uartaxp.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954
  1. /*
  2. * Avanstar Xp pci uart driver
  3. */
  4. #include "u.h"
  5. #include "../port/lib.h"
  6. #include "mem.h"
  7. #include "dat.h"
  8. #include "fns.h"
  9. #include "io.h"
  10. #include "../port/error.h"
  11. #include "uartaxp.i"
  12. typedef struct Cc Cc;
  13. typedef struct Ccb Ccb;
  14. typedef struct Ctlr Ctlr;
  15. typedef struct Gcb Gcb;
  16. /*
  17. * Global Control Block.
  18. * Service Request fields must be accessed using XCHG.
  19. */
  20. struct Gcb {
  21. u16int gcw; /* Global Command Word */
  22. u16int gsw; /* Global Status Word */
  23. u16int gsr; /* Global Service Request */
  24. u16int abs; /* Available Buffer Space */
  25. u16int bt; /* Board Type */
  26. u16int cpv; /* Control Program Version */
  27. u16int ccbn; /* Ccb count */
  28. u16int ccboff; /* Ccb offset */
  29. u16int ccbsz; /* Ccb size */
  30. u16int gcw2; /* Global Command Word 2 */
  31. u16int gsw2; /* Global Status Word 2 */
  32. u16int esr; /* Error Service Request */
  33. u16int isr; /* Input Service Request */
  34. u16int osr; /* Output Service Request */
  35. u16int msr; /* Modem Service Request */
  36. u16int csr; /* Command Service Request */
  37. };
  38. /*
  39. * Channel Control Block.
  40. */
  41. struct Ccb {
  42. u16int br; /* Baud Rate */
  43. u16int df; /* Data Format */
  44. u16int lp; /* Line Protocol */
  45. u16int ibs; /* Input Buffer Size */
  46. u16int obs; /* Output Buffer Size */
  47. u16int ibtr; /* Ib Trigger Rate */
  48. u16int oblw; /* Ob Low Watermark */
  49. u8int ixon[2]; /* IXON characters */
  50. u16int ibhw; /* Ib High Watermark */
  51. u16int iblw; /* Ib Low Watermark */
  52. u16int cc; /* Channel Command */
  53. u16int cs; /* Channel Status */
  54. u16int ibsa; /* Ib Start Addr */
  55. u16int ibea; /* Ib Ending Addr */
  56. u16int obsa; /* Ob Start Addr */
  57. u16int obea; /* Ob Ending Addr */
  58. u16int ibwp; /* Ib write pointer (RO) */
  59. u16int ibrp; /* Ib read pointer (R/W) */
  60. u16int obwp; /* Ob write pointer (R/W) */
  61. u16int obrp; /* Ob read pointer (RO) */
  62. u16int ces; /* Communication Error Status */
  63. u16int bcp; /* Bad Character Pointer */
  64. u16int mc; /* Modem Control */
  65. u16int ms; /* Modem Status */
  66. u16int bs; /* Blocking Status */
  67. u16int crf; /* Character Received Flag */
  68. u8int ixoff[2]; /* IXOFF characters */
  69. u16int cs2; /* Channel Status 2 */
  70. u8int sec[2]; /* Strip/Error Characters */
  71. };
  72. enum { /* br */
  73. Br76800 = 0xFF00,
  74. Br115200 = 0xFF01,
  75. };
  76. enum { /* df */
  77. Db5 = 0x0000, /* Data Bits - 5 bits/byte */
  78. Db6 = 0x0001, /* 6 bits/byte */
  79. Db7 = 0x0002, /* 7 bits/byte */
  80. Db8 = 0x0003, /* 8 bits/byte */
  81. DbMASK = 0x0003,
  82. Sb1 = 0x0000, /* 1 Stop Bit */
  83. Sb2 = 0x0004, /* 2 Stop Bit */
  84. SbMASK = 0x0004,
  85. Np = 0x0000, /* No Parity */
