123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661 |
- =pod
- =head1 NAME
- EVP_CIPHER_CTX_new, EVP_CIPHER_CTX_reset, EVP_CIPHER_CTX_free,
- EVP_EncryptInit_ex, EVP_EncryptUpdate, EVP_EncryptFinal_ex,
- EVP_DecryptInit_ex, EVP_DecryptUpdate, EVP_DecryptFinal_ex,
- EVP_CipherInit_ex, EVP_CipherUpdate, EVP_CipherFinal_ex,
- EVP_CIPHER_CTX_set_key_length, EVP_CIPHER_CTX_ctrl, EVP_EncryptInit,
- EVP_EncryptFinal, EVP_DecryptInit, EVP_DecryptFinal,
- EVP_CipherInit, EVP_CipherFinal, EVP_get_cipherbyname,
- EVP_get_cipherbynid, EVP_get_cipherbyobj, EVP_CIPHER_nid,
- EVP_CIPHER_block_size, EVP_CIPHER_key_length, EVP_CIPHER_iv_length,
- EVP_CIPHER_flags, EVP_CIPHER_mode, EVP_CIPHER_type, EVP_CIPHER_CTX_cipher,
- EVP_CIPHER_CTX_nid, EVP_CIPHER_CTX_block_size, EVP_CIPHER_CTX_key_length,
- EVP_CIPHER_CTX_iv_length, EVP_CIPHER_CTX_get_app_data,
- EVP_CIPHER_CTX_set_app_data, EVP_CIPHER_CTX_type, EVP_CIPHER_CTX_flags,
- EVP_CIPHER_CTX_mode, EVP_CIPHER_param_to_asn1, EVP_CIPHER_asn1_to_param,
- EVP_CIPHER_CTX_set_padding, EVP_enc_null, EVP_des_cbc, EVP_des_ecb,
- EVP_des_cfb, EVP_des_ofb, EVP_des_ede_cbc, EVP_des_ede, EVP_des_ede_ofb,
- EVP_des_ede_cfb, EVP_des_ede3_cbc, EVP_des_ede3, EVP_des_ede3_ofb,
- EVP_des_ede3_cfb, EVP_desx_cbc, EVP_rc4, EVP_rc4_40, EVP_rc4_hmac_md5,
- EVP_idea_cbc, EVP_idea_ecb, EVP_idea_cfb, EVP_idea_ofb, EVP_rc2_cbc,
- EVP_rc2_ecb, EVP_rc2_cfb, EVP_rc2_ofb, EVP_rc2_40_cbc, EVP_rc2_64_cbc,
- EVP_bf_cbc, EVP_bf_ecb, EVP_bf_cfb, EVP_bf_ofb, EVP_cast5_cbc,
- EVP_cast5_ecb, EVP_cast5_cfb, EVP_cast5_ofb, EVP_rc5_32_12_16_cbc,
- EVP_rc5_32_12_16_ecb, EVP_rc5_32_12_16_cfb, EVP_rc5_32_12_16_ofb,
- EVP_aes_128_cbc, EVP_aes_128_ecb, EVP_aes_128_cfb, EVP_aes_128_ofb,
- EVP_aes_192_cbc, EVP_aes_192_ecb, EVP_aes_192_cfb, EVP_aes_192_ofb,
- EVP_aes_256_cbc, EVP_aes_256_ecb, EVP_aes_256_cfb, EVP_aes_256_ofb,
- EVP_aes_128_gcm, EVP_aes_192_gcm, EVP_aes_256_gcm,
- EVP_aes_128_ccm, EVP_aes_192_ccm, EVP_aes_256_ccm,
- EVP_aes_128_cbc_hmac_sha1, EVP_aes_256_cbc_hmac_sha1,
- EVP_aes_128_cbc_hmac_sha256, EVP_aes_256_cbc_hmac_sha256,
- EVP_chacha20, EVP_chacha20_poly1305 - EVP cipher routines
- =head1 SYNOPSIS
- =for comment generic
- #include <openssl/evp.h>
- EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void);
- int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx);
- void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx);
- int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
- ENGINE *impl, const unsigned char *key, const unsigned char *iv);
- int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
- int *outl, const unsigned char *in, int inl);
- int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out,
- int *outl);
- int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
- ENGINE *impl, const unsigned char *key, const unsigned char *iv);
- int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
- int *outl, const unsigned char *in, int inl);
- int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
- int *outl);
- int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
- ENGINE *impl, const unsigned char *key, const unsigned char *iv, int enc);
- int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
- int *outl, const unsigned char *in, int inl);
