arith3 4.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. .TH ARITH3 2
  2. .SH NAME
  3. add3, sub3, neg3, div3, mul3, eqpt3, closept3, dot3, cross3, len3, dist3, unit3, midpt3, lerp3, reflect3, nearseg3, pldist3, vdiv3, vrem3, pn2f3, ppp2f3, fff2p3, pdiv4, add4, sub4 \- operations on 3-d points and planes
  4. .SH SYNOPSIS
  5. .PP
  6. .B
  7. #include <draw.h>
  8. .PP
  9. .B
  10. #include <geometry.h>
  11. .PP
  12. .B
  13. Point3 add3(Point3 a, Point3 b)
  14. .PP
  15. .B
  16. Point3 sub3(Point3 a, Point3 b)
  17. .PP
  18. .B
  19. Point3 neg3(Point3 a)
  20. .PP
  21. .B
  22. Point3 div3(Point3 a, double b)
  23. .PP
  24. .B
  25. Point3 mul3(Point3 a, double b)
  26. .PP
  27. .B
  28. int eqpt3(Point3 p, Point3 q)
  29. .PP
  30. .B
  31. int closept3(Point3 p, Point3 q, double eps)
  32. .PP
  33. .B
  34. double dot3(Point3 p, Point3 q)
  35. .PP
  36. .B
  37. Point3 cross3(Point3 p, Point3 q)
  38. .PP
  39. .B
  40. double len3(Point3 p)
  41. .PP
  42. .B
  43. double dist3(Point3 p, Point3 q)
  44. .PP
  45. .B
  46. Point3 unit3(Point3 p)
  47. .PP
  48. .B
  49. Point3 midpt3(Point3 p, Point3 q)
  50. .PP
  51. .B
  52. Point3 lerp3(Point3 p, Point3 q, double alpha)
  53. .PP
  54. .B
  55. Point3 reflect3(Point3 p, Point3 p0, Point3 p1)
  56. .PP
  57. .B
  58. Point3 nearseg3(Point3 p0, Point3 p1, Point3 testp)
  59. .PP
  60. .B
  61. double pldist3(Point3 p, Point3 p0, Point3 p1)
  62. .PP
  63. .B
  64. double vdiv3(Point3 a, Point3 b)
  65. .PP
  66. .B
  67. Point3 vrem3(Point3 a, Point3 b)
  68. .PP
  69. .B
  70. Point3 pn2f3(Point3 p, Point3 n)
  71. .PP
  72. .B
  73. Point3 ppp2f3(Point3 p0, Point3 p1, Point3 p2)
  74. .PP
  75. .B
  76. Point3 fff2p3(Point3 f0, Point3 f1, Point3 f2)
  77. .PP
  78. .B
  79. Point3 pdiv4(Point3 a)
  80. .PP
  81. .B
  82. Point3 add4(Point3 a, Point3 b)
  83. .PP
  84. .B
  85. Point3 sub4(Point3 a, Point3 b)
  86. .SH DESCRIPTION
  87. These routines do arithmetic on points and planes in affine or projective 3-space.
  88. Type
  89. .B Point3
  90. is
  91. .IP
  92. .EX
  93. .ta 6n
  94. typedef struct Point3 Point3;
  95. struct Point3{
  96. double x, y, z, w;
  97. };
  98. .EE
  99. .PP
  100. Routines whose names end in
  101. .B 3
  102. operate on vectors or ordinary points in affine 3-space, represented by their Euclidean
  103. .B (x,y,z)
  104. coordinates.
  105. (They assume
  106. .B w=1
  107. in their arguments, and set
  108. .B w=1
  109. in their results.)
