avl.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405
  1. #include "all.h"
  2. /*
  3. * In-memory database stored as self-balancing AVL tree.
  4. * See Lewis & Denenberg, Data Structures and Their Algorithms.
  5. */
  6. static void
  7. singleleft(Avl **tp, Avl *p)
  8. {
  9. Avl *a, *c;
  10. int l, r2;
  11. a = *tp;
  12. c = a->n[1];
  13. r2 = c->bal;
  14. l = (r2 > 0 ? r2 : 0)+1 - a->bal;
  15. if((a->n[1] = c->n[0]) != nil)
  16. a->n[1]->p = a;
  17. if((c->n[0] = a) != nil)
  18. c->n[0]->p = c;
  19. if((*tp = c) != nil)
  20. (*tp)->p = p;
  21. a->bal = -l;
  22. c->bal = r2 - ((l > 0 ? l : 0)+1);
  23. }
  24. static void
  25. singleright(Avl **tp, Avl *p)
  26. {
  27. Avl *a, *c;
  28. int l2, r;
  29. a = *tp;
  30. c = a->n[0];
  31. l2 = - c->bal;
  32. r = a->bal + ((l2 > 0 ? l2 : 0)+1);
  33. if((a->n[0] = c->n[1]) != nil)
  34. a->n[0]->p = a;
  35. if((c->n[1] = a) != nil)
  36. c->n[1]->p = c;
  37. if((*tp = c) != nil)
  38. (*tp)->p = p;
  39. a->bal = r;
  40. c->bal = ((r > 0 ? r : 0)+1) - l2;
  41. }
  42. static void
  43. doublerightleft(Avl **tp, Avl *p)
  44. {
  45. singleright(&(*tp)->n[1], *tp);
  46. singleleft(tp, p);
  47. }
  48. static void
  49. doubleleftright(Avl **tp, Avl *p)
  50. {
  51. singleleft(&(*tp)->n[0], *tp);
  52. singleright(tp, p);
  53. }
  54. static void
  55. balance(Avl **tp, Avl *p)
  56. {
  57. switch((*tp)->bal){
  58. case -2:
  59. if((*tp)->n[0]->bal <= 0)
  60. singleright(tp, p);
  61. else if((*tp)->n[0]->bal == 1)
  62. doubleleftright(tp, p);
  63. else
  64. assert(0);
  65. break;
  66. case 2:
  67. if((*tp)->n[1]->bal >= 0)
  68. singleleft(tp, p);
  69. else if((*tp)->n[1]->bal == -1)
  70. doublerightleft(tp, p);
  71. else
  72. assert(0);
  73. break;
  74. }
  75. }
  76. static int
  77. _insertavl(Avl **tp, Avl *p, Avl *r, int (*cmp)(Avl*,Avl*), Avl **rfree)
  78. {
  79. int i, ob;
  80. if(*tp == nil){
  81. r->bal = 0;
  82. r->n[0] = nil;
  83. r->n[1] = nil;
  84. r->p = p;
  85. *tp = r;
  86. return 1;
  87. }
  88. ob = (*tp)->bal;
  89. if((i=cmp(r, *tp)) != 0){
  90. (*tp)->bal += i*_insertavl(&(*tp)->n[(i+1)/2], *tp, r, cmp, rfree);
  91. balance(tp, p);
  92. return ob==0 && (*tp)->bal != 0;
  93. }
  94. /* install new entry */
  95. *rfree = *tp; /* save old node for freeing */
  96. *tp = r; /* insert new node */
  97. **tp = **rfree; /* copy old node's Avl contents */
  98. if(r->n[0]) /* fix node's children's parent pointers */
  99. r->n[0]->p = r;
  100. if(r->n[1])
  101. r->n[1]->p = r;
  102. return 0;
  103. }
  104. static Avl*
  105. _lookupavl(Avl *t, Avl *r, int (*cmp)(Avl*,Avl*))
  106. {
  107. int i;
  108. Avl *p;
  109. p = nil;
  110. while(t != nil){
  111. assert(t->p == p);
  112. if((i=cmp(r, t))==0)
  113. return t;
  114. p = t;
  115. t = t->n[(i+1)/2];
  116. }
  117. return nil;
  118. }
  119. static int
  120. successor(Avl **tp, Avl *p, Avl **r)
  121. {
  122. int ob;
  123. if((*tp)->n[0] == nil){
  124. *r = *tp;
  125. *tp = (*r)->n[1];
  126. if(*tp)
  127. (*tp)->p = p;
  128. return -1;
  129. }
  130. ob = (*tp)->bal;
  131. (*tp)->bal -= successor(&(*tp)->n[0], *tp, r);
  132. balance(tp, p);
  133. return -(ob!=0 && (*tp)->bal==0);
  134. }
  135. static int
  136. _deleteavl(Avl **tp, Avl *p, Avl *rx, int(*cmp)(Avl*,Avl*), Avl **del, void (*predel)(Avl*, void*), void *arg)
  137. {
  138. int i, ob;
  139. Avl *r, *or;
  140. if(*tp == nil)
  141. return 0;
  142. ob = (*tp)->bal;
  143. if((i=cmp(rx, *tp)) != 0){
  144. (*tp)->bal += i*_deleteavl(&(*tp)->n[(i+1)/2], *tp, rx, cmp, del, predel, arg);
  145. balance(tp, p);
  146. return -(ob!=0 && (*tp)->bal==0);
  147. }
  148. if(predel)
  149. (*predel)(*tp, arg);
  150. or = *tp;
  151. if(or->n[i=0]==nil || or->n[i=1]==nil){
  152. *tp = or->n[1-i];
  153. if(*tp)
  154. (*tp)->p = p;
  155. *del = or;
  156. return -1;
  157. }
  158. /* deleting node with two kids, find successor */
  159. or->bal += successor(&or->n[1], or, &r);
  160. r->bal = or->bal;
  161. r->n[0] = or->n[0];
  162. r->n[1] = or->n[1];
