layer3.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687
  1. /*
  2. * libmad - MPEG audio decoder library
  3. * Copyright (C) 2000-2004 Underbit Technologies, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * $Id: layer3.c,v 1.43 2004/01/23 09:41:32 rob Exp $
  20. */
  21. # ifdef HAVE_CONFIG_H
  22. # include "config.h"
  23. # endif
  24. # include "global.h"
  25. # include "fixed.h"
  26. # include "bit.h"
  27. # include "stream.h"
  28. # include "frame.h"
  29. # include "huffman.h"
  30. # include "layer3.h"
  31. #define CHAR_BIT 8 /* duh */
  32. /* --- Layer III ----------------------------------------------------------- */
  33. enum {
  34. count1table_select = 0x01,
  35. scalefac_scale = 0x02,
  36. preflag = 0x04,
  37. mixed_block_flag = 0x08
  38. };
  39. enum {
  40. I_STEREO = 0x1,
  41. MS_STEREO = 0x2
  42. };
  43. struct sideinfo {
  44. unsigned int main_data_begin;
  45. unsigned int private_bits;
  46. unsigned char scfsi[2];
  47. struct granule {
  48. struct channel {
  49. /* from side info */
  50. unsigned short part2_3_length;
  51. unsigned short big_values;
  52. unsigned short global_gain;
  53. unsigned short scalefac_compress;
  54. unsigned char flags;
  55. unsigned char block_type;
  56. unsigned char table_select[3];
  57. unsigned char subblock_gain[3];
  58. unsigned char region0_count;
  59. unsigned char region1_count;
  60. /* from main_data */
  61. unsigned char scalefac[39]; /* scalefac_l and/or scalefac_s */
  62. } ch[2];
  63. } gr[2];
  64. };
  65. /*
  66. * scalefactor bit lengths
  67. * derived from section 2.4.2.7 of ISO/IEC 11172-3
  68. */
  69. static
  70. struct {
  71. unsigned char slen1;
  72. unsigned char slen2;
  73. } const sflen_table[16] = {
  74. { 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 },
  75. { 3, 0 }, { 1, 1 }, { 1, 2 }, { 1, 3 },
  76. { 2, 1 }, { 2, 2 }, { 2, 3 }, { 3, 1 },
  77. { 3, 2 }, { 3, 3 }, { 4, 2 }, { 4, 3 }
  78. };
  79. /*
  80. * number of LSF scalefactor band values
  81. * derived from section 2.4.3.2 of ISO/IEC 13818-3
  82. */
  83. static
  84. unsigned char const nsfb_table[6][3][4] = {
  85. { { 6, 5, 5, 5 },
  86. { 9, 9, 9, 9 },
  87. { 6, 9, 9, 9 } },
  88. { { 6, 5, 7, 3 },
  89. { 9, 9, 12, 6 },
  90. { 6, 9, 12, 6 } },
  91. { { 11, 10, 0, 0 },
  92. { 18, 18, 0, 0 },
  93. { 15, 18, 0, 0 } },
  94. { { 7, 7, 7, 0 },
  95. { 12, 12, 12, 0 },
  96. { 6, 15, 12, 0 } },
  97. { { 6, 6, 6, 3 },
  98. { 12, 9, 9, 6 },
  99. { 6, 12, 9, 6 } },
  100. { { 8, 8, 5, 0 },
  101. { 15, 12, 9, 0 },
  102. { 6, 18, 9, 0 } }
  103. };
  104. /*
  105. * MPEG-1 scalefactor band widths
  106. * derived from Table B.8 of ISO/IEC 11172-3
  107. */
  108. static
  109. unsigned char const sfb_48000_long[] = {
  110. 4, 4, 4, 4, 4, 4, 6, 6, 6, 8, 10,
  111. 12, 16, 18, 22, 28, 34, 40, 46, 54, 54, 192
  112. };
  113. static
  114. unsigned char const sfb_44100_long[] = {
  115. 4, 4, 4, 4, 4, 4, 6, 6, 8, 8, 10,
  116. 12, 16, 20, 24, 28, 34, 42, 50, 54, 76, 158
  117. };
  118. static
  119. unsigned char const sfb_32000_long[] = {
  120. 4, 4, 4, 4, 4, 4, 6, 6, 8, 10, 12,
  121. 16, 20, 24, 30, 38, 46, 56, 68, 84, 102, 26
  122. };
  123. static
  124. unsigned char const sfb_48000_short[] = {
  125. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6,
  126. 6, 6, 6, 6, 6, 10, 10, 10, 12, 12, 12, 14, 14,
  127. 14, 16, 16, 16, 20, 20, 20, 26, 26, 26, 66, 66, 66
  128. };
  129. static
  130. unsigned char const sfb_44100_short[] = {
  131. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6,
  132. 6, 6, 8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14,
  133. 14, 18, 18, 18, 22, 22, 22, 30, 30, 30, 56, 56, 56
  134. };
  135. static
  136. unsigned char const sfb_32000_short[] = {
  137. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6,
  138. 6, 6, 8, 8, 8, 12, 12, 12, 16, 16, 16, 20, 20,
  139. 20, 26, 26, 26, 34, 34, 34, 42, 42, 42, 12, 12, 12
  140. };
  141. static
  142. unsigned char const sfb_48000_mixed[] = {
  143. /* long */ 4, 4, 4, 4, 4, 4, 6, 6,
  144. /* short */ 4, 4, 4, 6, 6, 6, 6, 6, 6, 10,
  145. 10, 10, 12, 12, 12, 14, 14, 14, 16, 16,
  146. 16, 20, 20, 20, 26, 26, 26, 66, 66, 66
  147. };
  148. static
  149. unsigned char const sfb_44100_mixed[] = {
  150. /* long */ 4, 4, 4, 4, 4, 4, 6, 6,
  151. /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 10,
  152. 10, 10, 12, 12, 12, 14, 14, 14, 18, 18,
  153. 18, 22, 22, 22, 30, 30, 30, 56, 56, 56
  154. };
  155. static
  156. unsigned char const sfb_32000_mixed[] = {
  157. /* long */ 4, 4, 4, 4, 4, 4, 6, 6,
  158. /* short */ 4, 4, 4, 6, 6, 6, 8, 8, 8, 12,
  159. 12, 12, 16, 16, 16, 20, 20, 20, 26, 26,
  160. 26, 34, 34, 34, 42, 42, 42, 12, 12, 12
  161. };
  162. /*
  163. * MPEG-2 scalefactor band widths
  164. * derived from Table B.2 of ISO/IEC 13818-3
  165. */
  166. static
  167. unsigned char const sfb_24000_long[] = {
  168. 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16,
  169. 18, 22, 26, 32, 38, 46, 54, 62, 70, 76, 36
  170. };
  171. static
  172. unsigned char const sfb_22050_long[] = {
  173. 6, 6, 6, 6, 6, 6, 8, 10, 12, 14, 16,
  174. 20, 24, 28, 32, 38, 46, 52, 60, 68, 58, 54
  175. };
  176. # define sfb_16000_long sfb_22050_long
  177. static
  178. unsigned char const sfb_24000_short[] = {
  179. 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8,
  180. 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18,
  181. 18, 24, 24, 24, 32, 32, 32, 44, 44, 44, 12, 12, 12
  182. };
  183. static
  184. unsigned char const sfb_22050_short[] = {
  185. 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6,
  186. 6, 6, 8, 8, 8, 10, 10, 10, 14, 14, 14, 18, 18,
  187. 18, 26, 26, 26, 32, 32, 32, 42, 42, 42, 18, 18, 18
  188. };
  189. static
  190. unsigned char const sfb_16000_short[] = {
  191. 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 8,
  192. 8, 8, 10, 10, 10, 12, 12, 12, 14, 14, 14, 18, 18,
  193. 18, 24, 24, 24, 30, 30, 30, 40, 40, 40, 18, 18, 18
  194. };
  195. static
  196. unsigned char const sfb_24000_mixed[] = {
  197. /* long */ 6, 6, 6, 6, 6, 6,
  198. /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12,
  199. 12, 12, 14, 14, 14, 18, 18, 18, 24, 24,
  200. 24, 32, 32, 32, 44, 44, 44, 12, 12, 12
  201. };
  202. static
  203. unsigned char const sfb_22050_mixed[] = {
  204. /* long */ 6, 6, 6, 6, 6, 6,
  205. /* short */ 6, 6, 6, 6, 6, 6, 8, 8, 8, 10,
  206. 10, 10, 14, 14, 14, 18, 18, 18, 26, 26,
  207. 26, 32, 32, 32, 42, 42, 42, 18, 18, 18
  208. };
  209. static
  210. unsigned char const sfb_16000_mixed[] = {
  211. /* long */ 6, 6, 6, 6, 6, 6,
  212. /* short */ 6, 6, 6, 8, 8, 8, 10, 10, 10, 12,
  213. 12, 12, 14, 14, 14, 18, 18, 18, 24, 24,
  214. 24, 30, 30, 30, 40, 40, 40, 18, 18, 18
  215. };
  216. /*
  217. * MPEG 2.5 scalefactor band widths
  218. * derived from public sources
  219. */
  220. # define sfb_12000_long sfb_16000_long
  221. # define sfb_11025_long sfb_12000_long
  222. static
  223. unsigned char const sfb_8000_long[] = {
  224. 12, 12, 12, 12, 12, 12, 16, 20, 24, 28, 32,
  225. 40, 48, 56, 64, 76, 90, 2, 2, 2, 2, 2
  226. };
  227. # define sfb_12000_short sfb_16000_short
  228. # define sfb_11025_short sfb_12000_short
  229. static
  230. unsigned char const sfb_8000_short[] = {
  231. 8, 8, 8, 8, 8, 8, 8, 8, 8, 12, 12, 12, 16,
  232. 16, 16, 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36,
  233. 36, 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26
  234. };
  235. # define sfb_12000_mixed sfb_16000_mixed
  236. # define sfb_11025_mixed sfb_12000_mixed
  237. /* the 8000 Hz short block scalefactor bands do not break after
  238. the first 36 frequency lines, so this is probably wrong */
  239. static
  240. unsigned char const sfb_8000_mixed[] = {
  241. /* long */ 12, 12, 12,
  242. /* short */ 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16,
  243. 20, 20, 20, 24, 24, 24, 28, 28, 28, 36, 36, 36,
  244. 2, 2, 2, 2, 2, 2, 2, 2, 2, 26, 26, 26
  245. };
  246. static
  247. struct {
  248. unsigned char const *l;
  249. unsigned char const *s;
  250. unsigned char const *m;
  251. } const sfbwidth_table[9] = {
  252. { sfb_48000_long, sfb_48000_short, sfb_48000_mixed },
  253. { sfb_44100_long, sfb_44100_short, sfb_44100_mixed },