  110. .TF reflect3
  111. .TP
  112. Name
  113. Description
  114. .TP
  115. .B add3
  116. Add the coordinates of two points.
  117. .TP
  118. .B sub3
  119. Subtract coordinates of two points.
  120. .TP
  121. .B neg3
  122. Negate the coordinates of a point.
  123. .TP
  124. .B mul3
  125. Multiply coordinates by a scalar.
  126. .TP
  127. .B div3
  128. Divide coordinates by a scalar.
  129. .TP
  130. .B eqpt3
  131. Test two points for exact equality.
  132. .TP
  133. .B closept3
  134. Is the distance between two points smaller than
  135. .IR eps ?
  136. .TP
  137. .B dot3
  138. Dot product.
  139. .TP
  140. .B cross3
  141. Cross product.
  142. .TP
  143. .B len3
  144. Distance to the origin.
  145. .TP
  146. .B dist3
  147. Distance between two points.
  148. .TP
  149. .B unit3
  150. A unit vector parallel to
  151. .IR p .
  152. .TP
  153. .B midpt3
  154. The midpoint of line segment
  155. .IR pq .
  156. .TP
  157. .B lerp3
  158. Linear interpolation between
  159. .I p
  160. and
  161. .IR q .
  162. .TP
  163. .B reflect3
  164. The reflection of point
  165. .I p
  166. in the segment joining
  167. .I p0
  168. and
  169. .IR p1 .
  170. .TP
  171. .B nearseg3
  172. The closest point to
  173. .I testp
  174. on segment
  175. .IR "p0 p1" .
  176. .TP
  177. .B pldist3
  178. The distance from
  179. .I p
  180. to segment
  181. .IR "p0 p1" .
  182. .TP
  183. .B vdiv3
  184. Vector divide \(em the length of the component of
  185. .I a
  186. parallel to
  187. .IR b ,
  188. in units of the length of
  189. .IR b .
  190. .TP
  191. .B vrem3
  192. Vector remainder \(em the component of
  193. .I a
  194. perpendicular to
  195. .IR b .
  196. Ignoring roundoff, we have
  197. .BR "eqpt3(add3(mul3(b, vdiv3(a, b)), vrem3(a, b)), a)" .
  198. .PD
  199. .PP
  200. The following routines convert amongst various representations of points
  201. and planes. Planes are represented identically to points, by duality;
  202. a point
  203. .B p
  204. is on a plane
  205. .B q
  206. whenever
  207. .BR p.x*q.x+p.y*q.y+p.z*q.z+p.w*q.w=0 .
  208. Although when dealing with affine points we assume
  209. .BR p.w=1 ,
  210. we can't make the same assumption for planes.
  211. The names of these routines are extra-cryptic. They contain an
  212. .B f
  213. (for `face') to indicate a plane,
  214. .B p
  215. for a point and
  216. .B n
  217. for a normal vector.
  218. The number
  219. .B 2
  220. abbreviates the word `to.'
  221. The number
  222. .B 3
  223. reminds us, as before, that we're dealing with affine points.
  224. Thus
  225. .B pn2f3
  226. takes a point and a normal vector and returns the corresponding plane.
  227. .TF reflect3
  228. .TP
  229. Name
  230. Description
  231. .TP
  232. .B pn2f3
  233. Compute the plane passing through
  234. .I p
  235. with normal
  236. .IR n .
  237. .TP
  238. .B ppp2f3
  239. Compute the plane passing through three points.
  240. .TP
  241. .B fff2p3
  242. Compute the intersection point of three planes.
  243. .PD
  244. .PP
  245. The names of the following routines end in
  246. .B 4
  247. because they operate on points in projective 4-space,
  248. represented by their homogeneous coordinates.
  249. .TP
  250. pdiv4
  251. Perspective division. Divide
  252. .B p.w
  253. into
  254. .IR p 's
  255. coordinates, converting to affine coordinates.
  256. If
  257. .B p.w
  258. is zero, the result is the same as the argument.
  259. .TP
  260. add4
  261. Add the coordinates of two points.
  262. .PD
  263. .TP
  264. sub4
  265. Subtract the coordinates of two points.
  266. .SH SOURCE
  267. .B /sys/src/libgeometry
  268. .SH "SEE ALSO
  269. .IR matrix (2)