu index of any CPU that
  1808. is part of that domain and a *power domain level*. A processing element (for
  1809. example, a CPU) is at level 0. If the *power domain* node above a CPU is a
  1810. logical grouping of CPUs that share some state, then level 1 is that group of
  1811. CPUs (for example, a cluster), and level 2 is a group of clusters (for
  1812. example, the system). More details on the power domain topology and its
  1813. organization can be found in :ref:`PSCI Power Domain Tree Structure`.
  1814. BL31's platform initialization code exports a pointer to the platform-specific
  1815. power management operations required for the PSCI implementation to function
  1816. correctly. This information is populated in the ``plat_psci_ops`` structure. The
  1817. PSCI implementation calls members of the ``plat_psci_ops`` structure for performing
  1818. power management operations on the power domains. For example, the target
  1819. CPU is specified by its ``MPIDR`` in a PSCI ``CPU_ON`` call. The ``pwr_domain_on()``
  1820. handler (if present) is called for the CPU power domain.
  1821. The ``power-state`` parameter of a PSCI ``CPU_SUSPEND`` call can be used to
  1822. describe composite power states specific to a platform. The PSCI implementation
  1823. defines a generic representation of the power-state parameter, which is an
  1824. array of local power states where each index corresponds to a power domain
  1825. level. Each entry contains the local power state the power domain at that power
  1826. level could enter. It depends on the ``validate_power_state()`` handler to
  1827. convert the power-state parameter (possibly encoding a composite power state)
  1828. passed in a PSCI ``CPU_SUSPEND`` call to this representation.
  1829. The following functions form part of platform port of PSCI functionality.
  1830. Function : plat_psci_stat_accounting_start() [optional]
  1831. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1832. ::
  1833. Argument : const psci_power_state_t *
  1834. Return : void
  1835. This is an optional hook that platforms can implement for residency statistics
  1836. accounting before entering a low power state. The ``pwr_domain_state`` field of
  1837. ``state_info`` (first argument) can be inspected if stat accounting is done
  1838. differently at CPU level versus higher levels. As an example, if the element at
  1839. index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
  1840. state, special hardware logic may be programmed in order to keep track of the
  1841. residency statistics. For higher levels (array indices > 0), the residency
  1842. statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
  1843. default implementation will use PMF to capture timestamps.
  1844. Function : plat_psci_stat_accounting_stop() [optional]
  1845. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1846. ::
  1847. Argument : const psci_power_state_t *
  1848. Return : void
  1849. This is an optional hook that platforms can implement for residency statistics
  1850. accounting after exiting from a low power state. The ``pwr_domain_state`` field
  1851. of ``state_info`` (first argument) can be inspected if stat accounting is done
  1852. differently at CPU level versus higher levels. As an example, if the element at
  1853. index 0 (CPU power level) in the ``pwr_domain_state`` array indicates a power down
  1854. state, special hardware logic may be programmed in order to keep track of the
  1855. residency statistics. For higher levels (array indices > 0), the residency
  1856. statistics could be tracked in software using PMF. If ``ENABLE_PMF`` is set, the
  1857. default implementation will use PMF to capture timestamps.
  1858. Function : plat_psci_stat_get_residency() [optional]
  1859. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1860. ::
  1861. Argument : unsigned int, const psci_power_state_t *, unsigned int
  1862. Return : u_register_t
  1863. This is an optional interface that is is invoked after resuming from a low power
  1864. state and provides the time spent resident in that low power state by the power
  1865. domain at a particular power domain level. When a CPU wakes up from suspend,
  1866. all its parent power domain levels are also woken up. The generic PSCI code
  1867. invokes this function for each parent power domain that is resumed and it
  1868. identified by the ``lvl`` (first argument) parameter. The ``state_info`` (second
  1869. argument) describes the low power state that the power domain has resumed from.
  1870. The current CPU is the first CPU in the power domain to resume from the low
  1871. power state and the ``last_cpu_idx`` (third parameter) is the index of the last
  1872. CPU in the power domain to suspend and may be needed to calculate the residency
  1873. for that power domain.
  1874. Function : plat_get_target_pwr_state() [optional]
  1875. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1876. ::
  1877. Argument : unsigned int, const plat_local_state_t *, unsigned int
  1878. Return : plat_local_state_t
  1879. The PSCI generic code uses this function to let the platform participate in
  1880. state coordination during a power management operation. The function is passed
  1881. a pointer to an array of platform specific local power state ``states`` (second
  1882. argument) which contains the requested power state for each CPU at a particular
  1883. power domain level ``lvl`` (first argument) within the power domain. The function
  1884. is expected to traverse this array of upto ``ncpus`` (third argument) and return
  1885. a coordinated target power state by the comparing all the requested power
  1886. states. The target power state should not be deeper than any of the requested
  1887. power states.
  1888. A weak definition of this API is provided by default wherein it assumes
  1889. that the platform assigns a local state value in order of increasing depth
  1890. of the power state i.e. for two power states X & Y, if X < Y
  1891. then X represents a shallower power state than Y. As a result, the
  1892. coordinated target local power state for a power domain will be the minimum
  1893. of the requested local power state values.
  1894. Function : plat_get_power_domain_tree_desc() [mandatory]
  1895. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1896. ::
  1897. Argument : void
  1898. Return : const unsigned char *
  1899. This function returns a pointer to the byte array containing the power domain
  1900. topology tree description. The format and method to construct this array are
  1901. described in :ref:`PSCI Power Domain Tree Structure`. The BL31 PSCI
  1902. initialization code requires this array to be described by the platform, either
  1903. statically or dynamically, to initialize the power domain topology tree. In case
  1904. the array is populated dynamically, then plat_core_pos_by_mpidr() and
  1905. plat_my_core_pos() should also be implemented suitably so that the topology tree
  1906. description matches the CPU indices returned by these APIs. These APIs together
  1907. form the platform interface for the PSCI topology framework.
  1908. Function : plat_setup_psci_ops() [mandatory]
  1909. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  1910. ::
  1911. Argument : uintptr_t, const plat_psci_ops **
  1912. Return : int
  1913. This function may execute with the MMU and data caches enabled if the platform
  1914. port does the necessary initializations in ``bl31_plat_arch_setup()``. It is only
  1915. called by the primary CPU.