  254. { sfb_32000_long, sfb_32000_short, sfb_32000_mixed },
  255. { sfb_24000_long, sfb_24000_short, sfb_24000_mixed },
  256. { sfb_22050_long, sfb_22050_short, sfb_22050_mixed },
  257. { sfb_16000_long, sfb_16000_short, sfb_16000_mixed },
  258. { sfb_12000_long, sfb_12000_short, sfb_12000_mixed },
  259. { sfb_11025_long, sfb_11025_short, sfb_11025_mixed },
  260. { sfb_8000_long, sfb_8000_short, sfb_8000_mixed }
  261. };
  262. /*
  263. * scalefactor band preemphasis (used only when preflag is set)
  264. * derived from Table B.6 of ISO/IEC 11172-3
  265. */
  266. static
  267. unsigned char const pretab[22] = {
  268. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 2, 0
  269. };
  270. /*
  271. * table for requantization
  272. *
  273. * rq_table[x].mantissa * 2^(rq_table[x].exponent) = x^(4/3)
  274. */
  275. static
  276. struct fixedfloat {
  277. unsigned long mantissa; // : 27;
  278. unsigned short exponent; // : 5;
  279. } const rq_table[8207] = {
  280. # include "rq_table.dat"
  281. };
  282. /*
  283. * fractional powers of two
  284. * used for requantization and joint stereo decoding
  285. *
  286. * root_table[3 + x] = 2^(x/4)
  287. */
  288. static
  289. mad_fixed_t const root_table[7] = {
  290. MAD_F(0x09837f05) /* 2^(-3/4) == 0.59460355750136 */,
  291. MAD_F(0x0b504f33) /* 2^(-2/4) == 0.70710678118655 */,
  292. MAD_F(0x0d744fcd) /* 2^(-1/4) == 0.84089641525371 */,
  293. MAD_F(0x10000000) /* 2^( 0/4) == 1.00000000000000 */,
  294. MAD_F(0x1306fe0a) /* 2^(+1/4) == 1.18920711500272 */,
  295. MAD_F(0x16a09e66) /* 2^(+2/4) == 1.41421356237310 */,
  296. MAD_F(0x1ae89f99) /* 2^(+3/4) == 1.68179283050743 */
  297. };
  298. /*
  299. * coefficients for aliasing reduction
  300. * derived from Table B.9 of ISO/IEC 11172-3
  301. *
  302. * c[] = { -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 }
  303. * cs[i] = 1 / sqrt(1 + c[i]^2)
  304. * ca[i] = c[i] / sqrt(1 + c[i]^2)
  305. */
  306. static
  307. mad_fixed_t const cs[8] = {
  308. +MAD_F(0x0db84a81) /* +0.857492926 */, +MAD_F(0x0e1b9d7f) /* +0.881741997 */,
  309. +MAD_F(0x0f31adcf) /* +0.949628649 */, +MAD_F(0x0fbba815) /* +0.983314592 */,
  310. +MAD_F(0x0feda417) /* +0.995517816 */, +MAD_F(0x0ffc8fc8) /* +0.999160558 */,
  311. +MAD_F(0x0fff964c) /* +0.999899195 */, +MAD_F(0x0ffff8d3) /* +0.999993155 */
  312. };
  313. static
  314. mad_fixed_t const ca[8] = {
  315. -MAD_F(0x083b5fe7) /* -0.514495755 */, -MAD_F(0x078c36d2) /* -0.471731969 */,
  316. -MAD_F(0x05039814) /* -0.313377454 */, -MAD_F(0x02e91dd1) /* -0.181913200 */,
  317. -MAD_F(0x0183603a) /* -0.094574193 */, -MAD_F(0x00a7cb87) /* -0.040965583 */,
  318. -MAD_F(0x003a2847) /* -0.014198569 */, -MAD_F(0x000f27b4) /* -0.003699975 */
  319. };
  320. /*
  321. * IMDCT coefficients for short blocks
  322. * derived from section 2.4.3.4.10.2 of ISO/IEC 11172-3
  323. *
  324. * imdct_s[i/even][k] = cos((PI / 24) * (2 * (i / 2) + 7) * (2 * k + 1))
  325. * imdct_s[i /odd][k] = cos((PI / 24) * (2 * (6 + (i-1)/2) + 7) * (2 * k + 1))
  326. */
  327. static
  328. mad_fixed_t const imdct_s[6][6] = {
  329. # include "imdct_s.dat"
  330. };
  331. # if !defined(ASO_IMDCT)
  332. /*
  333. * windowing coefficients for long blocks
  334. * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3
  335. *
  336. * window_l[i] = sin((PI / 36) * (i + 1/2))
  337. */
  338. static
  339. mad_fixed_t const window_l[36] = {
  340. MAD_F(0x00b2aa3e) /* 0.043619387 */, MAD_F(0x0216a2a2) /* 0.130526192 */,
  341. MAD_F(0x03768962) /* 0.216439614 */, MAD_F(0x04cfb0e2) /* 0.300705800 */,
  342. MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x07635284) /* 0.461748613 */,
  343. MAD_F(0x0898c779) /* 0.537299608 */, MAD_F(0x09bd7ca0) /* 0.608761429 */,
  344. MAD_F(0x0acf37ad) /* 0.675590208 */, MAD_F(0x0bcbe352) /* 0.737277337 */,
  345. MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x0d7e8807) /* 0.843391446 */,
  346. MAD_F(0x0e313245) /* 0.887010833 */, MAD_F(0x0ec835e8) /* 0.923879533 */,
  347. MAD_F(0x0f426cb5) /* 0.953716951 */, MAD_F(0x0f9ee890) /* 0.976296007 */,
  348. MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ffc19fd) /* 0.999048222 */,
  349. MAD_F(0x0ffc19fd) /* 0.999048222 */, MAD_F(0x0fdcf549) /* 0.991444861 */,
  350. MAD_F(0x0f9ee890) /* 0.976296007 */, MAD_F(0x0f426cb5) /* 0.953716951 */,
  351. MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0e313245) /* 0.887010833 */,
  352. MAD_F(0x0d7e8807) /* 0.843391446 */, MAD_F(0x0cb19346) /* 0.793353340 */,
  353. MAD_F(0x0bcbe352) /* 0.737277337 */, MAD_F(0x0acf37ad) /* 0.675590208 */,
  354. MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0898c779) /* 0.537299608 */,
  355. MAD_F(0x07635284) /* 0.461748613 */, MAD_F(0x061f78aa) /* 0.382683432 */,
  356. MAD_F(0x04cfb0e2) /* 0.300705800 */, MAD_F(0x03768962) /* 0.216439614 */,
  357. MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x00b2aa3e) /* 0.043619387 */,
  358. };
  359. # endif /* ASO_IMDCT */
  360. /*
  361. * windowing coefficients for short blocks
  362. * derived from section 2.4.3.4.10.3 of ISO/IEC 11172-3
  363. *
  364. * window_s[i] = sin((PI / 12) * (i + 1/2))
  365. */
  366. static
  367. mad_fixed_t const window_s[12] = {
  368. MAD_F(0x0216a2a2) /* 0.130526192 */, MAD_F(0x061f78aa) /* 0.382683432 */,
  369. MAD_F(0x09bd7ca0) /* 0.608761429 */, MAD_F(0x0cb19346) /* 0.793353340 */,
  370. MAD_F(0x0ec835e8) /* 0.923879533 */, MAD_F(0x0fdcf549) /* 0.991444861 */,
  371. MAD_F(0x0fdcf549) /* 0.991444861 */, MAD_F(0x0ec835e8) /* 0.923879533 */,
  372. MAD_F(0x0cb19346) /* 0.793353340 */, MAD_F(0x09bd7ca0) /* 0.608761429 */,
  373. MAD_F(0x061f78aa) /* 0.382683432 */, MAD_F(0x0216a2a2) /* 0.130526192 */,
  374. };
  375. /*
  376. * coefficients for intensity stereo processing
  377. * derived from section 2.4.3.4.9.3 of ISO/IEC 11172-3
  378. *
  379. * is_ratio[i] = tan(i * (PI / 12))
  380. * is_table[i] = is_ratio[i] / (1 + is_ratio[i])
  381. */
  382. static
  383. mad_fixed_t const is_table[7] = {
  384. MAD_F(0x00000000) /* 0.000000000 */,
  385. MAD_F(0x0361962f) /* 0.211324865 */,
  386. MAD_F(0x05db3d74) /* 0.366025404 */,
  387. MAD_F(0x08000000) /* 0.500000000 */,
  388. MAD_F(0x0a24c28c) /* 0.633974596 */,
  389. MAD_F(0x0c9e69d1) /* 0.788675135 */,
  390. MAD_F(0x10000000) /* 1.000000000 */
  391. };
  392. /*
  393. * coefficients for LSF intensity stereo processing
  394. * derived from section 2.4.3.2 of ISO/IEC 13818-3
  395. *
  396. * is_lsf_table[0][i] = (1 / sqrt(sqrt(2)))^(i + 1)
  397. * is_lsf_table[1][i] = (1 / sqrt(2)) ^(i + 1)
  398. */
  399. static
  400. mad_fixed_t const is_lsf_table[2][15] = {
  401. {
  402. MAD_F(0x0d744fcd) /* 0.840896415 */,
  403. MAD_F(0x0b504f33) /* 0.707106781 */,
  404. MAD_F(0x09837f05) /* 0.594603558 */,
  405. MAD_F(0x08000000) /* 0.500000000 */,
  406. MAD_F(0x06ba27e6) /* 0.420448208 */,
  407. MAD_F(0x05a8279a) /* 0.353553391 */,
  408. MAD_F(0x04c1bf83) /* 0.297301779 */,
  409. MAD_F(0x04000000) /* 0.250000000 */,
  410. MAD_F(0x035d13f3) /* 0.210224104 */,
  411. MAD_F(0x02d413cd) /* 0.176776695 */,
  412. MAD_F(0x0260dfc1) /* 0.148650889 */,
  413. MAD_F(0x02000000) /* 0.125000000 */,
  414. MAD_F(0x01ae89fa) /* 0.105112052 */,
  415. MAD_F(0x016a09e6) /* 0.088388348 */,
  416. MAD_F(0x01306fe1) /* 0.074325445 */
  417. }, {
  418. MAD_F(0x0b504f33) /* 0.707106781 */,
  419. MAD_F(0x08000000) /* 0.500000000 */,
  420. MAD_F(0x05a8279a) /* 0.353553391 */,
  421. MAD_F(0x04000000) /* 0.250000000 */,
  422. MAD_F(0x02d413cd) /* 0.176776695 */,
  423. MAD_F(0x02000000) /* 0.125000000 */,
  424. MAD_F(0x016a09e6) /* 0.088388348 */,
  425. MAD_F(0x01000000) /* 0.062500000 */,
  426. MAD_F(0x00b504f3) /* 0.044194174 */,
  427. MAD_F(0x00800000) /* 0.031250000 */,
  428. MAD_F(0x005a827a) /* 0.022097087 */,
  429. MAD_F(0x00400000) /* 0.015625000 */,
  430. MAD_F(0x002d413d) /* 0.011048543 */,
  431. MAD_F(0x00200000) /* 0.007812500 */,
  432. MAD_F(0x0016a09e) /* 0.005524272 */
  433. }
  434. };
  435. /*
  436. * NAME: III_sideinfo()
  437. * DESCRIPTION: decode frame side information from a bitstream
  438. */
  439. static
  440. enum mad_error III_sideinfo(struct mad_bitptr *ptr, unsigned int nch,