  86. Op = 0x0008, /* Odd Parity */
  87. Ep = 0x0010, /* Even Parity */
  88. Mp = 0x0020, /* Mark Parity */
  89. Sp = 0x0030, /* Space Parity */
  90. PMASK = 0x0038,
  91. Cmn = 0x0000, /* Channel Mode Normal */
  92. Cme = 0x0040, /* CM Echo */
  93. Cmll = 0x0080, /* CM Local Loopback */
  94. Cmrl = 0x00C0, /* CM Remote Loopback */
  95. };
  96. enum { /* lp */
  97. Ixon = 0x0001, /* Obey IXON/IXOFF */
  98. Ixany = 0x0002, /* Any character retarts Tx */
  99. Ixgen = 0x0004, /* Generate IXON/IXOFF */
  100. Cts = 0x0008, /* CTS controls Tx */
  101. Dtr = 0x0010, /* Rx controls DTR */
  102. ½d = 0x0020, /* RTS off during Tx */
  103. Rts = 0x0040, /* generate RTS */
  104. Emcs = 0x0080, /* Enable Modem Control */
  105. Ecs = 0x1000, /* Enable Character Stripping */
  106. Eia422 = 0x2000, /* EIA422 */
  107. };
  108. enum { /* cc */
  109. Ccu = 0x0001, /* Configure Channel and UART */
  110. Cco = 0x0002, /* Configure Channel Only */
  111. Fib = 0x0004, /* Flush Input Buffer */
  112. Fob = 0x0008, /* Flush Output Buffer */
  113. Er = 0x0010, /* Enable Receiver */
  114. Dr = 0x0020, /* Disable Receiver */
  115. Et = 0x0040, /* Enable Transmitter */
  116. Dt = 0x0080, /* Disable Transmitter */
  117. };
  118. enum { /* ces */
  119. Oe = 0x0001, /* Overrun Error */
  120. Pe = 0x0002, /* Parity Error */
  121. Fe = 0x0004, /* Framing Error */
  122. Br = 0x0008, /* Break Received */
  123. };
  124. enum { /* mc */
  125. Adtr = 0x0001, /* Assert DTR */
  126. Arts = 0x0002, /* Assert RTS */
  127. Ab = 0x0010, /* Assert BREAK */
  128. };
  129. enum { /* ms */
  130. Scts = 0x0001, /* Status od CTS */
  131. Sdsr = 0x0002, /* Status of DSR */
  132. Sri = 0x0004, /* Status of RI */
  133. Sdcd = 0x0008, /* Status of DCD */
  134. };
  135. enum { /* bs */
  136. Rd = 0x0001, /* Receiver Disabled */
  137. Td = 0x0002, /* Transmitter Disabled */
  138. Tbxoff = 0x0004, /* Tx Blocked by XOFF */
  139. Tbcts = 0x0008, /* Tx Blocked by CTS */
  140. Rbxoff = 0x0010, /* Rx Blocked by XOFF */
  141. Rbrts = 0x0020, /* Rx Blocked by RTS */
  142. };
  143. enum { /* Local Configuration */
  144. Range = 0x00,
  145. Remap = 0x04,
  146. Region = 0x18,
  147. Mb0 = 0x40, /* Mailbox 0 */
  148. Ldb = 0x60, /* PCI to Local Doorbell */
  149. Pdb = 0x64, /* Local to PCI Doorbell */
  150. Ics = 0x68, /* Interrupt Control/Status */
  151. Mcc = 0x6C, /* Misc. Command and Control */
  152. };
  153. enum { /* Mb0 */
  154. Edcc = 1, /* exec. downloaded code cmd */
  155. Aic = 0x10, /* adapter init'zed correctly */
  156. Cpr = 1ul << 31, /* control program ready */
  157. };
  158. enum { /* Mcc */
  159. Rcr = 1ul << 29, /* reload config. reg.s */
  160. Asr = 1ul << 30, /* pci adapter sw reset */
  161. Lis = 1ul << 31, /* local init status */
  162. };
  163. typedef struct Cc Cc;
  164. typedef struct Ccb Ccb;
  165. typedef struct Ctlr Ctlr;
  166. /*
  167. * Channel Control, one per uart.
