asm.ms 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431
  1. .HTML "A Manual for the Plan 9 assembler
  2. .ft CW
  3. .ta 8n +8n +8n +8n +8n +8n +8n
  4. .ft
  5. .TL
  6. A Manual for the Plan 9 assembler
  7. .AU
  8. Rob Pike
  9. rob@plan9.bell-labs.com
  10. .SH
  11. Machines
  12. .PP
  13. There is an assembler for each of the MIPS, SPARC, Intel 386,
  14. Intel 960, AMD 29000, Motorola 68020 and 68000, Motorola Power PC,
  15. AMD64, DEC Alpha, and Acorn ARM.
  16. The 68020 assembler,
  17. .CW 2a ,
  18. is the oldest and in many ways the prototype.
  19. The assemblers are really just variations of a single program:
  20. they share many properties such as left-to-right assignment order for
  21. instruction operands and the synthesis of macro instructions
  22. such as
  23. .CW MOVE
  24. to hide the peculiarities of the load and store structure of the machines.
  25. To keep things concrete, the first part of this manual is
  26. specifically about the 68020.
  27. At the end is a description of the differences among
  28. the other assemblers.
  29. .PP
  30. The document, ``How to Use the Plan 9 C Compiler'', by Rob Pike,
  31. is a prerequisite for this manual.
  32. .SH
  33. Registers
  34. .PP
  35. All pre-defined symbols in the assembler are upper-case.
  36. Data registers are
  37. .CW R0
  38. through
  39. .CW R7 ;
  40. address registers are
  41. .CW A0
  42. through
  43. .CW A7 ;
  44. floating-point registers are
  45. .CW F0
  46. through
  47. .CW F7 .
  48. .PP
  49. A pointer in
  50. .CW A6
  51. is used by the C compiler to point to data, enabling short addresses to
  52. be used more often.
  53. The value of
  54. .CW A6
  55. is constant and must be set during C program initialization
  56. to the address of the externally-defined symbol
  57. .CW a6base .
  58. .PP
  59. The following hardware registers are defined in the assembler; their
  60. meaning should be obvious given a 68020 manual:
  61. .CW CAAR ,
  62. .CW CACR ,
  63. .CW CCR ,
  64. .CW DFC ,
  65. .CW ISP ,
  66. .CW MSP ,
  67. .CW SFC ,
  68. .CW SR ,
  69. .CW USP ,
  70. and
  71. .CW VBR .
  72. .PP
  73. The assembler also defines several pseudo-registers that
  74. manipulate the stack:
  75. .CW FP ,
  76. .CW SP ,
  77. and
  78. .CW TOS .
  79. .CW FP
  80. is the frame pointer, so
  81. .CW 0(FP)
  82. is the first argument,
  83. .CW 4(FP)
  84. is the second, and so on.
  85. .CW SP
  86. is the local stack pointer, where automatic variables are held
  87. (SP is a pseudo-register only on the 68020);
  88. .CW 0(SP)
  89. is the first automatic, and so on as with
  90. .CW FP .
  91. Finally,
  92. .CW TOS
  93. is the top-of-stack register, used for pushing parameters to procedures,
  94. saving temporary values, and so on.
  95. .PP
  96. The assembler and loader track these pseudo-registers so
  97. the above statements are true regardless of what has been
  98. pushed on the hardware stack, pointed to by
  99. .CW A7 .
  100. The name
  101. .CW A7
  102. refers to the hardware stack pointer, but beware of mixed use of
  103. .CW A7
  104. and the above stack-related pseudo-registers, which will cause trouble.
  105. Note, too, that the
  106. .CW PEA
  107. instruction is observed by the loader to
  108. alter SP and thus will insert a corresponding pop before all returns.
  109. The assembler accepts a label-like name to be attached to
  110. .CW FP
  111. and
  112. .CW SP
  113. uses, such as
  114. .CW p+0(FP) ,
  115. to help document that
  116. .CW p
  117. is the first argument to a routine.
  118. The name goes in the symbol table but has no significance to the result
  119. of the program.
  120. .SH
  121. Referring to data
  122. .PP
  123. All external references must be made relative to some pseudo-register,
  124. either
  125. .CW PC
  126. (the virtual program counter) or
  127. .CW SB
  128. (the ``static base'' register).
  129. .CW PC
  130. counts instructions, not bytes of data.
  131. For example, to branch to the second following instruction, that is,
  132. to skip one instruction, one may write
  133. .P1
  134. BRA 2(PC)
  135. .P2
  136. Labels are also allowed, as in
  137. .P1
  138. BRA return
  139. NOP
  140. return:
  141. RTS
  142. .P2
  143. When using labels, there is no
  144. .CW (PC)
  145. annotation.
  146. .PP
  147. The pseudo-register
  148. .CW SB
  149. refers to the beginning of the address space of the program.
  150. Thus, references to global data and procedures are written as
  151. offsets to
  152. .CW SB ,
  153. as in
  154. .P1
  155. MOVL $array(SB), TOS
  156. .P2
  157. to push the address of a global array on the stack, or
  158. .P1
  159. MOVL array+4(SB), TOS
  160. .P2
  161. to push the second (4-byte) element of the array.
  162. Note the use of an offset; the complete list of addressing modes is given below.
  163. Similarly, subroutine calls must use
  164. .CW SB :
  165. .P1
  166. BSR exit(SB)
  167. .P2
  168. File-static variables have syntax
  169. .P1
  170. local<>+4(SB)
  171. .P2
  172. The
  173. .CW <>
  174. will be filled in at load time by a unique integer.
  175. .PP
  176. When a program starts, it must execute
  177. .P1
  178. MOVL $a6base(SB), A6
  179. .P2
  180. before accessing any global data.