  441. int lsf, struct sideinfo *si,
  442. unsigned int *data_bitlen,
  443. unsigned int *priv_bitlen)
  444. {
  445. unsigned int ngr, gr, ch, i;
  446. enum mad_error result = MAD_ERROR_NONE;
  447. *data_bitlen = 0;
  448. *priv_bitlen = lsf ? ((nch == 1) ? 1 : 2) : ((nch == 1) ? 5 : 3);
  449. si->main_data_begin = mad_bit_read(ptr, lsf ? 8 : 9);
  450. si->private_bits = mad_bit_read(ptr, *priv_bitlen);
  451. ngr = 1;
  452. if (!lsf) {
  453. ngr = 2;
  454. for (ch = 0; ch < nch; ++ch)
  455. si->scfsi[ch] = mad_bit_read(ptr, 4);
  456. }
  457. for (gr = 0; gr < ngr; ++gr) {
  458. struct granule *granule = &si->gr[gr];
  459. for (ch = 0; ch < nch; ++ch) {
  460. struct channel *channel = &granule->ch[ch];
  461. channel->part2_3_length = mad_bit_read(ptr, 12);
  462. channel->big_values = mad_bit_read(ptr, 9);
  463. channel->global_gain = mad_bit_read(ptr, 8);
  464. channel->scalefac_compress = mad_bit_read(ptr, lsf ? 9 : 4);
  465. *data_bitlen += channel->part2_3_length;
  466. if (channel->big_values > 288 && result == 0)
  467. result = MAD_ERROR_BADBIGVALUES;
  468. channel->flags = 0;
  469. /* window_switching_flag */
  470. if (mad_bit_read(ptr, 1)) {
  471. channel->block_type = mad_bit_read(ptr, 2);
  472. if (channel->block_type == 0 && result == 0)
  473. result = MAD_ERROR_BADBLOCKTYPE;
  474. if (!lsf && channel->block_type == 2 && si->scfsi[ch] && result == 0)
  475. result = MAD_ERROR_BADSCFSI;
  476. channel->region0_count = 7;
  477. channel->region1_count = 36;
  478. if (mad_bit_read(ptr, 1))
  479. channel->flags |= mixed_block_flag;
  480. else if (channel->block_type == 2)
  481. channel->region0_count = 8;
  482. for (i = 0; i < 2; ++i)
  483. channel->table_select[i] = mad_bit_read(ptr, 5);
  484. # if defined(DEBUG)
  485. channel->table_select[2] = 4; /* not used */
  486. # endif
  487. for (i = 0; i < 3; ++i)
  488. channel->subblock_gain[i] = mad_bit_read(ptr, 3);
  489. }
  490. else {
  491. channel->block_type = 0;
  492. for (i = 0; i < 3; ++i)
  493. channel->table_select[i] = mad_bit_read(ptr, 5);
  494. channel->region0_count = mad_bit_read(ptr, 4);
  495. channel->region1_count = mad_bit_read(ptr, 3);
  496. }
  497. /* [preflag,] scalefac_scale, count1table_select */
  498. channel->flags |= mad_bit_read(ptr, lsf ? 2 : 3);
  499. }
  500. }
  501. return result;
  502. }
  503. /*
  504. * NAME: III_scalefactors_lsf()
  505. * DESCRIPTION: decode channel scalefactors for LSF from a bitstream
  506. */
  507. static
  508. unsigned int III_scalefactors_lsf(struct mad_bitptr *ptr,
  509. struct channel *channel,
  510. struct channel *gr1ch, int mode_extension)
  511. {
  512. struct mad_bitptr start;
  513. unsigned int scalefac_compress, index, slen[4], part, n, i;
  514. unsigned char const *nsfb;
  515. start = *ptr;
  516. scalefac_compress = channel->scalefac_compress;
  517. index = (channel->block_type == 2) ?
  518. ((channel->flags & mixed_block_flag) ? 2 : 1) : 0;
  519. if (!((mode_extension & I_STEREO) && gr1ch)) {
  520. if (scalefac_compress < 400) {
  521. slen[0] = (scalefac_compress >> 4) / 5;
  522. slen[1] = (scalefac_compress >> 4) % 5;
  523. slen[2] = (scalefac_compress % 16) >> 2;
  524. slen[3] = scalefac_compress % 4;
  525. nsfb = nsfb_table[0][index];
  526. }
  527. else if (scalefac_compress < 500) {
  528. scalefac_compress -= 400;
  529. slen[0] = (scalefac_compress >> 2) / 5;
  530. slen[1] = (scalefac_compress >> 2) % 5;
  531. slen[2] = scalefac_compress % 4;
  532. slen[3] = 0;
  533. nsfb = nsfb_table[1][index];
  534. }
  535. else {
  536. scalefac_compress -= 500;
  537. slen[0] = scalefac_compress / 3;
  538. slen[1] = scalefac_compress % 3;
  539. slen[2] = 0;
  540. slen[3] = 0;
  541. channel->flags |= preflag;
  542. nsfb = nsfb_table[2][index];
  543. }
  544. n = 0;
  545. for (part = 0; part < 4; ++part) {
  546. for (i = 0; i < nsfb[part]; ++i)
  547. channel->scalefac[n++] = mad_bit_read(ptr, slen[part]);
  548. }
  549. while (n < 39)
  550. channel->scalefac[n++] = 0;
  551. }
  552. else { /* (mode_extension & I_STEREO) && gr1ch (i.e. ch == 1) */
  553. scalefac_compress >>= 1;
  554. if (scalefac_compress < 180) {
  555. slen[0] = scalefac_compress / 36;
  556. slen[1] = (scalefac_compress % 36) / 6;
  557. slen[2] = (scalefac_compress % 36) % 6;
  558. slen[3] = 0;
  559. nsfb = nsfb_table[3][index];
  560. }
  561. else if (scalefac_compress < 244) {
  562. scalefac_compress -= 180;
  563. slen[0] = (scalefac_compress % 64) >> 4;
  564. slen[1] = (scalefac_compress % 16) >> 2;
  565. slen[2] = scalefac_compress % 4;
  566. slen[3] = 0;
  567. nsfb = nsfb_table[4][index];
  568. }
  569. else {
  570. scalefac_compress -= 244;
  571. slen[0] = scalefac_compress / 3;
  572. slen[1] = scalefac_compress % 3;
  573. slen[2] = 0;
  574. slen[3] = 0;
  575. nsfb = nsfb_table[5][index];
  576. }
  577. n = 0;
  578. for (part = 0; part < 4; ++part) {
  579. unsigned int max, is_pos;
  580. max = (1 << slen[part]) - 1;
  581. for (i = 0; i < nsfb[part]; ++i) {
  582. is_pos = mad_bit_read(ptr, slen[part]);
  583. channel->scalefac[n] = is_pos;
  584. gr1ch->scalefac[n++] = (is_pos == max);
  585. }
  586. }
  587. while (n < 39) {
  588. channel->scalefac[n] = 0;
  589. gr1ch->scalefac[n++] = 0; /* apparently not illegal */
  590. }
  591. }
  592. return mad_bit_length(&start, ptr);
  593. }
  594. /*
  595. * NAME: III_scalefactors()
  596. * DESCRIPTION: decode channel scalefactors of one granule from a bitstream
  597. */
  598. static
  599. unsigned int III_scalefactors(struct mad_bitptr *ptr, struct channel *channel,
  600. struct channel const *gr0ch, unsigned int scfsi)
  601. {
  602. struct mad_bitptr start;
  603. unsigned int slen1, slen2, sfbi;
  604. start = *ptr;
  605. slen1 = sflen_table[channel->scalefac_compress].slen1;
  606. slen2 = sflen_table[channel->scalefac_compress].slen2;
  607. if (channel->block_type == 2) {
  608. unsigned int nsfb;
  609. sfbi = 0;
  610. nsfb = (channel->flags & mixed_block_flag) ? 8 + 3 * 3 : 6 * 3;
  611. while (nsfb--)
  612. channel->scalefac[sfbi++] = mad_bit_read(ptr, slen1);
  613. nsfb = 6 * 3;
  614. while (nsfb--)
  615. channel->scalefac[sfbi++] = mad_bit_read(ptr, slen2);
  616. nsfb = 1 * 3;
  617. while (nsfb--)
  618. channel->scalefac[sfbi++] = 0;
  619. }
  620. else { /* channel->block_type != 2 */
  621. if (scfsi & 0x8) {
  622. for (sfbi = 0; sfbi < 6; ++sfbi)
  623. channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
  624. }
  625. else {
  626. for (sfbi = 0; sfbi < 6; ++sfbi)
  627. channel->scalefac[sfbi] = mad_bit_read(ptr, slen1);
  628. }
  629. if (scfsi & 0x4) {
  630. for (sfbi = 6; sfbi < 11; ++sfbi)
  631. channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
  632. }
  633. else {
  634. for (sfbi = 6; sfbi < 11; ++sfbi)
  635. channel->scalefac[sfbi] = mad_bit_read(ptr, slen1);
  636. }
  637. if (scfsi & 0x2) {
  638. for (sfbi = 11; sfbi < 16; ++sfbi)
  639. channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
  640. }
  641. else {
  642. for (sfbi = 11; sfbi < 16; ++sfbi)
  643. channel->scalefac[sfbi] = mad_bit_read(ptr, slen2);
  644. }
  645. if (scfsi & 0x1) {
  646. for (sfbi = 16; sfbi < 21; ++sfbi)
  647. channel->scalefac[sfbi] = gr0ch->scalefac[sfbi];
  648. }
  649. else {
  650. for (sfbi = 16; sfbi < 21; ++sfbi)
  651. channel->scalefac[sfbi] = mad_bit_read(ptr, slen2);
  652. }
  653. channel->scalefac[21] = 0;
  654. }
  655. return mad_bit_length(&start, ptr);
  656. }
  657. /*
  658. * The Layer III formula for requantization and scaling is defined by
  659. * section 2.4.3.4.7.1 of ISO/IEC 11172-3, as follows:
  660. *
  661. * long blocks:
  662. * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
  663. * 2^((1/4) * (global_gain - 210)) *
  664. * 2^-(scalefac_multiplier *
  665. * (scalefac_l[sfb] + preflag * pretab[sfb]))
  666. *
  667. * short blocks:
  668. * xr[i] = sign(is[i]) * abs(is[i])^(4/3) *
  669. * 2^((1/4) * (global_gain - 210 - 8 * subblock_gain[w])) *
  670. * 2^-(scalefac_multiplier * scalefac_s[sfb][w])
  671. *
  672. * where:
  673. * scalefac_multiplier = (scalefac_scale + 1) / 2
  674. *
  675. * The routines III_exponents() and III_requantize() facilitate this
  676. * calculation.