  1916. This function is called by PSCI initialization code. Its purpose is to let
  1917. the platform layer know about the warm boot entrypoint through the
  1918. ``sec_entrypoint`` (first argument) and to export handler routines for
  1919. platform-specific psci power management actions by populating the passed
  1920. pointer with a pointer to BL31's private ``plat_psci_ops`` structure.
  1921. A description of each member of this structure is given below. Please refer to
  1922. the Arm FVP specific implementation of these handlers in
  1923. ``plat/arm/board/fvp/fvp_pm.c`` as an example. For each PSCI function that the
  1924. platform wants to support, the associated operation or operations in this
  1925. structure must be provided and implemented (Refer section 4 of
  1926. :ref:`Firmware Design` for the PSCI API supported in TF-A). To disable a PSCI
  1927. function in a platform port, the operation should be removed from this
  1928. structure instead of providing an empty implementation.
  1929. plat_psci_ops.cpu_standby()
  1930. ...........................
  1931. Perform the platform-specific actions to enter the standby state for a cpu
  1932. indicated by the passed argument. This provides a fast path for CPU standby
  1933. wherein overheads of PSCI state management and lock acquisition is avoided.
  1934. For this handler to be invoked by the PSCI ``CPU_SUSPEND`` API implementation,
  1935. the suspend state type specified in the ``power-state`` parameter should be
  1936. STANDBY and the target power domain level specified should be the CPU. The
  1937. handler should put the CPU into a low power retention state (usually by
  1938. issuing a wfi instruction) and ensure that it can be woken up from that
  1939. state by a normal interrupt. The generic code expects the handler to succeed.
  1940. plat_psci_ops.pwr_domain_on()
  1941. .............................
  1942. Perform the platform specific actions to power on a CPU, specified
  1943. by the ``MPIDR`` (first argument). The generic code expects the platform to
  1944. return PSCI_E_SUCCESS on success or PSCI_E_INTERN_FAIL for any failure.
  1945. plat_psci_ops.pwr_domain_off_early() [optional]
  1946. ...............................................
  1947. This optional function performs the platform specific actions to check if
  1948. powering off the calling CPU and its higher parent power domain levels as
  1949. indicated by the ``target_state`` (first argument) is possible or allowed.
  1950. The ``target_state`` encodes the platform coordinated target local power states
  1951. for the CPU power domain and its parent power domain levels.
  1952. For this handler, the local power state for the CPU power domain will be a
  1953. power down state where as it could be either power down, retention or run state
  1954. for the higher power domain levels depending on the result of state
  1955. coordination. The generic code expects PSCI_E_DENIED return code if the
  1956. platform thinks that CPU_OFF should not proceed on the calling CPU.
  1957. plat_psci_ops.pwr_domain_off()
  1958. ..............................
  1959. Perform the platform specific actions to prepare to power off the calling CPU
  1960. and its higher parent power domain levels as indicated by the ``target_state``
  1961. (first argument). It is called by the PSCI ``CPU_OFF`` API implementation.
  1962. The ``target_state`` encodes the platform coordinated target local power states
  1963. for the CPU power domain and its parent power domain levels. The handler
  1964. needs to perform power management operation corresponding to the local state
  1965. at each power level.
  1966. For this handler, the local power state for the CPU power domain will be a
  1967. power down state where as it could be either power down, retention or run state
  1968. for the higher power domain levels depending on the result of state
  1969. coordination. The generic code expects the handler to succeed.
  1970. plat_psci_ops.pwr_domain_validate_suspend() [optional]
  1971. ......................................................
  1972. This is an optional function that is only compiled into the build if the build
  1973. option ``PSCI_OS_INIT_MODE`` is enabled.
  1974. If implemented, this function allows the platform to perform platform specific
  1975. validations based on hardware states. The generic code expects this function to
  1976. return PSCI_E_SUCCESS on success, or either PSCI_E_DENIED or
  1977. PSCI_E_INVALID_PARAMS as appropriate for any invalid requests.
  1978. plat_psci_ops.pwr_domain_suspend_pwrdown_early() [optional]
  1979. ...........................................................
  1980. This optional function may be used as a performance optimization to replace
  1981. or complement pwr_domain_suspend() on some platforms. Its calling semantics
  1982. are identical to pwr_domain_suspend(), except the PSCI implementation only
  1983. calls this function when suspending to a power down state, and it guarantees
  1984. that data caches are enabled.
  1985. When HW_ASSISTED_COHERENCY = 0, the PSCI implementation disables data caches
  1986. before calling pwr_domain_suspend(). If the target_state corresponds to a
  1987. power down state and it is safe to perform some or all of the platform
  1988. specific actions in that function with data caches enabled, it may be more
  1989. efficient to move those actions to this function. When HW_ASSISTED_COHERENCY
  1990. = 1, data caches remain enabled throughout, and so there is no advantage to
  1991. moving platform specific actions to this function.
  1992. plat_psci_ops.pwr_domain_suspend()
  1993. ..................................
  1994. Perform the platform specific actions to prepare to suspend the calling
  1995. CPU and its higher parent power domain levels as indicated by the
  1996. ``target_state`` (first argument). It is called by the PSCI ``CPU_SUSPEND``
  1997. API implementation.
  1998. The ``target_state`` has a similar meaning as described in
  1999. the ``pwr_domain_off()`` operation. It encodes the platform coordinated
  2000. target local power states for the CPU power domain and its parent
  2001. power domain levels. The handler needs to perform power management operation
  2002. corresponding to the local state at each power level. The generic code
  2003. expects the handler to succeed.
  2004. The difference between turning a power domain off versus suspending it is that
  2005. in the former case, the power domain is expected to re-initialize its state
  2006. when it is next powered on (see ``pwr_domain_on_finish()``). In the latter
  2007. case, the power domain is expected to save enough state so that it can resume
  2008. execution by restoring this state when its powered on (see
  2009. ``pwr_domain_suspend_finish()``).