  168. * Devuart communicates via the PhysUart functions with
  169. * a Uart* argument. Uart.regs is filled in by this driver
  170. * to point to a Cc, and Cc.ctlr points to the Axp board
  171. * controller.
  172. */
  173. struct Cc {
  174. int uartno;
  175. Ccb* ccb;
  176. Ctlr* ctlr;
  177. Rendez;
  178. Uart;
  179. };
  180. typedef struct Ctlr {
  181. char* name;
  182. Pcidev* pcidev;
  183. int ctlrno;
  184. Ctlr* next;
  185. u32int* reg;
  186. uchar* mem;
  187. Gcb* gcb;
  188. int im; /* interrupt mask */
  189. Cc cc[16];
  190. } Ctlr;
  191. #define csr32r(c, r) (*((c)->reg+((r)/4)))
  192. #define csr32w(c, r, v) (*((c)->reg+((r)/4)) = (v))
  193. static Ctlr* axpctlrhead;
  194. static Ctlr* axpctlrtail;
  195. extern PhysUart axpphysuart;
  196. static int
  197. axpccdone(void* ccb)
  198. {
  199. return !((Ccb*)ccb)->cc; /* hw sets ccb->cc to zero */
  200. }
  201. static void
  202. axpcc(Cc* cc, int cmd)
  203. {
  204. Ccb *ccb;
  205. int timeo;
  206. u16int cs;
  207. ccb = cc->ccb;
  208. ccb->cc = cmd;
  209. if(!cc->ctlr->im)
  210. for(timeo = 0; timeo < 1000000; timeo++){
  211. if(!ccb->cc)
  212. break;
  213. microdelay(1);
  214. }
  215. else
  216. tsleep(cc, axpccdone, ccb, 1000);
  217. cs = ccb->cs;
  218. if(ccb->cc || cs){
  219. print("%s: cmd %#ux didn't terminate: %#ux %#ux\n",
  220. cc->name, cmd, ccb->cc, cs);
  221. if(cc->ctlr->im)
  222. error(Eio);
  223. }
  224. }
  225. static long
  226. axpstatus(Uart* uart, void* buf, long n, long offset)
  227. {
  228. char *p;
  229. Ccb *ccb;
  230. u16int bs, fstat, ms;
  231. p = malloc(READSTR);
  232. if(p == nil)
  233. error(Enomem);
  234. ccb = ((Cc*)(uart->regs))->ccb;
  235. bs = ccb->bs;
  236. fstat = ccb->df;
  237. ms = ccb->ms;
  238. snprint(p, READSTR,
  239. "b%d c%d d%d e%d l%d m%d p%c r%d s%d i%d\n"
  240. "dev(%d) type(%d) framing(%d) overruns(%d) "
  241. "berr(%d) serr(%d)%s%s%s%s\n",
  242. uart->baud,
  243. uart->hup_dcd,
  244. ms & Sdsr,
  245. uart->hup_dsr,
  246. (fstat & DbMASK) + 5,
  247. 0,
  248. (fstat & PMASK) ? ((fstat & Ep) == Ep? 'e': 'o'): 'n',
  249. (bs & Rbrts) ? 1 : 0,
  250. (fstat & Sb2) ? 2 : 1,
  251. 0,
  252. uart->dev,
  253. uart->type,
  254. uart->ferr,
  255. uart->oerr,
  256. uart->berr,
  257. uart->serr,
  258. (ms & Scts) ? " cts" : "",
  259. (ms & Sdsr) ? " dsr" : "",
  260. (ms & Sdcd) ? " dcd" : "",
  261. (ms & Sri) ? " ring" : ""
  262. );
  263. n = readstr(offset, buf, n, p);
  264. free(p);
  265. return n;
  266. }
  267. static void
  268. axpfifo(Uart*, int)
  269. {
  270. }
  271. static void
  272. axpdtr(Uart* uart, int on)
  273. {
  274. Ccb *ccb;
  275. u16int mc;
  276. ccb = ((Cc*)(uart->regs))->ccb;
  277. mc = ccb->mc;
  278. if(on)
  279. mc |= Adtr;
  280. else
  281. mc &= ~Adtr;
  282. ccb->mc = mc;
  283. }
  284. /*
  285. * can be called from uartstageinput() during an input interrupt,
  286. * with uart->rlock ilocked or the uart qlocked, sometimes both.