  677. */
  678. /*
  679. * NAME: III_exponents()
  680. * DESCRIPTION: calculate scalefactor exponents
  681. */
  682. static
  683. void III_exponents(struct channel const *channel,
  684. unsigned char const *sfbwidth, signed int exponents[39])
  685. {
  686. signed int gain;
  687. unsigned int scalefac_multiplier, sfbi;
  688. gain = (signed int) channel->global_gain - 210;
  689. scalefac_multiplier = (channel->flags & scalefac_scale) ? 2 : 1;
  690. if (channel->block_type == 2) {
  691. unsigned int l;
  692. signed int gain0, gain1, gain2;
  693. sfbi = l = 0;
  694. if (channel->flags & mixed_block_flag) {
  695. unsigned int premask;
  696. premask = (channel->flags & preflag) ? ~0 : 0;
  697. /* long block subbands 0-1 */
  698. while (l < 36) {
  699. exponents[sfbi] = gain -
  700. (signed int) ((channel->scalefac[sfbi] + (pretab[sfbi] & premask)) <<
  701. scalefac_multiplier);
  702. l += sfbwidth[sfbi++];
  703. }
  704. }
  705. /* this is probably wrong for 8000 Hz short/mixed blocks */
  706. gain0 = gain - 8 * (signed int) channel->subblock_gain[0];
  707. gain1 = gain - 8 * (signed int) channel->subblock_gain[1];
  708. gain2 = gain - 8 * (signed int) channel->subblock_gain[2];
  709. while (l < 576) {
  710. exponents[sfbi + 0] = gain0 -
  711. (signed int) (channel->scalefac[sfbi + 0] << scalefac_multiplier);
  712. exponents[sfbi + 1] = gain1 -
  713. (signed int) (channel->scalefac[sfbi + 1] << scalefac_multiplier);
  714. exponents[sfbi + 2] = gain2 -
  715. (signed int) (channel->scalefac[sfbi + 2] << scalefac_multiplier);
  716. l += 3 * sfbwidth[sfbi];
  717. sfbi += 3;
  718. }
  719. }
  720. else { /* channel->block_type != 2 */
  721. if (channel->flags & preflag) {
  722. for (sfbi = 0; sfbi < 22; ++sfbi) {
  723. exponents[sfbi] = gain -
  724. (signed int) ((channel->scalefac[sfbi] + pretab[sfbi]) <<
  725. scalefac_multiplier);
  726. }
  727. }
  728. else {
  729. for (sfbi = 0; sfbi < 22; ++sfbi) {
  730. exponents[sfbi] = gain -
  731. (signed int) (channel->scalefac[sfbi] << scalefac_multiplier);
  732. }
  733. }
  734. }
  735. }
  736. /*
  737. * NAME: III_requantize()
  738. * DESCRIPTION: requantize one (positive) value
  739. */
  740. static
  741. mad_fixed_t III_requantize(unsigned int value, signed int exp)
  742. {
  743. mad_fixed_t requantized;
  744. signed int frac;
  745. struct fixedfloat const *power;
  746. frac = exp % 4; /* assumes sign(frac) == sign(exp) */
  747. exp /= 4;
  748. power = &rq_table[value];
  749. requantized = power->mantissa;
  750. exp += power->exponent;
  751. if (exp < 0) {
  752. if (-exp >= sizeof(mad_fixed_t) * CHAR_BIT) {
  753. /* underflow */
  754. requantized = 0;
  755. }
  756. else {
  757. requantized += 1L << (-exp - 1);
  758. requantized >>= -exp;
  759. }
  760. }
  761. else {
  762. if (exp >= 5) {
  763. /* overflow */
  764. # if defined(DEBUG)
  765. fprintf(stderr, "requantize overflow (%f * 2^%d)\n",
  766. mad_f_todouble(requantized), exp);
  767. # endif
  768. requantized = MAD_F_MAX;
  769. }
  770. else
  771. requantized <<= exp;
  772. }
  773. return frac ? mad_f_mul(requantized, root_table[3 + frac]) : requantized;
  774. }
  775. /* we must take care that sz >= bits and sz < sizeof(long) lest bits == 0 */
  776. # define MASK(cache, sz, bits) \
  777. (((cache) >> ((sz) - (bits))) & ((1 << (bits)) - 1))
  778. # define MASK1BIT(cache, sz) \
  779. ((cache) & (1 << ((sz) - 1)))
  780. /*
  781. * NAME: III_huffdecode()
  782. * DESCRIPTION: decode Huffman code words of one channel of one granule
  783. */
  784. static
  785. enum mad_error III_huffdecode(struct mad_bitptr *ptr, mad_fixed_t xr[576],
  786. struct channel *channel,
  787. unsigned char const *sfbwidth,
  788. unsigned int part2_length)
  789. {
  790. signed int exponents[39], exp;
  791. signed int const *expptr;
  792. struct mad_bitptr peek;
  793. signed int bits_left, cachesz;
  794. register mad_fixed_t *xrptr;
  795. mad_fixed_t const *sfbound;
  796. register unsigned long bitcache;
  797. bits_left = (signed) channel->part2_3_length - (signed) part2_length;
  798. if (bits_left < 0)
  799. return MAD_ERROR_BADPART3LEN;
  800. III_exponents(channel, sfbwidth, exponents);
  801. peek = *ptr;
  802. mad_bit_skip(ptr, bits_left);
  803. /* align bit reads to byte boundaries */
  804. cachesz = mad_bit_bitsleft(&peek);
  805. cachesz += ((32 - 1 - 24) + (24 - cachesz)) & ~7;
  806. bitcache = mad_bit_read(&peek, cachesz);
  807. bits_left -= cachesz;
  808. xrptr = &xr[0];
  809. /* big_values */
  810. {
  811. unsigned int region, rcount;
  812. struct hufftable const *entry;
  813. struct huffpair const *table;
  814. unsigned int linbits, startbits, big_values, reqhits;
  815. mad_fixed_t reqcache[16];
  816. sfbound = xrptr + *sfbwidth++;
  817. rcount = channel->region0_count + 1;
  818. entry = &mad_huff_pair_table[channel->table_select[region = 0]];
  819. table = entry->table;
  820. linbits = entry->linbits;
  821. startbits = entry->startbits;
  822. if (table == 0)
  823. return MAD_ERROR_BADHUFFTABLE;
  824. expptr = &exponents[0];
  825. exp = *expptr++;
  826. reqhits = 0;
  827. big_values = channel->big_values;
  828. while (big_values-- && cachesz + bits_left > 0) {
  829. struct huffpair const *pair;
  830. unsigned int clumpsz, value;
  831. register mad_fixed_t requantized;
  832. if (xrptr == sfbound) {
  833. sfbound += *sfbwidth++;
  834. /* change table if region boundary */
  835. if (--rcount == 0) {
  836. if (region == 0)
  837. rcount = channel->region1_count + 1;
  838. else
  839. rcount = 0; /* all remaining */
  840. entry = &mad_huff_pair_table[channel->table_select[++region]];
  841. table = entry->table;
  842. linbits = entry->linbits;
  843. startbits = entry->startbits;
  844. if (table == 0)
  845. return MAD_ERROR_BADHUFFTABLE;
  846. }
  847. if (exp != *expptr) {
  848. exp = *expptr;
  849. reqhits = 0;
  850. }
  851. ++expptr;
  852. }
  853. if (cachesz < 21) {
  854. unsigned int bits;
  855. bits = ((32 - 1 - 21) + (21 - cachesz)) & ~7;
  856. bitcache = (bitcache << bits) | mad_bit_read(&peek, bits);
  857. cachesz += bits;
  858. bits_left -= bits;
  859. }
  860. /* hcod (0..19) */
  861. clumpsz = startbits;
  862. pair = &table[MASK(bitcache, cachesz, clumpsz)];
  863. while (!pair->final) {
  864. cachesz -= clumpsz;
  865. clumpsz = pair->ptr.bits;
  866. pair = &table[pair->ptr.offset + MASK(bitcache, cachesz, clumpsz)];
  867. }
  868. cachesz -= pair->value.hlen;
  869. if (linbits) {
  870. /* x (0..14) */
  871. value = pair->value.x;
  872. switch (value) {
  873. case 0:
  874. xrptr[0] = 0;
  875. break;
  876. case 15:
  877. if (cachesz < linbits + 2) {
  878. bitcache = (bitcache << 16) | mad_bit_read(&peek, 16);
  879. cachesz += 16;
  880. bits_left -= 16;
  881. }
  882. value += MASK(bitcache, cachesz, linbits);
  883. cachesz -= linbits;
  884. requantized = III_requantize(value, exp);
  885. goto x_final;
  886. default:
  887. if (reqhits & (1 << value))
  888. requantized = reqcache[value];
  889. else {
  890. reqhits |= (1 << value);
  891. requantized = reqcache[value] = III_requantize(value, exp);
  892. }
  893. x_final:
  894. xrptr[0] = MASK1BIT(bitcache, cachesz--) ?