- int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *outm,
- int *outl);
- int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
- const unsigned char *key, const unsigned char *iv);
- int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
- int *outl);
- int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
- const unsigned char *key, const unsigned char *iv);
- int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
- int *outl);
- int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
- const unsigned char *key, const unsigned char *iv, int enc);
- int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *outm,
- int *outl);
- int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *x, int padding);
- int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *x, int keylen);
- int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr);
- const EVP_CIPHER *EVP_get_cipherbyname(const char *name);
- const EVP_CIPHER *EVP_get_cipherbynid(int nid);
- const EVP_CIPHER *EVP_get_cipherbyobj(const ASN1_OBJECT *a);
- int EVP_CIPHER_nid(const EVP_CIPHER *e);
- int EVP_CIPHER_block_size(const EVP_CIPHER *e);
- int EVP_CIPHER_key_length(const EVP_CIPHER *e)
- int EVP_CIPHER_key_length(const EVP_CIPHER *e);
- int EVP_CIPHER_iv_length(const EVP_CIPHER *e);
- unsigned long EVP_CIPHER_flags(const EVP_CIPHER *e);
- unsigned long EVP_CIPHER_mode(const EVP_CIPHER *e);
- int EVP_CIPHER_type(const EVP_CIPHER *ctx);
- const EVP_CIPHER *EVP_CIPHER_CTX_cipher(const EVP_CIPHER_CTX *ctx);
- int EVP_CIPHER_CTX_nid(const EVP_CIPHER_CTX *ctx);
- int EVP_CIPHER_CTX_block_size(const EVP_CIPHER_CTX *ctx);
- int EVP_CIPHER_CTX_key_length(const EVP_CIPHER_CTX *ctx);
- int EVP_CIPHER_CTX_iv_length(const EVP_CIPHER_CTX *ctx);
- void *EVP_CIPHER_CTX_get_app_data(const EVP_CIPHER_CTX *ctx);
- void EVP_CIPHER_CTX_set_app_data(const EVP_CIPHER_CTX *ctx, void *data);
- int EVP_CIPHER_CTX_type(const EVP_CIPHER_CTX *ctx);
- int EVP_CIPHER_CTX_mode(const EVP_CIPHER_CTX *ctx);
- int EVP_CIPHER_param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
- int EVP_CIPHER_asn1_to_param(EVP_CIPHER_CTX *c, ASN1_TYPE *type);
- =head1 DESCRIPTION
- The EVP cipher routines are a high level interface to certain
- symmetric ciphers.
- EVP_CIPHER_CTX_new() creates a cipher context.
- EVP_CIPHER_CTX_free() clears all information from a cipher context
- and free up any allocated memory associate with it, including B<ctx>
- itself. This function should be called after all operations using a
- cipher are complete so sensitive information does not remain in
- memory.
- EVP_EncryptInit_ex() sets up cipher context B<ctx> for encryption
- with cipher B<type> from ENGINE B<impl>. B<ctx> must be created
- before calling this function. B<type> is normally supplied
- by a function such as EVP_aes_256_cbc(). If B<impl> is NULL then the
- default implementation is used. B<key> is the symmetric key to use
- and B<iv> is the IV to use (if necessary), the actual number of bytes
- used for the key and IV depends on the cipher. It is possible to set
- all parameters to NULL except B<type> in an initial call and supply
- the remaining parameters in subsequent calls, all of which have B<type>
- set to NULL. This is done when the default cipher parameters are not
- appropriate.