  287. */
  288. static void
  289. axprts(Uart* uart, int on)
  290. {
  291. Ccb *ccb;
  292. u16int mc;
  293. ccb = ((Cc*)(uart->regs))->ccb;
  294. mc = ccb->mc;
  295. if(on)
  296. mc |= Arts;
  297. else
  298. mc &= ~Arts;
  299. ccb->mc = mc;
  300. }
  301. static void
  302. axpmodemctl(Uart* uart, int on)
  303. {
  304. Ccb *ccb;
  305. u16int lp;
  306. ccb = ((Cc*)(uart->regs))->ccb;
  307. ilock(&uart->tlock);
  308. lp = ccb->lp;
  309. if(on){
  310. lp |= Cts|Rts;
  311. lp &= ~Emcs;
  312. uart->cts = ccb->ms & Scts;
  313. }
  314. else{
  315. lp &= ~(Cts|Rts);
  316. lp |= Emcs;
  317. uart->cts = 1;
  318. }
  319. uart->modem = on;
  320. iunlock(&uart->tlock);
  321. ccb->lp = lp;
  322. axpcc(uart->regs, Ccu);
  323. }
  324. static int
  325. axpparity(Uart* uart, int parity)
  326. {
  327. Ccb *ccb;
  328. u16int df;
  329. switch(parity){
  330. default:
  331. return -1;
  332. case 'e':
  333. parity = Ep;
  334. break;
  335. case 'o':
  336. parity = Op;
  337. break;
  338. case 'n':
  339. parity = Np;
  340. break;
  341. }
  342. ccb = ((Cc*)(uart->regs))->ccb;
  343. df = ccb->df & ~PMASK;
  344. ccb->df = df|parity;
  345. axpcc(uart->regs, Ccu);
  346. return 0;
  347. }
  348. static int
  349. axpstop(Uart* uart, int stop)
  350. {
  351. Ccb *ccb;
  352. u16int df;
  353. switch(stop){
  354. default:
  355. return -1;
  356. case 1:
  357. stop = Sb1;
  358. break;
  359. case 2:
  360. stop = Sb2;
  361. break;
  362. }
  363. ccb = ((Cc*)(uart->regs))->ccb;
  364. df = ccb->df & ~SbMASK;
  365. ccb->df = df|stop;
  366. axpcc(uart->regs, Ccu);
  367. return 0;
  368. }
  369. static int
  370. axpbits(Uart* uart, int bits)
  371. {
  372. Ccb *ccb;
  373. u16int df;
  374. bits -= 5;
  375. if(bits < 0 || bits > 3)
  376. return -1;
  377. ccb = ((Cc*)(uart->regs))->ccb;
  378. df = ccb->df & ~DbMASK;
  379. ccb->df = df|bits;
  380. axpcc(uart->regs, Ccu);
  381. return 0;
  382. }
  383. static int
  384. axpbaud(Uart* uart, int baud)
  385. {
  386. Ccb *ccb;
  387. int i, ibtr;
  388. /*
  389. * Set baud rate (high rates are special - only 16 bits).
  390. */
  391. if(baud <= 0)
  392. return -1;
  393. uart->baud = baud;
  394. ccb = ((Cc*)(uart->regs))->ccb;
  395. switch(baud){
  396. default:
  397. ccb->br = baud;
  398. break;
  399. case 76800:
  400. ccb->br = Br76800;
  401. break;
  402. case 115200:
  403. ccb->br = Br115200;
  404. break;
  405. }
  406. /*
  407. * Set trigger level to about 50 per second.
  408. */
  409. ibtr = baud/500;
  410. i = (ccb->ibea - ccb->ibsa)/2;
  411. if(ibtr > i)
  412. ibtr = i;
  413. ccb->ibtr = ibtr;
  414. axpcc(uart->regs, Ccu);
  415. return 0;
  416. }
  417. static void
  418. axpbreak(Uart* uart, int ms)
  419. {
  420. Ccb *ccb;
  421. u16int mc;
  422. /*
  423. * Send a break.
