sha256.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. /*
  2. * Copyright 2004-2021 The OpenSSL Project Authors. All Rights Reserved.
  3. *
  4. * Licensed under the Apache License 2.0 (the "License"). You may not use
  5. * this file except in compliance with the License. You can obtain a copy
  6. * in the file LICENSE in the source distribution or at
  7. * https://www.openssl.org/source/license.html
  8. */
  9. /*
  10. * SHA256 low level APIs are deprecated for public use, but still ok for
  11. * internal use.
  12. */
  13. #include "internal/deprecated.h"
  14. #include <openssl/opensslconf.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <openssl/crypto.h>
  18. #include <openssl/sha.h>
  19. #include <openssl/opensslv.h>
  20. #include "internal/endian.h"
  21. int SHA224_Init(SHA256_CTX *c)
  22. {
  23. memset(c, 0, sizeof(*c));
  24. c->h[0] = 0xc1059ed8UL;
  25. c->h[1] = 0x367cd507UL;
  26. c->h[2] = 0x3070dd17UL;
  27. c->h[3] = 0xf70e5939UL;
  28. c->h[4] = 0xffc00b31UL;
  29. c->h[5] = 0x68581511UL;
  30. c->h[6] = 0x64f98fa7UL;
  31. c->h[7] = 0xbefa4fa4UL;
  32. c->md_len = SHA224_DIGEST_LENGTH;
  33. return 1;
  34. }
  35. int SHA256_Init(SHA256_CTX *c)
  36. {
  37. memset(c, 0, sizeof(*c));
  38. c->h[0] = 0x6a09e667UL;
  39. c->h[1] = 0xbb67ae85UL;
  40. c->h[2] = 0x3c6ef372UL;
  41. c->h[3] = 0xa54ff53aUL;
  42. c->h[4] = 0x510e527fUL;
  43. c->h[5] = 0x9b05688cUL;
  44. c->h[6] = 0x1f83d9abUL;
  45. c->h[7] = 0x5be0cd19UL;
  46. c->md_len = SHA256_DIGEST_LENGTH;
  47. return 1;
  48. }
  49. int SHA224_Update(SHA256_CTX *c, const void *data, size_t len)
  50. {
  51. return SHA256_Update(c, data, len);
  52. }
  53. int SHA224_Final(unsigned char *md, SHA256_CTX *c)
  54. {
  55. return SHA256_Final(md, c);
  56. }
  57. #define DATA_ORDER_IS_BIG_ENDIAN
  58. #define HASH_LONG SHA_LONG
  59. #define HASH_CTX SHA256_CTX
  60. #define HASH_CBLOCK SHA_CBLOCK
  61. /*
  62. * Note that FIPS180-2 discusses "Truncation of the Hash Function Output."
  63. * default: case below covers for it. It's not clear however if it's
  64. * permitted to truncate to amount of bytes not divisible by 4. I bet not,
  65. * but if it is, then default: case shall be extended. For reference.
  66. * Idea behind separate cases for pre-defined lengths is to let the
  67. * compiler decide if it's appropriate to unroll small loops.
  68. */
  69. #define HASH_MAKE_STRING(c,s) do { \
  70. unsigned long ll; \
  71. unsigned int nn; \
  72. switch ((c)->md_len) \
  73. { case SHA224_DIGEST_LENGTH: \
  74. for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \
  75. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  76. break; \
  77. case SHA256_DIGEST_LENGTH: \
  78. for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \
  79. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  80. break; \
  81. default: \
  82. if ((c)->md_len > SHA256_DIGEST_LENGTH) \
  83. return 0; \
  84. for (nn=0;nn<(c)->md_len/4;nn++) \
  85. { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \
  86. break; \
  87. } \
  88. } while (0)
  89. #define HASH_UPDATE SHA256_Update
  90. #define HASH_TRANSFORM SHA256_Transform
  91. #define HASH_FINAL SHA256_Final
  92. #define HASH_BLOCK_DATA_ORDER sha256_block_data_order
  93. #ifndef SHA256_ASM
  94. static
  95. #endif
  96. void sha256_block_data_order(SHA256_CTX *ctx, const void *in, size_t num);
  97. #include "crypto/md32_common.h"
  98. #ifndef SHA256_ASM
  99. static const SHA_LONG K256[64] = {
  100. 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
  101. 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
  102. 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
  103. 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
  104. 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
  105. 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
  106. 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
  107. 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
  108. 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
  109. 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
  110. 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
  111. 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
  112. 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
  113. 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
  114. 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
  115. 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL
  116. };
  117. # ifndef PEDANTIC
  118. # if defined(__GNUC__) && __GNUC__>=2 && \
  119. !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
  120. # if defined(__riscv_zknh)
  121. # define Sigma0(x) ({ MD32_REG_T ret; \
  122. asm ("sha256sum0 %0, %1" \
  123. : "=r"(ret) \
  124. : "r"(x)); ret; })
  125. # define Sigma1(x) ({ MD32_REG_T ret; \
  126. asm ("sha256sum1 %0, %1" \
  127. : "=r"(ret) \
  128. : "r"(x)); ret; })
  129. # define sigma0(x) ({ MD32_REG_T ret; \
  130. asm ("sha256sig0 %0, %1" \
  131. : "=r"(ret) \
  132. : "r"(x)); ret; })
  133. # define sigma1(x) ({ MD32_REG_T ret; \
  134. asm ("sha256sig1 %0, %1" \
  135. : "=r"(ret) \
  136. : "r"(x)); ret; })
  137. # endif
  138. # if defined(__riscv_zbt) || defined(__riscv_zpn)
  139. # define Ch(x,y,z) ({ MD32_REG_T ret; \
  140. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
  141. : "=r"(ret) \
  142. : "r"(x), "r"(y), "r"(z)); ret; })
  143. # define Maj(x,y,z) ({ MD32_REG_T ret; \
  144. asm (".insn r4 0x33, 1, 0x3, %0, %2, %1, %3"\
  145. : "=r"(ret) \
  146. : "r"(x^z), "r"(y), "r"(x)); ret; })
  147. # endif
  148. # endif
  149. # endif
  150. /*
  151. * FIPS specification refers to right rotations, while our ROTATE macro
  152. * is left one. This is why you might notice that rotation coefficients
  153. * differ from those observed in FIPS document by 32-N...
