reg.c 19 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121
  1. #include "gc.h"
  2. Reg*
  3. rega(void)
  4. {
  5. Reg *r;
  6. r = freer;
  7. if(r == R) {
  8. r = alloc(sizeof(*r));
  9. } else
  10. freer = r->link;
  11. *r = zreg;
  12. return r;
  13. }
  14. int
  15. rcmp(void *a1, void *a2)
  16. {
  17. Rgn *p1, *p2;
  18. int c1, c2;
  19. p1 = a1;
  20. p2 = a2;
  21. c1 = p2->cost;
  22. c2 = p1->cost;
  23. if(c1 -= c2)
  24. return c1;
  25. return p2->varno - p1->varno;
  26. }
  27. void
  28. regopt(Prog *p)
  29. {
  30. Reg *r, *r1, *r2;
  31. Prog *p1;
  32. int i, z;
  33. long initpc, val, npc;
  34. ulong vreg;
  35. Bits bit;
  36. struct
  37. {
  38. long m;
  39. long c;
  40. Reg* p;
  41. } log5[6], *lp;
  42. firstr = R;
  43. lastr = R;
  44. nvar = 0;
  45. regbits = 0;
  46. for(z=0; z<BITS; z++) {
  47. externs.b[z] = 0;
  48. params.b[z] = 0;
  49. consts.b[z] = 0;
  50. addrs.b[z] = 0;
  51. }
  52. /*
  53. * pass 1
  54. * build aux data structure
  55. * allocate pcs
  56. * find use and set of variables
  57. */
  58. val = 5L * 5L * 5L * 5L * 5L;
  59. lp = log5;
  60. for(i=0; i<5; i++) {
  61. lp->m = val;
  62. lp->c = 0;
  63. lp->p = R;
  64. val /= 5L;
  65. lp++;
  66. }
  67. val = 0;
  68. for(; p != P; p = p->link) {
  69. switch(p->as) {
  70. case ADATA:
  71. case AGLOBL:
  72. case ANAME:
  73. case ASIGNAME:
  74. continue;
  75. }
  76. r = rega();
  77. if(firstr == R) {
  78. firstr = r;
  79. lastr = r;
  80. } else {
  81. lastr->link = r;
  82. r->p1 = lastr;
  83. lastr->s1 = r;
  84. lastr = r;
  85. }
  86. r->prog = p;
  87. r->pc = val;
  88. val++;
  89. lp = log5;
  90. for(i=0; i<5; i++) {
  91. lp->c--;
  92. if(lp->c <= 0) {
  93. lp->c = lp->m;
  94. if(lp->p != R)
  95. lp->p->log5 = r;
  96. lp->p = r;
  97. (lp+1)->c = 0;
  98. break;
  99. }
  100. lp++;
  101. }
  102. r1 = r->p1;
  103. if(r1 != R)
  104. switch(r1->prog->as) {
  105. case ARETURN:
  106. case ABR:
  107. case ARFI:
  108. r->p1 = R;
  109. r1->s1 = R;
  110. }
  111. /*
  112. * left side always read
  113. */
  114. bit = mkvar(&p->from, p->as==AMOVW);
  115. for(z=0; z<BITS; z++)
  116. r->use1.b[z] |= bit.b[z];
  117. /*
  118. * right side depends on opcode
  119. */
  120. bit = mkvar(&p->to, 0);
  121. if(bany(&bit))
  122. switch(p->as) {
  123. default:
  124. diag(Z, "reg: unknown asop: %A", p->as);
  125. break;
  126. /*
  127. * right side write
  128. */
  129. case ANOP:
  130. case AMOVB:
  131. case AMOVBU:
  132. case AMOVBZ:
  133. case AMOVBZU:
  134. case AMOVH:
  135. case AMOVHBR:
  136. case AMOVHU:
  137. case AMOVHZ:
  138. case AMOVHZU:
  139. case AMOVW:
  140. case AMOVWU:
  141. case AFMOVD:
  142. case AFMOVDCC:
  143. case AFMOVDU:
  144. case AFMOVS:
  145. case AFMOVSU:
  146. case AFRSP:
  147. for(z=0; z<BITS; z++)
  148. r->set.b[z] |= bit.b[z];
  149. break;