  424. */
  425. if(ms <= 0)
  426. ms = 200;
  427. ccb = ((Cc*)(uart->regs))->ccb;
  428. mc = ccb->mc;
  429. ccb->mc = Ab|mc;
  430. tsleep(&up->sleep, return0, 0, ms);
  431. ccb->mc = mc & ~Ab;
  432. }
  433. /* only called from interrupt service */
  434. static void
  435. axpmc(Cc* cc)
  436. {
  437. int old;
  438. Ccb *ccb;
  439. u16int ms;
  440. ccb = cc->ccb;
  441. ms = ccb->ms;
  442. if(ms & Scts){
  443. ilock(&cc->tlock);
  444. old = cc->cts;
  445. cc->cts = ms & Scts;
  446. if(old == 0 && cc->cts)
  447. cc->ctsbackoff = 2;
  448. iunlock(&cc->tlock);
  449. }
  450. if(ms & Sdsr){
  451. old = ms & Sdsr;
  452. if(cc->hup_dsr && cc->dsr && !old)
  453. cc->dohup = 1;
  454. cc->dsr = old;
  455. }
  456. if(ms & Sdcd){
  457. old = ms & Sdcd;
  458. if(cc->hup_dcd && cc->dcd && !old)
  459. cc->dohup = 1;
  460. cc->dcd = old;
  461. }
  462. }
  463. /* called from uartkick() with uart->tlock ilocked */
  464. static void
  465. axpkick(Uart* uart)
  466. {
  467. Cc *cc;
  468. Ccb *ccb;
  469. uchar *ep, *mem, *rp, *wp, *bp;
  470. if(uart->cts == 0 || uart->blocked)
  471. return;
  472. cc = uart->regs;
  473. ccb = cc->ccb;
  474. mem = (uchar*)cc->ctlr->gcb;
  475. bp = mem + ccb->obsa;
  476. rp = mem + ccb->obrp;
  477. wp = mem + ccb->obwp;
  478. ep = mem + ccb->obea;
  479. while(wp != rp-1 && (rp != bp || wp != ep)){
  480. /*
  481. * if we've exhausted the uart's output buffer,
  482. * ask for more from the output queue, and quit if there
  483. * isn't any.
  484. */
  485. if(uart->op >= uart->oe && uartstageoutput(uart) == 0)
  486. break;
  487. *wp++ = *(uart->op++);
  488. if(wp > ep)
  489. wp = bp;
  490. ccb->obwp = wp - mem;
  491. }
  492. }
  493. /* only called from interrupt service */
  494. static void
  495. axprecv(Cc* cc)
  496. {
  497. Ccb *ccb;
  498. uchar *ep, *mem, *rp, *wp;
  499. ccb = cc->ccb;
  500. mem = (uchar*)cc->ctlr->gcb;
  501. rp = mem + ccb->ibrp;
  502. wp = mem + ccb->ibwp;
  503. ep = mem + ccb->ibea;
  504. while(rp != wp){
  505. uartrecv(cc, *rp++); /* ilocks cc->tlock */
  506. if(rp > ep)
  507. rp = mem + ccb->ibsa;
  508. ccb->ibrp = rp - mem;
  509. }
  510. }
  511. static void
  512. axpinterrupt(Ureg*, void* arg)
  513. {
  514. int work;
  515. Cc *cc;
  516. Ctlr *ctlr;
  517. u32int ics;
  518. u16int r, sr;
  519. work = 0;
  520. ctlr = arg;
  521. ics = csr32r(ctlr, Ics);
  522. if(ics & 0x0810C000)
  523. print("%s: unexpected interrupt %#ux\n", ctlr->name, ics);
  524. if(!(ics & 0x00002000)) {
  525. /* we get a steady stream of these on consoles */
  526. // print("%s: non-doorbell interrupt\n", ctlr->name);
  527. ctlr->gcb->gcw2 = 0x0001; /* set Gintack */
  528. return;
  529. }