  163. *tp = r;
  164. (*tp)->p = p;
  165. /* node has changed; fix children's parent pointers */
  166. if(r->n[0])
  167. r->n[0]->p = r;
  168. if(r->n[1])
  169. r->n[1]->p = r;
  170. *del = or;
  171. balance(tp, p);
  172. return -(ob!=0 && (*tp)->bal==0);
  173. }
  174. static void
  175. checkparents(Avl *a, Avl *p)
  176. {
  177. if(a==nil)
  178. return;
  179. if(a->p != p)
  180. print("bad parent\n");
  181. checkparents(a->n[0], a);
  182. checkparents(a->n[1], a);
  183. }
  184. struct Avltree
  185. {
  186. Avl *root;
  187. int (*cmp)(Avl*, Avl*);
  188. Avlwalk *walks;
  189. };
  190. struct Avlwalk
  191. {
  192. int started;
  193. int moved;
  194. Avlwalk *next;
  195. Avltree *tree;
  196. Avl *node;
  197. };
  198. Avltree*
  199. mkavltree(int (*cmp)(Avl*, Avl*))
  200. {
  201. Avltree *t;
  202. t = emalloc(sizeof(*t));
  203. t->cmp = cmp;
  204. return t;
  205. }
  206. void
  207. insertavl(Avltree *t, Avl *new, Avl **oldp)
  208. {
  209. *oldp = nil;
  210. _insertavl(&t->root, nil, new, t->cmp, oldp);
  211. }
  212. Avl*
  213. lookupavl(Avltree *t, Avl *key)
  214. {
  215. return _lookupavl(t->root, key, t->cmp);
  216. }
  217. static Avl*
  218. findpredecessor(Avl *a)
  219. {
  220. if(a == nil)
  221. return nil;
  222. if(a->n[0] != nil){
  223. /* predecessor is rightmost descendant of left child */
  224. for(a=a->n[0]; a->n[1]; a=a->n[1])
  225. ;
  226. return a;
  227. }else{
  228. /* we're at a leaf, successor is a parent we enter from the right */
  229. while(a->p && a->p->n[0]==a)
  230. a = a->p;
  231. return a->p;
  232. }
  233. }
  234. static Avl*
  235. findsuccessor(Avl *a)
  236. {
  237. if(a == nil)
  238. return nil;
  239. if(a->n[1] != nil){
  240. /* successor is leftmost descendant of right child */
  241. for(a=a->n[1]; a->n[0]; a=a->n[0])
  242. ;
  243. return a;
  244. }else{
  245. /* we're at a leaf, successor is a parent we enter from the left going up */
  246. while(a->p && a->p->n[1] == a)
  247. a = a->p;
  248. return a->p;
  249. }
  250. }
  251. static void
  252. walkdel(Avl *a, void *v)
  253. {
  254. Avl *p;
  255. Avlwalk *w;
  256. Avltree *t;
  257. if(a == nil)
  258. return;
  259. p = findpredecessor(a);
  260. t = v;
  261. for(w=t->walks; w; w=w->next){
  262. if(w->node == a){
  263. /* back pointer to predecessor; not perfect but adequate */
  264. w->moved = 1;
  265. w->node = p;
  266. if(p == nil)
  267. w->started = 0;
  268. }
  269. }
  270. }
  271. void
  272. deleteavl(Avltree *t, Avl *key, Avl **oldp)
  273. {
  274. *oldp = nil;
  275. _deleteavl(&t->root, nil, key, t->cmp, oldp, walkdel, t);
  276. }
  277. Avlwalk*
  278. avlwalk(Avltree *t)
  279. {
  280. Avlwalk *w;
  281. w = emalloc(sizeof(*w));
  282. w->tree = t;
  283. w->next = t->walks;
  284. t->walks = w;
  285. return w;
  286. }
  287. Avl*
  288. avlnext(Avlwalk *w)
  289. {
  290. Avl *a;
  291. if(w->started==0){
  292. for(a=w->tree->root; a && a->n[0]; a=a->n[0])
  293. ;
  294. w->node = a;
  295. w->started = 1;
  296. }else{
  297. a = findsuccessor(w->node);
  298. if(a == w->node)
  299. abort();
  300. w->node = a;
  301. }
  302. return w->node;
  303. }
  304. Avl*
  305. avlprev(Avlwalk *w)
  306. {
  307. Avl *a;
  308. if(w->started == 0){
  309. for(a=w->tree->root; a && a->n[1]; a=a->n[1])
  310. ;
  311. w->node = a;
  312. w->started = 1;
  313. }else if(w->moved){
  314. w->moved = 0;
  315. return w->node;
  316. }else{
  317. a = findpredecessor(w->node);
  318. if(a == w->node)
  319. abort();
  320. w->node = a;
  321. }
  322. return w->node;
  323. }
  324. void
  325. endwalk(Avlwalk *w)
  326. {
  327. Avltree *t;
  328. Avlwalk **l;
  329. t = w->tree;
  330. for(l=&t->walks; *l; l=&(*l)->next){
  331. if(*l == w){
  332. *l = w->next;
  333. break;
  334. }
  335. }
  336. free(w);
  337. }
  338. static void
  339. walkavl(Avl *t, void (*f)(Avl*, void*), void *v)
  340. {
  341. if(t == nil)
  342. return;
  343. walkavl(t->n[0], f, v);
  344. f(t, v);
  345. walkavl(t->n[1], f, v);
  346. }