  2010. When suspending a core, the platform can also choose to power off the GICv3
  2011. Redistributor and ITS through an implementation-defined sequence. To achieve
  2012. this safely, the ITS context must be saved first. The architectural part is
  2013. implemented by the ``gicv3_its_save_disable()`` helper, but most of the needed
  2014. sequence is implementation defined and it is therefore the responsibility of
  2015. the platform code to implement the necessary sequence. Then the GIC
  2016. Redistributor context can be saved using the ``gicv3_rdistif_save()`` helper.
  2017. Powering off the Redistributor requires the implementation to support it and it
  2018. is the responsibility of the platform code to execute the right implementation
  2019. defined sequence.
  2020. When a system suspend is requested, the platform can also make use of the
  2021. ``gicv3_distif_save()`` helper to save the context of the GIC Distributor after
  2022. it has saved the context of the Redistributors and ITS of all the cores in the
  2023. system. The context of the Distributor can be large and may require it to be
  2024. allocated in a special area if it cannot fit in the platform's global static
  2025. data, for example in DRAM. The Distributor can then be powered down using an
  2026. implementation-defined sequence.
  2027. plat_psci_ops.pwr_domain_pwr_down_wfi()
  2028. .......................................
  2029. This is an optional function and, if implemented, is expected to perform
  2030. platform specific actions including the ``wfi`` invocation which allows the
  2031. CPU to powerdown. Since this function is invoked outside the PSCI locks,
  2032. the actions performed in this hook must be local to the CPU or the platform
  2033. must ensure that races between multiple CPUs cannot occur.
  2034. The ``target_state`` has a similar meaning as described in the ``pwr_domain_off()``
  2035. operation and it encodes the platform coordinated target local power states for
  2036. the CPU power domain and its parent power domain levels. This function must
  2037. not return back to the caller (by calling wfi in an infinite loop to ensure
  2038. some CPUs power down mitigations work properly).
  2039. If this function is not implemented by the platform, PSCI generic
  2040. implementation invokes ``psci_power_down_wfi()`` for power down.
  2041. plat_psci_ops.pwr_domain_on_finish()
  2042. ....................................
  2043. This function is called by the PSCI implementation after the calling CPU is
  2044. powered on and released from reset in response to an earlier PSCI ``CPU_ON`` call.
  2045. It performs the platform-specific setup required to initialize enough state for
  2046. this CPU to enter the normal world and also provide secure runtime firmware
  2047. services.
  2048. The ``target_state`` (first argument) is the prior state of the power domains
  2049. immediately before the CPU was turned on. It indicates which power domains
  2050. above the CPU might require initialization due to having previously been in
  2051. low power states. The generic code expects the handler to succeed.
  2052. plat_psci_ops.pwr_domain_on_finish_late() [optional]
  2053. ...........................................................
  2054. This optional function is called by the PSCI implementation after the calling
  2055. CPU is fully powered on with respective data caches enabled. The calling CPU and
  2056. the associated cluster are guaranteed to be participating in coherency. This
  2057. function gives the flexibility to perform any platform-specific actions safely,
  2058. such as initialization or modification of shared data structures, without the
  2059. overhead of explicit cache maintainace operations.
  2060. The ``target_state`` has a similar meaning as described in the ``pwr_domain_on_finish()``
  2061. operation. The generic code expects the handler to succeed.
  2062. plat_psci_ops.pwr_domain_suspend_finish()
  2063. .........................................
  2064. This function is called by the PSCI implementation after the calling CPU is
  2065. powered on and released from reset in response to an asynchronous wakeup
  2066. event, for example a timer interrupt that was programmed by the CPU during the
  2067. ``CPU_SUSPEND`` call or ``SYSTEM_SUSPEND`` call. It performs the platform-specific
  2068. setup required to restore the saved state for this CPU to resume execution
  2069. in the normal world and also provide secure runtime firmware services.
  2070. The ``target_state`` (first argument) has a similar meaning as described in
  2071. the ``pwr_domain_on_finish()`` operation. The generic code expects the platform
  2072. to succeed.
  2073. If the Distributor, Redistributors or ITS have been powered off as part of a
  2074. suspend, their context must be restored in this function in the reverse order
  2075. to how they were saved during suspend sequence.
  2076. plat_psci_ops.system_off()
  2077. ..........................
  2078. This function is called by PSCI implementation in response to a ``SYSTEM_OFF``
  2079. call. It performs the platform-specific system poweroff sequence after
  2080. notifying the Secure Payload Dispatcher.
  2081. plat_psci_ops.system_reset()
  2082. ............................
  2083. This function is called by PSCI implementation in response to a ``SYSTEM_RESET``
  2084. call. It performs the platform-specific system reset sequence after
  2085. notifying the Secure Payload Dispatcher.
  2086. plat_psci_ops.validate_power_state()
  2087. ....................................
  2088. This function is called by the PSCI implementation during the ``CPU_SUSPEND``
  2089. call to validate the ``power_state`` parameter of the PSCI API and if valid,
  2090. populate it in ``req_state`` (second argument) array as power domain level
  2091. specific local states. If the ``power_state`` is invalid, the platform must
  2092. return PSCI_E_INVALID_PARAMS as error, which is propagated back to the
  2093. normal world PSCI client.
  2094. plat_psci_ops.validate_ns_entrypoint()
  2095. ......................................
  2096. This function is called by the PSCI implementation during the ``CPU_SUSPEND``,
  2097. ``SYSTEM_SUSPEND`` and ``CPU_ON`` calls to validate the non-secure ``entry_point``
  2098. parameter passed by the normal world. If the ``entry_point`` is invalid,
  2099. the platform must return PSCI_E_INVALID_ADDRESS as error, which is
  2100. propagated back to the normal world PSCI client.
  2101. plat_psci_ops.get_sys_suspend_power_state()
  2102. ...........................................
  2103. This function is called by the PSCI implementation during the ``SYSTEM_SUSPEND``
  2104. call to get the ``req_state`` parameter from platform which encodes the power
  2105. domain level specific local states to suspend to system affinity level. The
  2106. ``req_state`` will be utilized to do the PSCI state coordination and
  2107. ``pwr_domain_suspend()`` will be invoked with the coordinated target state to
  2108. enter system suspend.
  2109. plat_psci_ops.get_pwr_lvl_state_idx()
  2110. .....................................