- EVP_EncryptUpdate() encrypts B<inl> bytes from the buffer B<in> and
- writes the encrypted version to B<out>. This function can be called
- multiple times to encrypt successive blocks of data. The amount
- of data written depends on the block alignment of the encrypted data:
- as a result the amount of data written may be anything from zero bytes
- to (inl + cipher_block_size - 1) so B<out> should contain sufficient
- room. The actual number of bytes written is placed in B<outl>. It also
- checks if B<in> and B<out> are partially overlapping, and if they are
- 0 is returned to indicate failure.
- If padding is enabled (the default) then EVP_EncryptFinal_ex() encrypts
- the "final" data, that is any data that remains in a partial block.
- It uses standard block padding (aka PKCS padding) as described in
- the NOTES section, below. The encrypted
- final data is written to B<out> which should have sufficient space for
- one cipher block. The number of bytes written is placed in B<outl>. After
- this function is called the encryption operation is finished and no further
- calls to EVP_EncryptUpdate() should be made.
- If padding is disabled then EVP_EncryptFinal_ex() will not encrypt any more
- data and it will return an error if any data remains in a partial block:
- that is if the total data length is not a multiple of the block size.
- EVP_DecryptInit_ex(), EVP_DecryptUpdate() and EVP_DecryptFinal_ex() are the
- corresponding decryption operations. EVP_DecryptFinal() will return an
- error code if padding is enabled and the final block is not correctly
- formatted. The parameters and restrictions are identical to the encryption
- operations except that if padding is enabled the decrypted data buffer B<out>
- passed to EVP_DecryptUpdate() should have sufficient room for
- (B<inl> + cipher_block_size) bytes unless the cipher block size is 1 in
- which case B<inl> bytes is sufficient.
- EVP_CipherInit_ex(), EVP_CipherUpdate() and EVP_CipherFinal_ex() are
- functions that can be used for decryption or encryption. The operation
- performed depends on the value of the B<enc> parameter. It should be set
- to 1 for encryption, 0 for decryption and -1 to leave the value unchanged
- (the actual value of 'enc' being supplied in a previous call).
- EVP_CIPHER_CTX_reset() clears all information from a cipher context
- and free up any allocated memory associate with it, except the B<ctx>
- itself. This function should be called anytime B<ctx> is to be reused
- for another EVP_CipherInit() / EVP_CipherUpdate() / EVP_CipherFinal()
- series of calls.
- EVP_EncryptInit(), EVP_DecryptInit() and EVP_CipherInit() behave in a
- similar way to EVP_EncryptInit_ex(), EVP_DecryptInit_ex() and
- EVP_CipherInit_ex() except the B<ctx> parameter does not need to be
- initialized and they always use the default cipher implementation.
- EVP_EncryptFinal(), EVP_DecryptFinal() and EVP_CipherFinal() are
- identical to EVP_EncryptFinal_ex(), EVP_DecryptFinal_ex() and
- EVP_CipherFinal_ex(). In previous releases they also cleaned up
- the B<ctx>, but this is no longer done and EVP_CIPHER_CTX_clean()
- must be called to free any context resources.
- EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
- return an EVP_CIPHER structure when passed a cipher name, a NID or an
- ASN1_OBJECT structure.
- EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return the NID of a cipher when
- passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX> structure. The actual NID
- value is an internal value which may not have a corresponding OBJECT
- IDENTIFIER.
- EVP_CIPHER_CTX_set_padding() enables or disables padding. This
- function should be called after the context is set up for encryption
- or decryption with EVP_EncryptInit_ex(), EVP_DecryptInit_ex() or
- EVP_CipherInit_ex(). By default encryption operations are padded using
- standard block padding and the padding is checked and removed when
- decrypting. If the B<pad> parameter is zero then no padding is
- performed, the total amount of data encrypted or decrypted must then
- be a multiple of the block size or an error will occur.
- EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
- length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
- structure. The constant B<EVP_MAX_KEY_LENGTH> is the maximum key length
- for all ciphers. Note: although EVP_CIPHER_key_length() is fixed for a
- given cipher, the value of EVP_CIPHER_CTX_key_length() may be different
- for variable key length ciphers.
- EVP_CIPHER_CTX_set_key_length() sets the key length of the cipher ctx.
- If the cipher is a fixed length cipher then attempting to set the key
- length to any value other than the fixed value is an error.
- EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
- length of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>.
- It will return zero if the cipher does not use an IV. The constant
- B<EVP_MAX_IV_LENGTH> is the maximum IV length for all ciphers.
- EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
- size of a cipher when passed an B<EVP_CIPHER> or B<EVP_CIPHER_CTX>
- structure. The constant B<EVP_MAX_BLOCK_LENGTH> is also the maximum block
- length for all ciphers.
- EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the type of the passed
- cipher or context. This "type" is the actual NID of the cipher OBJECT
- IDENTIFIER as such it ignores the cipher parameters and 40 bit RC2 and
- 128 bit RC2 have the same NID. If the cipher does not have an object
- identifier or does not have ASN1 support this function will return
- B<NID_undef>.
- EVP_CIPHER_CTX_cipher() returns the B<EVP_CIPHER> structure when passed
- an B<EVP_CIPHER_CTX> structure.
- EVP_CIPHER_mode() and EVP_CIPHER_CTX_mode() return the block cipher mode:
- EVP_CIPH_ECB_MODE, EVP_CIPH_CBC_MODE, EVP_CIPH_CFB_MODE or
- EVP_CIPH_OFB_MODE. If the cipher is a stream cipher then
- EVP_CIPH_STREAM_CIPHER is returned.
- EVP_CIPHER_param_to_asn1() sets the AlgorithmIdentifier "parameter" based
- on the passed cipher. This will typically include any parameters and an
- IV. The cipher IV (if any) must be set when this call is made. This call
- should be made before the cipher is actually "used" (before any
- EVP_EncryptUpdate(), EVP_DecryptUpdate() calls for example). This function
- may fail if the cipher does not have any ASN1 support.
- EVP_CIPHER_asn1_to_param() sets the cipher parameters based on an ASN1
- AlgorithmIdentifier "parameter". The precise effect depends on the cipher
- In the case of RC2, for example, it will set the IV and effective key length.
- This function should be called after the base cipher type is set but before
- the key is set. For example EVP_CipherInit() will be called with the IV and
- key set to NULL, EVP_CIPHER_asn1_to_param() will be called and finally
- EVP_CipherInit() again with all parameters except the key set to NULL. It is
- possible for this function to fail if the cipher does not have any ASN1 support
- or the parameters cannot be set (for example the RC2 effective key length
- is not supported.
- EVP_CIPHER_CTX_ctrl() allows various cipher specific parameters to be determined
- and set.
- =head1 RETURN VALUES
- EVP_CIPHER_CTX_new() returns a pointer to a newly created
- B<EVP_CIPHER_CTX> for success and B<NULL> for failure.
- EVP_EncryptInit_ex(), EVP_EncryptUpdate() and EVP_EncryptFinal_ex()
- return 1 for success and 0 for failure.
- EVP_DecryptInit_ex() and EVP_DecryptUpdate() return 1 for success and 0 for failure.
- EVP_DecryptFinal_ex() returns 0 if the decrypt failed or 1 for success.
- EVP_CipherInit_ex() and EVP_CipherUpdate() return 1 for success and 0 for failure.
- EVP_CipherFinal_ex() returns 0 for a decryption failure or 1 for success.
- EVP_CIPHER_CTX_reset() returns 1 for success and 0 for failure.
