crypt_sha512.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. /*
  2. * public domain sha512 crypt implementation
  3. *
  4. * original sha crypt design: http://people.redhat.com/drepper/SHA-crypt.txt
  5. * in this implementation at least 32bit int is assumed,
  6. * key length is limited, the $6$ prefix is mandatory, '\n' and ':' is rejected
  7. * in the salt and rounds= setting must contain a valid iteration count,
  8. * on error "*" is returned.
  9. */
  10. #include <ctype.h>
  11. #include <stdlib.h>
  12. #include <stdio.h>
  13. #include <string.h>
  14. #include <stdint.h>
  15. /* public domain sha512 implementation based on fips180-3 */
  16. /* >=2^64 bits messages are not supported (about 2000 peta bytes) */
  17. struct sha512 {
  18. uint64_t len; /* processed message length */
  19. uint64_t h[8]; /* hash state */
  20. uint8_t buf[128]; /* message block buffer */
  21. };
  22. static uint64_t ror(uint64_t n, int k) { return (n >> k) | (n << (64-k)); }
  23. #define Ch(x,y,z) (z ^ (x & (y ^ z)))
  24. #define Maj(x,y,z) ((x & y) | (z & (x | y)))
  25. #define S0(x) (ror(x,28) ^ ror(x,34) ^ ror(x,39))
  26. #define S1(x) (ror(x,14) ^ ror(x,18) ^ ror(x,41))
  27. #define R0(x) (ror(x,1) ^ ror(x,8) ^ (x>>7))
  28. #define R1(x) (ror(x,19) ^ ror(x,61) ^ (x>>6))
  29. static const uint64_t K[80] = {
  30. 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL,
  31. 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL,
  32. 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
  33. 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL,
  34. 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL,
  35. 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
  36. 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL,
  37. 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL,
  38. 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
  39. 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL,
  40. 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL,
  41. 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
  42. 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL,
  43. 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL,
  44. 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
  45. 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL,
  46. 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL,
  47. 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
  48. 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL,
  49. 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL
  50. };
  51. static void processblock(struct sha512 *s, const uint8_t *buf)
  52. {
  53. uint64_t W[80], t1, t2, a, b, c, d, e, f, g, h;
  54. int i;
  55. for (i = 0; i < 16; i++) {
  56. W[i] = (uint64_t)buf[8*i]<<56;
  57. W[i] |= (uint64_t)buf[8*i+1]<<48;
  58. W[i] |= (uint64_t)buf[8*i+2]<<40;
  59. W[i] |= (uint64_t)buf[8*i+3]<<32;
  60. W[i] |= (uint64_t)buf[8*i+4]<<24;
  61. W[i] |= (uint64_t)buf[8*i+5]<<16;