  2111. This is an optional function and, if implemented, is invoked by the PSCI
  2112. implementation to convert the ``local_state`` (first argument) at a specified
  2113. ``pwr_lvl`` (second argument) to an index between 0 and
  2114. ``PLAT_MAX_PWR_LVL_STATES`` - 1. This function is only needed if the platform
  2115. supports more than two local power states at each power domain level, that is
  2116. ``PLAT_MAX_PWR_LVL_STATES`` is greater than 2, and needs to account for these
  2117. local power states.
  2118. plat_psci_ops.translate_power_state_by_mpidr()
  2119. ..............................................
  2120. This is an optional function and, if implemented, verifies the ``power_state``
  2121. (second argument) parameter of the PSCI API corresponding to a target power
  2122. domain. The target power domain is identified by using both ``MPIDR`` (first
  2123. argument) and the power domain level encoded in ``power_state``. The power domain
  2124. level specific local states are to be extracted from ``power_state`` and be
  2125. populated in the ``output_state`` (third argument) array. The functionality
  2126. is similar to the ``validate_power_state`` function described above and is
  2127. envisaged to be used in case the validity of ``power_state`` depend on the
  2128. targeted power domain. If the ``power_state`` is invalid for the targeted power
  2129. domain, the platform must return PSCI_E_INVALID_PARAMS as error. If this
  2130. function is not implemented, then the generic implementation relies on
  2131. ``validate_power_state`` function to translate the ``power_state``.
  2132. This function can also be used in case the platform wants to support local
  2133. power state encoding for ``power_state`` parameter of PSCI_STAT_COUNT/RESIDENCY
  2134. APIs as described in Section 5.18 of `PSCI`_.
  2135. plat_psci_ops.get_node_hw_state()
  2136. .................................
  2137. This is an optional function. If implemented this function is intended to return
  2138. the power state of a node (identified by the first parameter, the ``MPIDR``) in
  2139. the power domain topology (identified by the second parameter, ``power_level``),
  2140. as retrieved from a power controller or equivalent component on the platform.
  2141. Upon successful completion, the implementation must map and return the final
  2142. status among ``HW_ON``, ``HW_OFF`` or ``HW_STANDBY``. Upon encountering failures, it
  2143. must return either ``PSCI_E_INVALID_PARAMS`` or ``PSCI_E_NOT_SUPPORTED`` as
  2144. appropriate.
  2145. Implementations are not expected to handle ``power_levels`` greater than
  2146. ``PLAT_MAX_PWR_LVL``.
  2147. plat_psci_ops.system_reset2()
  2148. .............................
  2149. This is an optional function. If implemented this function is
  2150. called during the ``SYSTEM_RESET2`` call to perform a reset
  2151. based on the first parameter ``reset_type`` as specified in
  2152. `PSCI`_. The parameter ``cookie`` can be used to pass additional
  2153. reset information. If the ``reset_type`` is not supported, the
  2154. function must return ``PSCI_E_NOT_SUPPORTED``. For architectural
  2155. resets, all failures must return ``PSCI_E_INVALID_PARAMETERS``
  2156. and vendor reset can return other PSCI error codes as defined
  2157. in `PSCI`_. On success this function will not return.
  2158. plat_psci_ops.write_mem_protect()
  2159. .................................
  2160. This is an optional function. If implemented it enables or disables the
  2161. ``MEM_PROTECT`` functionality based on the value of ``val``.
  2162. A non-zero value enables ``MEM_PROTECT`` and a value of zero
  2163. disables it. Upon encountering failures it must return a negative value
  2164. and on success it must return 0.
  2165. plat_psci_ops.read_mem_protect()
  2166. ................................
  2167. This is an optional function. If implemented it returns the current
  2168. state of ``MEM_PROTECT`` via the ``val`` parameter. Upon encountering
  2169. failures it must return a negative value and on success it must
  2170. return 0.
  2171. plat_psci_ops.mem_protect_chk()
  2172. ...............................
  2173. This is an optional function. If implemented it checks if a memory
  2174. region defined by a base address ``base`` and with a size of ``length``
  2175. bytes is protected by ``MEM_PROTECT``. If the region is protected
  2176. then it must return 0, otherwise it must return a negative number.
  2177. .. _porting_guide_imf_in_bl31:
  2178. Interrupt Management framework (in BL31)
  2179. ----------------------------------------
  2180. BL31 implements an Interrupt Management Framework (IMF) to manage interrupts
  2181. generated in either security state and targeted to EL1 or EL2 in the non-secure
  2182. state or EL3/S-EL1 in the secure state. The design of this framework is
  2183. described in the :ref:`Interrupt Management Framework`
  2184. A platform should export the following APIs to support the IMF. The following
  2185. text briefly describes each API and its implementation in Arm standard
  2186. platforms. The API implementation depends upon the type of interrupt controller
  2187. present in the platform. Arm standard platform layer supports both
  2188. `Arm Generic Interrupt Controller version 2.0 (GICv2)`_
  2189. and `3.0 (GICv3)`_. Juno builds the Arm platform layer to use GICv2 and the
  2190. FVP can be configured to use either GICv2 or GICv3 depending on the build flag
  2191. ``FVP_USE_GIC_DRIVER`` (See :ref:`build_options_arm_fvp_platform` for more
  2192. details).
  2193. See also: :ref:`Interrupt Controller Abstraction APIs<Platform Interrupt Controller API>`.
  2194. Function : plat_interrupt_type_to_line() [mandatory]
  2195. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2196. ::
  2197. Argument : uint32_t, uint32_t
  2198. Return : uint32_t
  2199. The Arm processor signals an interrupt exception either through the IRQ or FIQ
  2200. interrupt line. The specific line that is signaled depends on how the interrupt
  2201. controller (IC) reports different interrupt types from an execution context in
  2202. either security state. The IMF uses this API to determine which interrupt line
  2203. the platform IC uses to signal each type of interrupt supported by the framework
  2204. from a given security state. This API must be invoked at EL3.
  2205. The first parameter will be one of the ``INTR_TYPE_*`` values (see
  2206. :ref:`Interrupt Management Framework`) indicating the target type of the
  2207. interrupt, the second parameter is the security state of the originating
  2208. execution context. The return result is the bit position in the ``SCR_EL3``
  2209. register of the respective interrupt trap: IRQ=1, FIQ=2.