  895. -requantized : requantized;
  896. }
  897. /* y (0..14) */
  898. value = pair->value.y;
  899. switch (value) {
  900. case 0:
  901. xrptr[1] = 0;
  902. break;
  903. case 15:
  904. if (cachesz < linbits + 1) {
  905. bitcache = (bitcache << 16) | mad_bit_read(&peek, 16);
  906. cachesz += 16;
  907. bits_left -= 16;
  908. }
  909. value += MASK(bitcache, cachesz, linbits);
  910. cachesz -= linbits;
  911. requantized = III_requantize(value, exp);
  912. goto y_final;
  913. default:
  914. if (reqhits & (1 << value))
  915. requantized = reqcache[value];
  916. else {
  917. reqhits |= (1 << value);
  918. requantized = reqcache[value] = III_requantize(value, exp);
  919. }
  920. y_final:
  921. xrptr[1] = MASK1BIT(bitcache, cachesz--) ?
  922. -requantized : requantized;
  923. }
  924. }
  925. else {
  926. /* x (0..1) */
  927. value = pair->value.x;
  928. if (value == 0)
  929. xrptr[0] = 0;
  930. else {
  931. if (reqhits & (1 << value))
  932. requantized = reqcache[value];
  933. else {
  934. reqhits |= (1 << value);
  935. requantized = reqcache[value] = III_requantize(value, exp);
  936. }
  937. xrptr[0] = MASK1BIT(bitcache, cachesz--) ?
  938. -requantized : requantized;
  939. }
  940. /* y (0..1) */
  941. value = pair->value.y;
  942. if (value == 0)
  943. xrptr[1] = 0;
  944. else {
  945. if (reqhits & (1 << value))
  946. requantized = reqcache[value];
  947. else {
  948. reqhits |= (1 << value);
  949. requantized = reqcache[value] = III_requantize(value, exp);
  950. }
  951. xrptr[1] = MASK1BIT(bitcache, cachesz--) ?
  952. -requantized : requantized;
  953. }
  954. }
  955. xrptr += 2;
  956. }
  957. }
  958. if (cachesz + bits_left < 0)
  959. return MAD_ERROR_BADHUFFDATA; /* big_values overrun */
  960. /* count1 */
  961. {
  962. struct huffquad const *table;
  963. register mad_fixed_t requantized;
  964. table = mad_huff_quad_table[channel->flags & count1table_select];
  965. requantized = III_requantize(1, exp);
  966. while (cachesz + bits_left > 0 && xrptr <= &xr[572]) {
  967. struct huffquad const *quad;
  968. /* hcod (1..6) */
  969. if (cachesz < 10) {
  970. bitcache = (bitcache << 16) | mad_bit_read(&peek, 16);
  971. cachesz += 16;
  972. bits_left -= 16;
  973. }
  974. quad = &table[MASK(bitcache, cachesz, 4)];
  975. /* quad tables guaranteed to have at most one extra lookup */
  976. if (!quad->final) {
  977. cachesz -= 4;
  978. quad = &table[quad->ptr.offset +
  979. MASK(bitcache, cachesz, quad->ptr.bits)];
  980. }
  981. cachesz -= quad->value.hlen;
  982. if (xrptr == sfbound) {
  983. sfbound += *sfbwidth++;
  984. if (exp != *expptr) {
  985. exp = *expptr;
  986. requantized = III_requantize(1, exp);
  987. }
  988. ++expptr;
  989. }
  990. /* v (0..1) */
  991. xrptr[0] = quad->value.v ?
  992. (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
  993. /* w (0..1) */
  994. xrptr[1] = quad->value.w ?
  995. (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
  996. xrptr += 2;
  997. if (xrptr == sfbound) {
  998. sfbound += *sfbwidth++;
  999. if (exp != *expptr) {
  1000. exp = *expptr;
  1001. requantized = III_requantize(1, exp);
  1002. }
  1003. ++expptr;
  1004. }
  1005. /* x (0..1) */
  1006. xrptr[0] = quad->value.x ?
  1007. (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
  1008. /* y (0..1) */
  1009. xrptr[1] = quad->value.y ?
  1010. (MASK1BIT(bitcache, cachesz--) ? -requantized : requantized) : 0;
  1011. xrptr += 2;
  1012. }
  1013. if (cachesz + bits_left < 0) {
  1014. # if 0 && defined(DEBUG)
  1015. fprintf(stderr, "huffman count1 overrun (%d bits)\n",
  1016. -(cachesz + bits_left));
  1017. # endif
  1018. /* technically the bitstream is misformatted, but apparently
  1019. some encoders are just a bit sloppy with stuffing bits */
  1020. xrptr -= 4;
  1021. }
  1022. }
  1023. assert(-bits_left <= MAD_BUFFER_GUARD * CHAR_BIT);
  1024. # if 0 && defined(DEBUG)
  1025. if (bits_left < 0)
  1026. fprintf(stderr, "read %d bits too many\n", -bits_left);
  1027. else if (cachesz + bits_left > 0)
  1028. fprintf(stderr, "%d stuffing bits\n", cachesz + bits_left);
  1029. # endif
  1030. /* rzero */
  1031. while (xrptr < &xr[576]) {
  1032. xrptr[0] = 0;
  1033. xrptr[1] = 0;
  1034. xrptr += 2;
  1035. }
  1036. return MAD_ERROR_NONE;
  1037. }
  1038. # undef MASK
  1039. # undef MASK1BIT
  1040. /*
  1041. * NAME: III_reorder()
  1042. * DESCRIPTION: reorder frequency lines of a short block into subband order
  1043. */
  1044. static
  1045. void III_reorder(mad_fixed_t xr[576], struct channel const *channel,
  1046. unsigned char const sfbwidth[39])
  1047. {
  1048. mad_fixed_t tmp[32][3][6];
  1049. unsigned int sb, l, f, w, sbw[3], sw[3];
  1050. /* this is probably wrong for 8000 Hz mixed blocks */
  1051. sb = 0;
  1052. if (channel->flags & mixed_block_flag) {
  1053. sb = 2;
  1054. l = 0;
  1055. while (l < 36)
  1056. l += *sfbwidth++;
  1057. }
  1058. for (w = 0; w < 3; ++w) {
  1059. sbw[w] = sb;
  1060. sw[w] = 0;
  1061. }
  1062. f = *sfbwidth++;
  1063. w = 0;
  1064. for (l = 18 * sb; l < 576; ++l) {
  1065. if (f-- == 0) {
  1066. f = *sfbwidth++ - 1;
  1067. w = (w + 1) % 3;
  1068. }
  1069. tmp[sbw[w]][w][sw[w]++] = xr[l];
  1070. if (sw[w] == 6) {
  1071. sw[w] = 0;
  1072. ++sbw[w];
  1073. }
  1074. }
  1075. memcpy(&xr[18 * sb], &tmp[sb], (576 - 18 * sb) * sizeof(mad_fixed_t));
  1076. }
  1077. /*
  1078. * NAME: III_stereo()
  1079. * DESCRIPTION: perform joint stereo processing on a granule
  1080. */
  1081. static
  1082. enum mad_error III_stereo(mad_fixed_t xr[2][576],
  1083. struct granule const *granule,
  1084. struct mad_header *header,
  1085. unsigned char const *sfbwidth)
  1086. {
  1087. short modes[39];
  1088. unsigned int sfbi, l, n, i;
  1089. if (granule->ch[0].block_type !=
  1090. granule->ch[1].block_type ||
  1091. (granule->ch[0].flags & mixed_block_flag) !=
  1092. (granule->ch[1].flags & mixed_block_flag))
  1093. return MAD_ERROR_BADSTEREO;
  1094. for (i = 0; i < 39; ++i)
  1095. modes[i] = header->mode_extension;
  1096. /* intensity stereo */
  1097. if (header->mode_extension & I_STEREO) {
  1098. struct channel const *right_ch = &granule->ch[1];
  1099. mad_fixed_t const *right_xr = xr[1];
  1100. unsigned int is_pos;
  1101. header->flags |= MAD_FLAG_I_STEREO;
  1102. /* first determine which scalefactor bands are to be processed */
  1103. if (right_ch->block_type == 2) {
  1104. unsigned int lower, start, max, bound[3], w;
  1105. lower = start = max = bound[0] = bound[1] = bound[2] = 0;
  1106. sfbi = l = 0;
  1107. if (right_ch->flags & mixed_block_flag) {
  1108. while (l < 36) {
  1109. n = sfbwidth[sfbi++];
  1110. for (i = 0; i < n; ++i) {
  1111. if (right_xr[i]) {
  1112. lower = sfbi;
  1113. break;
  1114. }
  1115. }
  1116. right_xr += n;
  1117. l += n;
  1118. }
  1119. start = sfbi;
  1120. }
  1121. w = 0;
  1122. while (l < 576) {
  1123. n = sfbwidth[sfbi++];
  1124. for (i = 0; i < n; ++i) {
  1125. if (right_xr[i]) {
  1126. max = bound[w] = sfbi;
  1127. break;
  1128. }
  1129. }
  1130. right_xr += n;
  1131. l += n;
  1132. w = (w + 1) % 3;
  1133. }
  1134. if (max)
  1135. lower = start;
  1136. /* long blocks */
  1137. for (i = 0; i < lower; ++i)