  150. /*
  151. * funny
  152. */
  153. case ABL:
  154. for(z=0; z<BITS; z++)
  155. addrs.b[z] |= bit.b[z];
  156. break;
  157. }
  158. }
  159. if(firstr == R)
  160. return;
  161. initpc = pc - val;
  162. npc = val;
  163. /*
  164. * pass 2
  165. * turn branch references to pointers
  166. * build back pointers
  167. */
  168. for(r = firstr; r != R; r = r->link) {
  169. p = r->prog;
  170. if(p->to.type == D_BRANCH) {
  171. val = p->to.offset - initpc;
  172. r1 = firstr;
  173. while(r1 != R) {
  174. r2 = r1->log5;
  175. if(r2 != R && val >= r2->pc) {
  176. r1 = r2;
  177. continue;
  178. }
  179. if(r1->pc == val)
  180. break;
  181. r1 = r1->link;
  182. }
  183. if(r1 == R) {
  184. nearln = p->lineno;
  185. diag(Z, "ref not found\n%P", p);
  186. continue;
  187. }
  188. if(r1 == r) {
  189. nearln = p->lineno;
  190. diag(Z, "ref to self\n%P", p);
  191. continue;
  192. }
  193. r->s2 = r1;
  194. r->p2link = r1->p2;
  195. r1->p2 = r;
  196. }
  197. }
  198. if(debug['R']) {
  199. p = firstr->prog;
  200. print("\n%L %D\n", p->lineno, &p->from);
  201. }
  202. /*
  203. * pass 2.5
  204. * find looping structure
  205. */
  206. for(r = firstr; r != R; r = r->link)
  207. r->active = 0;
  208. change = 0;
  209. loopit(firstr, npc);
  210. if(debug['R'] && debug['v']) {
  211. print("\nlooping structure:\n");
  212. for(r = firstr; r != R; r = r->link) {
  213. print("%ld:%P", r->loop, r->prog);
  214. for(z=0; z<BITS; z++)
  215. bit.b[z] = r->use1.b[z] |
  216. r->use2.b[z] | r->set.b[z];
  217. if(bany(&bit)) {
  218. print("\t");
  219. if(bany(&r->use1))
  220. print(" u1=%B", r->use1);
  221. if(bany(&r->use2))
  222. print(" u2=%B", r->use2);
  223. if(bany(&r->set))
  224. print(" st=%B", r->set);
  225. }
  226. print("\n");
  227. }
  228. }
  229. /*
  230. * pass 3
  231. * iterate propagating usage
  232. * back until flow graph is complete
  233. */
  234. loop1:
  235. change = 0;
  236. for(r = firstr; r != R; r = r->link)
  237. r->active = 0;
  238. for(r = firstr; r != R; r = r->link)
  239. if(r->prog->as == ARETURN)
  240. prop(r, zbits, zbits);
  241. loop11:
  242. /* pick up unreachable code */
  243. i = 0;
  244. for(r = firstr; r != R; r = r1) {
  245. r1 = r->link;
  246. if(r1 && r1->active && !r->active) {
  247. prop(r, zbits, zbits);
  248. i = 1;
  249. }
  250. }
  251. if(i)
  252. goto loop11;
  253. if(change)
  254. goto loop1;
  255. /*
  256. * pass 4
  257. * iterate propagating register/variable synchrony
  258. * forward until graph is complete
  259. */
  260. loop2:
  261. change = 0;
  262. for(r = firstr; r != R; r = r->link)
  263. r->active = 0;
  264. synch(firstr, zbits);
  265. if(change)
  266. goto loop2;
  267. /*
  268. * pass 5
  269. * isolate regions
  270. * calculate costs (paint1)
  271. */
  272. r = firstr;
  273. if(r) {
  274. for(z=0; z<BITS; z++)
