123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386 |
- /*
- * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved.
- * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
- *
- * Licensed under the OpenSSL license (the "License"). You may not use
- * this file except in compliance with the License. You can obtain a copy
- * in the file LICENSE in the source distribution or at
- * https://www.openssl.org/source/license.html
- */
- #include <openssl/err.h>
- #include <openssl/bn.h>
- #include "internal/bn_int.h"
- #include "rsa_locl.h"
- /*
- * Part of the RSA keypair test.
- * Check the Chinese Remainder Theorem components are valid.
- *
- * See SP800-5bBr1
- * 6.4.1.2.3: rsakpv1-crt Step 7
- * 6.4.1.3.3: rsakpv2-crt Step 7
- */
- int rsa_check_crt_components(const RSA *rsa, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *r = NULL, *p1 = NULL, *q1 = NULL;
- /* check if only some of the crt components are set */
- if (rsa->dmp1 == NULL || rsa->dmq1 == NULL || rsa->iqmp == NULL) {
- if (rsa->dmp1 != NULL || rsa->dmq1 != NULL || rsa->iqmp != NULL)
- return 0;
- return 1; /* return ok if all components are NULL */
- }
- BN_CTX_start(ctx);
- r = BN_CTX_get(ctx);
- p1 = BN_CTX_get(ctx);
- q1 = BN_CTX_get(ctx);
- ret = (q1 != NULL)
- /* p1 = p -1 */
- && (BN_copy(p1, rsa->p) != NULL)
- && BN_sub_word(p1, 1)
- /* q1 = q - 1 */
- && (BN_copy(q1, rsa->q) != NULL)
- && BN_sub_word(q1, 1)
- /* (a) 1 < dP < (p – 1). */
- && (BN_cmp(rsa->dmp1, BN_value_one()) > 0)
- && (BN_cmp(rsa->dmp1, p1) < 0)
- /* (b) 1 < dQ < (q - 1). */
- && (BN_cmp(rsa->dmq1, BN_value_one()) > 0)
- && (BN_cmp(rsa->dmq1, q1) < 0)
- /* (c) 1 < qInv < p */
- && (BN_cmp(rsa->iqmp, BN_value_one()) > 0)
- && (BN_cmp(rsa->iqmp, rsa->p) < 0)
- /* (d) 1 = (dP . e) mod (p - 1)*/
- && BN_mod_mul(r, rsa->dmp1, rsa->e, p1, ctx)
- && BN_is_one(r)
- /* (e) 1 = (dQ . e) mod (q - 1) */
- && BN_mod_mul(r, rsa->dmq1, rsa->e, q1, ctx)
- && BN_is_one(r)
- /* (f) 1 = (qInv . q) mod p */
- && BN_mod_mul(r, rsa->iqmp, rsa->q, rsa->p, ctx)
- && BN_is_one(r);
- BN_clear(p1);
- BN_clear(q1);
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Part of the RSA keypair test.
- * Check that (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2) - 1
- *
- * See SP800-5bBr1 6.4.1.2.1 Part 5 (c) & (g) - used for both p and q.
- *
- * (√2)(2^(nbits/2 - 1) = (√2/2)(2^(nbits/2))
- * √2/2 = 0.707106781186547524400 = 0.B504F333F9DE6484597D8
- * 0.B504F334 gives an approximation to 11 decimal places.
- * The range is then from
- * 0xB504F334_0000.......................000 to
- * 0xFFFFFFFF_FFFF.......................FFF
- */
- int rsa_check_prime_factor_range(const BIGNUM *p, int nbits, BN_CTX *ctx)
- {
- int ret = 0;
- BIGNUM *tmp, *low;
- nbits >>= 1;
- /* Upper bound check */
- if (BN_num_bits(p) != nbits)
- return 0;
- BN_CTX_start(ctx);
- tmp = BN_CTX_get(ctx);
- low = BN_CTX_get(ctx);
- /* set low = (√2)(2^(nbits/2 - 1) */
- if (low == NULL || !BN_set_word(tmp, 0xB504F334))
- goto err;
- if (nbits >= 32) {
- if (!BN_lshift(low, tmp, nbits - 32))
- goto err;
- } else if (!BN_rshift(low, tmp, 32 - nbits)) {
- goto err;
- }
- if (BN_cmp(p, low) < 0)
- goto err;
- ret = 1;
- err:
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * Part of the RSA keypair test.
- * Check the prime factor (for either p or q)
- * i.e: p is prime AND GCD(p - 1, e) = 1
- *
- * See SP800-5bBr1 6.4.1.2.3 Step 5 (a to d) & (e to h).