  181. (On machines such as the MIPS and SPARC that cannot load a register
  182. in a single instruction, constants are loaded through the static base
  183. register. The loader recognizes code that initializes the static
  184. base register and treats it specially. You must be careful, however,
  185. not to load large constants on such machines when the static base
  186. register is not set up, such as early in interrupt routines.)
  187. .SH
  188. Expressions
  189. .PP
  190. Expressions are mostly what one might expect.
  191. Where an offset or a constant is expected,
  192. a primary expression with unary operators is allowed.
  193. A general C constant expression is allowed in parentheses.
  194. .PP
  195. Source files are preprocessed exactly as in the C compiler, so
  196. .CW #define
  197. and
  198. .CW #include
  199. work.
  200. .SH
  201. Addressing modes
  202. .PP
  203. The simple addressing modes are shared by all the assemblers.
  204. Here, for completeness, follows a table of all the 68020 addressing modes,
  205. since that machine has the richest set.
  206. In the table,
  207. .CW o
  208. is an offset, which if zero may be elided, and
  209. .CW d
  210. is a displacement, which is a constant between -128 and 127 inclusive.
  211. Many of the modes listed have the same name;
  212. scrutiny of the format will show what default is being applied.
  213. For instance, indexed mode with no address register supplied operates
  214. as though a zero-valued register were used.
  215. For "offset" read "displacement."
  216. For "\f(CW.s\fP" read one of
  217. .CW .L ,
  218. or
  219. .CW .W
  220. followed by
  221. .CW *1 ,
  222. .CW *2 ,
  223. .CW *4 ,
  224. or
  225. .CW *8
  226. to indicate the size and scaling of the data.
  227. .IP
  228. .TS
  229. l lfCW.
  230. data register R0
  231. address register A0
  232. floating-point register F0
  233. special names CAAR, CACR, etc.
  234. constant $con
  235. floating point constant $fcon
  236. external symbol name+o(SB)
  237. local symbol name<>+o(SB)
  238. automatic symbol name+o(SP)
  239. argument name+o(FP)
  240. address of external $name+o(SB)
  241. address of local $name<>+o(SB)
  242. indirect post-increment (A0)+
  243. indirect pre-decrement -(A0)
  244. indirect with offset o(A0)
  245. indexed with offset o()(R0.s)
  246. indexed with offset o(A0)(R0.s)
  247. external indexed name+o(SB)(R0.s)
  248. local indexed name<>+o(SB)(R0.s)
  249. automatic indexed name+o(SP)(R0.s)
  250. parameter indexed name+o(FP)(R0.s)
  251. offset indirect post-indexed d(o())(R0.s)
  252. offset indirect post-indexed d(o(A0))(R0.s)
  253. external indirect post-indexed d(name+o(SB))(R0.s)
  254. local indirect post-indexed d(name<>+o(SB))(R0.s)
  255. automatic indirect post-indexed d(name+o(SP))(R0.s)
  256. parameter indirect post-indexed d(name+o(FP))(R0.s)
  257. offset indirect pre-indexed d(o()(R0.s))
  258. offset indirect pre-indexed d(o(A0))
  259. offset indirect pre-indexed d(o(A0)(R0.s))
  260. external indirect pre-indexed d(name+o(SB))
  261. external indirect pre-indexed d(name+o(SB)(R0.s))
  262. local indirect pre-indexed d(name<>+o(SB))
  263. local indirect pre-indexed d(name<>+o(SB)(R0.s))
  264. automatic indirect pre-indexed d(name+o(SP))
  265. automatic indirect pre-indexed d(name+o(SP)(R0.s))
  266. parameter indirect pre-indexed d(name+o(FP))
  267. parameter indirect pre-indexed d(name+o(FP)(R0.s))
  268. .TE
  269. .in
  270. .SH
  271. Laying down data
  272. .PP
  273. Placing data in the instruction stream, say for interrupt vectors, is easy:
  274. the pseudo-instructions
  275. .CW LONG
  276. and
  277. .CW WORD
  278. (but not
  279. .CW BYTE )
  280. lay down the value of their single argument, of the appropriate size,
  281. as if it were an instruction:
  282. .P1
  283. LONG $12345
  284. .P2
  285. places the long 12345 (base 10)
  286. in the instruction stream.
  287. (On most machines,
  288. the only such operator is
  289. .CW WORD
  290. and it lays down 32-bit quantities.
  291. The 386 has all three:
  292. .CW LONG ,
  293. .CW WORD ,
  294. and
  295. .CW BYTE .
  296. The AMD64 adds
  297. .CW QUAD
  298. to that for 64-bit values.
  299. The 960 has only one,
  300. .CW LONG .)
  301. .PP
  302. Placing information in the data section is more painful.
  303. The pseudo-instruction
  304. .CW DATA
  305. does the work, given two arguments: an address at which to place the item,
  306. including its size,
  307. and the value to place there. For example, to define a character array
  308. .CW array
  309. containing the characters
  310. .CW abc
  311. and a terminating null:
  312. .P1
  313. DATA array+0(SB)/1, $'a'
  314. DATA array+1(SB)/1, $'b'
  315. DATA array+2(SB)/1, $'c'
  316. GLOBL array(SB), $4
  317. .P2
  318. or
  319. .P1
  320. DATA array+0(SB)/4, $"abc\ez"
  321. GLOBL array(SB), $4
  322. .P2
  323. The
  324. .CW /1
  325. defines the number of bytes to define,
  326. .CW GLOBL
  327. makes the symbol global, and the
  328. .CW $4
  329. says how many bytes the symbol occupies.
  330. Uninitialized data is zeroed automatically.
  331. The character
  332. .CW \ez
  333. is equivalent to the C
  334. .CW \e0.
  335. The string in a
  336. .CW DATA
  337. statement may contain a maximum of eight bytes;
  338. build larger strings piecewise.