  275. bit.b[z] = (r->refahead.b[z] | r->calahead.b[z]) &
  276. ~(externs.b[z] | params.b[z] | addrs.b[z] | consts.b[z]);
  277. if(bany(&bit)) {
  278. nearln = r->prog->lineno;
  279. warn(Z, "used and not set: %B", bit);
  280. if(debug['R'] && !debug['w'])
  281. print("used and not set: %B\n", bit);
  282. }
  283. }
  284. if(debug['R'] && debug['v'])
  285. print("\nprop structure:\n");
  286. for(r = firstr; r != R; r = r->link)
  287. r->act = zbits;
  288. rgp = region;
  289. nregion = 0;
  290. for(r = firstr; r != R; r = r->link) {
  291. if(debug['R'] && debug['v'])
  292. print("%P\n set = %B; rah = %B; cal = %B\n",
  293. r->prog, r->set, r->refahead, r->calahead);
  294. for(z=0; z<BITS; z++)
  295. bit.b[z] = r->set.b[z] &
  296. ~(r->refahead.b[z] | r->calahead.b[z] | addrs.b[z]);
  297. if(bany(&bit)) {
  298. nearln = r->prog->lineno;
  299. warn(Z, "set and not used: %B", bit);
  300. if(debug['R'])
  301. print("set an not used: %B\n", bit);
  302. excise(r);
  303. }
  304. for(z=0; z<BITS; z++)
  305. bit.b[z] = LOAD(r) & ~(r->act.b[z] | addrs.b[z]);
  306. while(bany(&bit)) {
  307. i = bnum(bit);
  308. rgp->enter = r;
  309. rgp->varno = i;
  310. change = 0;
  311. if(debug['R'] && debug['v'])
  312. print("\n");
  313. paint1(r, i);
  314. bit.b[i/32] &= ~(1L<<(i%32));
  315. if(change <= 0) {
  316. if(debug['R'])
  317. print("%L$%d: %B\n",
  318. r->prog->lineno, change, blsh(i));
  319. continue;
  320. }
  321. rgp->cost = change;
  322. nregion++;
  323. if(nregion >= NRGN) {
  324. warn(Z, "too many regions");
  325. goto brk;
  326. }
  327. rgp++;
  328. }
  329. }
  330. brk:
  331. qsort(region, nregion, sizeof(region[0]), rcmp);
  332. /*
  333. * pass 6
  334. * determine used registers (paint2)
  335. * replace code (paint3)
  336. */
  337. rgp = region;
  338. for(i=0; i<nregion; i++) {
  339. bit = blsh(rgp->varno);
  340. vreg = paint2(rgp->enter, rgp->varno);
  341. vreg = allreg(vreg, rgp);
  342. if(debug['R']) {
  343. if(rgp->regno >= NREG)
  344. print("%L$%d F%d: %B\n",
  345. rgp->enter->prog->lineno,
  346. rgp->cost,
  347. rgp->regno-NREG,
  348. bit);
  349. else
  350. print("%L$%d R%d: %B\n",
  351. rgp->enter->prog->lineno,
  352. rgp->cost,
  353. rgp->regno,
  354. bit);
  355. }
  356. if(rgp->regno != 0)
  357. paint3(rgp->enter, rgp->varno, vreg, rgp->regno);
  358. rgp++;
  359. }
  360. /*
  361. * pass 7
  362. * peep-hole on basic block
  363. */
  364. if(!debug['R'] || debug['P'])
  365. peep();
  366. /*
  367. * pass 8
  368. * recalculate pc
  369. */
  370. val = initpc;
  371. for(r = firstr; r != R; r = r1) {
  372. r->pc = val;
  373. p = r->prog;
  374. p1 = P;
  375. r1 = r->link;
  376. if(r1 != R)
  377. p1 = r1->prog;
  378. for(; p != p1; p = p->link) {
  379. switch(p->as) {
  380. default:
  381. val++;
  382. break;
  383. case ANOP:
  384. case ADATA:
  385. case AGLOBL:
  386. case ANAME:
  387. case ASIGNAME:
  388. break;
  389. }
  390. }
  391. }
  392. pc = val;
  393. /*
  394. * fix up branches
  395. */
  396. if(debug['R'])
  397. if(bany(&addrs))
  398. print("addrs: %B\n", addrs);
  399. r1 = 0; /* set */
  400. for(r = firstr; r != R; r = r->link) {
  401. p = r->prog;
  402. if(p->to.type == D_BRANCH)
  403. p->to.offset = r->s2->pc;
  404. r1 = r;
  405. }
  406. /*
  407. * last pass
  408. * eliminate nops
  409. * free aux structures
  410. */
  411. for(p = firstr->prog; p != P; p = p->link){
  412. while(p->link && p->link->as == ANOP)
  413. p->link = p->link->link;
  414. }
  415. if(r1 != R) {
  416. r1->link = freer;
  417. freer = firstr;
  418. }
  419. }
  420. /*
  421. * add mov b,rn
  422. * just after r
  423. */
  424. void
  425. addmove(Reg *r, int bn, int rn, int f)
  426. {
  427. Prog *p, *p1;
  428. Adr *a;
  429. Var *v;
  430. p1 = alloc(sizeof(*p1));
  431. *p1 = zprog;
  432. p = r->prog;
  433. p1->link = p->link;
  434. p->link = p1;
  435. p1->lineno = p->lineno;
  436. v = var + bn;
  437. a = &p1->to;
  438. a->sym = v->sym;
  439. a->name = v->name;
  440. a->offset = v->offset;
  441. a->etype = v->etype;
  442. a->type = D_OREG;
  443. if(a->etype == TARRAY || a->sym == S)
  444. a->type = D_CONST;
  445. p1->as = AMOVW;
  446. if(v->etype == TCHAR || v->etype == TUCHAR)
  447. p1->as = AMOVB;
  448. if(v->etype == TSHORT || v->etype == TUSHORT)
  449. p1->as = AMOVH;
  450. if(v->etype == TFLOAT)
  451. p1->as = AFMOVS;
  452. if(v->etype == TDOUBLE)
  453. p1->as = AFMOVD;
  454. p1->from.type = D_REG;
  455. p1->from.reg = rn;
  456. if(rn >= NREG) {
  457. p1->from.type = D_FREG;
  458. p1->from.reg = rn-NREG;
  459. }
  460. if(!f) {
  461. p1->from = *a;
  462. *a = zprog.from;
  463. a->type = D_REG;
  464. a->reg = rn;
  465. if(rn >= NREG) {
  466. a->type = D_FREG;
  467. a->reg = rn-NREG;
  468. }
  469. if(v->etype == TUCHAR)
  470. p1->as = AMOVBZ;
  471. if(v->etype == TUSHORT)
  472. p1->as = AMOVHZ;
  473. }
  474. if(debug['R'])
  475. print("%P\t.a%P\n", p, p1);
  476. }
  477. Bits
  478. mkvar(Adr *a, int docon)
  479. {
  480. Var *v;
  481. int i, t, n, et, z;
  482. long o;
  483. Bits bit;
  484. Sym *s;
  485. t = a->type;
  486. if(t == D_REG && a->reg != NREG)
  487. regbits |= RtoB(a->reg);
  488. if(t == D_FREG && a->reg != NREG)
  489. regbits |= FtoB(a->reg);
  490. s = a->sym;
  491. o = a->offset;
  492. et = a->etype;
  493. if(s == S) {
  494. if(t != D_CONST || !docon || a->reg != NREG)
  495. goto none;
  496. et = TLONG;
  497. }
  498. if(t == D_CONST) {
  499. if(s == S && sval(o))
  500. goto none;
  501. }
  502. n = a->name;
  503. v = var;
  504. for(i=0; i<nvar; i++) {
  505. if(s == v->sym)
  506. if(n == v->name)
  507. if(o == v->offset)
  508. goto out;
  509. v++;
  510. }
  511. if(s)
  512. if(s->name[0] == '.')