  1138. modes[i] = header->mode_extension & ~I_STEREO;
  1139. /* short blocks */
  1140. w = 0;
  1141. for (i = start; i < max; ++i) {
  1142. if (i < bound[w])
  1143. modes[i] = header->mode_extension & ~I_STEREO;
  1144. w = (w + 1) % 3;
  1145. }
  1146. }
  1147. else { /* right_ch->block_type != 2 */
  1148. unsigned int bound;
  1149. bound = 0;
  1150. for (sfbi = l = 0; l < 576; l += n) {
  1151. n = sfbwidth[sfbi++];
  1152. for (i = 0; i < n; ++i) {
  1153. if (right_xr[i]) {
  1154. bound = sfbi;
  1155. break;
  1156. }
  1157. }
  1158. right_xr += n;
  1159. }
  1160. for (i = 0; i < bound; ++i)
  1161. modes[i] = header->mode_extension & ~I_STEREO;
  1162. }
  1163. /* now do the actual processing */
  1164. if (header->flags & MAD_FLAG_LSF_EXT) {
  1165. unsigned char const *illegal_pos = granule[1].ch[1].scalefac;
  1166. mad_fixed_t const *lsf_scale;
  1167. /* intensity_scale */
  1168. lsf_scale = is_lsf_table[right_ch->scalefac_compress & 0x1];
  1169. for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
  1170. n = sfbwidth[sfbi];
  1171. if (!(modes[sfbi] & I_STEREO))
  1172. continue;
  1173. if (illegal_pos[sfbi]) {
  1174. modes[sfbi] &= ~I_STEREO;
  1175. continue;
  1176. }
  1177. is_pos = right_ch->scalefac[sfbi];
  1178. for (i = 0; i < n; ++i) {
  1179. register mad_fixed_t left;
  1180. left = xr[0][l + i];
  1181. if (is_pos == 0)
  1182. xr[1][l + i] = left;
  1183. else {
  1184. register mad_fixed_t opposite;
  1185. opposite = mad_f_mul(left, lsf_scale[(is_pos - 1) / 2]);
  1186. if (is_pos & 1) {
  1187. xr[0][l + i] = opposite;
  1188. xr[1][l + i] = left;
  1189. }
  1190. else
  1191. xr[1][l + i] = opposite;
  1192. }
  1193. }
  1194. }
  1195. }
  1196. else { /* !(header->flags & MAD_FLAG_LSF_EXT) */
  1197. for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
  1198. n = sfbwidth[sfbi];
  1199. if (!(modes[sfbi] & I_STEREO))
  1200. continue;
  1201. is_pos = right_ch->scalefac[sfbi];
  1202. if (is_pos >= 7) { /* illegal intensity position */
  1203. modes[sfbi] &= ~I_STEREO;
  1204. continue;
  1205. }
  1206. for (i = 0; i < n; ++i) {
  1207. register mad_fixed_t left;
  1208. left = xr[0][l + i];
  1209. xr[0][l + i] = mad_f_mul(left, is_table[ is_pos]);
  1210. xr[1][l + i] = mad_f_mul(left, is_table[6 - is_pos]);
  1211. }
  1212. }
  1213. }
  1214. }
  1215. /* middle/side stereo */
  1216. if (header->mode_extension & MS_STEREO) {
  1217. register mad_fixed_t invsqrt2;
  1218. header->flags |= MAD_FLAG_MS_STEREO;
  1219. invsqrt2 = root_table[3 + -2];
  1220. for (sfbi = l = 0; l < 576; ++sfbi, l += n) {
  1221. n = sfbwidth[sfbi];
  1222. if (modes[sfbi] != MS_STEREO)
  1223. continue;
  1224. for (i = 0; i < n; ++i) {
  1225. register mad_fixed_t m, s;
  1226. m = xr[0][l + i];
  1227. s = xr[1][l + i];
  1228. xr[0][l + i] = mad_f_mul(m + s, invsqrt2); /* l = (m + s) / sqrt(2) */
  1229. xr[1][l + i] = mad_f_mul(m - s, invsqrt2); /* r = (m - s) / sqrt(2) */
  1230. }
  1231. }
  1232. }
  1233. return MAD_ERROR_NONE;
  1234. }
  1235. /*
  1236. * NAME: III_aliasreduce()
  1237. * DESCRIPTION: perform frequency line alias reduction
  1238. */
  1239. static
  1240. void III_aliasreduce(mad_fixed_t xr[576], int lines)
  1241. {
  1242. mad_fixed_t const *bound;
  1243. int i;
  1244. bound = &xr[lines];
  1245. for (xr += 18; xr < bound; xr += 18) {
  1246. for (i = 0; i < 8; ++i) {
  1247. register mad_fixed_t a, b;
  1248. register mad_fixed64hi_t hi;
  1249. register mad_fixed64lo_t lo;
  1250. a = xr[-1 - i];
  1251. b = xr[ i];
  1252. # if defined(ASO_ZEROCHECK)
  1253. if (a | b) {
  1254. # endif
  1255. MAD_F_ML0(hi, lo, a, cs[i]);
  1256. MAD_F_MLA(hi, lo, -b, ca[i]);
  1257. xr[-1 - i] = MAD_F_MLZ(hi, lo);
  1258. MAD_F_ML0(hi, lo, b, cs[i]);
  1259. MAD_F_MLA(hi, lo, a, ca[i]);
  1260. xr[ i] = MAD_F_MLZ(hi, lo);
  1261. # if defined(ASO_ZEROCHECK)
  1262. }
  1263. # endif
  1264. }
  1265. }
  1266. }
  1267. # if defined(ASO_IMDCT)
  1268. void III_imdct_l(mad_fixed_t const [18], mad_fixed_t [36], unsigned int);
  1269. # else
  1270. # if 1
  1271. static
  1272. void fastsdct(mad_fixed_t const x[9], mad_fixed_t y[18])
  1273. {
  1274. mad_fixed_t a0, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12;
  1275. mad_fixed_t a13, a14, a15, a16, a17, a18, a19, a20, a21, a22, a23, a24, a25;
  1276. mad_fixed_t m0, m1, m2, m3, m4, m5, m6, m7;
  1277. enum {
  1278. c0 = MAD_F(0x1f838b8d), /* 2 * cos( 1 * PI / 18) */
  1279. c1 = MAD_F(0x1bb67ae8), /* 2 * cos( 3 * PI / 18) */
  1280. c2 = MAD_F(0x18836fa3), /* 2 * cos( 4 * PI / 18) */
  1281. c3 = MAD_F(0x1491b752), /* 2 * cos( 5 * PI / 18) */
  1282. c4 = MAD_F(0x0af1d43a), /* 2 * cos( 7 * PI / 18) */
  1283. c5 = MAD_F(0x058e86a0), /* 2 * cos( 8 * PI / 18) */
  1284. c6 = -MAD_F(0x1e11f642) /* 2 * cos(16 * PI / 18) */
  1285. };
  1286. a0 = x[3] + x[5];
  1287. a1 = x[3] - x[5];
  1288. a2 = x[6] + x[2];
  1289. a3 = x[6] - x[2];
  1290. a4 = x[1] + x[7];
  1291. a5 = x[1] - x[7];
  1292. a6 = x[8] + x[0];
  1293. a7 = x[8] - x[0];
  1294. a8 = a0 + a2;
  1295. a9 = a0 - a2;
  1296. a10 = a0 - a6;
  1297. a11 = a2 - a6;
  1298. a12 = a8 + a6;
  1299. a13 = a1 - a3;
  1300. a14 = a13 + a7;
  1301. a15 = a3 + a7;
  1302. a16 = a1 - a7;
  1303. a17 = a1 + a3;
  1304. m0 = mad_f_mul(a17, -c3);
  1305. m1 = mad_f_mul(a16, -c0);
  1306. m2 = mad_f_mul(a15, -c4);
  1307. m3 = mad_f_mul(a14, -c1);
  1308. m4 = mad_f_mul(a5, -c1);
  1309. m5 = mad_f_mul(a11, -c6);
  1310. m6 = mad_f_mul(a10, -c5);
  1311. m7 = mad_f_mul(a9, -c2);
  1312. a18 = x[4] + a4;
  1313. a19 = 2 * x[4] - a4;
  1314. a20 = a19 + m5;
  1315. a21 = a19 - m5;
  1316. a22 = a19 + m6;
  1317. a23 = m4 + m2;
  1318. a24 = m4 - m2;
  1319. a25 = m4 + m1;
  1320. /* output to every other slot for convenience */
  1321. y[ 0] = a18 + a12;
  1322. y[ 2] = m0 - a25;
  1323. y[ 4] = m7 - a20;
  1324. y[ 6] = m3;
  1325. y[ 8] = a21 - m6;
  1326. y[10] = a24 - m1;
  1327. y[12] = a12 - 2 * a18;
  1328. y[14] = a23 + m0;
  1329. y[16] = a22 + m7;
  1330. }
  1331. static inline
  1332. void sdctII(mad_fixed_t const x[18], mad_fixed_t X[18])
  1333. {
  1334. mad_fixed_t tmp[9];
  1335. int i;
  1336. /* scale[i] = 2 * cos(PI * (2 * i + 1) / (2 * 18)) */
  1337. static mad_fixed_t const scale[9] = {
  1338. MAD_F(0x1fe0d3b4), MAD_F(0x1ee8dd47), MAD_F(0x1d007930),
  1339. MAD_F(0x1a367e59), MAD_F(0x16a09e66), MAD_F(0x125abcf8),
  1340. MAD_F(0x0d8616bc), MAD_F(0x08483ee1), MAD_F(0x02c9fad7)
  1341. };
  1342. /* divide the 18-point SDCT-II into two 9-point SDCT-IIs */
  1343. /* even input butterfly */
  1344. for (i = 0; i < 9; i += 3) {
  1345. tmp[i + 0] = x[i + 0] + x[18 - (i + 0) - 1];
  1346. tmp[i + 1] = x[i + 1] + x[18 - (i + 1) - 1];
  1347. tmp[i + 2] = x[i + 2] + x[18 - (i + 2) - 1];
  1348. }
  1349. fastsdct(tmp, &X[0]);
  1350. /* odd input butterfly and scaling */
  1351. for (i = 0; i < 9; i += 3) {
  1352. tmp[i + 0] = mad_f_mul(x[i + 0] - x[18 - (i + 0) - 1], scale[i + 0]);
  1353. tmp[i + 1] = mad_f_mul(x[i + 1] - x[18 - (i + 1) - 1], scale[i + 1]);
  1354. tmp[i + 2] = mad_f_mul(x[i + 2] - x[18 - (i + 2) - 1], scale[i + 2]);
  1355. }
  1356. fastsdct(tmp, &X[1]);
  1357. /* output accumulation */
  1358. for (i = 3; i < 18; i += 8) {
  1359. X[i + 0] -= X[(i + 0) - 2];
