BN_add.pod 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. =pod
  2. =head1 NAME
  3. BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
  4. BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_mod_sqrt, BN_exp, BN_mod_exp, BN_gcd -
  5. arithmetic operations on BIGNUMs
  6. =head1 SYNOPSIS
  7. #include <openssl/bn.h>
  8. int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  9. int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  10. int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
  11. int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
  12. int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
  13. BN_CTX *ctx);
  14. int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  15. int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  16. int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  17. BN_CTX *ctx);
  18. int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  19. BN_CTX *ctx);
  20. int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  21. BN_CTX *ctx);
  22. int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  23. BIGNUM *BN_mod_sqrt(BIGNUM *in, BIGNUM *a, const BIGNUM *p, BN_CTX *ctx);
  24. int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
  25. int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
  26. const BIGNUM *m, BN_CTX *ctx);
  27. int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
  28. =head1 DESCRIPTION
  29. BN_add() adds I<a> and I<b> and places the result in I<r> (C<r=a+b>).
  30. I<r> may be the same B<BIGNUM> as I<a> or I<b>.
  31. BN_sub() subtracts I<b> from I<a> and places the result in I<r> (C<r=a-b>).
  32. I<r> may be the same B<BIGNUM> as I<a> or I<b>.
  33. BN_mul() multiplies I<a> and I<b> and places the result in I<r> (C<r=a*b>).
  34. I<r> may be the same B<BIGNUM> as I<a> or I<b>.
  35. For multiplication by powers of 2, use L<BN_lshift(3)>.
  36. BN_sqr() takes the square of I<a> and places the result in I<r>
  37. (C<r=a^2>). I<r> and I<a> may be the same B<BIGNUM>.
  38. This function is faster than BN_mul(r,a,a).
  39. BN_div() divides I<a> by I<d> and places the result in I<dv> and the
  40. remainder in I<rem> (C<dv=a/d, rem=a%d>). Either of I<dv> and I<rem> may
  41. be B<NULL>, in which case the respective value is not returned.
  42. The result is rounded towards zero; thus if I<a> is negative, the
  43. remainder will be zero or negative.
  44. For division by powers of 2, use BN_rshift(3).
  45. BN_mod() corresponds to BN_div() with I<dv> set to B<NULL>.
  46. BN_nnmod() reduces I<a> modulo I<m> and places the nonnegative
  47. remainder in I<r>.
  48. BN_mod_add() adds I<a> to I<b> modulo I<m> and places the nonnegative
  49. result in I<r>.
  50. BN_mod_sub() subtracts I<b> from I<a> modulo I<m> and places the
  51. nonnegative result in I<r>.
  52. BN_mod_mul() multiplies I<a> by I<b> and finds the nonnegative
  53. remainder respective to modulus I<m> (C<r=(a*b) mod m>). I<r> may be
  54. the same B<BIGNUM> as I<a> or I<b>. For more efficient algorithms for
  55. repeated computations using the same modulus, see
  56. L<BN_mod_mul_montgomery(3)> and
  57. L<BN_mod_mul_reciprocal(3)>.
  58. BN_mod_sqr() takes the square of I<a> modulo B<m> and places the
  59. result in I<r>.
  60. BN_mod_sqrt() returns the modular square root of I<a> such that
  61. C<in^2 = a (mod p)>. The modulus I<p> must be a
  62. prime, otherwise an error or an incorrect "result" will be returned.
  63. The result is stored into I<in> which can be NULL. The result will be
  64. newly allocated in that case.
  65. BN_exp() raises I<a> to the I<p>-th power and places the result in I<r>
  66. (C<r=a^p>). This function is faster than repeated applications of
  67. BN_mul().
  68. BN_mod_exp() computes I<a> to the I<p>-th power modulo I<m> (C<r=a^p %
  69. m>). This function uses less time and space than BN_exp(). Do not call this
  70. function when B<m> is even and any of the parameters have the
  71. B<BN_FLG_CONSTTIME> flag set.
  72. BN_gcd() computes the greatest common divisor of I<a> and I<b> and
  73. places the result in I<r>. I<r> may be the same B<BIGNUM> as I<a> or
  74. I<b>.
  75. For all functions, I<ctx> is a previously allocated B<BN_CTX> used for
  76. temporary variables; see L<BN_CTX_new(3)>.
  77. Unless noted otherwise, the result B<BIGNUM> must be different from
  78. the arguments.
  79. =head1 RETURN VALUES
  80. The BN_mod_sqrt() returns the result (possibly incorrect if I<p> is
  81. not a prime), or NULL.
  82. For all remaining functions, 1 is returned for success, 0 on error. The return
  83. value should always be checked (e.g., C<if (!BN_add(r,a,b)) goto err;>).
  84. The error codes can be obtained by L<ERR_get_error(3)>.
  85. =head1 SEE ALSO
  86. L<ERR_get_error(3)>, L<BN_CTX_new(3)>,
  87. L<BN_add_word(3)>, L<BN_set_bit(3)>
  88. =head1 COPYRIGHT
  89. Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.
  90. Licensed under the Apache License 2.0 (the "License"). You may not use
  91. this file except in compliance with the License. You can obtain a copy
  92. in the file LICENSE in the source distribution or at
  93. L<https://www.openssl.org/source/license.html>.
  94. =cut