  513. goto none;
  514. if(nvar >= NVAR) {
  515. if(debug['w'] > 1 && s)
  516. warn(Z, "variable not optimized: %s", s->name);
  517. goto none;
  518. }
  519. i = nvar;
  520. nvar++;
  521. v = &var[i];
  522. v->sym = s;
  523. v->offset = o;
  524. v->etype = et;
  525. v->name = n;
  526. if(debug['R'])
  527. print("bit=%2d et=%2d %D\n", i, et, a);
  528. out:
  529. bit = blsh(i);
  530. if(n == D_EXTERN || n == D_STATIC)
  531. for(z=0; z<BITS; z++)
  532. externs.b[z] |= bit.b[z];
  533. if(n == D_PARAM)
  534. for(z=0; z<BITS; z++)
  535. params.b[z] |= bit.b[z];
  536. if(v->etype != et || !typechlpfd[et]) /* funny punning */
  537. for(z=0; z<BITS; z++)
  538. addrs.b[z] |= bit.b[z];
  539. if(t == D_CONST) {
  540. if(s == S) {
  541. for(z=0; z<BITS; z++)
  542. consts.b[z] |= bit.b[z];
  543. return bit;
  544. }
  545. if(et != TARRAY)
  546. for(z=0; z<BITS; z++)
  547. addrs.b[z] |= bit.b[z];
  548. for(z=0; z<BITS; z++)
  549. params.b[z] |= bit.b[z];
  550. return bit;
  551. }
  552. if(t == D_OREG)
  553. return bit;
  554. none:
  555. return zbits;
  556. }
  557. void
  558. prop(Reg *r, Bits ref, Bits cal)
  559. {
  560. Reg *r1, *r2;
  561. int z;
  562. for(r1 = r; r1 != R; r1 = r1->p1) {
  563. for(z=0; z<BITS; z++) {
  564. ref.b[z] |= r1->refahead.b[z];
  565. if(ref.b[z] != r1->refahead.b[z]) {
  566. r1->refahead.b[z] = ref.b[z];
  567. change++;
  568. }
  569. cal.b[z] |= r1->calahead.b[z];
  570. if(cal.b[z] != r1->calahead.b[z]) {
  571. r1->calahead.b[z] = cal.b[z];
  572. change++;
  573. }
  574. }
  575. switch(r1->prog->as) {
  576. case ABL:
  577. for(z=0; z<BITS; z++) {
  578. cal.b[z] |= ref.b[z] | externs.b[z];
  579. ref.b[z] = 0;
  580. }
  581. break;
  582. case ATEXT:
  583. for(z=0; z<BITS; z++) {
  584. cal.b[z] = 0;
  585. ref.b[z] = 0;
  586. }
  587. break;
  588. case ARETURN:
  589. for(z=0; z<BITS; z++) {
  590. cal.b[z] = externs.b[z];
  591. ref.b[z] = 0;
  592. }
  593. }
  594. for(z=0; z<BITS; z++) {
  595. ref.b[z] = (ref.b[z] & ~r1->set.b[z]) |
  596. r1->use1.b[z] | r1->use2.b[z];
  597. cal.b[z] &= ~(r1->set.b[z] | r1->use1.b[z] | r1->use2.b[z]);
  598. r1->refbehind.b[z] = ref.b[z];
  599. r1->calbehind.b[z] = cal.b[z];
  600. }
  601. if(r1->active)
  602. break;
  603. r1->active = 1;
  604. }
  605. for(; r != r1; r = r->p1)
  606. for(r2 = r->p2; r2 != R; r2 = r2->p2link)
  607. prop(r2, r->refbehind, r->calbehind);
  608. }
  609. /*
  610. * find looping structure
  611. *
  612. * 1) find reverse postordering
  613. * 2) find approximate dominators,
  614. * the actual dominators if the flow graph is reducible
  615. * otherwise, dominators plus some other non-dominators.
  616. * See Matthew S. Hecht and Jeffrey D. Ullman,
  617. * "Analysis of a Simple Algorithm for Global Data Flow Problems",
  618. * Conf. Record of ACM Symp. on Principles of Prog. Langs, Boston, Massachusetts,
  619. * Oct. 1-3, 1973, pp. 207-217.
  620. * 3) find all nodes with a predecessor dominated by the current node.
  621. * such a node is a loop head.
