fft.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289
  1. /*
  2. ** FFT and FHT routines
  3. ** Copyright 1988, 1993; Ron Mayer
  4. **
  5. ** fht(fz,n);
  6. ** Does a hartley transform of "n" points in the array "fz".
  7. **
  8. ** NOTE: This routine uses at least 2 patented algorithms, and may be
  9. ** under the restrictions of a bunch of different organizations.
  10. ** Although I wrote it completely myself; it is kind of a derivative
  11. ** of a routine I once authored and released under the GPL, so it
  12. ** may fall under the free software foundation's restrictions;
  13. ** it was worked on as a Stanford Univ project, so they claim
  14. ** some rights to it; it was further optimized at work here, so
  15. ** I think this company claims parts of it. The patents are
  16. ** held by R. Bracewell (the FHT algorithm) and O. Buneman (the
  17. ** trig generator), both at Stanford Univ.
  18. ** If it were up to me, I'd say go do whatever you want with it;
  19. ** but it would be polite to give credit to the following people
  20. ** if you use this anywhere:
  21. ** Euler - probable inventor of the fourier transform.
  22. ** Gauss - probable inventor of the FFT.
  23. ** Hartley - probable inventor of the hartley transform.
  24. ** Buneman - for a really cool trig generator
  25. ** Mayer(me) - for authoring this particular version and
  26. ** including all the optimizations in one package.
  27. ** Thanks,
  28. ** Ron Mayer; mayer@acuson.com
  29. ** and added some optimization by
  30. ** Mather - idea of using lookup table
  31. ** Takehiro - some dirty hack for speed up
  32. */
  33. /* $Id: fft.c,v 1.17 2001/01/13 12:54:41 takehiro Exp $ */
  34. #ifdef HAVE_CONFIG_H
  35. # include <config.h>
  36. #endif
  37. #include <math.h>
  38. #include "util.h"
  39. #include "fft.h"
  40. #ifdef WITH_DMALLOC
  41. #include <dmalloc.h>
  42. #endif
  43. #ifndef USE_FFT3DN
  44. #define TRI_SIZE (5-1) /* 1024 = 4**5 */
  45. static const FLOAT costab[TRI_SIZE*2] = {
  46. 9.238795325112867e-01, 3.826834323650898e-01,
  47. 9.951847266721969e-01, 9.801714032956060e-02,
  48. 9.996988186962042e-01, 2.454122852291229e-02,
  49. 9.999811752826011e-01, 6.135884649154475e-03
  50. };
  51. inline static void fht(FLOAT *fz, int n)
  52. {
  53. const FLOAT *tri = costab;
  54. int k4;
  55. FLOAT *fi, *fn, *gi;
  56. fn = fz + n;
  57. k4 = 4;
  58. do {
  59. FLOAT s1, c1;
  60. int i, k1, k2, k3, kx;
  61. kx = k4 >> 1;
  62. k1 = k4;
  63. k2 = k4 << 1;
  64. k3 = k2 + k1;
  65. k4 = k2 << 1;
  66. fi = fz;
  67. gi = fi + kx;
  68. do {
  69. FLOAT f0,f1,f2,f3;
  70. f1 = fi[0] - fi[k1];
  71. f0 = fi[0] + fi[k1];
  72. f3 = fi[k2] - fi[k3];
  73. f2 = fi[k2] + fi[k3];
  74. fi[k2] = f0 - f2;
  75. fi[0 ] = f0 + f2;
  76. fi[k3] = f1 - f3;
  77. fi[k1] = f1 + f3;
  78. f1 = gi[0] - gi[k1];
  79. f0 = gi[0] + gi[k1];
  80. f3 = SQRT2 * gi[k3];
  81. f2 = SQRT2 * gi[k2];
  82. gi[k2] = f0 - f2;
  83. gi[0 ] = f0 + f2;
  84. gi[k3] = f1 - f3;
  85. gi[k1] = f1 + f3;
  86. gi += k4;
  87. fi += k4;