  62. W[i] |= (uint64_t)buf[8*i+6]<<8;
  63. W[i] |= buf[8*i+7];
  64. }
  65. for (; i < 80; i++)
  66. W[i] = R1(W[i-2]) + W[i-7] + R0(W[i-15]) + W[i-16];
  67. a = s->h[0];
  68. b = s->h[1];
  69. c = s->h[2];
  70. d = s->h[3];
  71. e = s->h[4];
  72. f = s->h[5];
  73. g = s->h[6];
  74. h = s->h[7];
  75. for (i = 0; i < 80; i++) {
  76. t1 = h + S1(e) + Ch(e,f,g) + K[i] + W[i];
  77. t2 = S0(a) + Maj(a,b,c);
  78. h = g;
  79. g = f;
  80. f = e;
  81. e = d + t1;
  82. d = c;
  83. c = b;
  84. b = a;
  85. a = t1 + t2;
  86. }
  87. s->h[0] += a;
  88. s->h[1] += b;
  89. s->h[2] += c;
  90. s->h[3] += d;
  91. s->h[4] += e;
  92. s->h[5] += f;
  93. s->h[6] += g;
  94. s->h[7] += h;
  95. }
  96. static void pad(struct sha512 *s)
  97. {
  98. unsigned r = s->len % 128;
  99. s->buf[r++] = 0x80;
  100. if (r > 112) {
  101. memset(s->buf + r, 0, 128 - r);
  102. r = 0;
  103. processblock(s, s->buf);
  104. }
  105. memset(s->buf + r, 0, 120 - r);
  106. s->len *= 8;
  107. s->buf[120] = s->len >> 56;
  108. s->buf[121] = s->len >> 48;
  109. s->buf[122] = s->len >> 40;
  110. s->buf[123] = s->len >> 32;
  111. s->buf[124] = s->len >> 24;
  112. s->buf[125] = s->len >> 16;
  113. s->buf[126] = s->len >> 8;
  114. s->buf[127] = s->len;
  115. processblock(s, s->buf);
  116. }
  117. static void sha512_init(struct sha512 *s)
  118. {
  119. s->len = 0;
  120. s->h[0] = 0x6a09e667f3bcc908ULL;
  121. s->h[1] = 0xbb67ae8584caa73bULL;
  122. s->h[2] = 0x3c6ef372fe94f82bULL;
  123. s->h[3] = 0xa54ff53a5f1d36f1ULL;
  124. s->h[4] = 0x510e527fade682d1ULL;
  125. s->h[5] = 0x9b05688c2b3e6c1fULL;
  126. s->h[6] = 0x1f83d9abfb41bd6bULL;
  127. s->h[7] = 0x5be0cd19137e2179ULL;
  128. }
  129. static void sha512_sum(struct sha512 *s, uint8_t *md)
  130. {
  131. int i;
  132. pad(s);
  133. for (i = 0; i < 8; i++) {
  134. md[8*i] = s->h[i] >> 56;
  135. md[8*i+1] = s->h[i] >> 48;
  136. md[8*i+2] = s->h[i] >> 40;
  137. md[8*i+3] = s->h[i] >> 32;
  138. md[8*i+4] = s->h[i] >> 24;
  139. md[8*i+5] = s->h[i] >> 16;
  140. md[8*i+6] = s->h[i] >> 8;
  141. md[8*i+7] = s->h[i];
  142. }
  143. }
  144. static void sha512_update(struct sha512 *s, const void *m, unsigned long len)
  145. {
  146. const uint8_t *p = m;
  147. unsigned r = s->len % 128;
  148. s->len += len;
  149. if (r) {
  150. if (len < 128 - r) {
  151. memcpy(s->buf + r, p, len);
  152. return;
  153. }
  154. memcpy(s->buf + r, p, 128 - r);
  155. len -= 128 - r;
  156. p += 128 - r;
  157. processblock(s, s->buf);
  158. }
  159. for (; len >= 128; len -= 128, p += 128)
  160. processblock(s, p);
  161. memcpy(s->buf, p, len);
  162. }
  163. static const unsigned char b64[] =
  164. "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
  165. static char *to64(char *s, unsigned int u, int n)
  166. {
  167. while (--n >= 0) {
  168. *s++ = b64[u % 64];
  169. u /= 64;
  170. }
  171. return s;
  172. }
  173. /* key limit is not part of the original design, added for DoS protection.
