posn.c 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247
  1. #include <u.h>
  2. #include <libc.h>
  3. #include <bio.h>
  4. #include "sky.h"
  5. void
  6. amdinv(Header *h, Angle ra, Angle dec, float mag, float col)
  7. {
  8. int i, max_iterations;
  9. float tolerance;
  10. float object_x, object_y, delta_x, delta_y, f, fx, fy, g, gx, gy;
  11. float x1, x2, x3, x4;
  12. float y1, y2, y3, y4;
  13. /*
  14. * Initialize
  15. */
  16. max_iterations = 50;
  17. tolerance = 0.0000005;
  18. /*
  19. * Convert RA and Dec to St.coords
  20. */
  21. traneqstd(h, ra, dec);
  22. /*
  23. * Set initial value for x,y
  24. */
  25. object_x = h->xi/h->param[Ppltscale];
  26. object_y = h->eta/h->param[Ppltscale];
  27. /*
  28. * Iterate by Newtons method
  29. */
  30. for(i = 0; i < max_iterations; i++) {
  31. /*
  32. * X plate model
  33. */
  34. x1 = object_x;
  35. x2 = x1 * object_x;
  36. x3 = x1 * object_x;
  37. x4 = x1 * object_x;
  38. y1 = object_y;
  39. y2 = y1 * object_y;
  40. y3 = y1 * object_y;
  41. y4 = y1 * object_y;
  42. f =
  43. h->param[Pamdx1] * x1 +
  44. h->param[Pamdx2] * y1 +
  45. h->param[Pamdx3] +
  46. h->param[Pamdx4] * x2 +
  47. h->param[Pamdx5] * x1*y1 +
  48. h->param[Pamdx6] * y2 +
  49. h->param[Pamdx7] * (x2+y2) +
  50. h->param[Pamdx8] * x2*x1 +
  51. h->param[Pamdx9] * x2*y1 +
  52. h->param[Pamdx10] * x1*y2 +
  53. h->param[Pamdx11] * y3 +
  54. h->param[Pamdx12] * x1* (x2+y2) +
  55. h->param[Pamdx13] * x1 * (x2+y2) * (x2+y2) +
  56. h->param[Pamdx14] * mag +
  57. h->param[Pamdx15] * mag*mag +
  58. h->param[Pamdx16] * mag*mag*mag +
  59. h->param[Pamdx17] * mag*x1 +
  60. h->param[Pamdx18] * mag * (x2+y2) +
  61. h->param[Pamdx19] * mag*x1 * (x2+y2) +
  62. h->param[Pamdx20] * col;
  63. /*
  64. * Derivative of X model wrt x
  65. */
  66. fx =
  67. h->param[Pamdx1] +
  68. h->param[Pamdx4] * 2*x1 +
  69. h->param[Pamdx5] * y1 +
  70. h->param[Pamdx7] * 2*x1 +
  71. h->param[Pamdx8] * 3*x2 +
  72. h->param[Pamdx9] * 2*x1*y1 +
  73. h->param[Pamdx10] * y2 +
  74. h->param[Pamdx12] * (3*x2+y2) +
  75. h->param[Pamdx13] * (5*x4 + 6*x2*y2 + y4) +
  76. h->param[Pamdx17] * mag +
  77. h->param[Pamdx18] * mag*2*x1 +
  78. h->param[Pamdx19] * mag*(3*x2+y2);
  79. /*
  80. * Derivative of X model wrt y
  81. */
  82. fy =
  83. h->param[Pamdx2] +
  84. h->param[Pamdx5] * x1 +
  85. h->param[Pamdx6] * 2*y1 +
  86. h->param[Pamdx7] * 2*y1 +
  87. h->param[Pamdx9] * x2 +
  88. h->param[Pamdx10] * x1*2*y1 +
  89. h->param[Pamdx11] * 3*y2 +
  90. h->param[Pamdx12] * 2*x1*y1 +
  91. h->param[Pamdx13] * 4*x1*y1* (x2+y2) +
  92. h->param[Pamdx18] * mag*2*y1 +
  93. h->param[Pamdx19] * mag*2*x1*y1;
  94. /*
  95. * Y plate model
  96. */
  97. g =
  98. h->param[Pamdy1] * y1 +
  99. h->param[Pamdy2] * x1 +
  100. h->param[Pamdy3] +
  101. h->param[Pamdy4] * y2 +
  102. h->param[Pamdy5] * y1*x1 +
  103. h->param[Pamdy6] * x2 +
  104. h->param[Pamdy7] * (x2+y2) +
  105. h->param[Pamdy8] * y3 +
  106. h->param[Pamdy9] * y2*x1 +
  107. h->param[Pamdy10] * y1*x3 +
  108. h->param[Pamdy11] * x3 +
  109. h->param[Pamdy12] * y1 * (x2+y2) +
  110. h->param[Pamdy13] * y1 * (x2+y2) * (x2+y2) +
  111. h->param[Pamdy14] * mag +
  112. h->param[Pamdy15] * mag*mag +