  88. } while (fi<fn);
  89. c1 = tri[0];
  90. s1 = tri[1];
  91. for (i = 1; i < kx; i++) {
  92. FLOAT c2,s2;
  93. c2 = 1 - (2*s1)*s1;
  94. s2 = (2*s1)*c1;
  95. fi = fz + i;
  96. gi = fz + k1 - i;
  97. do {
  98. FLOAT a,b,g0,f0,f1,g1,f2,g2,f3,g3;
  99. b = s2*fi[k1] - c2*gi[k1];
  100. a = c2*fi[k1] + s2*gi[k1];
  101. f1 = fi[0 ] - a;
  102. f0 = fi[0 ] + a;
  103. g1 = gi[0 ] - b;
  104. g0 = gi[0 ] + b;
  105. b = s2*fi[k3] - c2*gi[k3];
  106. a = c2*fi[k3] + s2*gi[k3];
  107. f3 = fi[k2] - a;
  108. f2 = fi[k2] + a;
  109. g3 = gi[k2] - b;
  110. g2 = gi[k2] + b;
  111. b = s1*f2 - c1*g3;
  112. a = c1*f2 + s1*g3;
  113. fi[k2] = f0 - a;
  114. fi[0 ] = f0 + a;
  115. gi[k3] = g1 - b;
  116. gi[k1] = g1 + b;
  117. b = c1*g2 - s1*f3;
  118. a = s1*g2 + c1*f3;
  119. gi[k2] = g0 - a;
  120. gi[0 ] = g0 + a;
  121. fi[k3] = f1 - b;
  122. fi[k1] = f1 + b;
  123. gi += k4;
  124. fi += k4;
  125. } while (fi<fn);
  126. c2 = c1;
  127. c1 = c2 * tri[0] - s1 * tri[1];
  128. s1 = c2 * tri[1] + s1 * tri[0];
  129. }
  130. tri += 2;
  131. } while (k4<n);
  132. }
  133. #else
  134. #define fht(a,b) fht_3DN(a,b/2)
  135. #endif /* USE_FFT3DN */
  136. static const unsigned char rv_tbl[] = {
  137. 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
  138. 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
  139. 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
  140. 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
  141. 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
  142. 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
  143. 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
  144. 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
  145. 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
  146. 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
  147. 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
  148. 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
  149. 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
  150. 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
  151. 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
  152. 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe
  153. };
  154. #define ch01(index) (buffer[chn][index])
  155. #define ml00(f) (window[i ] * f(i))
  156. #define ml10(f) (window[i + 0x200] * f(i + 0x200))
  157. #define ml20(f) (window[i + 0x100] * f(i + 0x100))
  158. #define ml30(f) (window[i + 0x300] * f(i + 0x300))
  159. #define ml01(f) (window[i + 0x001] * f(i + 0x001))
  160. #define ml11(f) (window[i + 0x201] * f(i + 0x201))
  161. #define ml21(f) (window[i + 0x101] * f(i + 0x101))
  162. #define ml31(f) (window[i + 0x301] * f(i + 0x301))
  163. #define ms00(f) (window_s[i ] * f(i + k))
  164. #define ms10(f) (window_s[0x7f - i] * f(i + k + 0x80))
  165. #define ms20(f) (window_s[i + 0x40] * f(i + k + 0x40))
  166. #define ms30(f) (window_s[0x3f - i] * f(i + k + 0xc0))
  167. #define ms01(f) (window_s[i + 0x01] * f(i + k + 0x01))
  168. #define ms11(f) (window_s[0x7e - i] * f(i + k + 0x81))