  622. * recursively, all preds with a greater rpo number are in the loop
  623. */
  624. long
  625. postorder(Reg *r, Reg **rpo2r, long n)
  626. {
  627. Reg *r1;
  628. r->rpo = 1;
  629. r1 = r->s1;
  630. if(r1 && !r1->rpo)
  631. n = postorder(r1, rpo2r, n);
  632. r1 = r->s2;
  633. if(r1 && !r1->rpo)
  634. n = postorder(r1, rpo2r, n);
  635. rpo2r[n] = r;
  636. n++;
  637. return n;
  638. }
  639. long
  640. rpolca(long *idom, long rpo1, long rpo2)
  641. {
  642. long t;
  643. if(rpo1 == -1)
  644. return rpo2;
  645. while(rpo1 != rpo2){
  646. if(rpo1 > rpo2){
  647. t = rpo2;
  648. rpo2 = rpo1;
  649. rpo1 = t;
  650. }
  651. while(rpo1 < rpo2){
  652. t = idom[rpo2];
  653. if(t >= rpo2)
  654. fatal(Z, "bad idom");
  655. rpo2 = t;
  656. }
  657. }
  658. return rpo1;
  659. }
  660. int
  661. doms(long *idom, long r, long s)
  662. {
  663. while(s > r)
  664. s = idom[s];
  665. return s == r;
  666. }
  667. int
  668. loophead(long *idom, Reg *r)
  669. {
  670. long src;
  671. src = r->rpo;
  672. if(r->p1 != R && doms(idom, src, r->p1->rpo))
  673. return 1;
  674. for(r = r->p2; r != R; r = r->p2link)
  675. if(doms(idom, src, r->rpo))
  676. return 1;
  677. return 0;
  678. }
  679. void
  680. loopmark(Reg **rpo2r, long head, Reg *r)
  681. {
  682. if(r->rpo < head || r->active == head)
  683. return;
  684. r->active = head;
  685. r->loop += LOOP;
  686. if(r->p1 != R)
  687. loopmark(rpo2r, head, r->p1);
  688. for(r = r->p2; r != R; r = r->p2link)
  689. loopmark(rpo2r, head, r);
  690. }
  691. void
  692. loopit(Reg *r, long nr)
  693. {
  694. Reg *r1;
  695. long i, d, me;
  696. if(nr > maxnr) {
  697. rpo2r = alloc(nr * sizeof(Reg*));
  698. idom = alloc(nr * sizeof(long));
  699. maxnr = nr;
  700. }
  701. d = postorder(r, rpo2r, 0);
  702. if(d > nr)
  703. fatal(Z, "too many reg nodes");
  704. nr = d;
  705. for(i = 0; i < nr / 2; i++){
  706. r1 = rpo2r[i];
  707. rpo2r[i] = rpo2r[nr - 1 - i];
  708. rpo2r[nr - 1 - i] = r1;
  709. }
  710. for(i = 0; i < nr; i++)
  711. rpo2r[i]->rpo = i;
  712. idom[0] = 0;
  713. for(i = 0; i < nr; i++){
  714. r1 = rpo2r[i];
  715. me = r1->rpo;
  716. d = -1;
  717. if(r1->p1 != R && r1->p1->rpo < me)
  718. d = r1->p1->rpo;
  719. for(r1 = r1->p2; r1 != nil; r1 = r1->p2link)
  720. if(r1->rpo < me)
  721. d = rpolca(idom, d, r1->rpo);
  722. idom[i] = d;
  723. }
  724. for(i = 0; i < nr; i++){
  725. r1 = rpo2r[i];
  726. r1->loop++;
  727. if(r1->p2 != R && loophead(idom, r1))
  728. loopmark(rpo2r, i, r1);
  729. }
  730. }
  731. void
  732. synch(Reg *r, Bits dif)
  733. {
  734. Reg *r1;
  735. int z;
  736. for(r1 = r; r1 != R; r1 = r1->s1) {
  737. for(z=0; z<BITS; z++) {
  738. dif.b[z] = (dif.b[z] &
  739. ~(~r1->refbehind.b[z] & r1->refahead.b[z])) |
  740. r1->set.b[z] | r1->regdiff.b[z];
  741. if(dif.b[z] != r1->regdiff.b[z]) {
  742. r1->regdiff.b[z] = dif.b[z];
  743. change++;
  744. }
  745. }
  746. if(r1->active)
  747. break;
  748. r1->active = 1;
  749. for(z=0; z<BITS; z++)
  750. dif.b[z] &= ~(~r1->calbehind.b[z] & r1->calahead.b[z]);
  751. if(r1->s2 != R)
  752. synch(r1->s2, dif);
  753. }
  754. }
