123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 |
- /*
- * This file is part of the UCB release of Plan 9. It is subject to the license
- * terms in the LICENSE file found in the top-level directory of this
- * distribution and at http://akaros.cs.berkeley.edu/files/Plan9License. No
- * part of the UCB release of Plan 9, including this file, may be copied,
- * modified, propagated, or distributed except according to the terms contained
- * in the LICENSE file.
- */
- /*{{{ #defines */
- #include <limits.h>
- #include "lame.h"
- #include "util.h"
- #define ENCDELAY 576
- #define MDCTDELAY 48
- #define BLKSIZE 1024
- #define HBLKSIZE (BLKSIZE/2 + 1)
- #define BLKSIZE_s 256
- #define HBLKSIZE_s (BLKSIZE_s/2 + 1)
- #define MAX_TABLES 1002
- #define TAPS 32
- #define WINDOW_SIZE 15.5
- #define WINDOW hanning
- #define inline __inline
- #define MIN(a,b) ((a) < (b) ? (a) : (b))
- #define MAX(a,b) ((a) > (b) ? (a) : (b))
- #ifndef M_PIl
- # define M_PIl 3.1415926535897932384626433832795029L
- #endif
- #define SIN sin
- #define COS cos
- /*}}}*/
- /*{{{ object ID's */
- #define RESAMPLE_ID 0x52455341LU
- #define PSYCHO_ID 0x50535943LU
- #define BITSTREAM_ID 0x42495453LU
- /*}}}*/
- /*{{{ typedef's */
- typedef float float32_t; // IEEE-754 32 bit floating point
- typedef double float64_t; // IEEE-754 64 bit floating point
- typedef long double float80_t; // IEEE-854 80 bit floating point, if available
- typedef long double float_t; // temporarly results of float operations
- typedef long double double_t; // temporarly results of double operations
- typedef long double longdouble_t; // temporarly results of long double operations
- typedef float_t (*scalar_t) ( const sample_t* p, const sample_t* q );
- typedef float_t (*scalarn_t) ( const sample_t* p, const sample_t* q, size_t len );
- /*}}}*/
- /*{{{ data direction attributes */
- /*
- * These are data stream direction attributes like used in Ada83/Ada95 and in RPC
- * The data direction is seen from the caller to the calling function.
- * Examples:
- *
- * size_t fread ( void INOUT* buffer, size_t items, size_t itemsize, FILE INOUT* fp );
- * size_t fwrite ( void OUT * buffer, size_t items, size_t itemsize, FILE INOUT* fp );
- * size_t memset ( void IN * buffer, unsigned char value, size_t size );
- *
- * Return values are implizit IN (note that here C uses the opposite attribute).
- * Arguments not transmitted via references are implizit OUT.
- */
- #define OUT /* [out] */ const
- #define INOUT /* [inout] */
- #define IN /* [in] */
- #define OUTTR /* [out]: data is modified like [inout], but you don't get any useful back */
- /*}}}*/
- /*{{{ Test some error conditions */
- #ifndef __LOC__
- # define _STR2(x) #x
- # define _STR1(x) _STR2(x)
- # define __LOC__ __FILE__ "(" _STR1(__LINE__) ") : warning: "
- #endif
- /* The current code doesn't work on machines with non 8 bit char's in any way, so abort */
- #if CHAR_BIT != 8
- # pragma message ( __LOC__ "Machines with CHAR_BIT != 8 not yet supported" )
- # pragma error
- #endif
- /*}}}*/
- /*
- * Now some information how PCM data can be specified. PCM data
- * is specified by 3 attributes: pointer, length information
- * and attributes.
- * - Audio is always stored in 2D arrays, which are collapsing to 1D
- * in the case of monaural input
- * - 2D arrays can be stored as 2D arrays or as pointers to 1D arrays.
- * - 2D data can be stored as samples*channels or as channels*samples
- * - This gives 4 kinds of storing PCM data:
- * + pcm [samples][channels] (LAME_INTERLEAVED)
- * + pcm [channels][samples] (LAME_CHAINED)
- * + (*pcm) [samples] (LAME_INDIRECT)
- * + (*pcm) [channels]
- * - The last I have never seen and it have a huge overhead (67% ... 200%),
- * so the first three are implemented.
- * - The monaural 1D cases can also be handled by the first two attributes
- */
- #define LAME_INTERLEAVED 0x10000000
- #define LAME_CHAINED 0x20000000
- #define LAME_INDIRECT 0x30000000
- /*
- * Now we need some information about the byte order of the data.