- EVP_get_cipherbyname(), EVP_get_cipherbynid() and EVP_get_cipherbyobj()
- return an B<EVP_CIPHER> structure or NULL on error.
- EVP_CIPHER_nid() and EVP_CIPHER_CTX_nid() return a NID.
- EVP_CIPHER_block_size() and EVP_CIPHER_CTX_block_size() return the block
- size.
- EVP_CIPHER_key_length() and EVP_CIPHER_CTX_key_length() return the key
- length.
- EVP_CIPHER_CTX_set_padding() always returns 1.
- EVP_CIPHER_iv_length() and EVP_CIPHER_CTX_iv_length() return the IV
- length or zero if the cipher does not use an IV.
- EVP_CIPHER_type() and EVP_CIPHER_CTX_type() return the NID of the cipher's
- OBJECT IDENTIFIER or NID_undef if it has no defined OBJECT IDENTIFIER.
- EVP_CIPHER_CTX_cipher() returns an B<EVP_CIPHER> structure.
- EVP_CIPHER_param_to_asn1() and EVP_CIPHER_asn1_to_param() return greater
- than zero for success and zero or a negative number.
- =head1 CIPHER LISTING
- All algorithms have a fixed key length unless otherwise stated.
- =over 4
- =item EVP_enc_null()
- Null cipher: does nothing.
- =item EVP_aes_128_cbc(), EVP_aes_128_ecb(), EVP_aes_128_cfb(), EVP_aes_128_ofb()
- AES with a 128-bit key in CBC, ECB, CFB and OFB modes respectively.
- =item EVP_aes_192_cbc(), EVP_aes_192_ecb(), EVP_aes_192_cfb(), EVP_aes_192_ofb()
- AES with a 192-bit key in CBC, ECB, CFB and OFB modes respectively.
- =item EVP_aes_256_cbc(), EVP_aes_256_ecb(), EVP_aes_256_cfb(), EVP_aes_256_ofb()
- AES with a 256-bit key in CBC, ECB, CFB and OFB modes respectively.
- =item EVP_des_cbc(), EVP_des_ecb(), EVP_des_cfb(), EVP_des_ofb()
- DES in CBC, ECB, CFB and OFB modes respectively.
- =item EVP_des_ede_cbc(), EVP_des_ede(), EVP_des_ede_ofb(), EVP_des_ede_cfb()
- Two key triple DES in CBC, ECB, CFB and OFB modes respectively.
- =item EVP_des_ede3_cbc(), EVP_des_ede3(), EVP_des_ede3_ofb(), EVP_des_ede3_cfb()
- Three key triple DES in CBC, ECB, CFB and OFB modes respectively.
- =item EVP_desx_cbc()
- DESX algorithm in CBC mode.
- =item EVP_rc4()
- RC4 stream cipher. This is a variable key length cipher with default key length 128 bits.
- =item EVP_rc4_40()
- RC4 stream cipher with 40 bit key length.
- This is obsolete and new code should use EVP_rc4()
- and the EVP_CIPHER_CTX_set_key_length() function.
- =item EVP_idea_cbc() EVP_idea_ecb(), EVP_idea_cfb(), EVP_idea_ofb()
- IDEA encryption algorithm in CBC, ECB, CFB and OFB modes respectively.
- =item EVP_rc2_cbc(), EVP_rc2_ecb(), EVP_rc2_cfb(), EVP_rc2_ofb()
- RC2 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
- length cipher with an additional parameter called "effective key bits" or "effective key length".
- By default both are set to 128 bits.
- =item EVP_rc2_40_cbc(), EVP_rc2_64_cbc()
- RC2 algorithm in CBC mode with a default key length and effective key length of 40 and 64 bits.
- These are obsolete and new code should use EVP_rc2_cbc(), EVP_CIPHER_CTX_set_key_length() and
- EVP_CIPHER_CTX_ctrl() to set the key length and effective key length.