  1360. X[i + 2] -= X[(i + 2) - 2];
  1361. X[i + 4] -= X[(i + 4) - 2];
  1362. X[i + 6] -= X[(i + 6) - 2];
  1363. }
  1364. }
  1365. static inline
  1366. void dctIV(mad_fixed_t const y[18], mad_fixed_t X[18])
  1367. {
  1368. mad_fixed_t tmp[18];
  1369. int i;
  1370. /* scale[i] = 2 * cos(PI * (2 * i + 1) / (4 * 18)) */
  1371. static mad_fixed_t const scale[18] = {
  1372. MAD_F(0x1ff833fa), MAD_F(0x1fb9ea93), MAD_F(0x1f3dd120),
  1373. MAD_F(0x1e84d969), MAD_F(0x1d906bcf), MAD_F(0x1c62648b),
  1374. MAD_F(0x1afd100f), MAD_F(0x1963268b), MAD_F(0x1797c6a4),
  1375. MAD_F(0x159e6f5b), MAD_F(0x137af940), MAD_F(0x11318ef3),
  1376. MAD_F(0x0ec6a507), MAD_F(0x0c3ef153), MAD_F(0x099f61c5),
  1377. MAD_F(0x06ed12c5), MAD_F(0x042d4544), MAD_F(0x0165547c)
  1378. };
  1379. /* scaling */
  1380. for (i = 0; i < 18; i += 3) {
  1381. tmp[i + 0] = mad_f_mul(y[i + 0], scale[i + 0]);
  1382. tmp[i + 1] = mad_f_mul(y[i + 1], scale[i + 1]);
  1383. tmp[i + 2] = mad_f_mul(y[i + 2], scale[i + 2]);
  1384. }
  1385. /* SDCT-II */
  1386. sdctII(tmp, X);
  1387. /* scale reduction and output accumulation */
  1388. X[0] /= 2;
  1389. for (i = 1; i < 17; i += 4) {
  1390. X[i + 0] = X[i + 0] / 2 - X[(i + 0) - 1];
  1391. X[i + 1] = X[i + 1] / 2 - X[(i + 1) - 1];
  1392. X[i + 2] = X[i + 2] / 2 - X[(i + 2) - 1];
  1393. X[i + 3] = X[i + 3] / 2 - X[(i + 3) - 1];
  1394. }
  1395. X[17] = X[17] / 2 - X[16];
  1396. }
  1397. /*
  1398. * NAME: imdct36
  1399. * DESCRIPTION: perform X[18]->x[36] IMDCT using Szu-Wei Lee's fast algorithm
  1400. */
  1401. static inline
  1402. void imdct36(mad_fixed_t const x[18], mad_fixed_t y[36])
  1403. {
  1404. mad_fixed_t tmp[18];
  1405. int i;
  1406. /* DCT-IV */
  1407. dctIV(x, tmp);
  1408. /* convert 18-point DCT-IV to 36-point IMDCT */
  1409. for (i = 0; i < 9; i += 3) {
  1410. y[i + 0] = tmp[9 + (i + 0)];
  1411. y[i + 1] = tmp[9 + (i + 1)];
  1412. y[i + 2] = tmp[9 + (i + 2)];
  1413. }
  1414. for (i = 9; i < 27; i += 3) {
  1415. y[i + 0] = -tmp[36 - (9 + (i + 0)) - 1];
  1416. y[i + 1] = -tmp[36 - (9 + (i + 1)) - 1];
  1417. y[i + 2] = -tmp[36 - (9 + (i + 2)) - 1];
  1418. }
  1419. for (i = 27; i < 36; i += 3) {
  1420. y[i + 0] = -tmp[(i + 0) - 27];
  1421. y[i + 1] = -tmp[(i + 1) - 27];
  1422. y[i + 2] = -tmp[(i + 2) - 27];
  1423. }
  1424. }
  1425. # else
  1426. /*
  1427. * NAME: imdct36
  1428. * DESCRIPTION: perform X[18]->x[36] IMDCT
  1429. */
  1430. static inline
  1431. void imdct36(mad_fixed_t const X[18], mad_fixed_t x[36])
  1432. {
  1433. mad_fixed_t t0, t1, t2, t3, t4, t5, t6, t7;
  1434. mad_fixed_t t8, t9, t10, t11, t12, t13, t14, t15;
  1435. register mad_fixed64hi_t hi;
  1436. register mad_fixed64lo_t lo;
  1437. MAD_F_ML0(hi, lo, X[4], MAD_F(0x0ec835e8));
  1438. MAD_F_MLA(hi, lo, X[13], MAD_F(0x061f78aa));
  1439. t6 = MAD_F_MLZ(hi, lo);
  1440. MAD_F_MLA(hi, lo, (t14 = X[1] - X[10]), -MAD_F(0x061f78aa));
  1441. MAD_F_MLA(hi, lo, (t15 = X[7] + X[16]), -MAD_F(0x0ec835e8));
  1442. t0 = MAD_F_MLZ(hi, lo);
  1443. MAD_F_MLA(hi, lo, (t8 = X[0] - X[11] - X[12]), MAD_F(0x0216a2a2));
  1444. MAD_F_MLA(hi, lo, (t9 = X[2] - X[9] - X[14]), MAD_F(0x09bd7ca0));
  1445. MAD_F_MLA(hi, lo, (t10 = X[3] - X[8] - X[15]), -MAD_F(0x0cb19346));
  1446. MAD_F_MLA(hi, lo, (t11 = X[5] - X[6] - X[17]), -MAD_F(0x0fdcf549));
  1447. x[7] = MAD_F_MLZ(hi, lo);
  1448. x[10] = -x[7];
  1449. MAD_F_ML0(hi, lo, t8, -MAD_F(0x0cb19346));
  1450. MAD_F_MLA(hi, lo, t9, MAD_F(0x0fdcf549));
  1451. MAD_F_MLA(hi, lo, t10, MAD_F(0x0216a2a2));
  1452. MAD_F_MLA(hi, lo, t11, -MAD_F(0x09bd7ca0));
  1453. x[19] = x[34] = MAD_F_MLZ(hi, lo) - t0;
  1454. t12 = X[0] - X[3] + X[8] - X[11] - X[12] + X[15];
  1455. t13 = X[2] + X[5] - X[6] - X[9] - X[14] - X[17];
  1456. MAD_F_ML0(hi, lo, t12, -MAD_F(0x0ec835e8));
  1457. MAD_F_MLA(hi, lo, t13, MAD_F(0x061f78aa));
  1458. x[22] = x[31] = MAD_F_MLZ(hi, lo) + t0;
  1459. MAD_F_ML0(hi, lo, X[1], -MAD_F(0x09bd7ca0));
  1460. MAD_F_MLA(hi, lo, X[7], MAD_F(0x0216a2a2));
  1461. MAD_F_MLA(hi, lo, X[10], -MAD_F(0x0fdcf549));
  1462. MAD_F_MLA(hi, lo, X[16], MAD_F(0x0cb19346));
  1463. t1 = MAD_F_MLZ(hi, lo) + t6;
  1464. MAD_F_ML0(hi, lo, X[0], MAD_F(0x03768962));
  1465. MAD_F_MLA(hi, lo, X[2], MAD_F(0x0e313245));
  1466. MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0ffc19fd));
  1467. MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0acf37ad));
  1468. MAD_F_MLA(hi, lo, X[6], MAD_F(0x04cfb0e2));
  1469. MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0898c779));
  1470. MAD_F_MLA(hi, lo, X[9], MAD_F(0x0d7e8807));
  1471. MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f426cb5));
  1472. MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0bcbe352));
  1473. MAD_F_MLA(hi, lo, X[14], MAD_F(0x00b2aa3e));
  1474. MAD_F_MLA(hi, lo, X[15], -MAD_F(0x07635284));
  1475. MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0f9ee890));
  1476. x[6] = MAD_F_MLZ(hi, lo) + t1;
  1477. x[11] = -x[6];
  1478. MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f426cb5));
  1479. MAD_F_MLA(hi, lo, X[2], -MAD_F(0x00b2aa3e));
  1480. MAD_F_MLA(hi, lo, X[3], MAD_F(0x0898c779));
  1481. MAD_F_MLA(hi, lo, X[5], MAD_F(0x0f9ee890));
  1482. MAD_F_MLA(hi, lo, X[6], MAD_F(0x0acf37ad));
  1483. MAD_F_MLA(hi, lo, X[8], -MAD_F(0x07635284));
  1484. MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0e313245));
  1485. MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0bcbe352));
  1486. MAD_F_MLA(hi, lo, X[12], -MAD_F(0x03768962));
  1487. MAD_F_MLA(hi, lo, X[14], MAD_F(0x0d7e8807));
  1488. MAD_F_MLA(hi, lo, X[15], MAD_F(0x0ffc19fd));
  1489. MAD_F_MLA(hi, lo, X[17], MAD_F(0x04cfb0e2));
  1490. x[23] = x[30] = MAD_F_MLZ(hi, lo) + t1;
  1491. MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0bcbe352));
  1492. MAD_F_MLA(hi, lo, X[2], MAD_F(0x0d7e8807));
  1493. MAD_F_MLA(hi, lo, X[3], -MAD_F(0x07635284));
  1494. MAD_F_MLA(hi, lo, X[5], MAD_F(0x04cfb0e2));
  1495. MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f9ee890));
  1496. MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0ffc19fd));
  1497. MAD_F_MLA(hi, lo, X[9], -MAD_F(0x00b2aa3e));
  1498. MAD_F_MLA(hi, lo, X[11], MAD_F(0x03768962));
  1499. MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0f426cb5));
  1500. MAD_F_MLA(hi, lo, X[14], MAD_F(0x0e313245));
  1501. MAD_F_MLA(hi, lo, X[15], MAD_F(0x0898c779));
  1502. MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0acf37ad));
  1503. x[18] = x[35] = MAD_F_MLZ(hi, lo) - t1;
  1504. MAD_F_ML0(hi, lo, X[4], MAD_F(0x061f78aa));
  1505. MAD_F_MLA(hi, lo, X[13], -MAD_F(0x0ec835e8));
  1506. t7 = MAD_F_MLZ(hi, lo);
  1507. MAD_F_MLA(hi, lo, X[1], -MAD_F(0x0cb19346));
  1508. MAD_F_MLA(hi, lo, X[7], MAD_F(0x0fdcf549));
  1509. MAD_F_MLA(hi, lo, X[10], MAD_F(0x0216a2a2));
  1510. MAD_F_MLA(hi, lo, X[16], -MAD_F(0x09bd7ca0));
  1511. t2 = MAD_F_MLZ(hi, lo);
  1512. MAD_F_MLA(hi, lo, X[0], MAD_F(0x04cfb0e2));
  1513. MAD_F_MLA(hi, lo, X[2], MAD_F(0x0ffc19fd));
  1514. MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0d7e8807));
  1515. MAD_F_MLA(hi, lo, X[5], MAD_F(0x03768962));
  1516. MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0bcbe352));
  1517. MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0e313245));