  2210. In the case of Arm standard platforms using GICv2, S-EL1 interrupts are
  2211. configured as FIQs and Non-secure interrupts as IRQs from either security
  2212. state.
  2213. In the case of Arm standard platforms using GICv3, the interrupt line to be
  2214. configured depends on the security state of the execution context when the
  2215. interrupt is signalled and are as follows:
  2216. - The S-EL1 interrupts are signaled as IRQ in S-EL0/1 context and as FIQ in
  2217. NS-EL0/1/2 context.
  2218. - The Non secure interrupts are signaled as FIQ in S-EL0/1 context and as IRQ
  2219. in the NS-EL0/1/2 context.
  2220. - The EL3 interrupts are signaled as FIQ in both S-EL0/1 and NS-EL0/1/2
  2221. context.
  2222. Function : plat_ic_get_pending_interrupt_type() [mandatory]
  2223. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2224. ::
  2225. Argument : void
  2226. Return : uint32_t
  2227. This API returns the type of the highest priority pending interrupt at the
  2228. platform IC. The IMF uses the interrupt type to retrieve the corresponding
  2229. handler function. ``INTR_TYPE_INVAL`` is returned when there is no interrupt
  2230. pending. The valid interrupt types that can be returned are ``INTR_TYPE_EL3``,
  2231. ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``. This API must be invoked at EL3.
  2232. In the case of Arm standard platforms using GICv2, the *Highest Priority
  2233. Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of
  2234. the pending interrupt. The type of interrupt depends upon the id value as
  2235. follows.
  2236. #. id < 1022 is reported as a S-EL1 interrupt
  2237. #. id = 1022 is reported as a Non-secure interrupt.
  2238. #. id = 1023 is reported as an invalid interrupt type.
  2239. In the case of Arm standard platforms using GICv3, the system register
  2240. ``ICC_HPPIR0_EL1``, *Highest Priority Pending group 0 Interrupt Register*,
  2241. is read to determine the id of the pending interrupt. The type of interrupt
  2242. depends upon the id value as follows.
  2243. #. id = ``PENDING_G1S_INTID`` (1020) is reported as a S-EL1 interrupt
  2244. #. id = ``PENDING_G1NS_INTID`` (1021) is reported as a Non-secure interrupt.
  2245. #. id = ``GIC_SPURIOUS_INTERRUPT`` (1023) is reported as an invalid interrupt type.
  2246. #. All other interrupt id's are reported as EL3 interrupt.
  2247. Function : plat_ic_get_pending_interrupt_id() [mandatory]
  2248. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2249. ::
  2250. Argument : void
  2251. Return : uint32_t
  2252. This API returns the id of the highest priority pending interrupt at the
  2253. platform IC. ``INTR_ID_UNAVAILABLE`` is returned when there is no interrupt
  2254. pending.
  2255. In the case of Arm standard platforms using GICv2, the *Highest Priority
  2256. Pending Interrupt Register* (``GICC_HPPIR``) is read to determine the id of the
  2257. pending interrupt. The id that is returned by API depends upon the value of
  2258. the id read from the interrupt controller as follows.
  2259. #. id < 1022. id is returned as is.
  2260. #. id = 1022. The *Aliased Highest Priority Pending Interrupt Register*
  2261. (``GICC_AHPPIR``) is read to determine the id of the non-secure interrupt.
  2262. This id is returned by the API.
  2263. #. id = 1023. ``INTR_ID_UNAVAILABLE`` is returned.
  2264. In the case of Arm standard platforms using GICv3, if the API is invoked from
  2265. EL3, the system register ``ICC_HPPIR0_EL1``, *Highest Priority Pending Interrupt
  2266. group 0 Register*, is read to determine the id of the pending interrupt. The id
  2267. that is returned by API depends upon the value of the id read from the
  2268. interrupt controller as follows.
  2269. #. id < ``PENDING_G1S_INTID`` (1020). id is returned as is.
  2270. #. id = ``PENDING_G1S_INTID`` (1020) or ``PENDING_G1NS_INTID`` (1021). The system
  2271. register ``ICC_HPPIR1_EL1``, *Highest Priority Pending Interrupt group 1
  2272. Register* is read to determine the id of the group 1 interrupt. This id
  2273. is returned by the API as long as it is a valid interrupt id
  2274. #. If the id is any of the special interrupt identifiers,
  2275. ``INTR_ID_UNAVAILABLE`` is returned.
  2276. When the API invoked from S-EL1 for GICv3 systems, the id read from system
  2277. register ``ICC_HPPIR1_EL1``, *Highest Priority Pending group 1 Interrupt
  2278. Register*, is returned if is not equal to GIC_SPURIOUS_INTERRUPT (1023) else
  2279. ``INTR_ID_UNAVAILABLE`` is returned.
  2280. Function : plat_ic_acknowledge_interrupt() [mandatory]
  2281. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2282. ::
  2283. Argument : void
  2284. Return : uint32_t
  2285. This API is used by the CPU to indicate to the platform IC that processing of
  2286. the highest pending interrupt has begun. It should return the raw, unmodified
  2287. value obtained from the interrupt controller when acknowledging an interrupt.
  2288. The actual interrupt number shall be extracted from this raw value using the API
  2289. `plat_ic_get_interrupt_id()<plat_ic_get_interrupt_id>`.
  2290. This function in Arm standard platforms using GICv2, reads the *Interrupt
  2291. Acknowledge Register* (``GICC_IAR``). This changes the state of the highest
  2292. priority pending interrupt from pending to active in the interrupt controller.
  2293. It returns the value read from the ``GICC_IAR``, unmodified.
  2294. In the case of Arm standard platforms using GICv3, if the API is invoked
  2295. from EL3, the function reads the system register ``ICC_IAR0_EL1``, *Interrupt
  2296. Acknowledge Register group 0*. If the API is invoked from S-EL1, the function
  2297. reads the system register ``ICC_IAR1_EL1``, *Interrupt Acknowledge Register
  2298. group 1*. The read changes the state of the highest pending interrupt from
  2299. pending to active in the interrupt controller. The value read is returned
  2300. unmodified.