  755. ulong
  756. allreg(ulong b, Rgn *r)
  757. {
  758. Var *v;
  759. int i;
  760. v = var + r->varno;
  761. r->regno = 0;
  762. switch(v->etype) {
  763. default:
  764. diag(Z, "unknown etype %d/%d", bitno(b), v->etype);
  765. break;
  766. case TCHAR:
  767. case TUCHAR:
  768. case TSHORT:
  769. case TUSHORT:
  770. case TINT:
  771. case TUINT:
  772. case TLONG:
  773. case TULONG:
  774. case TIND:
  775. case TARRAY:
  776. i = BtoR(~b);
  777. if(i && r->cost > 0) {
  778. r->regno = i;
  779. return RtoB(i);
  780. }
  781. break;
  782. case TDOUBLE:
  783. case TFLOAT:
  784. i = BtoF(~b);
  785. if(i && r->cost > 0) {
  786. r->regno = i+NREG;
  787. return FtoB(i);
  788. }
  789. break;
  790. }
  791. return 0;
  792. }
  793. void
  794. paint1(Reg *r, int bn)
  795. {
  796. Reg *r1;
  797. Prog *p;
  798. int z;
  799. ulong bb;
  800. z = bn/32;
  801. bb = 1L<<(bn%32);
  802. if(r->act.b[z] & bb)
  803. return;
  804. for(;;) {
  805. if(!(r->refbehind.b[z] & bb))
  806. break;
  807. r1 = r->p1;
  808. if(r1 == R)
  809. break;
  810. if(!(r1->refahead.b[z] & bb))
  811. break;
  812. if(r1->act.b[z] & bb)
  813. break;
  814. r = r1;
  815. }
  816. if(LOAD(r) & ~(r->set.b[z]&~(r->use1.b[z]|r->use2.b[z])) & bb) {
  817. change -= CLOAD * r->loop;
  818. if(debug['R'] && debug['v'])
  819. print("%ld%P\tld %B $%d\n", r->loop,
  820. r->prog, blsh(bn), change);
  821. }
  822. for(;;) {
  823. r->act.b[z] |= bb;
  824. p = r->prog;
  825. if(r->use1.b[z] & bb) {
  826. change += CREF * r->loop;
  827. if(p->to.type == D_FREG && p->as == AMOVW)
  828. change = -CINF; /* cant go Rreg to Freg */
  829. if(debug['R'] && debug['v'])
  830. print("%ld%P\tu1 %B $%d\n", r->loop,
  831. p, blsh(bn), change);
  832. }
  833. if((r->use2.b[z]|r->set.b[z]) & bb) {
  834. change += CREF * r->loop;
  835. if(p->from.type == D_FREG && p->as == AMOVW)
  836. change = -CINF; /* cant go Rreg to Freg */
  837. if(debug['R'] && debug['v'])
  838. print("%ld%P\tu2 %B $%d\n", r->loop,
  839. p, blsh(bn), change);
  840. }
  841. if(STORE(r) & r->regdiff.b[z] & bb) {
  842. change -= CLOAD * r->loop;
  843. if(debug['R'] && debug['v'])
  844. print("%ld%P\tst %B $%d\n", r->loop,
  845. p, blsh(bn), change);
  846. }
  847. if(r->refbehind.b[z] & bb)
  848. for(r1 = r->p2; r1 != R; r1 = r1->p2link)
  849. if(r1->refahead.b[z] & bb)
  850. paint1(r1, bn);
  851. if(!(r->refahead.b[z] & bb))
  852. break;
  853. r1 = r->s2;
  854. if(r1 != R)
  855. if(r1->refbehind.b[z] & bb)
  856. paint1(r1, bn);
  857. r = r->s1;
  858. if(r == R)
  859. break;
  860. if(r->act.b[z] & bb)
  861. break;
  862. if(!(r->refbehind.b[z] & bb))
  863. break;
  864. }
  865. }
  866. ulong
  867. paint2(Reg *r, int bn)
  868. {
  869. Reg *r1;
  870. int z;
  871. ulong bb, vreg;
  872. z = bn/32;
  873. bb = 1L << (bn%32);
  874. vreg = regbits;
  875. if(!(r->act.b[z] & bb))
  876. return vreg;
  877. for(;;) {
  878. if(!(r->refbehind.b[z] & bb))
  879. break;
  880. r1 = r->p1;
  881. if(r1 == R)
  882. break;
  883. if(!(r1->refahead.b[z] & bb))
  884. break;
  885. if(!(r1->act.b[z] & bb))
  886. break;
  887. r = r1;
  888. }