  339. Two pseudo-instructions,
  340. .CW DYNT
  341. and
  342. .CW INIT ,
  343. allow the (obsolete) Alef compilers to build dynamic type information during the load
  344. phase.
  345. The
  346. .CW DYNT
  347. pseudo-instruction has two forms:
  348. .P1
  349. DYNT , ALEF_SI_5+0(SB)
  350. DYNT ALEF_AS+0(SB), ALEF_SI_5+0(SB)
  351. .P2
  352. In the first form,
  353. .CW DYNT
  354. defines the symbol to be a small unique integer constant, chosen by the loader,
  355. which is some multiple of the word size. In the second form,
  356. .CW DYNT
  357. defines the second symbol in the same way,
  358. places the address of the most recently
  359. defined text symbol in the array specified by the first symbol at the
  360. index defined by the value of the second symbol,
  361. and then adjusts the size of the array accordingly.
  362. .PP
  363. The
  364. .CW INIT
  365. pseudo-instruction takes the same parameters as a
  366. .CW DATA
  367. statement. Its symbol is used as the base of an array and the
  368. data item is installed in the array at the offset specified by the most recent
  369. .CW DYNT
  370. pseudo-instruction.
  371. The size of the array is adjusted accordingly.
  372. The
  373. .CW DYNT
  374. and
  375. .CW INIT
  376. pseudo-instructions are not implemented on the 68020.
  377. .SH
  378. Defining a procedure
  379. .PP
  380. Entry points are defined by the pseudo-operation
  381. .CW TEXT ,
  382. which takes as arguments the name of the procedure (including the ubiquitous
  383. .CW (SB) )
  384. and the number of bytes of automatic storage to pre-allocate on the stack,
  385. which will usually be zero when writing assembly language programs.
  386. On machines with a link register, such as the MIPS and SPARC,
  387. the special value -4 instructs the loader to generate no PC save
  388. and restore instructions, even if the function is not a leaf.
  389. Here is a complete procedure that returns the sum
  390. of its two arguments:
  391. .P1
  392. TEXT sum(SB), $0
  393. MOVL arg1+0(FP), R0
  394. ADDL arg2+4(FP), R0
  395. RTS
  396. .P2
  397. An optional middle argument
  398. to the
  399. .CW TEXT
  400. pseudo-op is a bit field of options to the loader.
  401. Setting the 1 bit suspends profiling the function when profiling is enabled for the rest of
  402. the program.
  403. For example,
  404. .P1
  405. TEXT sum(SB), 1, $0
  406. MOVL arg1+0(FP), R0
  407. ADDL arg2+4(FP), R0
  408. RTS
  409. .P2
  410. will not be profiled; the first version above would be.
  411. Subroutines with peculiar state, such as system call routines,
  412. should not be profiled.
  413. .PP
  414. Setting the 2 bit allows multiple definitions of the same
  415. .CW TEXT
  416. symbol in a program; the loader will place only one such function in the image.
  417. It was emitted only by the Alef compilers.
  418. .PP
  419. Subroutines to be called from C should place their result in
  420. .CW R0 ,
  421. even if it is an address.
  422. Floating point values are returned in
  423. .CW F0 .
  424. Functions that return a structure to a C program
  425. receive as their first argument the address of the location to
  426. store the result;
  427. .CW R0
  428. is unused in the calling protocol for such procedures.
  429. A subroutine is responsible for saving its own registers,
  430. and therefore is free to use any registers without saving them (``caller saves'').
  431. .CW A6
  432. and
  433. .CW A7
  434. are the exceptions as described above.
  435. .SH
  436. When in doubt
  437. .PP
  438. If you get confused, try using the
  439. .CW -S
  440. option to
  441. .CW 2c
  442. and compiling a sample program.
  443. The standard output is valid input to the assembler.
  444. .SH
  445. Instructions
  446. .PP
  447. The instruction set of the assembler is not identical to that
  448. of the machine.
  449. It is chosen to match what the compiler generates, augmented
  450. slightly by specific needs of the operating system.
  451. For example,
  452. .CW 2a
  453. does not distinguish between the various forms of
  454. .CW MOVE
  455. instruction: move quick, move address, etc. Instead the context
  456. does the job. For example,
  457. .P1
  458. MOVL $1, R1
  459. MOVL A0, R2
  460. MOVW SR, R3
  461. .P2
  462. generates official
  463. .CW MOVEQ ,
  464. .CW MOVEA ,
  465. and
  466. .CW MOVESR
  467. instructions.
  468. A number of instructions do not have the syntax necessary to specify
  469. their entire capabilities. Notable examples are the bitfield
  470. instructions, the
  471. multiply and divide instructions, etc.
  472. For a complete set of generated instruction names (in
  473. .CW 2a
  474. notation, not Motorola's) see the file
  475. .CW /sys/src/cmd/2c/2.out.h .
  476. Despite its name, this file contains an enumeration of the
  477. instructions that appear in the intermediate files generated
  478. by the compiler, which correspond exactly to lines of assembly language.
  479. .PP
  480. The MC68000 assembler,
  481. .CW 1a ,
  482. is essentially the same, honoring the appropriate subset of the instructions
  483. and addressing modes.
  484. The definitions of these are, nonetheless, part of
  485. .CW 2.out.h .
  486. .SH
  487. Laying down instructions
  488. .PP
  489. The loader modifies the code produced by the assembler and compiler.
  490. It folds branches,
  491. copies short sequences of code to eliminate branches,
  492. and discards unreachable code.
  493. The first instruction of every function is assumed to be reachable.
  494. The pseudo-instruction
  495. .CW NOP ,
  496. which you may see in compiler output,
  497. means no instruction at all, rather than an instruction that does nothing.
  498. The loader discards all
  499. .CW NOP 's.