- =item EVP_bf_cbc(), EVP_bf_ecb(), EVP_bf_cfb(), EVP_bf_ofb()
- Blowfish encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
- length cipher.
- =item EVP_cast5_cbc(), EVP_cast5_ecb(), EVP_cast5_cfb(), EVP_cast5_ofb()
- CAST encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key
- length cipher.
- =item EVP_rc5_32_12_16_cbc(), EVP_rc5_32_12_16_ecb(), EVP_rc5_32_12_16_cfb(), EVP_rc5_32_12_16_ofb()
- RC5 encryption algorithm in CBC, ECB, CFB and OFB modes respectively. This is a variable key length
- cipher with an additional "number of rounds" parameter. By default the key length is set to 128
- bits and 12 rounds.
- =item EVP_aes_128_gcm(), EVP_aes_192_gcm(), EVP_aes_256_gcm()
- AES Galois Counter Mode (GCM) for 128, 192 and 256 bit keys respectively.
- These ciphers require additional control operations to function correctly: see
- the L</GCM and OCB Modes> section below for details.
- =item EVP_aes_128_ocb(void), EVP_aes_192_ocb(void), EVP_aes_256_ocb(void)
- Offset Codebook Mode (OCB) for 128, 192 and 256 bit keys respectively.
- These ciphers require additional control operations to function correctly: see
- the L</GCM and OCB Modes> section below for details.
- =item EVP_aes_128_ccm(), EVP_aes_192_ccm(), EVP_aes_256_ccm()
- AES Counter with CBC-MAC Mode (CCM) for 128, 192 and 256 bit keys respectively.
- These ciphers require additional control operations to function correctly: see
- CCM mode section below for details.
- =item EVP_chacha20()
- The ChaCha20 stream cipher. The key length is 256 bits, the IV is 96 bits long.
- =item EVP_chacha20_poly1305()
- Authenticated encryption with ChaCha20-Poly1305. Like EVP_chacha20() the key is
- 256 bits and the IV is 96 bits. This supports additional authenticated
- data (AAD) and produces a 128 bit authentication tag. See the
- L</GCM and OCB Modes> section for more information.
- =back
- =head1 GCM and OCB Modes
- For GCM and OCB mode ciphers the behaviour of the EVP interface is subtly
- altered and several additional ctrl operations are supported.
- To specify any additional authenticated data (AAD) a call to EVP_CipherUpdate(),
- EVP_EncryptUpdate() or EVP_DecryptUpdate() should be made with the output
- parameter B<out> set to B<NULL>.
- When decrypting the return value of EVP_DecryptFinal() or EVP_CipherFinal()
- indicates if the operation was successful. If it does not indicate success
- the authentication operation has failed and any output data B<MUST NOT>
- be used as it is corrupted.
- The following ctrls are supported in both GCM and OCB modes:
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);
- Sets the IV length: this call can only be made before specifying an IV. If
- not called a default IV length is used. For GCM AES and OCB AES the default is
- 12 (i.e. 96 bits). For OCB mode the maximum is 15.
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, taglen, tag);
- Writes B<taglen> bytes of the tag value to the buffer indicated by B<tag>.
- This call can only be made when encrypting data and B<after> all data has been
- processed (e.g. after an EVP_EncryptFinal() call). For OCB mode the taglen must
- either be 16 or the value previously set via EVP_CTRL_OCB_SET_TAGLEN.
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);
- Sets the expected tag to B<taglen> bytes from B<tag>. This call is only legal
- when decrypting data. For OCB mode the taglen must either be 16 or the value
- previously set via EVP_CTRL_AEAD_SET_TAG.
- In OCB mode calling this with B<tag> set to NULL sets the tag length. The tag
- length can only be set before specifying an IV. If not called a default tag
- length is used. For OCB AES the default is 16 (i.e. 128 bits). This is also the
- maximum tag length for OCB.
- =head1 CCM Mode
- The behaviour of CCM mode ciphers is similar to GCM mode but with a few
- additional requirements and different ctrl values.