  530. // while(work to do){
  531. cc = ctlr->cc;
  532. for(sr = xchgw(&ctlr->gcb->isr, 0); sr != 0; sr >>= 1){
  533. if(sr & 0x0001)
  534. work++, axprecv(cc);
  535. cc++;
  536. }
  537. cc = ctlr->cc;
  538. for(sr = xchgw(&ctlr->gcb->osr, 0); sr != 0; sr >>= 1){
  539. if(sr & 0x0001)
  540. work++, uartkick(&cc->Uart);
  541. cc++;
  542. }
  543. cc = ctlr->cc;
  544. for(sr = xchgw(&ctlr->gcb->csr, 0); sr != 0; sr >>= 1){
  545. if(sr & 0x0001)
  546. work++, wakeup(cc);
  547. cc++;
  548. }
  549. cc = ctlr->cc;
  550. for(sr = xchgw(&ctlr->gcb->msr, 0); sr != 0; sr >>= 1){
  551. if(sr & 0x0001)
  552. work++, axpmc(cc);
  553. cc++;
  554. }
  555. cc = ctlr->cc;
  556. for(sr = xchgw(&ctlr->gcb->esr, 0); sr != 0; sr >>= 1){
  557. if(sr & 0x0001){
  558. r = cc->ccb->ms;
  559. if(r & Oe)
  560. cc->oerr++;
  561. if(r & Pe)
  562. cc->perr++;
  563. if(r & Fe)
  564. cc->ferr++;
  565. if (r & (Oe|Pe|Fe))
  566. work++;
  567. }
  568. cc++;
  569. }
  570. // }
  571. /* only meaningful if we don't share the irq */
  572. if (0 && !work)
  573. print("%s: interrupt with no work\n", ctlr->name);
  574. csr32w(ctlr, Pdb, 1); /* clear doorbell interrupt */
  575. ctlr->gcb->gcw2 = 0x0001; /* set Gintack */
  576. }
  577. static void
  578. axpdisable(Uart* uart)
  579. {
  580. Cc *cc;
  581. u16int lp;
  582. Ctlr *ctlr;
  583. /*
  584. * Turn off DTR and RTS, disable interrupts.
  585. */
  586. (*uart->phys->dtr)(uart, 0);
  587. (*uart->phys->rts)(uart, 0);
  588. cc = uart->regs;
  589. lp = cc->ccb->lp;
  590. cc->ccb->lp = Emcs|lp;
  591. axpcc(cc, Dt|Dr|Fob|Fib|Ccu);
  592. /*
  593. * The Uart is qlocked.
  594. */
  595. ctlr = cc->ctlr;
  596. ctlr->im &= ~(1<<cc->uartno);
  597. if(ctlr->im == 0)
  598. intrdisable(ctlr->pcidev->intl, axpinterrupt, ctlr,
  599. ctlr->pcidev->tbdf, ctlr->name);
  600. }
  601. static void
  602. axpenable(Uart* uart, int ie)
  603. {
  604. Cc *cc;
  605. Ctlr *ctlr;
  606. u16int lp;
  607. cc = uart->regs;
  608. ctlr = cc->ctlr;
  609. /*
  610. * Enable interrupts and turn on DTR and RTS.
  611. * Be careful if this is called to set up a polled serial line
  612. * early on not to try to enable interrupts as interrupt-
  613. * -enabling mechanisms might not be set up yet.
  614. */
  615. if(ie){
  616. /*
  617. * The Uart is qlocked.
  618. */
  619. if(ctlr->im == 0){
  620. intrenable(ctlr->pcidev->intl, axpinterrupt, ctlr,
  621. ctlr->pcidev->tbdf, ctlr->name);
  622. csr32w(ctlr, Ics, 0x00031F00);
  623. csr32w(ctlr, Pdb, 1);
  624. ctlr->gcb->gcw2 = 1;
  625. }
  626. ctlr->im |= 1<<cc->uartno;
  627. }
  628. (*uart->phys->dtr)(uart, 1);
  629. (*uart->phys->rts)(uart, 1);
  630. /*
  631. * Make sure we control RTS, DTR and break.