  169. #define ms21(f) (window_s[i + 0x41] * f(i + k + 0x41))
  170. #define ms31(f) (window_s[0x3e - i] * f(i + k + 0xc1))
  171. void fft_short(lame_internal_flags *gfc,
  172. FLOAT x_real[3][BLKSIZE_s], int chn, const sample_t *buffer[2])
  173. {
  174. const FLOAT* window_s = (const FLOAT *)&gfc->window_s[0];
  175. int i;
  176. int j;
  177. int b;
  178. for (b = 0; b < 3; b++) {
  179. FLOAT *x = &x_real[b][BLKSIZE_s / 2];
  180. short k = (576 / 3) * (b + 1);
  181. j = BLKSIZE_s / 8 - 1;
  182. do {
  183. FLOAT f0,f1,f2,f3, w;
  184. i = rv_tbl[j << 2];
  185. f0 = ms00(ch01); w = ms10(ch01); f1 = f0 - w; f0 = f0 + w;
  186. f2 = ms20(ch01); w = ms30(ch01); f3 = f2 - w; f2 = f2 + w;
  187. x -= 4;
  188. x[0] = f0 + f2;
  189. x[2] = f0 - f2;
  190. x[1] = f1 + f3;
  191. x[3] = f1 - f3;
  192. f0 = ms01(ch01); w = ms11(ch01); f1 = f0 - w; f0 = f0 + w;
  193. f2 = ms21(ch01); w = ms31(ch01); f3 = f2 - w; f2 = f2 + w;
  194. x[BLKSIZE_s / 2 + 0] = f0 + f2;
  195. x[BLKSIZE_s / 2 + 2] = f0 - f2;
  196. x[BLKSIZE_s / 2 + 1] = f1 + f3;
  197. x[BLKSIZE_s / 2 + 3] = f1 - f3;
  198. } while (--j >= 0);
  199. fht(x, BLKSIZE_s);
  200. }
  201. }
  202. void fft_long(lame_internal_flags * const gfc,
  203. FLOAT x[BLKSIZE], int chn, const sample_t *buffer[2] )
  204. {
  205. const FLOAT* window = (const FLOAT *)&gfc->window[0];
  206. int i;
  207. int jj = BLKSIZE / 8 - 1;
  208. x += BLKSIZE / 2;
  209. do {
  210. FLOAT f0,f1,f2,f3, w;
  211. i = rv_tbl[jj];
  212. f0 = ml00(ch01); w = ml10(ch01); f1 = f0 - w; f0 = f0 + w;
  213. f2 = ml20(ch01); w = ml30(ch01); f3 = f2 - w; f2 = f2 + w;
  214. x -= 4;
  215. x[0] = f0 + f2;
  216. x[2] = f0 - f2;
  217. x[1] = f1 + f3;
  218. x[3] = f1 - f3;
  219. f0 = ml01(ch01); w = ml11(ch01); f1 = f0 - w; f0 = f0 + w;
  220. f2 = ml21(ch01); w = ml31(ch01); f3 = f2 - w; f2 = f2 + w;
  221. x[BLKSIZE / 2 + 0] = f0 + f2;
  222. x[BLKSIZE / 2 + 2] = f0 - f2;
  223. x[BLKSIZE / 2 + 1] = f1 + f3;
  224. x[BLKSIZE / 2 + 3] = f1 - f3;
  225. } while (--jj >= 0);
  226. fht(x, BLKSIZE);
  227. }
  228. void init_fft(lame_internal_flags * const gfc)
  229. {
  230. FLOAT *window = &gfc->window[0];
  231. FLOAT *window_s = &gfc->window_s[0];
  232. int i;
  233. #if 0
  234. if (gfc->nsPsy.use) {
  235. for (i = 0; i < BLKSIZE ; i++)
  236. /* blackman window */
  237. window[i] = 0.42-0.5*cos(2*PI*i/(BLKSIZE-1))+0.08*cos(4*PI*i/(BLKSIZE-1));
  238. } else {
  239. /*
  240. * calculate HANN window coefficients
  241. */
  242. for (i = 0; i < BLKSIZE ; i++)
  243. window[i] = 0.5 * (1.0 - cos(2.0 * PI * (i + 0.5) / BLKSIZE));
  244. }
  245. #endif
  246. // The type of window used here will make no real difference, but
  247. // in the interest of merging nspsytune stuff - switch to blackman window
  248. for (i = 0; i < BLKSIZE ; i++)
  249. /* blackman window */
  250. window[i] = 0.42-0.5*cos(2*PI*(i+.5)/BLKSIZE)+
  251. 0.08*cos(4*PI*(i+.5)/BLKSIZE);
  252. for (i = 0; i < BLKSIZE_s/2 ; i++)
  253. window_s[i] = 0.5 * (1.0 - cos(2.0 * PI * (i + 0.5) / BLKSIZE_s));
  254. }