  500. .PP
  501. To generate a true
  502. .CW NOP
  503. instruction, or any other instruction not known to the assembler, use a
  504. .CW WORD
  505. pseudo-instruction.
  506. Such instructions on RISCs are not scheduled by the loader and must have
  507. their delay slots filled manually.
  508. .SH
  509. MIPS
  510. .PP
  511. The registers are only addressed by number:
  512. .CW R0
  513. through
  514. .CW R31 .
  515. .CW R29
  516. is the stack pointer;
  517. .CW R30
  518. is used as the static base pointer, the analogue of
  519. .CW A6
  520. on the 68020.
  521. Its value is the address of the global symbol
  522. .CW setR30(SB) .
  523. The register holding returned values from subroutines is
  524. .CW R1 .
  525. When a function is called, space for the first argument
  526. is reserved at
  527. .CW 0(FP)
  528. but in C (not Alef) the value is passed in
  529. .CW R1
  530. instead.
  531. .PP
  532. The loader uses
  533. .CW R28
  534. as a temporary. The system uses
  535. .CW R26
  536. and
  537. .CW R27
  538. as interrupt-time temporaries. Therefore none of these registers
  539. should be used in user code.
  540. .PP
  541. The control registers are not known to the assembler.
  542. Instead they are numbered registers
  543. .CW M0 ,
  544. .CW M1 ,
  545. etc.
  546. Use this trick to access, say,
  547. .CW STATUS :
  548. .P1
  549. #define STATUS 12
  550. MOVW M(STATUS), R1
  551. .P2
  552. .PP
  553. Floating point registers are called
  554. .CW F0
  555. through
  556. .CW F31 .
  557. By convention,
  558. .CW F24
  559. must be initialized to the value 0.0,
  560. .CW F26
  561. to 0.5,
  562. .CW F28
  563. to 1.0, and
  564. .CW F30
  565. to 2.0;
  566. this is done by the operating system.
  567. .PP
  568. The instructions and their syntax are different from those of the manufacturer's
  569. manual.
  570. There are no
  571. .CW lui
  572. and kin; instead there are
  573. .CW MOVW
  574. (move word),
  575. .CW MOVH
  576. (move halfword),
  577. and
  578. .CW MOVB
  579. (move byte) pseudo-instructions. If the operand is unsigned, the instructions
  580. are
  581. .CW MOVHU
  582. and
  583. .CW MOVBU .
  584. The order of operands is from left to right in dataflow order, just as
  585. on the 68020 but not as in MIPS documentation.
  586. This means that the
  587. .CW Bcond
  588. instructions are reversed with respect to the book; for example, a
  589. .CW va
  590. .CW BGTZ
  591. generates a MIPS
  592. .CW bltz
  593. instruction.
  594. .PP
  595. The assembler is for the R2000, R3000, and most of the R4000 and R6000 architectures.
  596. It understands the 64-bit instructions
  597. .CW MOVV ,
  598. .CW MOVVL ,
  599. .CW ADDV ,
  600. .CW ADDVU ,
  601. .CW SUBV ,
  602. .CW SUBVU ,
  603. .CW MULV ,
  604. .CW MULVU ,
  605. .CW DIVV ,
  606. .CW DIVVU ,
  607. .CW SLLV ,
  608. .CW SRLV ,
  609. and
  610. .CW SRAV .
  611. The assembler does not have any cache, load-linked, or store-conditional instructions.
  612. .PP
  613. Some assembler instructions are expanded into multiple instructions by the loader.
  614. For example the loader may convert the load of a 32 bit constant into an
  615. .CW lui
  616. followed by an
  617. .CW ori .
  618. .PP
  619. Assembler instructions should be laid out as if there
  620. were no load, branch, or floating point compare delay slots;
  621. the loader will rearrange\(em\f2schedule\f1\(emthe instructions
  622. to guarantee correctness and improve performance.
  623. The only exception is that the correct scheduling of instructions
  624. that use control registers varies from model to model of machine
  625. (and is often undocumented) so you should schedule such instructions
  626. by hand to guarantee correct behavior.
  627. The loader generates
  628. .P1
  629. NOR R0, R0, R0
  630. .P2
  631. when it needs a true no-op instruction.
  632. Use exactly this instruction when scheduling code manually;
  633. the loader recognizes it and schedules the code before it and after it independently. Also,
  634. .CW WORD
  635. pseudo-ops are scheduled like no-ops.
  636. .PP
  637. The
  638. .CW NOSCHED
  639. pseudo-op disables instruction scheduling
  640. (scheduling is enabled by default);
  641. .CW SCHED
  642. re-enables it.
  643. Branch folding, code copying, and dead code elimination are
  644. disabled for instructions that are not scheduled.
  645. .SH
  646. SPARC
  647. .PP
  648. Once you understand the Plan 9 model for the MIPS, the SPARC is familiar.
  649. Registers have numerical names only:
  650. .CW R0
  651. through
  652. .CW R31 .
  653. Forget about register windows: Plan 9 doesn't use them at all.
  654. The machine has 32 global registers, period.
  655. .CW R1
  656. [sic] is the stack pointer.
  657. .CW R2
  658. is the static base register, with value the address of
  659. .CW setSB(SB) .
  660. .CW R7
  661. is the return register and also the register holding the first
  662. argument to a C (not Alef) function, again with space reserved at
  663. .CW 0(FP) .
  664. .CW R14
  665. is the loader temporary.
  666. .PP
  667. Floating-point registers are exactly as on the MIPS.
  668. .PP
  669. The control registers are known by names such as
  670. .CW FSR .
  671. The instructions to access these registers are
  672. .CW MOVW
  673. instructions, for example
  674. .P1
  675. MOVW Y, R8
  676. .P2
  677. for the SPARC instruction
  678. .P1
  679. rdy %r8
  680. .P2
  681. .PP
  682. Move instructions are similar to those on the MIPS: pseudo-operations
  683. that turn into appropriate sequences of
  684. .CW sethi
  685. instructions, adds, etc.
