Matt Caswell 840facc3cc Properly handle duplicated messages from the next epoch 6 anos atrás
..
README a3680c8f9c Version negotiation rewrite cleanup 9 anos atrás
dtls1_bitmap.c 31c34a3e2f Fix satsub64be() to unconditionally use 64-bit integers 8 anos atrás
rec_layer_d1.c 840facc3cc Properly handle duplicated messages from the next epoch 6 anos atrás
rec_layer_s3.c 1bf4cb0fe3 Process KeyUpdate and NewSessionTicket messages after a close_notify 6 anos atrás
record.h 079ef6bd53 Buffer a ClientHello with a cookie received via DTLSv1_listen 6 anos atrás
record_locl.h 2fc4c77c3f Use the read and write buffers in DTLSv1_listen() 6 anos atrás
ssl3_buffer.c 196f2cbb78 Update ssl3_get_record() to use SSLfatal() 7 anos atrás
ssl3_record.c 079ef6bd53 Buffer a ClientHello with a cookie received via DTLSv1_listen 6 anos atrás
ssl3_record_tls13.c de9e884b2f Tolerate encrypted or plaintext alerts 6 anos atrás

README

Record Layer Design
===================

This file provides some guidance on the thinking behind the design of the
record layer code to aid future maintenance.

The record layer is divided into a number of components. At the time of writing
there are four: SSL3_RECORD, SSL3_BUFFER, DLTS1_BITMAP and RECORD_LAYER. Each
of these components is defined by:
1) A struct definition of the same name as the component
2) A set of source files that define the functions for that component
3) A set of accessor macros

All struct definitions are in record.h. The functions and macros are either
defined in record.h or record_locl.h dependent on whether they are intended to
be private to the record layer, or whether they form part of the API to the rest
of libssl.

The source files map to components as follows:

dtls1_bitmap.c -> DTLS1_BITMAP component
ssl3_buffer.c -> SSL3_BUFFER component
ssl3_record.c -> SSL3_RECORD component
rec_layer_s3.c, rec_layer_d1.c -> RECORD_LAYER component

The RECORD_LAYER component is a facade pattern, i.e. it provides a simplified
interface to the record layer for the rest of libssl. The other 3 components are
entirely private to the record layer and therefore should never be accessed
directly by libssl.

Any component can directly access its own members - they are private to that
component, e.g. ssl3_buffer.c can access members of the SSL3_BUFFER struct
without using a macro. No component can directly access the members of another
component, e.g. ssl3_buffer cannot reach inside the RECORD_LAYER component to
directly access its members. Instead components use accessor macros, so if code
in ssl3_buffer.c wants to access the members of the RECORD_LAYER it uses the
RECORD_LAYER_* macros.

Conceptually it looks like this:

libssl
|
---------------------------|-----record.h--------------------------------------
|
_______V______________
| |
| RECORD_LAYER |
| |
| rec_layer_s3.c |
| ^ |
| _________|__________ |
|| ||
|| DTLS1_RECORD_LAYER ||
|| ||
|| rec_layer_d1.c ||
||____________________||
|______________________|
record_locl.h ^ ^ ^
_________________| | |_________________
| | |
_____V_________ ______V________ _______V________
| | | | | |
| SSL3_BUFFER | | SSL3_RECORD | | DTLS1_BITMAP |
| |--->| | | |
| ssl3_buffer.c | | ssl3_record.c | | dtls1_bitmap.c |
|_______________| |_______________| |________________|


The two RECORD_LAYER source files build on each other, i.e.
the main one is rec_layer_s3.c which provides the core SSL/TLS layer. The second
one is rec_layer_d1.c which builds off of the SSL/TLS code to provide DTLS
specific capabilities. It uses some DTLS specific RECORD_LAYER component members
which should only be accessed from rec_layer_d1.c. These are held in the
DTLS1_RECORD_LAYER struct.