  113. h->param[Pamdy16] * mag*mag*mag +
  114. h->param[Pamdy17] * mag*y1 +
  115. h->param[Pamdy18] * mag * (x2+y2) +
  116. h->param[Pamdy19] * mag*y1 * (x2+y2) +
  117. h->param[Pamdy20] * col;
  118. /*
  119. * Derivative of Y model wrt x
  120. */
  121. gx =
  122. h->param[Pamdy2] +
  123. h->param[Pamdy5] * y1 +
  124. h->param[Pamdy6] * 2*x1 +
  125. h->param[Pamdy7] * 2*x1 +
  126. h->param[Pamdy9] * y2 +
  127. h->param[Pamdy10] * y1*2*x1 +
  128. h->param[Pamdy11] * 3*x2 +
  129. h->param[Pamdy12] * 2*x1*y1 +
  130. h->param[Pamdy13] * 4*x1*y1 * (x2+y2) +
  131. h->param[Pamdy18] * mag*2*x1 +
  132. h->param[Pamdy19] * mag*y1*2*x1;
  133. /*
  134. * Derivative of Y model wrt y
  135. */
  136. gy =
  137. h->param[Pamdy1] +
  138. h->param[Pamdy4] * 2*y1 +
  139. h->param[Pamdy5] * x1 +
  140. h->param[Pamdy7] * 2*y1 +
  141. h->param[Pamdy8] * 3*y2 +
  142. h->param[Pamdy9] * 2*y1*x1 +
  143. h->param[Pamdy10] * x2 +
  144. h->param[Pamdy12] * 3*y2 +
  145. h->param[Pamdy13] * (5*y4 + 6*x2*y2 + x4) +
  146. h->param[Pamdy17] * mag +
  147. h->param[Pamdy18] * mag*2*y1 +
  148. h->param[Pamdy19] * mag*(x2 + 3*y2);
  149. f = f - h->xi;
  150. g = g - h->eta;
  151. delta_x = (-f*gy+g*fy) / (fx*gy-fy*gx);
  152. delta_y = (-g*fx+f*gx) / (fx*gy-fy*gx);
  153. object_x = object_x + delta_x;
  154. object_y = object_y + delta_y;
  155. if((fabs(delta_x) < tolerance) && (fabs(delta_y) < tolerance))
  156. break;
  157. }
  158. /*
  159. * Convert mm from plate center to pixels
  160. */
  161. h->x = (h->param[Pppo3]-object_x*1000.0)/h->param[Pxpixelsz];
  162. h->y = (h->param[Pppo6]+object_y*1000.0)/h->param[Pypixelsz];
  163. }
  164. void
  165. ppoinv(Header *h, Angle ra, Angle dec)
  166. {
  167. /*
  168. * Convert RA and Dec to standard coords.
  169. */
  170. traneqstd(h, ra, dec);
  171. /*
  172. * Convert st.coords from arcsec to radians
  173. */
  174. h->xi /= ARCSECONDS_PER_RADIAN;
  175. h->eta /= ARCSECONDS_PER_RADIAN;
  176. /*
  177. * Compute PDS coordinates from solution
  178. */
  179. h->x =
  180. h->param[Pppo1]*h->xi +
  181. h->param[Pppo2]*h->eta +
  182. h->param[Pppo3];
  183. h->y =
  184. h->param[Pppo4]*h->xi +
  185. h->param[Pppo5]*h->eta +
  186. h->param[Pppo6];
  187. /*
  188. * Convert x,y from microns to pixels
  189. */
  190. h->x /= h->param[Pxpixelsz];
  191. h->y /= h->param[Pypixelsz];
  192. }
  193. void
  194. traneqstd(Header *h, Angle object_ra, Angle object_dec)
  195. {
  196. float div;
  197. /*
  198. * Find divisor
  199. */
  200. div =
  201. (sin(object_dec)*sin(h->param[Ppltdec]) +
  202. cos(object_dec)*cos(h->param[Ppltdec]) *
  203. cos(object_ra - h->param[Ppltra]));
  204. /*
  205. * Compute standard coords and convert to arcsec
  206. */
  207. h->xi = cos(object_dec) *
  208. sin(object_ra - h->param[Ppltra]) *
  209. ARCSECONDS_PER_RADIAN/div;
  210. h->eta = (sin(object_dec)*cos(h->param[Ppltdec])-
  211. cos(object_dec)*sin(h->param[Ppltdec])*
  212. cos(object_ra - h->param[Ppltra]))*
  213. ARCSECONDS_PER_RADIAN/div;
  214. }
  215. void
  216. xypos(Header *h, Angle ra, Angle dec, float mag, float col)
  217. {
  218. if (h->amdflag) {
  219. amdinv(h, ra, dec, mag, col);
  220. } else {
  221. ppoinv(h, ra, dec);
  222. }
  223. }