posn.c 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256
  1. /*
  2. * This file is part of the UCB release of Plan 9. It is subject to the license
  3. * terms in the LICENSE file found in the top-level directory of this
  4. * distribution and at http://akaros.cs.berkeley.edu/files/Plan9License. No
  5. * part of the UCB release of Plan 9, including this file, may be copied,
  6. * modified, propagated, or distributed except according to the terms contained
  7. * in the LICENSE file.
  8. */
  9. #include <u.h>
  10. #include <libc.h>
  11. #include <bio.h>
  12. #include "sky.h"
  13. void
  14. amdinv(Header *h, Angle ra, Angle dec, float mag, float col)
  15. {
  16. int i, max_iterations;
  17. float tolerance;
  18. float object_x, object_y, delta_x, delta_y, f, fx, fy, g, gx, gy;
  19. float x1, x2, x3, x4;
  20. float y1, y2, y3, y4;
  21. /*
  22. * Initialize
  23. */
  24. max_iterations = 50;
  25. tolerance = 0.0000005;
  26. /*
  27. * Convert RA and Dec to St.coords
  28. */
  29. traneqstd(h, ra, dec);
  30. /*
  31. * Set initial value for x,y
  32. */
  33. object_x = h->xi/h->param[Ppltscale];
  34. object_y = h->eta/h->param[Ppltscale];
  35. /*
  36. * Iterate by Newtons method
  37. */
  38. for(i = 0; i < max_iterations; i++) {
  39. /*
  40. * X plate model
  41. */
  42. x1 = object_x;
  43. x2 = x1 * object_x;
  44. x3 = x1 * object_x;
  45. x4 = x1 * object_x;
  46. y1 = object_y;
  47. y2 = y1 * object_y;
  48. y3 = y1 * object_y;
  49. y4 = y1 * object_y;
  50. f =
  51. h->param[Pamdx1] * x1 +
  52. h->param[Pamdx2] * y1 +
  53. h->param[Pamdx3] +
  54. h->param[Pamdx4] * x2 +
  55. h->param[Pamdx5] * x1*y1 +
  56. h->param[Pamdx6] * y2 +
  57. h->param[Pamdx7] * (x2+y2) +
  58. h->param[Pamdx8] * x2*x1 +
  59. h->param[Pamdx9] * x2*y1 +
  60. h->param[Pamdx10] * x1*y2 +
  61. h->param[Pamdx11] * y3 +
  62. h->param[Pamdx12] * x1* (x2+y2) +
  63. h->param[Pamdx13] * x1 * (x2+y2) * (x2+y2) +
  64. h->param[Pamdx14] * mag +
  65. h->param[Pamdx15] * mag*mag +
  66. h->param[Pamdx16] * mag*mag*mag +
  67. h->param[Pamdx17] * mag*x1 +
  68. h->param[Pamdx18] * mag * (x2+y2) +
  69. h->param[Pamdx19] * mag*x1 * (x2+y2) +
  70. h->param[Pamdx20] * col;
  71. /*
  72. * Derivative of X model wrt x
  73. */
  74. fx =
  75. h->param[Pamdx1] +
  76. h->param[Pamdx4] * 2*x1 +
  77. h->param[Pamdx5] * y1 +
  78. h->param[Pamdx7] * 2*x1 +
  79. h->param[Pamdx8] * 3*x2 +
  80. h->param[Pamdx9] * 2*x1*y1 +
  81. h->param[Pamdx10] * y2 +
  82. h->param[Pamdx12] * (3*x2+y2) +
  83. h->param[Pamdx13] * (5*x4 + 6*x2*y2 + y4) +
  84. h->param[Pamdx17] * mag +
  85. h->param[Pamdx18] * mag*2*x1 +
  86. h->param[Pamdx19] * mag*(3*x2+y2);
  87. /*
  88. * Derivative of X model wrt y
  89. */
  90. fy =
  91. h->param[Pamdx2] +
  92. h->param[Pamdx5] * x1 +
  93. h->param[Pamdx6] * 2*y1 +
  94. h->param[Pamdx7] * 2*y1 +
  95. h->param[Pamdx9] * x2 +
  96. h->param[Pamdx10] * x1*2*y1 +
  97. h->param[Pamdx11] * 3*y2 +
  98. h->param[Pamdx12] * 2*x1*y1 +
  99. h->param[Pamdx13] * 4*x1*y1* (x2+y2) +
  100. h->param[Pamdx18] * mag*2*y1 +
  101. h->param[Pamdx19] * mag*2*x1*y1;
  102. /*
  103. * Y plate model
  104. */
  105. g =
  106. h->param[Pamdy1] * y1 +
  107. h->param[Pamdy2] * x1 +
  108. h->param[Pamdy3] +
  109. h->param[Pamdy4] * y2 +
  110. h->param[Pamdy5] * y1*x1 +
  111. h->param[Pamdy6] * x2 +
  112. h->param[Pamdy7] * (x2+y2) +
  113. h->param[Pamdy8] * y3 +
  114. h->param[Pamdy9] * y2*x1 +