- * There are 4 cases possible (if you are not fully support such strange
- * Machines like the PDPs):
- * - You know the absolute byte order of the data (LAME_LITTLE_ENDIAN, LAME_BIG_ENDIAN)
- * - You know the byte order from the view of the current machine
- * (LAME_NATIVE_ENDIAN, LAME_OPPOSITE_ENDIAN)
- * - The use of LAME_OPPOSITE_ENDIAN is NOT recommended because it is
- * is a breakable attribute, use LAME_LITTLE_ENDIAN or LAME_BIG_ENDIAN
- * instead
- */
- #define LAME_NATIVE_ENDIAN 0x00000000
- #define LAME_OPPOSITE_ENDIAN 0x01000000
- #define LAME_LITTLE_ENDIAN 0x02000000
- #define LAME_BIG_ENDIAN 0x03000000
- /*
- * The next attribute is the data type of the input data.
- * There are currently 2 kinds of input data:
- * - C based:
- * LAME_{SHORT,INT,LONG}
- * LAME_{FLOAT,DOUBLE,LONGDOUBLE}
- * - Binary representation based:
- * LAME_{UINT,INT}{8,16,24,32}
- * LAME_{A,U}LAW
- * LAME_FLOAT{32,64,80_ALIGN{2,4,8}}
- *
- * Don't use the C based for external data.
- */
- #define LAME_SILENCE 0x00010000
- #define LAME_UINT8 0x00020000
- #define LAME_INT8 0x00030000
- #define LAME_UINT16 0x00040000
- #define LAME_INT16 0x00050000
- #define LAME_UINT24 0x00060000
- #define LAME_INT24 0x00070000
- #define LAME_UINT32 0x00080000
- #define LAME_INT32 0x00090000
- #define LAME_FLOAT32 0x00140000
- #define LAME_FLOAT64 0x00180000
- #define LAME_FLOAT80_ALIGN2 0x001A0000
- #define LAME_FLOAT80_ALIGN4 0x001C0000
- #define LAME_FLOAT80_ALIGN8 0x00200000
- #define LAME_SHORT 0x00210000
- #define LAME_INT 0x00220000
- #define LAME_LONG 0x00230000
- #define LAME_FLOAT 0x00240000
- #define LAME_DOUBLE 0x00250000
- #define LAME_LONGDOUBLE 0x00260000
- #define LAME_ALAW 0x00310000
- #define LAME_ULAW 0x00320000
- /*
- * The last attribute is the number of input channels. Currently
- * 1...65535 channels are possible, but only 1 and 2 are supported.
- * So matrixing or MPEG-2 MultiChannelSupport are not a big problem.
- *
- * Note: Some people use the word 'stereo' for 2 channel stereophonic sound.
- * But stereophonic sound is a collection of ALL methods to restore the
- * stereophonic sound field starting from 2 channels up to audio
- * holography.
- */
- #define LAME_MONO 0x00000001
- #define LAME_STEREO 0x00000002
- #define LAME_STEREO_2_CHANNELS 0x00000002
- #define LAME_STEREO_3_CHANNELS 0x00000003
- #define LAME_STEREO_4_CHANNELS 0x00000004
- #define LAME_STEREO_5_CHANNELS 0x00000005
- #define LAME_STEREO_6_CHANNELS 0x00000006
- #define LAME_STEREO_7_CHANNELS 0x00000007
- #define LAME_STEREO_65535_CHANNELS\
- 0x0000FFFF
- extern scalar_t scalar4;
- extern scalar_t scalar8;
- extern scalar_t scalar12;
- extern scalar_t scalar16;
- extern scalar_t scalar20;
- extern scalar_t scalar24;
- extern scalar_t scalar32;
- extern scalarn_t scalar4n;
- extern scalarn_t scalar1n;
- float_t scalar04_float32_i387 ( const float32_t* p, const float32_t* q );
- float_t scalar08_float32_i387 ( const float32_t* p, const float32_t* q );
- float_t scalar12_float32_i387 ( const float32_t* p, const float32_t* q );
- float_t scalar16_float32_i387 ( const float32_t* p, const float32_t* q );
- float_t scalar20_float32_i387 ( const float32_t* p, const float32_t* q );
- float_t scalar24_float32_i387 ( const float32_t* p, const float32_t* q );
- float_t scalar32_float32_i387 ( const float32_t* p, const float32_t* q );
- float_t scalar4n_float32_i387 ( const float32_t* p, const float32_t* q, const size_t len );
- float_t scalar1n_float32_i387 ( const float32_t* p, const float32_t* q, const size_t len );
- float_t scalar04_float32_3DNow ( const float32_t* p, const float32_t* q );
- float_t scalar08_float32_3DNow ( const float32_t* p, const float32_t* q );