- */
- int rsa_check_prime_factor(BIGNUM *p, BIGNUM *e, int nbits, BN_CTX *ctx)
- {
- int checks = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
- int ret = 0;
- BIGNUM *p1 = NULL, *gcd = NULL;
- /* (Steps 5 a-b) prime test */
- if (BN_is_prime_fasttest_ex(p, checks, ctx, 1, NULL) != 1
- /* (Step 5c) (√2)(2^(nbits/2 - 1) <= p <= 2^(nbits/2 - 1) */
- || rsa_check_prime_factor_range(p, nbits, ctx) != 1)
- return 0;
- BN_CTX_start(ctx);
- p1 = BN_CTX_get(ctx);
- gcd = BN_CTX_get(ctx);
- ret = (gcd != NULL)
- /* (Step 5d) GCD(p-1, e) = 1 */
- && (BN_copy(p1, p) != NULL)
- && BN_sub_word(p1, 1)
- && BN_gcd(gcd, p1, e, ctx)
- && BN_is_one(gcd);
- BN_clear(p1);
- BN_CTX_end(ctx);
- return ret;
- }
- /*
- * See SP800-56Br1 6.4.1.2.3 Part 6(a-b) Check the private exponent d
- * satisfies:
- * (Step 6a) 2^(nBit/2) < d < LCM(p–1, q–1).
- * (Step 6b) 1 = (d*e) mod LCM(p–1, q–1)
- */
- int rsa_check_private_exponent(const RSA *rsa, int nbits, BN_CTX *ctx)
- {
- int ret;
- BIGNUM *r, *p1, *q1, *lcm, *p1q1, *gcd;
- /* (Step 6a) 2^(nbits/2) < d */
- if (BN_num_bits(rsa->d) <= (nbits >> 1))
- return 0;
- BN_CTX_start(ctx);
- r = BN_CTX_get(ctx);
- p1 = BN_CTX_get(ctx);
- q1 = BN_CTX_get(ctx);
- lcm = BN_CTX_get(ctx);
- p1q1 = BN_CTX_get(ctx);
- gcd = BN_CTX_get(ctx);
- ret = (gcd != NULL
- /* LCM(p - 1, q - 1) */
- && (rsa_get_lcm(ctx, rsa->p, rsa->q, lcm, gcd, p1, q1, p1q1) == 1)
- /* (Step 6a) d < LCM(p - 1, q - 1) */
- && (BN_cmp(rsa->d, lcm) < 0)
- /* (Step 6b) 1 = (e . d) mod LCM(p - 1, q - 1) */
- && BN_mod_mul(r, rsa->e, rsa->d, lcm, ctx)
- && BN_is_one(r));
- BN_clear(p1);
- BN_clear(q1);
- BN_clear(lcm);
- BN_clear(gcd);
- BN_CTX_end(ctx);
- return ret;
- }
- /* Check exponent is odd, and has a bitlen ranging from [17..256] */
- int rsa_check_public_exponent(const BIGNUM *e)
- {
- int bitlen = BN_num_bits(e);
- return (BN_is_odd(e) && bitlen > 16 && bitlen < 257);
- }
- /*
- * SP800-56Br1 6.4.1.2.1 (Step 5i): |p - q| > 2^(nbits/2 - 100)
- * i.e- numbits(p-q-1) > (nbits/2 -100)
- */
- int rsa_check_pminusq_diff(BIGNUM *diff, const BIGNUM *p, const BIGNUM *q,
- int nbits)
- {
- int bitlen = (nbits >> 1) - 100;
- if (!BN_sub(diff, p, q))
- return -1;
- BN_set_negative(diff, 0);
- if (BN_is_zero(diff))
- return 0;
- if (!BN_sub_word(diff, 1))
- return -1;
- return (BN_num_bits(diff) > bitlen);
- }
- /* return LCM(p-1, q-1) */
- int rsa_get_lcm(BN_CTX *ctx, const BIGNUM *p, const BIGNUM *q,
- BIGNUM *lcm, BIGNUM *gcd, BIGNUM *p1, BIGNUM *q1,
- BIGNUM *p1q1)
- {
- return BN_sub(p1, p, BN_value_one()) /* p-1 */
- && BN_sub(q1, q, BN_value_one()) /* q-1 */
- && BN_mul(p1q1, p1, q1, ctx) /* (p-1)(q-1) */
- && BN_gcd(gcd, p1, q1, ctx)
- && BN_div(lcm, NULL, p1q1, gcd, ctx); /* LCM((p-1, q-1)) */
- }
- /*
- * SP800-56Br1 6.4.2.2 Partial Public Key Validation for RSA refers to
- * SP800-89 5.3.3 (Explicit) Partial Public Key Validation for RSA
- * caveat is that the modulus must be as specified in SP800-56Br1
- */
- int rsa_sp800_56b_check_public(const RSA *rsa)
- {
- int ret = 0, nbits, iterations, status;
- BN_CTX *ctx = NULL;
- BIGNUM *gcd = NULL;
- if (rsa->n == NULL || rsa->e == NULL)
- return 0;
- /*
- * (Step a): modulus must be 2048 or 3072 (caveat from SP800-56Br1)
- * NOTE: changed to allow keys >= 2048
- */
- nbits = BN_num_bits(rsa->n);
- if (!rsa_sp800_56b_validate_strength(nbits, -1)) {
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_KEY_LENGTH);
- return 0;
- }
- if (!BN_is_odd(rsa->n)) {
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
- return 0;
- }
- /* (Steps b-c): 2^16 < e < 2^256, n and e must be odd */
- if (!rsa_check_public_exponent(rsa->e)) {
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC,
- RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
- return 0;
- }
- ctx = BN_CTX_new();
- gcd = BN_new();
- if (ctx == NULL || gcd == NULL)
- goto err;
- iterations = bn_rsa_fips186_4_prime_MR_min_checks(nbits);
- /* (Steps d-f):
- * The modulus is composite, but not a power of a prime.