  115. h->param[Pamdy10] * y1*x3 +
  116. h->param[Pamdy11] * x3 +
  117. h->param[Pamdy12] * y1 * (x2+y2) +
  118. h->param[Pamdy13] * y1 * (x2+y2) * (x2+y2) +
  119. h->param[Pamdy14] * mag +
  120. h->param[Pamdy15] * mag*mag +
  121. h->param[Pamdy16] * mag*mag*mag +
  122. h->param[Pamdy17] * mag*y1 +
  123. h->param[Pamdy18] * mag * (x2+y2) +
  124. h->param[Pamdy19] * mag*y1 * (x2+y2) +
  125. h->param[Pamdy20] * col;
  126. /*
  127. * Derivative of Y model wrt x
  128. */
  129. gx =
  130. h->param[Pamdy2] +
  131. h->param[Pamdy5] * y1 +
  132. h->param[Pamdy6] * 2*x1 +
  133. h->param[Pamdy7] * 2*x1 +
  134. h->param[Pamdy9] * y2 +
  135. h->param[Pamdy10] * y1*2*x1 +
  136. h->param[Pamdy11] * 3*x2 +
  137. h->param[Pamdy12] * 2*x1*y1 +
  138. h->param[Pamdy13] * 4*x1*y1 * (x2+y2) +
  139. h->param[Pamdy18] * mag*2*x1 +
  140. h->param[Pamdy19] * mag*y1*2*x1;
  141. /*
  142. * Derivative of Y model wrt y
  143. */
  144. gy =
  145. h->param[Pamdy1] +
  146. h->param[Pamdy4] * 2*y1 +
  147. h->param[Pamdy5] * x1 +
  148. h->param[Pamdy7] * 2*y1 +
  149. h->param[Pamdy8] * 3*y2 +
  150. h->param[Pamdy9] * 2*y1*x1 +
  151. h->param[Pamdy10] * x2 +
  152. h->param[Pamdy12] * 3*y2 +
  153. h->param[Pamdy13] * (5*y4 + 6*x2*y2 + x4) +
  154. h->param[Pamdy17] * mag +
  155. h->param[Pamdy18] * mag*2*y1 +
  156. h->param[Pamdy19] * mag*(x2 + 3*y2);
  157. f = f - h->xi;
  158. g = g - h->eta;
  159. delta_x = (-f*gy+g*fy) / (fx*gy-fy*gx);
  160. delta_y = (-g*fx+f*gx) / (fx*gy-fy*gx);
  161. object_x = object_x + delta_x;
  162. object_y = object_y + delta_y;
  163. if((fabs(delta_x) < tolerance) && (fabs(delta_y) < tolerance))
  164. break;
  165. }
  166. /*
  167. * Convert mm from plate center to pixels
  168. */
  169. h->x = (h->param[Pppo3]-object_x*1000.0)/h->param[Pxpixelsz];
  170. h->y = (h->param[Pppo6]+object_y*1000.0)/h->param[Pypixelsz];
  171. }
  172. void
  173. ppoinv(Header *h, Angle ra, Angle dec)
  174. {
  175. /*
  176. * Convert RA and Dec to standard coords.
  177. */
  178. traneqstd(h, ra, dec);
  179. /*
  180. * Convert st.coords from arcsec to radians
  181. */
  182. h->xi /= ARCSECONDS_PER_RADIAN;
  183. h->eta /= ARCSECONDS_PER_RADIAN;
  184. /*
  185. * Compute PDS coordinates from solution
  186. */
  187. h->x =
  188. h->param[Pppo1]*h->xi +
  189. h->param[Pppo2]*h->eta +
  190. h->param[Pppo3];
  191. h->y =
  192. h->param[Pppo4]*h->xi +
  193. h->param[Pppo5]*h->eta +
  194. h->param[Pppo6];
  195. /*
  196. * Convert x,y from microns to pixels
  197. */
  198. h->x /= h->param[Pxpixelsz];
  199. h->y /= h->param[Pypixelsz];
  200. }
  201. void
  202. traneqstd(Header *h, Angle object_ra, Angle object_dec)
  203. {
  204. float div;
  205. /*
  206. * Find divisor
  207. */
  208. div =
  209. (sin(object_dec)*sin(h->param[Ppltdec]) +
  210. cos(object_dec)*cos(h->param[Ppltdec]) *
  211. cos(object_ra - h->param[Ppltra]));
  212. /*
  213. * Compute standard coords and convert to arcsec
  214. */
  215. h->xi = cos(object_dec) *
  216. sin(object_ra - h->param[Ppltra]) *
  217. ARCSECONDS_PER_RADIAN/div;
  218. h->eta = (sin(object_dec)*cos(h->param[Ppltdec])-
  219. cos(object_dec)*sin(h->param[Ppltdec])*
  220. cos(object_ra - h->param[Ppltra]))*
  221. ARCSECONDS_PER_RADIAN/div;
  222. }
  223. void
  224. xypos(Header *h, Angle ra, Angle dec, float mag, float col)
  225. {
  226. if (h->amdflag) {
  227. amdinv(h, ra, dec, mag, col);
  228. } else {
  229. ppoinv(h, ra, dec);
  230. }
  231. }