  154. */
  155. # ifndef Sigma0
  156. # define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10))
  157. # endif
  158. # ifndef Sigma1
  159. # define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7))
  160. # endif
  161. # ifndef sigma0
  162. # define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3))
  163. # endif
  164. # ifndef sigma1
  165. # define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10))
  166. # endif
  167. # ifndef Ch
  168. # define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z)))
  169. # endif
  170. # ifndef Maj
  171. # define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
  172. # endif
  173. # ifdef OPENSSL_SMALL_FOOTPRINT
  174. static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
  175. size_t num)
  176. {
  177. unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1, T2;
  178. SHA_LONG X[16], l;
  179. int i;
  180. const unsigned char *data = in;
  181. while (num--) {
  182. a = ctx->h[0];
  183. b = ctx->h[1];
  184. c = ctx->h[2];
  185. d = ctx->h[3];
  186. e = ctx->h[4];
  187. f = ctx->h[5];
  188. g = ctx->h[6];
  189. h = ctx->h[7];
  190. for (i = 0; i < 16; i++) {
  191. (void)HOST_c2l(data, l);
  192. T1 = X[i] = l;
  193. T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
  194. T2 = Sigma0(a) + Maj(a, b, c);
  195. h = g;
  196. g = f;
  197. f = e;
  198. e = d + T1;
  199. d = c;
  200. c = b;
  201. b = a;
  202. a = T1 + T2;
  203. }
  204. for (; i < 64; i++) {
  205. s0 = X[(i + 1) & 0x0f];
  206. s0 = sigma0(s0);
  207. s1 = X[(i + 14) & 0x0f];
  208. s1 = sigma1(s1);
  209. T1 = X[i & 0xf] += s0 + s1 + X[(i + 9) & 0xf];
  210. T1 += h + Sigma1(e) + Ch(e, f, g) + K256[i];
  211. T2 = Sigma0(a) + Maj(a, b, c);
  212. h = g;
  213. g = f;
  214. f = e;
  215. e = d + T1;
  216. d = c;
  217. c = b;
  218. b = a;
  219. a = T1 + T2;
  220. }
  221. ctx->h[0] += a;
  222. ctx->h[1] += b;
  223. ctx->h[2] += c;
  224. ctx->h[3] += d;
  225. ctx->h[4] += e;
  226. ctx->h[5] += f;
  227. ctx->h[6] += g;
  228. ctx->h[7] += h;
  229. }
  230. }
  231. # else
  232. # define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \
  233. T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \
  234. h = Sigma0(a) + Maj(a,b,c); \
  235. d += T1; h += T1; } while (0)
  236. # define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \
  237. s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \
  238. s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \
  239. T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \
  240. ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0)
  241. static void sha256_block_data_order(SHA256_CTX *ctx, const void *in,
  242. size_t num)
  243. {
  244. unsigned MD32_REG_T a, b, c, d, e, f, g, h, s0, s1, T1;
  245. SHA_LONG X[16];
  246. int i;
  247. const unsigned char *data = in;
  248. DECLARE_IS_ENDIAN;
  249. while (num--) {
  250. a = ctx->h[0];
  251. b = ctx->h[1];
  252. c = ctx->h[2];
  253. d = ctx->h[3];
  254. e = ctx->h[4];
  255. f = ctx->h[5];
  256. g = ctx->h[6];
  257. h = ctx->h[7];
  258. if (!IS_LITTLE_ENDIAN && sizeof(SHA_LONG) == 4
  259. && ((size_t)in % 4) == 0) {
  260. const SHA_LONG *W = (const SHA_LONG *)data;
  261. T1 = X[0] = W[0];
  262. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  263. T1 = X[1] = W[1];
  264. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  265. T1 = X[2] = W[2];
  266. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  267. T1 = X[3] = W[3];