  2301. The TSP uses this API to start processing of the secure physical timer
  2302. interrupt.
  2303. Function : plat_ic_end_of_interrupt() [mandatory]
  2304. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2305. ::
  2306. Argument : uint32_t
  2307. Return : void
  2308. This API is used by the CPU to indicate to the platform IC that processing of
  2309. the interrupt corresponding to the id (passed as the parameter) has
  2310. finished. The id should be the same as the id returned by the
  2311. ``plat_ic_acknowledge_interrupt()`` API.
  2312. Arm standard platforms write the id to the *End of Interrupt Register*
  2313. (``GICC_EOIR``) in case of GICv2, and to ``ICC_EOIR0_EL1`` or ``ICC_EOIR1_EL1``
  2314. system register in case of GICv3 depending on where the API is invoked from,
  2315. EL3 or S-EL1. This deactivates the corresponding interrupt in the interrupt
  2316. controller.
  2317. The TSP uses this API to finish processing of the secure physical timer
  2318. interrupt.
  2319. Function : plat_ic_get_interrupt_type() [mandatory]
  2320. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2321. ::
  2322. Argument : uint32_t
  2323. Return : uint32_t
  2324. This API returns the type of the interrupt id passed as the parameter.
  2325. ``INTR_TYPE_INVAL`` is returned if the id is invalid. If the id is valid, a valid
  2326. interrupt type (one of ``INTR_TYPE_EL3``, ``INTR_TYPE_S_EL1`` and ``INTR_TYPE_NS``) is
  2327. returned depending upon how the interrupt has been configured by the platform
  2328. IC. This API must be invoked at EL3.
  2329. Arm standard platforms using GICv2 configures S-EL1 interrupts as Group0 interrupts
  2330. and Non-secure interrupts as Group1 interrupts. It reads the group value
  2331. corresponding to the interrupt id from the relevant *Interrupt Group Register*
  2332. (``GICD_IGROUPRn``). It uses the group value to determine the type of interrupt.
  2333. In the case of Arm standard platforms using GICv3, both the *Interrupt Group
  2334. Register* (``GICD_IGROUPRn``) and *Interrupt Group Modifier Register*
  2335. (``GICD_IGRPMODRn``) is read to figure out whether the interrupt is configured
  2336. as Group 0 secure interrupt, Group 1 secure interrupt or Group 1 NS interrupt.
  2337. Common helper functions
  2338. -----------------------
  2339. Function : elx_panic()
  2340. ~~~~~~~~~~~~~~~~~~~~~~
  2341. ::
  2342. Argument : void
  2343. Return : void
  2344. This API is called from assembly files when reporting a critical failure
  2345. that has occured in lower EL and is been trapped in EL3. This call
  2346. **must not** return.
  2347. Function : el3_panic()
  2348. ~~~~~~~~~~~~~~~~~~~~~~
  2349. ::
  2350. Argument : void
  2351. Return : void
  2352. This API is called from assembly files when encountering a critical failure that
  2353. cannot be recovered from. This function assumes that it is invoked from a C
  2354. runtime environment i.e. valid stack exists. This call **must not** return.
  2355. Function : panic()
  2356. ~~~~~~~~~~~~~~~~~~
  2357. ::
  2358. Argument : void
  2359. Return : void
  2360. This API called from C files when encountering a critical failure that cannot
  2361. be recovered from. This function in turn prints backtrace (if enabled) and calls
  2362. el3_panic(). This call **must not** return.
  2363. Crash Reporting mechanism (in BL31)
  2364. -----------------------------------
  2365. BL31 implements a crash reporting mechanism which prints the various registers
  2366. of the CPU to enable quick crash analysis and debugging. This mechanism relies
  2367. on the platform implementing ``plat_crash_console_init``,
  2368. ``plat_crash_console_putc`` and ``plat_crash_console_flush``.
  2369. The file ``plat/common/aarch64/crash_console_helpers.S`` contains sample
  2370. implementation of all of them. Platforms may include this file to their
  2371. makefiles in order to benefit from them. By default, they will cause the crash
  2372. output to be routed over the normal console infrastructure and get printed on
  2373. consoles configured to output in crash state. ``console_set_scope()`` can be
  2374. used to control whether a console is used for crash output.
  2375. .. note::
  2376. Platforms are responsible for making sure that they only mark consoles for
  2377. use in the crash scope that are able to support this, i.e. that are written
  2378. in assembly and conform with the register clobber rules for putc()
  2379. (x0-x2, x16-x17) and flush() (x0-x3, x16-x17) crash callbacks.
  2380. In some cases (such as debugging very early crashes that happen before the
  2381. normal boot console can be set up), platforms may want to control crash output
  2382. more explicitly. These platforms may instead provide custom implementations for
  2383. these. They are executed outside of a C environment and without a stack. Many
  2384. console drivers provide functions named ``console_xxx_core_init/putc/flush``
  2385. that are designed to be used by these functions. See Arm platforms (like juno)
  2386. for an example of this.
  2387. Function : plat_crash_console_init [mandatory]
  2388. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2389. ::
  2390. Argument : void
  2391. Return : int
  2392. This API is used by the crash reporting mechanism to initialize the crash
  2393. console. It must only use the general purpose registers x0 through x7 to do the
  2394. initialization and returns 1 on success.
  2395. Function : plat_crash_console_putc [mandatory]
  2396. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2397. ::
  2398. Argument : int
  2399. Return : int
  2400. This API is used by the crash reporting mechanism to print a character on the
  2401. designated crash console. It must only use general purpose registers x1 and
  2402. x2 to do its work. The parameter and the return value are in general purpose
  2403. register x0.
  2404. Function : plat_crash_console_flush [mandatory]
  2405. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2406. ::
  2407. Argument : void
  2408. Return : void
  2409. This API is used by the crash reporting mechanism to force write of all buffered
  2410. data on the designated crash console. It should only use general purpose
  2411. registers x0 through x5 to do its work.
  2412. Function : plat_setup_early_console [optional]
  2413. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2414. ::
  2415. Argument : void
  2416. Return : void
  2417. This API is used to setup the early console, it is required only if the flag
  2418. ``EARLY_CONSOLE`` is enabled.