  686. Instructions read from left to right. Because the arguments are
  687. flipped to
  688. .CW SUBCC ,
  689. the condition codes are not inverted as on the MIPS.
  690. .PP
  691. The syntax for the ASI stuff is, for example to move a word from ASI 2:
  692. .P1
  693. MOVW (R7, 2), R8
  694. .P2
  695. The syntax for double indexing is
  696. .P1
  697. MOVW (R7+R8), R9
  698. .P2
  699. .PP
  700. The SPARC's instruction scheduling is similar to the MIPS's.
  701. The official no-op instruction is:
  702. .P1
  703. ORN R0, R0, R0
  704. .P2
  705. .SH
  706. i960
  707. .PP
  708. Registers are numbered
  709. .CW R0
  710. through
  711. .CW R31 .
  712. Stack pointer is
  713. .CW R29 ;
  714. return register is
  715. .CW R4 ;
  716. static base is
  717. .CW R28 ;
  718. it is initialized to the address of
  719. .CW setSB(SB) .
  720. .CW R3
  721. must be zero; this should be done manually early in execution by
  722. .P1
  723. SUBO R3, R3
  724. .P2
  725. .CW R27
  726. is the loader temporary.
  727. .PP
  728. There is no support for floating point.
  729. .PP
  730. The Intel calling convention is not supported and cannot be used; use
  731. .CW BAL
  732. instead.
  733. Instructions are mostly as in the book. The major change is that
  734. .CW LOAD
  735. and
  736. .CW STORE
  737. are both called
  738. .CW MOV .
  739. The extension character for
  740. .CW MOV
  741. is as in the manual:
  742. .CW O
  743. for ordinal,
  744. .CW W
  745. for signed, etc.
  746. .SH
  747. i386
  748. .PP
  749. The assembler assumes 32-bit protected mode.
  750. The register names are
  751. .CW SP ,
  752. .CW AX ,
  753. .CW BX ,
  754. .CW CX ,
  755. .CW DX ,
  756. .CW BP ,
  757. .CW DI ,
  758. and
  759. .CW SI .
  760. The stack pointer (not a pseudo-register) is
  761. .CW SP
  762. and the return register is
  763. .CW AX .
  764. There is no physical frame pointer but, as for the MIPS,
  765. .CW FP
  766. is a pseudo-register that acts as
  767. a frame pointer.
  768. .PP
  769. Opcode names are mostly the same as those listed in the Intel manual
  770. with an
  771. .CW L ,
  772. .CW W ,
  773. or
  774. .CW B
  775. appended to identify 32-bit,
  776. 16-bit, and 8-bit operations.
  777. The exceptions are loads, stores, and conditionals.
  778. All load and store opcodes to and from general registers, special registers
  779. (such as
  780. .CW CR0,
  781. .CW CR3,
  782. .CW GDTR,
  783. .CW IDTR,
  784. .CW SS,
  785. .CW CS,
  786. .CW DS,
  787. .CW ES,
  788. .CW FS,
  789. and
  790. .CW GS )
  791. or memory are written
  792. as
  793. .P1
  794. MOV\f2x\fP src,dst
  795. .P2
  796. where
  797. .I x
  798. is
  799. .CW L ,
  800. .CW W ,
  801. or
  802. .CW B .
  803. Thus to get
  804. .CW AL
  805. use a
  806. .CW MOVB
  807. instruction. If you need to access
  808. .CW AH ,
  809. you must mention it explicitly in a
  810. .CW MOVB :
  811. .P1
  812. MOVB AH, BX
  813. .P2
  814. There are many examples of illegal moves, for example,
  815. .P1
  816. MOVB BP, DI
  817. .P2
  818. that the loader actually implements as pseudo-operations.
  819. .PP
  820. The names of conditions in all conditional instructions
  821. .CW J , (
  822. .CW SET )
  823. follow the conventions of the 68020 instead of those of the Intel
  824. assembler:
  825. .CW JOS ,
  826. .CW JOC ,
  827. .CW JCS ,
  828. .CW JCC ,
  829. .CW JEQ ,
  830. .CW JNE ,
  831. .CW JLS ,
  832. .CW JHI ,
  833. .CW JMI ,
  834. .CW JPL ,
  835. .CW JPS ,
  836. .CW JPC ,
  837. .CW JLT ,
  838. .CW JGE ,
  839. .CW JLE ,
  840. and
  841. .CW JGT
  842. instead of
  843. .CW JO ,
  844. .CW JNO ,
  845. .CW JB ,
  846. .CW JNB ,
  847. .CW JZ ,
  848. .CW JNZ ,
  849. .CW JBE ,
  850. .CW JNBE ,
  851. .CW JS ,
  852. .CW JNS ,
  853. .CW JP ,
  854. .CW JNP ,
  855. .CW JL ,
  856. .CW JNL ,
  857. .CW JLE ,
  858. and
  859. .CW JNLE .
  860. .PP
  861. The addressing modes have syntax like
  862. .CW AX ,
  863. .CW (AX) ,
  864. .CW (AX)(BX*4) ,
  865. .CW 10(AX) ,
  866. and
  867. .CW 10(AX)(BX*4) .
  868. The offsets from
  869. .CW AX
  870. can be replaced by offsets from
  871. .CW FP
  872. or
  873. .CW SB
  874. to access names, for example
  875. .CW extern+5(SB)(AX*2) .
  876. .PP
  877. Other notes: Non-relative
  878. .CW JMP
  879. and
  880. .CW CALL
  881. have a
  882. .CW *
  883. added to the syntax.