  889. for(;;) {
  890. r->act.b[z] &= ~bb;
  891. vreg |= r->regu;
  892. if(r->refbehind.b[z] & bb)
  893. for(r1 = r->p2; r1 != R; r1 = r1->p2link)
  894. if(r1->refahead.b[z] & bb)
  895. vreg |= paint2(r1, bn);
  896. if(!(r->refahead.b[z] & bb))
  897. break;
  898. r1 = r->s2;
  899. if(r1 != R)
  900. if(r1->refbehind.b[z] & bb)
  901. vreg |= paint2(r1, bn);
  902. r = r->s1;
  903. if(r == R)
  904. break;
  905. if(!(r->act.b[z] & bb))
  906. break;
  907. if(!(r->refbehind.b[z] & bb))
  908. break;
  909. }
  910. return vreg;
  911. }
  912. void
  913. paint3(Reg *r, int bn, long rb, int rn)
  914. {
  915. Reg *r1;
  916. Prog *p;
  917. int z;
  918. ulong bb;
  919. z = bn/32;
  920. bb = 1L << (bn%32);
  921. if(r->act.b[z] & bb)
  922. return;
  923. for(;;) {
  924. if(!(r->refbehind.b[z] & bb))
  925. break;
  926. r1 = r->p1;
  927. if(r1 == R)
  928. break;
  929. if(!(r1->refahead.b[z] & bb))
  930. break;
  931. if(r1->act.b[z] & bb)
  932. break;
  933. r = r1;
  934. }
  935. if(LOAD(r) & ~(r->set.b[z] & ~(r->use1.b[z]|r->use2.b[z])) & bb)
  936. addmove(r, bn, rn, 0);
  937. for(;;) {
  938. r->act.b[z] |= bb;
  939. p = r->prog;
  940. if(r->use1.b[z] & bb) {
  941. if(debug['R'])
  942. print("%P", p);
  943. addreg(&p->from, rn);
  944. if(debug['R'])
  945. print("\t.c%P\n", p);
  946. }
  947. if((r->use2.b[z]|r->set.b[z]) & bb) {
  948. if(debug['R'])
  949. print("%P", p);
  950. addreg(&p->to, rn);
  951. if(debug['R'])
  952. print("\t.c%P\n", p);
  953. }
  954. if(STORE(r) & r->regdiff.b[z] & bb)
  955. addmove(r, bn, rn, 1);
  956. r->regu |= rb;
  957. if(r->refbehind.b[z] & bb)
  958. for(r1 = r->p2; r1 != R; r1 = r1->p2link)
  959. if(r1->refahead.b[z] & bb)
  960. paint3(r1, bn, rb, rn);
  961. if(!(r->refahead.b[z] & bb))
  962. break;
  963. r1 = r->s2;
  964. if(r1 != R)
  965. if(r1->refbehind.b[z] & bb)
  966. paint3(r1, bn, rb, rn);
  967. r = r->s1;
  968. if(r == R)
  969. break;
  970. if(r->act.b[z] & bb)
  971. break;
  972. if(!(r->refbehind.b[z] & bb))
  973. break;
  974. }
  975. }
  976. void
  977. addreg(Adr *a, int rn)
  978. {
  979. a->sym = 0;
  980. a->name = D_NONE;
  981. a->type = D_REG;
  982. a->reg = rn;
  983. if(rn >= NREG) {
  984. a->type = D_FREG;
  985. a->reg = rn-NREG;
  986. }
  987. }
  988. /*
  989. * track register variables including external registers:
  990. * bit reg
  991. * 0 R7
  992. * 1 R8
  993. * ... ...
  994. * 21 R28
  995. */
  996. long
  997. RtoB(int r)
  998. {
  999. if(r >= REGMIN && r <= REGMAX)
  1000. return 1L << (r-REGMIN);
  1001. return 0;
  1002. }
  1003. int
  1004. BtoR(long b)
  1005. {
  1006. b &= 0x001fffffL;
  1007. if(b == 0)
  1008. return 0;
  1009. return bitno(b) + REGMIN;
  1010. }
  1011. /*
  1012. * bit reg
  1013. * 22 F17
  1014. * 23 F18
  1015. * ... ...
  1016. * 31 F26
  1017. */
  1018. long
  1019. FtoB(int f)
  1020. {
  1021. if(f < FREGMIN || f > FREGEXT)
  1022. return 0;
  1023. return 1L << (f - FREGMIN + 22);
  1024. }
  1025. int
  1026. BtoF(long b)
  1027. {
  1028. b &= 0xffc00000L;
  1029. if(b == 0)
  1030. return 0;
  1031. return bitno(b) - 22 + FREGMIN;
  1032. }