- float_t scalar12_float32_3DNow ( const float32_t* p, const float32_t* q );
- float_t scalar16_float32_3DNow ( const float32_t* p, const float32_t* q );
- float_t scalar20_float32_3DNow ( const float32_t* p, const float32_t* q );
- float_t scalar24_float32_3DNow ( const float32_t* p, const float32_t* q );
- float_t scalar32_float32_3DNow ( const float32_t* p, const float32_t* q );
- float_t scalar4n_float32_3DNow ( const float32_t* p, const float32_t* q, const size_t len );
- float_t scalar1n_float32_3DNow ( const float32_t* p, const float32_t* q, const size_t len );
- float_t scalar04_float32_SIMD ( const float32_t* p, const float32_t* q );
- float_t scalar08_float32_SIMD ( const float32_t* p, const float32_t* q );
- float_t scalar12_float32_SIMD ( const float32_t* p, const float32_t* q );
- float_t scalar16_float32_SIMD ( const float32_t* p, const float32_t* q );
- float_t scalar20_float32_SIMD ( const float32_t* p, const float32_t* q );
- float_t scalar24_float32_SIMD ( const float32_t* p, const float32_t* q );
- float_t scalar32_float32_SIMD ( const float32_t* p, const float32_t* q );
- float_t scalar4n_float32_SIMD ( const float32_t* p, const float32_t* q, const size_t len );
- float_t scalar1n_float32_SIMD ( const float32_t* p, const float32_t* q, const size_t len );
- float_t scalar04_float32 ( const float32_t* p, const float32_t* q );
- float_t scalar08_float32 ( const float32_t* p, const float32_t* q );
- float_t scalar12_float32 ( const float32_t* p, const float32_t* q );
- float_t scalar16_float32 ( const float32_t* p, const float32_t* q );
- float_t scalar20_float32 ( const float32_t* p, const float32_t* q );
- float_t scalar24_float32 ( const float32_t* p, const float32_t* q );
- float_t scalar32_float32 ( const float32_t* p, const float32_t* q );
- float_t scalar4n_float32 ( const float32_t* p, const float32_t* q, const size_t len );
- float_t scalar1n_float32 ( const float32_t* p, const float32_t* q, const size_t len );
- /*{{{ some prototypes */
- resample_t* resample_open (
- OUT long double sampfreq_in, // [Hz]
- OUT long double sampfreq_out, // [Hz]
- OUT double lowpass_freq, // [Hz] or <0 for auto mode
- OUT int quality ); // Proposal: 0 default, 1 sample select, 2 linear interpol, 4 4-point interpolation, 32 32-point interpolation
-
- int resample_buffer ( // return code, 0 for success
- INOUT resample_t *const r, // internal structure
- IN sample_t *const out, // where to write the output data
- INOUT size_t *const out_req_len, // requested output data len/really written output data len
- OUT sample_t *const in, // where are the input data?
- INOUT size_t *const in_avail_len, // available input data len/consumed input data len
- OUT size_t channel ); // number of the channel (needed for buffering)
- int resample_close ( INOUT resample_t* const r );
- void init_scalar_functions ( OUT lame_t* const lame );
- long double unround_samplefrequency ( OUT long double freq );
- #if 0
- int lame_encode_mp3_frame ( // return code, 0 for success
- INOUT lame_global_flags*, // internal context structure
- OUTTR sample_t * inbuf_l, // data for left channel
- OUTTR sample_t * inbuf_r, // data for right channel
- IN uint8_t * mp3buf, // where to write the coded data
- OUT size_t mp3buf_size ); // maximum size of coded data
- #endif
- int lame_encode_ogg_frame ( // return code, 0 for success
- INOUT lame_global_flags*, // internal context structure
- OUT sample_t * inbuf_l, // data for left channel
- OUT sample_t * inbuf_r, // data for right channel
- IN uint8_t * mp3buf, // where to write the coded data
- OUT size_t mp3buf_size ); // maximum size of coded data
- /*}}}*/
- /* end of pcm.h */
|