  884. Only
  885. .CW LOOP ,
  886. .CW LOOPEQ ,
  887. and
  888. .CW LOOPNE
  889. are legal loop instructions. Only
  890. .CW REP
  891. and
  892. .CW REPN
  893. are recognized repeaters. These are not prefixes, but rather
  894. stand-alone opcodes that precede the strings, for example
  895. .P1
  896. CLD; REP; MOVSL
  897. .P2
  898. Segment override prefixes in
  899. .CW MOD/RM
  900. fields are not supported.
  901. .SH
  902. AMD64
  903. .PP
  904. The assembler assumes 64-bit mode unless a
  905. .CW MODE
  906. pseudo-operation is given:
  907. .P1
  908. MODE $32
  909. .P2
  910. to change to 32-bit mode.
  911. The effect is mainly to diagnose instructions that are illegal in
  912. the given mode, but the loader will also assume 32-bit operands and addresses,
  913. and 32-bit PC values for call and return.
  914. The assembler's conventions are similar to those for the 386, above.
  915. The architecture provides extra fixed-point registers
  916. .CW R8
  917. to
  918. .CW R15 .
  919. All registers are 64 bit, but instructions access low-order 8, 16 and 32 bits
  920. as described in the processor handbook.
  921. For example,
  922. .CW MOVL
  923. to
  924. .CW AX
  925. puts a value in the low-order 32 bits and clears the top 32 bits to zero.
  926. Literal operands are limited to signed 32 bit values, which are sign-extended
  927. to 64 bits in 64 bit operations; the exception is
  928. .CW MOVQ ,
  929. which allows 64-bit literals.
  930. The external registers in Plan 9's C are allocated from
  931. .CW R15
  932. down.
  933. There are many new instructions, including the MMX and XMM media instructions,
  934. and conditional move instructions.
  935. MMX registers are
  936. .CW M0
  937. to
  938. .CW M7 ,
  939. and
  940. XMM registers are
  941. .CW X0
  942. to
  943. .CW X15 .
  944. As with the 386 instruction names,
  945. all new 64-bit integer instructions, and the MMX and XMM instructions
  946. uniformly use
  947. .CW L
  948. for `long word' (32 bits) and
  949. .CW Q
  950. for `quad word' (64 bits).
  951. Some instructions use
  952. .CW O
  953. (`octword') for 128-bit values, where the processor handbook
  954. variously uses
  955. .CW O
  956. or
  957. .CW DQ .
  958. The assembler also consistently uses
  959. .CW PL
  960. for `packed long' in
  961. XMM instructions, instead of
  962. .CW Q ,
  963. .CW DQ
  964. or
  965. .CW PI .
  966. Either
  967. .CW MOVL
  968. or
  969. .CW MOVQ
  970. can be used to move values to and from control registers, even when
  971. the registers might be 64 bits.
  972. The assembler often accepts the handbook's name to ease conversion
  973. of existing code (but remember that the operand order is uniformly
  974. source then destination).
  975. C's
  976. .CW "long long"
  977. type is 64 bits, but passed and returned by value, not by reference.
  978. More notably, C pointer values are 64 bits, and thus
  979. .CW "long long"
  980. and
  981. .CW "unsigned long long"
  982. are the only integer types wide enough to hold a pointer value.
  983. The C compiler and library use the XMM floating-point instructions, not
  984. the old 387 ones, although the latter are implemented by assembler and loader.
  985. Unlike the 386, the first integer or pointer argument is passed in a register, which is
  986. .CW BP
  987. for an integer or pointer (it can be referred to in assembly code by the pseudonym
  988. .CW RARG ).
  989. .CW AX
  990. holds the return value from subroutines as before.
  991. Floating-point results are returned in
  992. .CW X0 ,
  993. although currently the first floating-point parameter is not passed in a register.
  994. All parameters less than 8 bytes in length have 8 byte slots reserved on the stack
  995. to preserve alignment and simplify variable-length argument list access,
  996. including the first parameter when passed in a register,
  997. even though bytes 4 to 7 are not initialized.
  998. .SH
  999. Alpha
  1000. .PP
  1001. On the Alpha, all registers are 64 bits. The architecture handles 32-bit values
  1002. by giving them a canonical format (sign extension in the case of integer registers).
  1003. Registers are numbered
  1004. .CW R0
  1005. through
  1006. .CW R31 .
  1007. .CW R0
  1008. holds the return value from subroutines, and also the first parameter.
  1009. .CW R30
  1010. is the stack pointer,
  1011. .CW R29
  1012. is the static base,
  1013. .CW R26
  1014. is the link register, and
  1015. .CW R27
  1016. and
  1017. .CW R28
  1018. are linker temporaries.
  1019. .PP
  1020. Floating point registers are numbered
  1021. .CW F0
  1022. to
  1023. .CW F31 .
  1024. .CW F28
  1025. contains
  1026. .CW 0.5 ,
  1027. .CW F29
  1028. contains
  1029. .CW 1.0 ,
  1030. and
  1031. .CW F30
  1032. contains
  1033. .CW 2.0 .
  1034. .CW F31
  1035. is always
  1036. .CW 0.0
  1037. on the Alpha.
  1038. .PP
  1039. The extension character for
  1040. .CW MOV
  1041. follows DEC's notation:
  1042. .CW B
  1043. for byte (8 bits),
  1044. .CW W
  1045. for word (16 bits),
  1046. .CW L
  1047. for long (32 bits),
  1048. and
  1049. .CW Q
  1050. for quadword (64 bits).
  1051. Byte and ``word'' loads and stores may be made unsigned
  1052. by appending a
  1053. .CW U .
  1054. .CW S
  1055. and
  1056. .CW T
  1057. refer to IEEE floating point single precision (32 bits) and double precision (64 bits), respectively.
  1058. .SH
  1059. Power PC
  1060. .PP
  1061. The Power PC follows the Plan 9 model set by the MIPS and SPARC,
  1062. not the elaborate ABIs.