- Like GCM and OCB modes any additional authenticated data (AAD) is passed by calling
- EVP_CipherUpdate(), EVP_EncryptUpdate() or EVP_DecryptUpdate() with the output
- parameter B<out> set to B<NULL>. Additionally the total plaintext or ciphertext
- length B<MUST> be passed to EVP_CipherUpdate(), EVP_EncryptUpdate() or
- EVP_DecryptUpdate() with the output and input parameters (B<in> and B<out>)
- set to B<NULL> and the length passed in the B<inl> parameter.
- The following ctrls are supported in CCM mode:
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, taglen, tag);
- This call is made to set the expected B<CCM> tag value when decrypting or
- the length of the tag (with the B<tag> parameter set to NULL) when encrypting.
- The tag length is often referred to as B<M>. If not set a default value is
- used (12 for AES).
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_CCM_SET_L, ivlen, NULL);
- Sets the CCM B<L> value. If not set a default is used (8 for AES).
- EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN, ivlen, NULL);
- Sets the CCM nonce (IV) length: this call can only be made before specifying
- an nonce value. The nonce length is given by B<15 - L> so it is 7 by default
- for AES.
- =head1 NOTES
- Where possible the B<EVP> interface to symmetric ciphers should be used in
- preference to the low level interfaces. This is because the code then becomes
- transparent to the cipher used and much more flexible. Additionally, the
- B<EVP> interface will ensure the use of platform specific cryptographic
- acceleration such as AES-NI (the low level interfaces do not provide the
- guarantee).
- PKCS padding works by adding B<n> padding bytes of value B<n> to make the total
- length of the encrypted data a multiple of the block size. Padding is always
- added so if the data is already a multiple of the block size B<n> will equal
- the block size. For example if the block size is 8 and 11 bytes are to be
- encrypted then 5 padding bytes of value 5 will be added.
- When decrypting the final block is checked to see if it has the correct form.
- Although the decryption operation can produce an error if padding is enabled,
- it is not a strong test that the input data or key is correct. A random block
- has better than 1 in 256 chance of being of the correct format and problems with
- the input data earlier on will not produce a final decrypt error.
- If padding is disabled then the decryption operation will always succeed if
- the total amount of data decrypted is a multiple of the block size.
- The functions EVP_EncryptInit(), EVP_EncryptFinal(), EVP_DecryptInit(),
- EVP_CipherInit() and EVP_CipherFinal() are obsolete but are retained for
- compatibility with existing code. New code should use EVP_EncryptInit_ex(),
- EVP_EncryptFinal_ex(), EVP_DecryptInit_ex(), EVP_DecryptFinal_ex(),
- EVP_CipherInit_ex() and EVP_CipherFinal_ex() because they can reuse an
- existing context without allocating and freeing it up on each call.
- EVP_get_cipherbynid(), and EVP_get_cipherbyobj() are implemented as macros.
- =head1 BUGS
- For RC5 the number of rounds can currently only be set to 8, 12 or 16. This is
- a limitation of the current RC5 code rather than the EVP interface.
- EVP_MAX_KEY_LENGTH and EVP_MAX_IV_LENGTH only refer to the internal ciphers with
- default key lengths. If custom ciphers exceed these values the results are
- unpredictable. This is because it has become standard practice to define a
- generic key as a fixed unsigned char array containing EVP_MAX_KEY_LENGTH bytes.
- The ASN1 code is incomplete (and sometimes inaccurate) it has only been tested
- for certain common S/MIME ciphers (RC2, DES, triple DES) in CBC mode.
- =head1 EXAMPLES
- Encrypt a string using IDEA:
- int do_crypt(char *outfile)
- {
- unsigned char outbuf[1024];
- int outlen, tmplen;
- /* Bogus key and IV: we'd normally set these from
- * another source.