- * The modulus has no factors smaller than 752.
- */
- if (!BN_gcd(gcd, rsa->n, bn_get0_small_factors(), ctx) || !BN_is_one(gcd)) {
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
- goto err;
- }
- ret = bn_miller_rabin_is_prime(rsa->n, iterations, ctx, NULL, 1, &status);
- if (ret != 1 || status != BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME) {
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_PUBLIC, RSA_R_INVALID_MODULUS);
- ret = 0;
- goto err;
- }
- ret = 1;
- err:
- BN_free(gcd);
- BN_CTX_free(ctx);
- return ret;
- }
- /*
- * Perform validation of the RSA private key to check that 0 < D < N.
- */
- int rsa_sp800_56b_check_private(const RSA *rsa)
- {
- if (rsa->d == NULL || rsa->n == NULL)
- return 0;
- return BN_cmp(rsa->d, BN_value_one()) >= 0 && BN_cmp(rsa->d, rsa->n) < 0;
- }
- /*
- * RSA key pair validation.
- *
- * SP800-56Br1.
- * 6.4.1.2 "RSAKPV1 Family: RSA Key - Pair Validation with a Fixed Exponent"
- * 6.4.1.3 "RSAKPV2 Family: RSA Key - Pair Validation with a Random Exponent"
- *
- * It uses:
- * 6.4.1.2.3 "rsakpv1 - crt"
- * 6.4.1.3.3 "rsakpv2 - crt"
- */
- int rsa_sp800_56b_check_keypair(const RSA *rsa, const BIGNUM *efixed,
- int strength, int nbits)
- {
- int ret = 0;
- BN_CTX *ctx = NULL;
- BIGNUM *r = NULL;
- if (rsa->p == NULL
- || rsa->q == NULL
- || rsa->e == NULL
- || rsa->d == NULL
- || rsa->n == NULL) {
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
- return 0;
- }
- /* (Step 1): Check Ranges */
- if (!rsa_sp800_56b_validate_strength(nbits, strength))
- return 0;
- /* If the exponent is known */
- if (efixed != NULL) {
- /* (2): Check fixed exponent matches public exponent. */
- if (BN_cmp(efixed, rsa->e) != 0) {
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
- return 0;
- }
- }
- /* (Step 1.c): e is odd integer 65537 <= e < 2^256 */
- if (!rsa_check_public_exponent(rsa->e)) {
- /* exponent out of range */
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR,
- RSA_R_PUB_EXPONENT_OUT_OF_RANGE);
- return 0;
- }
- /* (Step 3.b): check the modulus */
- if (nbits != BN_num_bits(rsa->n)) {
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
- return 0;
- }
- ctx = BN_CTX_new();
- if (ctx == NULL)
- return 0;
- BN_CTX_start(ctx);
- r = BN_CTX_get(ctx);
- if (r == NULL || !BN_mul(r, rsa->p, rsa->q, ctx))
- goto err;
- /* (Step 4.c): Check n = pq */
- if (BN_cmp(rsa->n, r) != 0) {
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_REQUEST);
- goto err;
- }
- /* (Step 5): check prime factors p & q */
- ret = rsa_check_prime_factor(rsa->p, rsa->e, nbits, ctx)
- && rsa_check_prime_factor(rsa->q, rsa->e, nbits, ctx)
- && (rsa_check_pminusq_diff(r, rsa->p, rsa->q, nbits) > 0)
- /* (Step 6): Check the private exponent d */
- && rsa_check_private_exponent(rsa, nbits, ctx)
- /* 6.4.1.2.3 (Step 7): Check the CRT components */
- && rsa_check_crt_components(rsa, ctx);
- if (ret != 1)
- RSAerr(RSA_F_RSA_SP800_56B_CHECK_KEYPAIR, RSA_R_INVALID_KEYPAIR);
- err:
- BN_clear(r);
- BN_CTX_end(ctx);
- BN_CTX_free(ctx);
- return ret;
- }
|