  1063. The 32-bit instructions of the 60x and 8xx PowerPC architectures are supported;
  1064. there is no support for the older POWER instructions.
  1065. Registers are
  1066. .CW R0
  1067. through
  1068. .CW R31 .
  1069. .CW R0
  1070. is initialized to zero; this is done by C start up code
  1071. and assumed by the compiler and loader.
  1072. .CW R1
  1073. is the stack pointer.
  1074. .CW R2
  1075. is the static base register, with value the address of
  1076. .CW setSB(SB) .
  1077. .CW R3
  1078. is the return register and also the register holding the first
  1079. argument to a C function, with space reserved at
  1080. .CW 0(FP)
  1081. as on the MIPS.
  1082. .CW R31
  1083. is the loader temporary.
  1084. The external registers in Plan 9's C are allocated from
  1085. .CW R30
  1086. down.
  1087. .PP
  1088. Floating point registers are called
  1089. .CW F0
  1090. through
  1091. .CW F31 .
  1092. By convention, several registers are initialized
  1093. to specific values; this is done by the operating system.
  1094. .CW F27
  1095. must be initialized to the value
  1096. .CW 0x4330000080000000
  1097. (used by float-to-int conversion),
  1098. .CW F28
  1099. to the value 0.0,
  1100. .CW F29
  1101. to 0.5,
  1102. .CW F30
  1103. to 1.0, and
  1104. .CW F31
  1105. to 2.0.
  1106. .PP
  1107. As on the MIPS and SPARC, the assembler accepts arbitrary literals
  1108. as operands to
  1109. .CW MOVW ,
  1110. and also to
  1111. .CW ADD
  1112. and others where `immediate' variants exist,
  1113. and the loader generates sequences
  1114. of
  1115. .CW addi ,
  1116. .CW addis ,
  1117. .CW oris ,
  1118. etc. as required.
  1119. The register indirect addressing modes use the same syntax as the SPARC,
  1120. including double indexing when allowed.
  1121. .PP
  1122. The instruction names are generally derived from the Motorola ones,
  1123. subject to slight transformation:
  1124. the
  1125. .CW . ' `
  1126. marking the setting of condition codes is replaced by
  1127. .CW CC ,
  1128. and when the letter
  1129. .CW o ' `
  1130. represents `OE=1' it is replaced by
  1131. .CW V .
  1132. Thus
  1133. .CW add ,
  1134. .CW addo.
  1135. and
  1136. .CW subfzeo.
  1137. become
  1138. .CW ADD ,
  1139. .CW ADDVCC
  1140. and
  1141. .CW SUBFZEVCC .
  1142. As well as the three-operand conditional branch instruction
  1143. .CW BC ,
  1144. the assembler provides pseudo-instructions for the common cases:
  1145. .CW BEQ ,
  1146. .CW BNE ,
  1147. .CW BGT ,
  1148. .CW BGE ,
  1149. .CW BLT ,
  1150. .CW BLE ,
  1151. .CW BVC ,
  1152. and
  1153. .CW BVS .
  1154. The unconditional branch instruction is
  1155. .CW BR .
  1156. Indirect branches use
  1157. .CW "(CTR)"
  1158. or
  1159. .CW "(LR)"
  1160. as target.
  1161. .PP
  1162. Load or store operations are replaced by
  1163. .CW MOV
  1164. variants in the usual way:
  1165. .CW MOVW
  1166. (move word),
  1167. .CW MOVH
  1168. (move halfword with sign extension), and
  1169. .CW MOVB
  1170. (move byte with sign extension, a pseudo-instruction),
  1171. with unsigned variants
  1172. .CW MOVHZ
  1173. and
  1174. .CW MOVBZ ,
  1175. and byte-reversing
  1176. .CW MOVWBR
  1177. and
  1178. .CW MOVHBR .
  1179. `Load or store with update' versions are
  1180. .CW MOVWU ,
  1181. .CW MOVHU ,
  1182. and
  1183. .CW MOVBZU .
  1184. Load or store multiple is
  1185. .CW MOVMW .
  1186. The exceptions are the string instructions, which are
  1187. .CW LSW
  1188. and
  1189. .CW STSW ,
  1190. and the reservation instructions
  1191. .CW lwarx
  1192. and
  1193. .CW stwcx. ,
  1194. which are
  1195. .CW LWAR
  1196. and
  1197. .CW STWCCC ,
  1198. all with operands in the usual data-flow order.
  1199. Floating-point load or store instructions are
  1200. .CW FMOVD ,
  1201. .CW FMOVDU ,
  1202. .CW FMOVS ,
  1203. and
  1204. .CW FMOVSU .
  1205. The register to register move instructions
  1206. .CW fmr
  1207. and
  1208. .CW fmr.
  1209. are written
  1210. .CW FMOVD
  1211. and
  1212. .CW FMOVDCC .
  1213. .PP
  1214. The assembler knows the commonly used special purpose registers:
  1215. .CW CR ,
  1216. .CW CTR ,
  1217. .CW DEC ,
  1218. .CW LR ,
  1219. .CW MSR ,
  1220. and
  1221. .CW XER .
  1222. The rest, which are often architecture-dependent, are referenced as
  1223. .CW SPR(n) .
  1224. The segment registers of the 60x series are similarly
  1225. .CW SEG(n) ,
  1226. but
  1227. .I n
  1228. can also be a register name, as in
  1229. .CW SEG(R3) .
  1230. Moves between special purpose registers and general purpose ones,
  1231. when allowed by the architecture,
  1232. are written as
  1233. .CW MOVW ,
  1234. replacing
  1235. .CW mfcr ,
  1236. .CW mtcr ,
  1237. .CW mfmsr ,
  1238. .CW mtmsr ,
  1239. .CW mtspr ,
  1240. .CW mfspr ,
  1241. .CW mftb ,
  1242. and many others.