- */
- unsigned char key[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};
- unsigned char iv[] = {1,2,3,4,5,6,7,8};
- char intext[] = "Some Crypto Text";
- EVP_CIPHER_CTX *ctx;
- FILE *out;
- ctx = EVP_CIPHER_CTX_new();
- EVP_EncryptInit_ex(ctx, EVP_idea_cbc(), NULL, key, iv);
- if(!EVP_EncryptUpdate(ctx, outbuf, &outlen, intext, strlen(intext)))
- {
- /* Error */
- return 0;
- }
- /* Buffer passed to EVP_EncryptFinal() must be after data just
- * encrypted to avoid overwriting it.
- */
- if(!EVP_EncryptFinal_ex(ctx, outbuf + outlen, &tmplen))
- {
- /* Error */
- return 0;
- }
- outlen += tmplen;
- EVP_CIPHER_CTX_free(ctx);
- /* Need binary mode for fopen because encrypted data is
- * binary data. Also cannot use strlen() on it because
- * it won't be null terminated and may contain embedded
- * nulls.
- */
- out = fopen(outfile, "wb");
- fwrite(outbuf, 1, outlen, out);
- fclose(out);
- return 1;
- }
- The ciphertext from the above example can be decrypted using the B<openssl>
- utility with the command line (shown on two lines for clarity):
- openssl idea -d <filename
- -K 000102030405060708090A0B0C0D0E0F -iv 0102030405060708
- General encryption and decryption function example using FILE I/O and AES128
- with a 128-bit key:
- int do_crypt(FILE *in, FILE *out, int do_encrypt)
- {
- /* Allow enough space in output buffer for additional block */
- unsigned char inbuf[1024], outbuf[1024 + EVP_MAX_BLOCK_LENGTH];
- int inlen, outlen;
- EVP_CIPHER_CTX *ctx;
- /* Bogus key and IV: we'd normally set these from
- * another source.
- */
- unsigned char key[] = "0123456789abcdeF";
- unsigned char iv[] = "1234567887654321";
- /* Don't set key or IV right away; we want to check lengths */
- ctx = EVP_CIPHER_CTX_new();
- EVP_CipherInit_ex(&ctx, EVP_aes_128_cbc(), NULL, NULL, NULL,
- do_encrypt);
- OPENSSL_assert(EVP_CIPHER_CTX_key_length(ctx) == 16);
- OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) == 16);
- /* Now we can set key and IV */
- EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, do_encrypt);
- for(;;)
- {
- inlen = fread(inbuf, 1, 1024, in);
- if (inlen <= 0) break;
- if(!EVP_CipherUpdate(ctx, outbuf, &outlen, inbuf, inlen))
- {
- /* Error */
- EVP_CIPHER_CTX_free(ctx);
- return 0;
- }
- fwrite(outbuf, 1, outlen, out);
- }
- if(!EVP_CipherFinal_ex(ctx, outbuf, &outlen))
- {
- /* Error */
- EVP_CIPHER_CTX_free(ctx);
- return 0;
- }
- fwrite(outbuf, 1, outlen, out);
- EVP_CIPHER_CTX_free(ctx);
- return 1;
- }
- =head1 SEE ALSO
- L<evp(7)>
- =head1 HISTORY
- Support for OCB mode was added in OpenSSL 1.1.0
- B<EVP_CIPHER_CTX> was made opaque in OpenSSL 1.1.0. As a result,
- EVP_CIPHER_CTX_reset() appeared and EVP_CIPHER_CTX_cleanup()
- disappeared. EVP_CIPHER_CTX_init() remains as an alias for
- EVP_CIPHER_CTX_reset().
- =head1 COPYRIGHT
- Copyright 2000-2018 The OpenSSL Project Authors. All Rights Reserved.
- Licensed under the OpenSSL license (the "License"). You may not use
- this file except in compliance with the License. You can obtain a copy
- in the file LICENSE in the source distribution or at
- L<https://www.openssl.org/source/license.html>.
- =cut
|