  632. */
  633. lp = cc->ccb->lp;
  634. cc->ccb->lp = Emcs|lp;
  635. cc->ccb->oblw = 64;
  636. axpcc(cc, Et|Er|Ccu);
  637. }
  638. static void*
  639. axpdealloc(Ctlr* ctlr)
  640. {
  641. int i;
  642. for(i = 0; i < 16; i++){
  643. if(ctlr->cc[i].name != nil)
  644. free(ctlr->cc[i].name);
  645. }
  646. if(ctlr->reg != nil)
  647. vunmap(ctlr->reg, ctlr->pcidev->mem[0].size);
  648. if(ctlr->mem != nil)
  649. vunmap(ctlr->mem, ctlr->pcidev->mem[2].size);
  650. if(ctlr->name != nil)
  651. free(ctlr->name);
  652. free(ctlr);
  653. return nil;
  654. }
  655. static Uart*
  656. axpalloc(int ctlrno, Pcidev* pcidev)
  657. {
  658. Cc *cc;
  659. uchar *p;
  660. Ctlr *ctlr;
  661. void *addr;
  662. char name[64];
  663. u32int bar, r;
  664. int i, n, timeo;
  665. ctlr = malloc(sizeof(Ctlr));
  666. if(ctlr == nil)
  667. error(Enomem);
  668. seprint(name, name+sizeof(name), "uartaxp%d", ctlrno);
  669. kstrdup(&ctlr->name, name);
  670. ctlr->pcidev = pcidev;
  671. ctlr->ctlrno = ctlrno;
  672. /*
  673. * Access to runtime registers.
  674. */
  675. bar = pcidev->mem[0].bar;
  676. if((addr = vmap(bar & ~0x0F, pcidev->mem[0].size)) == 0){
  677. print("%s: can't map registers at %#ux\n", ctlr->name, bar);
  678. return axpdealloc(ctlr);
  679. }
  680. ctlr->reg = addr;
  681. print("%s: port 0x%ux irq %d ", ctlr->name, bar, pcidev->intl);
  682. /*
  683. * Local address space 0.
  684. */
  685. bar = pcidev->mem[2].bar;
  686. if((addr = vmap(bar & ~0x0F, pcidev->mem[2].size)) == 0){
  687. print("%s: can't map memory at %#ux\n", ctlr->name, bar);
  688. return axpdealloc(ctlr);
  689. }
  690. ctlr->mem = addr;
  691. ctlr->gcb = (Gcb*)(ctlr->mem+0x10000);
  692. print("mem 0x%ux size %d: ", bar, pcidev->mem[2].size);
  693. /*
  694. * Toggle the software reset and wait for
  695. * the adapter local init status to indicate done.
  696. *
  697. * The two 'delay(100)'s below are important,
  698. * without them the board seems to become confused
  699. * (perhaps it needs some 'quiet time' because the
  700. * timeout loops are not sufficient in themselves).
  701. */
  702. r = csr32r(ctlr, Mcc);
  703. csr32w(ctlr, Mcc, r|Asr);
  704. microdelay(1);
  705. csr32w(ctlr, Mcc, r&~Asr);
  706. delay(100);
  707. for(timeo = 0; timeo < 100000; timeo++){
  708. if(csr32r(ctlr, Mcc) & Lis)
  709. break;
  710. microdelay(1);
  711. }
  712. if(!(csr32r(ctlr, Mcc) & Lis)){
  713. print("%s: couldn't reset\n", ctlr->name);
  714. return axpdealloc(ctlr);
  715. }
  716. print("downloading...");
  717. /*
  718. * Copy the control programme to the card memory.
  719. * The card's i960 control structures live at 0xD000.
  720. */
  721. if(sizeof(uartaxpcp) > 0xD000){
  722. print("%s: control programme too big\n", ctlr->name);
  723. return axpdealloc(ctlr);
  724. }
  725. /* TODO: is this right for more than 1 card? devastar does the same */
  726. csr32w(ctlr, Remap, 0xA0000001);
  727. for(i = 0; i < sizeof(uartaxpcp); i++)
  728. ctlr->mem[i] = uartaxpcp[i];
  729. /*
  730. * Execute downloaded code and wait for it
  731. * to signal ready.
