1
0

quaternion 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151
  1. .TH QUATERNION 2
  2. .SH NAME
  3. qtom, mtoq, qadd, qsub, qneg, qmul, qdiv, qunit, qinv, qlen, slerp, qmid, qsqrt \- Quaternion arithmetic
  4. .SH SYNOPSIS
  5. .B
  6. #include <draw.h>
  7. .br
  8. .B
  9. #include <geometry.h>
  10. .PP
  11. .B
  12. Quaternion qadd(Quaternion q, Quaternion r)
  13. .PP
  14. .B
  15. Quaternion qsub(Quaternion q, Quaternion r)
  16. .PP
  17. .B
  18. Quaternion qneg(Quaternion q)
  19. .PP
  20. .B
  21. Quaternion qmul(Quaternion q, Quaternion r)
  22. .PP
  23. .B
  24. Quaternion qdiv(Quaternion q, Quaternion r)
  25. .PP
  26. .B
  27. Quaternion qinv(Quaternion q)
  28. .PP
  29. .B
  30. double qlen(Quaternion p)
  31. .PP
  32. .B
  33. Quaternion qunit(Quaternion q)
  34. .PP
  35. .B
  36. void qtom(Matrix m, Quaternion q)
  37. .PP
  38. .B
  39. Quaternion mtoq(Matrix mat)
  40. .PP
  41. .B
  42. Quaternion slerp(Quaternion q, Quaternion r, double a)
  43. .PP
  44. .B
  45. Quaternion qmid(Quaternion q, Quaternion r)
  46. .PP
  47. .B
  48. Quaternion qsqrt(Quaternion q)
  49. .SH DESCRIPTION
  50. The Quaternions are a non-commutative extension field of the Real numbers, designed
  51. to do for rotations in 3-space what the complex numbers do for rotations in 2-space.
  52. Quaternions have a real component
  53. .I r
  54. and an imaginary vector component \fIv\fP=(\fIi\fP,\fIj\fP,\fIk\fP).
  55. Quaternions add componentwise and multiply according to the rule
  56. (\fIr\fP,\fIv\fP)(\fIs\fP,\fIw\fP)=(\fIrs\fP-\fIv\fP\v'-.3m'.\v'.3m'\fIw\fP, \fIrw\fP+\fIvs\fP+\fIv\fP×\fIw\fP),
  57. where \v'-.3m'.\v'.3m' and × are the ordinary vector dot and cross products.
  58. The multiplicative inverse of a non-zero quaternion (\fIr\fP,\fIv\fP)
  59. is (\fIr\fP,\fI-v\fP)/(\fIr\^\fP\u\s-22\s+2\d-\fIv\fP\v'-.3m'.\v'.3m'\fIv\fP).
  60. .PP
  61. The following routines do arithmetic on quaternions, represented as
  62. .IP
  63. .EX
  64. .ta 6n
  65. typedef struct Quaternion Quaternion;
  66. struct Quaternion{
  67. double r, i, j, k;
  68. };
  69. .EE
  70. .TF qunit
  71. .TP
  72. Name
  73. Description
  74. .TP
  75. .B qadd
  76. Add two quaternions.
  77. .TP
  78. .B qsub
  79. Subtract two quaternions.
  80. .TP
  81. .B qneg
  82. Negate a quaternion.
  83. .TP
  84. .B qmul
  85. Multiply two quaternions.
  86. .TP
  87. .B qdiv
  88. Divide two quaternions.
  89. .TP
  90. .B qinv
  91. Return the multiplicative inverse of a quaternion.
  92. .TP
  93. .B qlen
  94. Return
  95. .BR sqrt(q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k) ,
  96. the length of a quaternion.
  97. .TP
  98. .B qunit
  99. Return a unit quaternion
  100. .RI ( length=1 )
  101. with components proportional to
  102. .IR q 's.
  103. .PD
  104. .PP
  105. A rotation by angle \fIθ\fP about axis
  106. .I A
  107. (where
  108. .I A
  109. is a unit vector) can be represented by
  110. the unit quaternion \fIq\fP=(cos \fIθ\fP/2, \fIA\fPsin \fIθ\fP/2).
  111. The same rotation is represented by \(mi\fIq\fP; a rotation by \(mi\fIθ\fP about \(mi\fIA\fP is the same as a rotation by \fIθ\fP about \fIA\fP.
  112. The quaternion \fIq\fP transforms points by
  113. (0,\fIx',y',z'\fP) = \%\fIq\fP\u\s-2-1\s+2\d(0,\fIx,y,z\fP)\fIq\fP.
  114. Quaternion multiplication composes rotations.
  115. The orientation of an object in 3-space can be represented by a quaternion
  116. giving its rotation relative to some `standard' orientation.
  117. .PP
  118. The following routines operate on rotations or orientations represented as unit quaternions:
  119. .TF slerp
  120. .TP
  121. .B mtoq
  122. Convert a rotation matrix (see
  123. .IR matrix (2))
  124. to a unit quaternion.
  125. .TP
  126. .B qtom
  127. Convert a unit quaternion to a rotation matrix.
  128. .TP
  129. .B slerp
  130. Spherical lerp. Interpolate between two orientations.
  131. The rotation that carries
  132. .I q
  133. to
  134. .I r
  135. is \%\fIq\fP\u\s-2-1\s+2\d\fIr\fP, so
  136. .B slerp(q, r, t)
  137. is \fIq\fP(\fIq\fP\u\s-2-1\s+2\d\fIr\fP)\u\s-2\fIt\fP\s+2\d.
  138. .TP
  139. .B qmid
  140. .B slerp(q, r, .5)
  141. .TP
  142. .B qsqrt
  143. The square root of
  144. .IR q .
  145. This is just a rotation about the same axis by half the angle.
  146. .PD
  147. .SH SOURCE
  148. .B /sys/src/libgeometry/quaternion.c
  149. .SH SEE ALSO
  150. .IR matrix (2),
  151. .IR qball (2)