  2419. .. _External Abort handling and RAS Support:
  2420. External Abort handling and RAS Support
  2421. ---------------------------------------
  2422. Function : plat_ea_handler
  2423. ~~~~~~~~~~~~~~~~~~~~~~~~~~
  2424. ::
  2425. Argument : int
  2426. Argument : uint64_t
  2427. Argument : void *
  2428. Argument : void *
  2429. Argument : uint64_t
  2430. Return : void
  2431. This function is invoked by the runtime exception handling framework for the
  2432. platform to handle an External Abort received at EL3. The intention of the
  2433. function is to attempt to resolve the cause of External Abort and return;
  2434. if that's not possible then an orderly shutdown of the system is initiated.
  2435. The first parameter (``int ea_reason``) indicates the reason for External Abort.
  2436. Its value is one of ``ERROR_EA_*`` constants defined in ``ea_handle.h``.
  2437. The second parameter (``uint64_t syndrome``) is the respective syndrome
  2438. presented to EL3 after having received the External Abort. Depending on the
  2439. nature of the abort (as can be inferred from the ``ea_reason`` parameter), this
  2440. can be the content of either ``ESR_EL3`` or ``DISR_EL1``.
  2441. The third parameter (``void *cookie``) is unused for now. The fourth parameter
  2442. (``void *handle``) is a pointer to the preempted context. The fifth parameter
  2443. (``uint64_t flags``) indicates the preempted security state. These parameters
  2444. are received from the top-level exception handler.
  2445. This function must be implemented if a platform expects Firmware First handling
  2446. of External Aborts.
  2447. Function : plat_handle_uncontainable_ea
  2448. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2449. ::
  2450. Argument : int
  2451. Argument : uint64_t
  2452. Return : void
  2453. This function is invoked by the RAS framework when an External Abort of
  2454. Uncontainable type is received at EL3. Due to the critical nature of
  2455. Uncontainable errors, the intention of this function is to initiate orderly
  2456. shutdown of the system, and is not expected to return.
  2457. This function must be implemented in assembly.
  2458. The first and second parameters are the same as that of ``plat_ea_handler``.
  2459. The default implementation of this function calls
  2460. ``report_unhandled_exception``.
  2461. Function : plat_handle_double_fault
  2462. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2463. ::
  2464. Argument : int
  2465. Argument : uint64_t
  2466. Return : void
  2467. This function is invoked by the RAS framework when another External Abort is
  2468. received at EL3 while one is already being handled. I.e., a call to
  2469. ``plat_ea_handler`` is outstanding. Due to its critical nature, the intention of
  2470. this function is to initiate orderly shutdown of the system, and is not expected
  2471. recover or return.
  2472. This function must be implemented in assembly.
  2473. The first and second parameters are the same as that of ``plat_ea_handler``.
  2474. The default implementation of this function calls
  2475. ``report_unhandled_exception``.
  2476. Function : plat_handle_el3_ea
  2477. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2478. ::
  2479. Return : void
  2480. This function is invoked when an External Abort is received while executing in
  2481. EL3. Due to its critical nature, the intention of this function is to initiate
  2482. orderly shutdown of the system, and is not expected recover or return.
  2483. This function must be implemented in assembly.
  2484. The default implementation of this function calls
  2485. ``report_unhandled_exception``.
  2486. Function : plat_handle_rng_trap
  2487. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2488. ::
  2489. Argument : uint64_t
  2490. Argument : cpu_context_t *
  2491. Return : int
  2492. This function is invoked by BL31's exception handler when there is a synchronous
  2493. system register trap caused by access to the RNDR or RNDRRS registers. It allows
  2494. platforms implementing ``FEAT_RNG_TRAP`` and enabling ``ENABLE_FEAT_RNG_TRAP`` to
  2495. emulate those system registers by returing back some entropy to the lower EL.
  2496. The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
  2497. syndrome register, which encodes the instruction that was trapped. The interesting
  2498. information in there is the target register (``get_sysreg_iss_rt()``).
  2499. The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
  2500. lower exception level, at the time when the execution of the ``mrs`` instruction
  2501. was trapped. Its content can be changed, to put the entropy into the target
  2502. register.
  2503. The return value indicates how to proceed:
  2504. - When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
  2505. - When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
  2506. to the same instruction, so its execution will be repeated.
  2507. - When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
  2508. to the next instruction.
  2509. This function needs to be implemented by a platform if it enables FEAT_RNG_TRAP.
  2510. Function : plat_handle_impdef_trap
  2511. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  2512. ::
  2513. Argument : uint64_t
  2514. Argument : cpu_context_t *
  2515. Return : int
  2516. This function is invoked by BL31's exception handler when there is a synchronous
  2517. system register trap caused by access to the implementation defined registers.
  2518. It allows platforms enabling ``IMPDEF_SYSREG_TRAP`` to emulate those system
  2519. registers choosing to program bits of their choice.
  2520. The first parameter (``uint64_t esr_el3``) contains the content of the ESR_EL3
  2521. syndrome register, which encodes the instruction that was trapped.
  2522. The second parameter (``cpu_context_t *ctx``) represents the CPU state in the
  2523. lower exception level, at the time when the execution of the ``mrs`` instruction
  2524. was trapped.
  2525. The return value indicates how to proceed:
  2526. - When returning ``TRAP_RET_UNHANDLED`` (-1), the machine will panic.
  2527. - When returning ``TRAP_RET_REPEAT`` (0), the exception handler will return
  2528. to the same instruction, so its execution will be repeated.
  2529. - When returning ``TRAP_RET_CONTINUE`` (1), the exception handler will return
  2530. to the next instruction.
  2531. This function needs to be implemented by a platform if it enables
  2532. IMPDEF_SYSREG_TRAP.
  2533. Build flags
  2534. -----------
  2535. There are some build flags which can be defined by the platform to control
  2536. inclusion or exclusion of certain BL stages from the FIP image. These flags
  2537. need to be defined in the platform makefile which will get included by the
  2538. build system.