  1243. .PP
  1244. The fields of the condition register
  1245. .CW CR
  1246. are referenced as
  1247. .CW CR(0)
  1248. through
  1249. .CW CR(7) .
  1250. They are used by the
  1251. .CW MOVFL
  1252. (move field) pseudo-instruction,
  1253. which produces
  1254. .CW mcrf
  1255. or
  1256. .CW mtcrf .
  1257. For example:
  1258. .P1
  1259. MOVFL CR(3), CR(0)
  1260. MOVFL R3, CR(1)
  1261. MOVFL R3, $7, CR
  1262. .P2
  1263. They are also accepted in
  1264. the conditional branch instruction, for example
  1265. .P1
  1266. BEQ CR(7), label
  1267. .P2
  1268. Fields of the
  1269. .CW FPSCR
  1270. are accessed using
  1271. .CW MOVFL
  1272. in a similar way:
  1273. .P1
  1274. MOVFL FPSCR, F0
  1275. MOVFL F0, FPSCR
  1276. MOVFL F0, $7, FPSCR
  1277. MOVFL $0, FPSCR(3)
  1278. .P2
  1279. producing
  1280. .CW mffs ,
  1281. .CW mtfsf
  1282. or
  1283. .CW mtfsfi ,
  1284. as appropriate.
  1285. .SH
  1286. ARM
  1287. .PP
  1288. The assembler provides access to
  1289. .CW R0
  1290. through
  1291. .CW R14
  1292. and the
  1293. .CW PC .
  1294. The stack pointer is
  1295. .CW R13 ,
  1296. the link register is
  1297. .CW R14 ,
  1298. and the static base register is
  1299. .CW R12 .
  1300. .CW R0
  1301. is the return register and also the register holding
  1302. the first argument to a subroutine.
  1303. The assembler supports the
  1304. .CW CPSR
  1305. and
  1306. .CW SPSR
  1307. registers.
  1308. It also knows about coprocessor registers
  1309. .CW C0
  1310. through
  1311. .CW C15 .
  1312. Floating registers are
  1313. .CW F0
  1314. through
  1315. .CW F7 ,
  1316. .CW FPSR
  1317. and
  1318. .CW FPCR .
  1319. .PP
  1320. As with the other architectures, loads and stores are called
  1321. .CW MOV ,
  1322. e.g.
  1323. .CW MOVW
  1324. for load word or store word, and
  1325. .CW MOVM
  1326. for
  1327. load or store multiple,
  1328. depending on the operands.
  1329. .PP
  1330. Addressing modes are supported by suffixes to the instructions:
  1331. .CW .IA
  1332. (increment after),
  1333. .CW .IB
  1334. (increment before),
  1335. .CW .DA
  1336. (decrement after), and
  1337. .CW .DB
  1338. (decrement before).
  1339. These can only be used with the
  1340. .CW MOV
  1341. instructions.
  1342. The move multiple instruction,
  1343. .CW MOVM ,
  1344. defines a range of registers using brackets, e.g.
  1345. .CW [R0-R12] .
  1346. The special
  1347. .CW MOVM
  1348. addressing mode bits
  1349. .CW W ,
  1350. .CW U ,
  1351. and
  1352. .CW P
  1353. are written in the same manner, for example,
  1354. .CW MOVM.DB.W .
  1355. A
  1356. .CW .S
  1357. suffix allows a
  1358. .CW MOVM
  1359. instruction to access user
  1360. .CW R13
  1361. and
  1362. .CW R14
  1363. when in another processor mode.
  1364. Shifts and rotates in addressing modes are supported by binary operators
  1365. .CW <<
  1366. (logical left shift),
  1367. .CW >>
  1368. (logical right shift),
  1369. .CW ->
  1370. (arithmetic right shift), and
  1371. .CW @>
  1372. (rotate right); for example
  1373. .CW "R7>>R2" or
  1374. .CW "R2@>2" .
  1375. The assembler does not support indexing by a shifted expression;
  1376. only names can be doubly indexed.
  1377. .PP
  1378. Any instruction can be followed by a suffix that makes the instruction conditional:
  1379. .CW .EQ ,
  1380. .CW .NE ,
  1381. and so on, as in the ARM manual, with synonyms
  1382. .CW .HS
  1383. (for
  1384. .CW .CS )
  1385. and
  1386. .CW .LO
  1387. (for
  1388. .CW .CC ),
  1389. for example
  1390. .CW ADD.NE .
  1391. Arithmetic
  1392. and logical instructions
  1393. can have a
  1394. .CW .S
  1395. suffix, as ARM allows, to set condition codes.
  1396. .PP
  1397. The syntax of the
  1398. .CW MCR
  1399. and
  1400. .CW MRC
  1401. coprocessor instructions is largely as in the manual, with the usual adjustments.
  1402. The assembler directly supports only the ARM floating-point coprocessor
  1403. operations used by the compiler:
  1404. .CW CMP ,
  1405. .CW ADD ,
  1406. .CW SUB ,
  1407. .CW MUL ,
  1408. and
  1409. .CW DIV ,
  1410. all with
  1411. .CW F
  1412. or
  1413. .CW D
  1414. suffix selecting single or double precision.
  1415. Floating-point load or store become
  1416. .CW MOVF
  1417. and
  1418. .CW MOVD .
  1419. Conversion instructions are also specified by moves:
  1420. .CW MOVWD ,
  1421. .CW MOVWF ,
  1422. .CW MOVDW ,
  1423. .CW MOVWD ,
  1424. .CW MOVFD ,
  1425. and
  1426. .CW MOVDF .
  1427. .SH
  1428. AMD 29000
  1429. .PP
  1430. For details about this assembly language, which was built for the AMD 29240,
  1431. look at the sources or examine compiler output.