  268. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  269. T1 = X[4] = W[4];
  270. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  271. T1 = X[5] = W[5];
  272. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  273. T1 = X[6] = W[6];
  274. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  275. T1 = X[7] = W[7];
  276. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  277. T1 = X[8] = W[8];
  278. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  279. T1 = X[9] = W[9];
  280. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  281. T1 = X[10] = W[10];
  282. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  283. T1 = X[11] = W[11];
  284. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  285. T1 = X[12] = W[12];
  286. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  287. T1 = X[13] = W[13];
  288. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  289. T1 = X[14] = W[14];
  290. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  291. T1 = X[15] = W[15];
  292. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  293. data += SHA256_CBLOCK;
  294. } else {
  295. SHA_LONG l;
  296. (void)HOST_c2l(data, l);
  297. T1 = X[0] = l;
  298. ROUND_00_15(0, a, b, c, d, e, f, g, h);
  299. (void)HOST_c2l(data, l);
  300. T1 = X[1] = l;
  301. ROUND_00_15(1, h, a, b, c, d, e, f, g);
  302. (void)HOST_c2l(data, l);
  303. T1 = X[2] = l;
  304. ROUND_00_15(2, g, h, a, b, c, d, e, f);
  305. (void)HOST_c2l(data, l);
  306. T1 = X[3] = l;
  307. ROUND_00_15(3, f, g, h, a, b, c, d, e);
  308. (void)HOST_c2l(data, l);
  309. T1 = X[4] = l;
  310. ROUND_00_15(4, e, f, g, h, a, b, c, d);
  311. (void)HOST_c2l(data, l);
  312. T1 = X[5] = l;
  313. ROUND_00_15(5, d, e, f, g, h, a, b, c);
  314. (void)HOST_c2l(data, l);
  315. T1 = X[6] = l;
  316. ROUND_00_15(6, c, d, e, f, g, h, a, b);
  317. (void)HOST_c2l(data, l);
  318. T1 = X[7] = l;
  319. ROUND_00_15(7, b, c, d, e, f, g, h, a);
  320. (void)HOST_c2l(data, l);
  321. T1 = X[8] = l;
  322. ROUND_00_15(8, a, b, c, d, e, f, g, h);
  323. (void)HOST_c2l(data, l);
  324. T1 = X[9] = l;
  325. ROUND_00_15(9, h, a, b, c, d, e, f, g);
  326. (void)HOST_c2l(data, l);
  327. T1 = X[10] = l;
  328. ROUND_00_15(10, g, h, a, b, c, d, e, f);
  329. (void)HOST_c2l(data, l);
  330. T1 = X[11] = l;
  331. ROUND_00_15(11, f, g, h, a, b, c, d, e);
  332. (void)HOST_c2l(data, l);
  333. T1 = X[12] = l;
  334. ROUND_00_15(12, e, f, g, h, a, b, c, d);
  335. (void)HOST_c2l(data, l);
  336. T1 = X[13] = l;
  337. ROUND_00_15(13, d, e, f, g, h, a, b, c);
  338. (void)HOST_c2l(data, l);
  339. T1 = X[14] = l;
  340. ROUND_00_15(14, c, d, e, f, g, h, a, b);
  341. (void)HOST_c2l(data, l);
  342. T1 = X[15] = l;
  343. ROUND_00_15(15, b, c, d, e, f, g, h, a);
  344. }
  345. for (i = 16; i < 64; i += 8) {
  346. ROUND_16_63(i + 0, a, b, c, d, e, f, g, h, X);
  347. ROUND_16_63(i + 1, h, a, b, c, d, e, f, g, X);
  348. ROUND_16_63(i + 2, g, h, a, b, c, d, e, f, X);
  349. ROUND_16_63(i + 3, f, g, h, a, b, c, d, e, X);
  350. ROUND_16_63(i + 4, e, f, g, h, a, b, c, d, X);
  351. ROUND_16_63(i + 5, d, e, f, g, h, a, b, c, X);
  352. ROUND_16_63(i + 6, c, d, e, f, g, h, a, b, X);
  353. ROUND_16_63(i + 7, b, c, d, e, f, g, h, a, X);
  354. }
  355. ctx->h[0] += a;
  356. ctx->h[1] += b;
  357. ctx->h[2] += c;
  358. ctx->h[3] += d;
  359. ctx->h[4] += e;
  360. ctx->h[5] += f;
  361. ctx->h[6] += g;
  362. ctx->h[7] += h;
  363. }
  364. }
  365. # endif
  366. #endif /* SHA256_ASM */