  732. */
  733. csr32w(ctlr, Mb0, Edcc);
  734. delay(100);
  735. /* the manual says to wait for Cpr for 1 second */
  736. for(timeo = 0; timeo < 10000; timeo++){
  737. if(csr32r(ctlr, Mb0) & Cpr)
  738. break;
  739. microdelay(100);
  740. }
  741. if(!(csr32r(ctlr, Mb0) & Cpr)){
  742. print("control programme not ready; Mb0 %#ux\n",
  743. csr32r(ctlr, Mb0));
  744. print("%s: distribution panel not connected or card not fully seated?\n",
  745. ctlr->name);
  746. return axpdealloc(ctlr);
  747. }
  748. print("\n");
  749. n = ctlr->gcb->ccbn;
  750. if(ctlr->gcb->bt != 0x12 || n > 16){
  751. print("%s: wrong board type %#ux, %d channels\n",
  752. ctlr->name, ctlr->gcb->bt, ctlr->gcb->ccbn);
  753. return axpdealloc(ctlr);
  754. }
  755. p = ((uchar*)ctlr->gcb) + ctlr->gcb->ccboff;
  756. for(i = 0; i < n; i++){
  757. cc = &ctlr->cc[i];
  758. cc->ccb = (Ccb*)p;
  759. p += ctlr->gcb->ccbsz;
  760. cc->uartno = i;
  761. cc->ctlr = ctlr;
  762. cc->regs = cc; /* actually Uart->regs */
  763. seprint(name, name+sizeof(name), "uartaxp%d%2.2d", ctlrno, i);
  764. kstrdup(&cc->name, name);
  765. cc->freq = 0;
  766. cc->bits = 8;
  767. cc->stop = 1;
  768. cc->parity = 'n';
  769. cc->baud = 9600;
  770. cc->phys = &axpphysuart;
  771. cc->console = 0;
  772. cc->special = 0;
  773. cc->next = &ctlr->cc[i+1];
  774. }
  775. ctlr->cc[n-1].next = nil;
  776. ctlr->next = nil;
  777. if(axpctlrhead != nil)
  778. axpctlrtail->next = ctlr;
  779. else
  780. axpctlrhead = ctlr;
  781. axpctlrtail = ctlr;
  782. return ctlr->cc;
  783. }
  784. static Uart*
  785. axppnp(void)
  786. {
  787. Pcidev *p;
  788. int ctlrno;
  789. Uart *head, *tail, *uart;
  790. /*
  791. * Loop through all PCI devices looking for simple serial
  792. * controllers (ccrb == 0x07) and configure the ones which
  793. * are familiar.
  794. */
  795. head = tail = nil;
  796. ctlrno = 0;
  797. for(p = pcimatch(nil, 0, 0); p != nil; p = pcimatch(p, 0, 0)){
  798. if(p->ccrb != 0x07)
  799. continue;
  800. switch((p->did<<16)|p->vid){
  801. default:
  802. continue;
  803. case (0x6001<<16)|0x114F: /* AvanstarXp */
  804. if((uart = axpalloc(ctlrno, p)) == nil)
  805. continue;
  806. break;
  807. }
  808. if(head != nil)
  809. tail->next = uart;
  810. else
  811. head = uart;
  812. for(tail = uart; tail->next != nil; tail = tail->next)
  813. ;
  814. ctlrno++;
  815. }
  816. return head;
  817. }
  818. PhysUart axpphysuart = {
  819. .name = "AvanstarXp",
  820. .pnp = axppnp,
  821. .enable = axpenable,
  822. .disable = axpdisable,
  823. .kick = axpkick,
  824. .dobreak = axpbreak,
  825. .baud = axpbaud,
  826. .bits = axpbits,
  827. .stop = axpstop,
  828. .parity = axpparity,
  829. .modemctl = axpmodemctl,
  830. .rts = axprts,
  831. .dtr = axpdtr,
  832. .status = axpstatus,
  833. .fifo = axpfifo,
  834. .getc = nil,
  835. .putc = nil,
  836. };