  174. * rounds limit has been lowered (versus the reference/spec), also for DoS
  175. * protection. runtime is O(klen^2 + klen*rounds) */
  176. #define KEY_MAX 256
  177. #define SALT_MAX 16
  178. #define ROUNDS_DEFAULT 5000
  179. #define ROUNDS_MIN 1000
  180. #define ROUNDS_MAX 9999999
  181. /* hash n bytes of the repeated md message digest */
  182. static void hashmd(struct sha512 *s, unsigned int n, const void *md)
  183. {
  184. unsigned int i;
  185. for (i = n; i > 64; i -= 64)
  186. sha512_update(s, md, 64);
  187. sha512_update(s, md, i);
  188. }
  189. static char *sha512crypt(const char *key, const char *setting, char *output)
  190. {
  191. struct sha512 ctx;
  192. unsigned char md[64], kmd[64], smd[64];
  193. unsigned int i, r, klen, slen;
  194. char rounds[20] = "";
  195. const char *salt;
  196. char *p;
  197. /* reject large keys */
  198. for (i = 0; i <= KEY_MAX && key[i]; i++);
  199. if (i > KEY_MAX)
  200. return 0;
  201. klen = i;
  202. /* setting: $6$rounds=n$salt$ (rounds=n$ and closing $ are optional) */
  203. if (strncmp(setting, "$6$", 3) != 0)
  204. return 0;
  205. salt = setting + 3;
  206. r = ROUNDS_DEFAULT;
  207. if (strncmp(salt, "rounds=", sizeof "rounds=" - 1) == 0) {
  208. unsigned long u;
  209. char *end;
  210. /*
  211. * this is a deviation from the reference:
  212. * bad rounds setting is rejected if it is
  213. * - empty
  214. * - unterminated (missing '$')
  215. * - begins with anything but a decimal digit
  216. * the reference implementation treats these bad
  217. * rounds as part of the salt or parse them with
  218. * strtoul semantics which may cause problems
  219. * including non-portable hashes that depend on
  220. * the host's value of ULONG_MAX.
  221. */
  222. salt += sizeof "rounds=" - 1;
  223. if (!isdigit(*salt))
  224. return 0;
  225. u = strtoul(salt, &end, 10);
  226. if (*end != '$')
  227. return 0;
  228. salt = end+1;
  229. if (u < ROUNDS_MIN)
  230. r = ROUNDS_MIN;
  231. else if (u > ROUNDS_MAX)
  232. return 0;
  233. else
  234. r = u;
  235. /* needed when rounds is zero prefixed or out of bounds */
  236. sprintf(rounds, "rounds=%u$", r);
  237. }
  238. for (i = 0; i < SALT_MAX && salt[i] && salt[i] != '$'; i++)
  239. /* reject characters that interfere with /etc/shadow parsing */
  240. if (salt[i] == '\n' || salt[i] == ':')
  241. return 0;
  242. slen = i;
  243. /* B = sha(key salt key) */
  244. sha512_init(&ctx);
  245. sha512_update(&ctx, key, klen);
  246. sha512_update(&ctx, salt, slen);
  247. sha512_update(&ctx, key, klen);
  248. sha512_sum(&ctx, md);
  249. /* A = sha(key salt repeat-B alternate-B-key) */
  250. sha512_init(&ctx);
  251. sha512_update(&ctx, key, klen);
  252. sha512_update(&ctx, salt, slen);
  253. hashmd(&ctx, klen, md);
  254. for (i = klen; i > 0; i >>= 1)
  255. if (i & 1)
  256. sha512_update(&ctx, md, sizeof md);
  257. else
  258. sha512_update(&ctx, key, klen);
  259. sha512_sum(&ctx, md);
  260. /* DP = sha(repeat-key), this step takes O(klen^2) time */
  261. sha512_init(&ctx);
  262. for (i = 0; i < klen; i++)
  263. sha512_update(&ctx, key, klen);