  2539. - **NEED_BL33**
  2540. By default, this flag is defined ``yes`` by the build system and ``BL33``
  2541. build option should be supplied as a build option. The platform has the
  2542. option of excluding the BL33 image in the ``fip`` image by defining this flag
  2543. to ``no``. If any of the options ``EL3_PAYLOAD_BASE`` or ``PRELOADED_BL33_BASE``
  2544. are used, this flag will be set to ``no`` automatically.
  2545. - **ARM_ARCH_MAJOR and ARM_ARCH_MINOR**
  2546. By default, ARM_ARCH_MAJOR.ARM_ARCH_MINOR is set to 8.0 in ``defaults.mk``,
  2547. if the platform makefile/build defines or uses the correct ARM_ARCH_MAJOR and
  2548. ARM_ARCH_MINOR then mandatory Architectural features available for that Arch
  2549. version will be enabled by default and any optional Arch feature supported by
  2550. the Architecture and available in TF-A can be enabled from platform specific
  2551. makefile. Look up to ``arch_features.mk`` for details pertaining to mandatory
  2552. and optional Arch specific features.
  2553. Platform include paths
  2554. ----------------------
  2555. Platforms are allowed to add more include paths to be passed to the compiler.
  2556. The ``PLAT_INCLUDES`` variable is used for this purpose. This is needed in
  2557. particular for the file ``platform_def.h``.
  2558. Example:
  2559. .. code:: c
  2560. PLAT_INCLUDES += -Iinclude/plat/myplat/include
  2561. C Library
  2562. ---------
  2563. To avoid subtle toolchain behavioral dependencies, the header files provided
  2564. by the compiler are not used. The software is built with the ``-nostdinc`` flag
  2565. to ensure no headers are included from the toolchain inadvertently. Instead the
  2566. required headers are included in the TF-A source tree. The library only
  2567. contains those C library definitions required by the local implementation. If
  2568. more functionality is required, the needed library functions will need to be
  2569. added to the local implementation.
  2570. Some C headers have been obtained from `FreeBSD`_ and `SCC`_, while others have
  2571. been written specifically for TF-A. Some implementation files have been obtained
  2572. from `FreeBSD`_, others have been written specifically for TF-A as well. The
  2573. files can be found in ``include/lib/libc`` and ``lib/libc``.
  2574. SCC can be found in http://www.simple-cc.org/. A copy of the `FreeBSD`_ sources
  2575. can be obtained from http://github.com/freebsd/freebsd.
  2576. Storage abstraction layer
  2577. -------------------------
  2578. In order to improve platform independence and portability a storage abstraction
  2579. layer is used to load data from non-volatile platform storage. Currently
  2580. storage access is only required by BL1 and BL2 phases and performed inside the
  2581. ``load_image()`` function in ``bl_common.c``.
  2582. .. uml:: resources/diagrams/plantuml/io_framework_usage_overview.puml
  2583. It is mandatory to implement at least one storage driver. For the Arm
  2584. development platforms the Firmware Image Package (FIP) driver is provided as
  2585. the default means to load data from storage (see :ref:`firmware_design_fip`).
  2586. The storage layer is described in the header file
  2587. ``include/drivers/io/io_storage.h``. The implementation of the common library is
  2588. in ``drivers/io/io_storage.c`` and the driver files are located in
  2589. ``drivers/io/``.
  2590. .. uml:: resources/diagrams/plantuml/io_arm_class_diagram.puml
  2591. Each IO driver must provide ``io_dev_*`` structures, as described in
  2592. ``drivers/io/io_driver.h``. These are returned via a mandatory registration
  2593. function that is called on platform initialization. The semi-hosting driver
  2594. implementation in ``io_semihosting.c`` can be used as an example.
  2595. Each platform should register devices and their drivers via the storage
  2596. abstraction layer. These drivers then need to be initialized by bootloader
  2597. phases as required in their respective ``blx_platform_setup()`` functions.
  2598. .. uml:: resources/diagrams/plantuml/io_dev_registration.puml
  2599. The storage abstraction layer provides mechanisms (``io_dev_init()``) to
  2600. initialize storage devices before IO operations are called.
  2601. .. uml:: resources/diagrams/plantuml/io_dev_init_and_check.puml
  2602. The basic operations supported by the layer
  2603. include ``open()``, ``close()``, ``read()``, ``write()``, ``size()`` and ``seek()``.
  2604. Drivers do not have to implement all operations, but each platform must
  2605. provide at least one driver for a device capable of supporting generic
  2606. operations such as loading a bootloader image.
  2607. The current implementation only allows for known images to be loaded by the
  2608. firmware. These images are specified by using their identifiers, as defined in
  2609. ``include/plat/common/common_def.h`` (or a separate header file included from
  2610. there). The platform layer (``plat_get_image_source()``) then returns a reference
  2611. to a device and a driver-specific ``spec`` which will be understood by the driver
  2612. to allow access to the image data.
  2613. The layer is designed in such a way that is it possible to chain drivers with
  2614. other drivers. For example, file-system drivers may be implemented on top of
  2615. physical block devices, both represented by IO devices with corresponding
  2616. drivers. In such a case, the file-system "binding" with the block device may
  2617. be deferred until the file-system device is initialised.
  2618. The abstraction currently depends on structures being statically allocated
  2619. by the drivers and callers, as the system does not yet provide a means of
  2620. dynamically allocating memory. This may also have the affect of limiting the
  2621. amount of open resources per driver.
  2622. Measured Boot Platform Interface
  2623. --------------------------------
  2624. Enabling the MEASURED_BOOT flag adds extra platform requirements. Please refer
  2625. to :ref:`Measured Boot Design` for more details.
  2626. --------------
  2627. *Copyright (c) 2013-2024, Arm Limited and Contributors. All rights reserved.*
  2628. .. _PSCI: https://developer.arm.com/documentation/den0022/latest/
  2629. .. _Arm Generic Interrupt Controller version 2.0 (GICv2): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0048b/index.html
  2630. .. _3.0 (GICv3): http://infocenter.arm.com/help/topic/com.arm.doc.ihi0069b/index.html
  2631. .. _FreeBSD: https://www.freebsd.org
  2632. .. _SCC: http://www.simple-cc.org/
  2633. .. _DRTM: https://developer.arm.com/documentation/den0113/a