  264. sha512_sum(&ctx, kmd);
  265. /* DS = sha(repeat-salt) */
  266. sha512_init(&ctx);
  267. for (i = 0; i < 16 + md[0]; i++)
  268. sha512_update(&ctx, salt, slen);
  269. sha512_sum(&ctx, smd);
  270. /* iterate A = f(A,DP,DS), this step takes O(rounds*klen) time */
  271. for (i = 0; i < r; i++) {
  272. sha512_init(&ctx);
  273. if (i % 2)
  274. hashmd(&ctx, klen, kmd);
  275. else
  276. sha512_update(&ctx, md, sizeof md);
  277. if (i % 3)
  278. sha512_update(&ctx, smd, slen);
  279. if (i % 7)
  280. hashmd(&ctx, klen, kmd);
  281. if (i % 2)
  282. sha512_update(&ctx, md, sizeof md);
  283. else
  284. hashmd(&ctx, klen, kmd);
  285. sha512_sum(&ctx, md);
  286. }
  287. /* output is $6$rounds=n$salt$hash */
  288. p = output;
  289. p += sprintf(p, "$6$%s%.*s$", rounds, slen, salt);
  290. #if 1
  291. static const unsigned char perm[][3] = {
  292. 0,21,42,22,43,1,44,2,23,3,24,45,25,46,4,
  293. 47,5,26,6,27,48,28,49,7,50,8,29,9,30,51,
  294. 31,52,10,53,11,32,12,33,54,34,55,13,56,14,35,
  295. 15,36,57,37,58,16,59,17,38,18,39,60,40,61,19,
  296. 62,20,41 };
  297. for (i=0; i<21; i++) p = to64(p,
  298. (md[perm[i][0]]<<16)|(md[perm[i][1]]<<8)|md[perm[i][2]], 4);
  299. #else
  300. p = to64(p, (md[0]<<16)|(md[21]<<8)|md[42], 4);
  301. p = to64(p, (md[22]<<16)|(md[43]<<8)|md[1], 4);
  302. p = to64(p, (md[44]<<16)|(md[2]<<8)|md[23], 4);
  303. p = to64(p, (md[3]<<16)|(md[24]<<8)|md[45], 4);
  304. p = to64(p, (md[25]<<16)|(md[46]<<8)|md[4], 4);
  305. p = to64(p, (md[47]<<16)|(md[5]<<8)|md[26], 4);
  306. p = to64(p, (md[6]<<16)|(md[27]<<8)|md[48], 4);
  307. p = to64(p, (md[28]<<16)|(md[49]<<8)|md[7], 4);
  308. p = to64(p, (md[50]<<16)|(md[8]<<8)|md[29], 4);
  309. p = to64(p, (md[9]<<16)|(md[30]<<8)|md[51], 4);
  310. p = to64(p, (md[31]<<16)|(md[52]<<8)|md[10], 4);
  311. p = to64(p, (md[53]<<16)|(md[11]<<8)|md[32], 4);
  312. p = to64(p, (md[12]<<16)|(md[33]<<8)|md[54], 4);
  313. p = to64(p, (md[34]<<16)|(md[55]<<8)|md[13], 4);
  314. p = to64(p, (md[56]<<16)|(md[14]<<8)|md[35], 4);
  315. p = to64(p, (md[15]<<16)|(md[36]<<8)|md[57], 4);
  316. p = to64(p, (md[37]<<16)|(md[58]<<8)|md[16], 4);
  317. p = to64(p, (md[59]<<16)|(md[17]<<8)|md[38], 4);
  318. p = to64(p, (md[18]<<16)|(md[39]<<8)|md[60], 4);
  319. p = to64(p, (md[40]<<16)|(md[61]<<8)|md[19], 4);
  320. p = to64(p, (md[62]<<16)|(md[20]<<8)|md[41], 4);
  321. #endif
  322. p = to64(p, md[63], 2);
  323. *p = 0;
  324. return output;
  325. }
  326. char *__crypt_sha512(const char *key, const char *setting, char *output)
  327. {
  328. static const char testkey[] = "Xy01@#\x01\x02\x80\x7f\xff\r\n\x81\t !";
  329. static const char testsetting[] = "$6$rounds=1234$abc0123456789$";
  330. static const char testhash[] = "$6$rounds=1234$abc0123456789$BCpt8zLrc/RcyuXmCDOE1ALqMXB2MH6n1g891HhFj8.w7LxGv.FTkqq6Vxc/km3Y0jE0j24jY5PIv/oOu6reg1";
  331. char testbuf[128];
  332. char *p, *q;
  333. p = sha512crypt(key, setting, output);
  334. /* self test and stack cleanup */
  335. q = sha512crypt(testkey, testsetting, testbuf);
  336. if (!p || q != testbuf || memcmp(testbuf, testhash, sizeof testhash))
  337. return "*";
  338. return p;
  339. }