  1518. MAD_F_MLA(hi, lo, X[9], MAD_F(0x07635284));
  1519. MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0acf37ad));
  1520. MAD_F_MLA(hi, lo, X[12], MAD_F(0x0f9ee890));
  1521. MAD_F_MLA(hi, lo, X[14], MAD_F(0x0898c779));
  1522. MAD_F_MLA(hi, lo, X[15], MAD_F(0x00b2aa3e));
  1523. MAD_F_MLA(hi, lo, X[17], MAD_F(0x0f426cb5));
  1524. x[5] = MAD_F_MLZ(hi, lo);
  1525. x[12] = -x[5];
  1526. MAD_F_ML0(hi, lo, X[0], MAD_F(0x0acf37ad));
  1527. MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0898c779));
  1528. MAD_F_MLA(hi, lo, X[3], MAD_F(0x0e313245));
  1529. MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0f426cb5));
  1530. MAD_F_MLA(hi, lo, X[6], -MAD_F(0x03768962));
  1531. MAD_F_MLA(hi, lo, X[8], MAD_F(0x00b2aa3e));
  1532. MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0ffc19fd));
  1533. MAD_F_MLA(hi, lo, X[11], MAD_F(0x0f9ee890));
  1534. MAD_F_MLA(hi, lo, X[12], -MAD_F(0x04cfb0e2));
  1535. MAD_F_MLA(hi, lo, X[14], MAD_F(0x07635284));
  1536. MAD_F_MLA(hi, lo, X[15], MAD_F(0x0d7e8807));
  1537. MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0bcbe352));
  1538. x[0] = MAD_F_MLZ(hi, lo) + t2;
  1539. x[17] = -x[0];
  1540. MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0f9ee890));
  1541. MAD_F_MLA(hi, lo, X[2], -MAD_F(0x07635284));
  1542. MAD_F_MLA(hi, lo, X[3], -MAD_F(0x00b2aa3e));
  1543. MAD_F_MLA(hi, lo, X[5], MAD_F(0x0bcbe352));
  1544. MAD_F_MLA(hi, lo, X[6], MAD_F(0x0f426cb5));
  1545. MAD_F_MLA(hi, lo, X[8], MAD_F(0x0d7e8807));
  1546. MAD_F_MLA(hi, lo, X[9], MAD_F(0x0898c779));
  1547. MAD_F_MLA(hi, lo, X[11], -MAD_F(0x04cfb0e2));
  1548. MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0acf37ad));
  1549. MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0ffc19fd));
  1550. MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0e313245));
  1551. MAD_F_MLA(hi, lo, X[17], -MAD_F(0x03768962));
  1552. x[24] = x[29] = MAD_F_MLZ(hi, lo) + t2;
  1553. MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0216a2a2));
  1554. MAD_F_MLA(hi, lo, X[7], -MAD_F(0x09bd7ca0));
  1555. MAD_F_MLA(hi, lo, X[10], MAD_F(0x0cb19346));
  1556. MAD_F_MLA(hi, lo, X[16], MAD_F(0x0fdcf549));
  1557. t3 = MAD_F_MLZ(hi, lo) + t7;
  1558. MAD_F_ML0(hi, lo, X[0], MAD_F(0x00b2aa3e));
  1559. MAD_F_MLA(hi, lo, X[2], MAD_F(0x03768962));
  1560. MAD_F_MLA(hi, lo, X[3], -MAD_F(0x04cfb0e2));
  1561. MAD_F_MLA(hi, lo, X[5], -MAD_F(0x07635284));
  1562. MAD_F_MLA(hi, lo, X[6], MAD_F(0x0898c779));
  1563. MAD_F_MLA(hi, lo, X[8], MAD_F(0x0acf37ad));
  1564. MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0bcbe352));
  1565. MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0d7e8807));
  1566. MAD_F_MLA(hi, lo, X[12], MAD_F(0x0e313245));
  1567. MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f426cb5));
  1568. MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0f9ee890));
  1569. MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0ffc19fd));
  1570. x[8] = MAD_F_MLZ(hi, lo) + t3;
  1571. x[9] = -x[8];
  1572. MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0e313245));
  1573. MAD_F_MLA(hi, lo, X[2], MAD_F(0x0bcbe352));
  1574. MAD_F_MLA(hi, lo, X[3], MAD_F(0x0f9ee890));
  1575. MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0898c779));
  1576. MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0ffc19fd));
  1577. MAD_F_MLA(hi, lo, X[8], MAD_F(0x04cfb0e2));
  1578. MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f426cb5));
  1579. MAD_F_MLA(hi, lo, X[11], -MAD_F(0x00b2aa3e));
  1580. MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0d7e8807));
  1581. MAD_F_MLA(hi, lo, X[14], -MAD_F(0x03768962));
  1582. MAD_F_MLA(hi, lo, X[15], MAD_F(0x0acf37ad));
  1583. MAD_F_MLA(hi, lo, X[17], MAD_F(0x07635284));
  1584. x[21] = x[32] = MAD_F_MLZ(hi, lo) + t3;
  1585. MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0d7e8807));
  1586. MAD_F_MLA(hi, lo, X[2], MAD_F(0x0f426cb5));
  1587. MAD_F_MLA(hi, lo, X[3], MAD_F(0x0acf37ad));
  1588. MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0ffc19fd));
  1589. MAD_F_MLA(hi, lo, X[6], -MAD_F(0x07635284));
  1590. MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f9ee890));
  1591. MAD_F_MLA(hi, lo, X[9], MAD_F(0x03768962));
  1592. MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0e313245));
  1593. MAD_F_MLA(hi, lo, X[12], MAD_F(0x00b2aa3e));
  1594. MAD_F_MLA(hi, lo, X[14], MAD_F(0x0bcbe352));
  1595. MAD_F_MLA(hi, lo, X[15], -MAD_F(0x04cfb0e2));
  1596. MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0898c779));
  1597. x[20] = x[33] = MAD_F_MLZ(hi, lo) - t3;
  1598. MAD_F_ML0(hi, lo, t14, -MAD_F(0x0ec835e8));
  1599. MAD_F_MLA(hi, lo, t15, MAD_F(0x061f78aa));
  1600. t4 = MAD_F_MLZ(hi, lo) - t7;
  1601. MAD_F_ML0(hi, lo, t12, MAD_F(0x061f78aa));
  1602. MAD_F_MLA(hi, lo, t13, MAD_F(0x0ec835e8));
  1603. x[4] = MAD_F_MLZ(hi, lo) + t4;
  1604. x[13] = -x[4];
  1605. MAD_F_ML0(hi, lo, t8, MAD_F(0x09bd7ca0));
  1606. MAD_F_MLA(hi, lo, t9, -MAD_F(0x0216a2a2));
  1607. MAD_F_MLA(hi, lo, t10, MAD_F(0x0fdcf549));
  1608. MAD_F_MLA(hi, lo, t11, -MAD_F(0x0cb19346));
  1609. x[1] = MAD_F_MLZ(hi, lo) + t4;
  1610. x[16] = -x[1];
  1611. MAD_F_ML0(hi, lo, t8, -MAD_F(0x0fdcf549));
  1612. MAD_F_MLA(hi, lo, t9, -MAD_F(0x0cb19346));
  1613. MAD_F_MLA(hi, lo, t10, -MAD_F(0x09bd7ca0));
  1614. MAD_F_MLA(hi, lo, t11, -MAD_F(0x0216a2a2));
  1615. x[25] = x[28] = MAD_F_MLZ(hi, lo) + t4;
  1616. MAD_F_ML0(hi, lo, X[1], -MAD_F(0x0fdcf549));
  1617. MAD_F_MLA(hi, lo, X[7], -MAD_F(0x0cb19346));
  1618. MAD_F_MLA(hi, lo, X[10], -MAD_F(0x09bd7ca0));
  1619. MAD_F_MLA(hi, lo, X[16], -MAD_F(0x0216a2a2));
  1620. t5 = MAD_F_MLZ(hi, lo) - t6;
  1621. MAD_F_ML0(hi, lo, X[0], MAD_F(0x0898c779));
  1622. MAD_F_MLA(hi, lo, X[2], MAD_F(0x04cfb0e2));
  1623. MAD_F_MLA(hi, lo, X[3], MAD_F(0x0bcbe352));
  1624. MAD_F_MLA(hi, lo, X[5], MAD_F(0x00b2aa3e));
  1625. MAD_F_MLA(hi, lo, X[6], MAD_F(0x0e313245));
  1626. MAD_F_MLA(hi, lo, X[8], -MAD_F(0x03768962));
  1627. MAD_F_MLA(hi, lo, X[9], MAD_F(0x0f9ee890));
  1628. MAD_F_MLA(hi, lo, X[11], -MAD_F(0x07635284));
  1629. MAD_F_MLA(hi, lo, X[12], MAD_F(0x0ffc19fd));
  1630. MAD_F_MLA(hi, lo, X[14], -MAD_F(0x0acf37ad));
  1631. MAD_F_MLA(hi, lo, X[15], MAD_F(0x0f426cb5));
  1632. MAD_F_MLA(hi, lo, X[17], -MAD_F(0x0d7e8807));
  1633. x[2] = MAD_F_MLZ(hi, lo) + t5;
  1634. x[15] = -x[2];
  1635. MAD_F_ML0(hi, lo, X[0], MAD_F(0x07635284));
  1636. MAD_F_MLA(hi, lo, X[2], MAD_F(0x0acf37ad));
  1637. MAD_F_MLA(hi, lo, X[3], MAD_F(0x03768962));
  1638. MAD_F_MLA(hi, lo, X[5], MAD_F(0x0d7e8807));
  1639. MAD_F_MLA(hi, lo, X[6], -MAD_F(0x00b2aa3e));
  1640. MAD_F_MLA(hi, lo, X[8], MAD_F(0x0f426cb5));
  1641. MAD_F_MLA(hi, lo, X[9], -MAD_F(0x04cfb0e2));
  1642. MAD_F_MLA(hi, lo, X[11], MAD_F(0x0ffc19fd));
  1643. MAD_F_MLA(hi, lo, X[12], -MAD_F(0x0898c779));
  1644. MAD_F_MLA(hi, lo, X[14], MAD_F(0x0f9ee890));
  1645. MAD_F_MLA(hi, lo, X[15], -MAD_F(0x0bcbe352));
  1646. MAD_F_MLA(hi, lo, X[17], MAD_F(0x0e313245));
  1647. x[3] = MAD_F_MLZ(hi, lo) + t5;
  1648. x[14] = -x[3];
  1649. MAD_F_ML0(hi, lo, X[0], -MAD_F(0x0ffc19fd));
  1650. MAD_F_MLA(hi, lo, X[2], -MAD_F(0x0f9ee890));
  1651. MAD_F_MLA(hi, lo, X[3], -MAD_F(0x0f426cb5));
  1652. MAD_F_MLA(hi, lo, X[5], -MAD_F(0x0e313245));
  1653. MAD_F_MLA(hi, lo, X[6], -MAD_F(0x0d7e8807));
  1654. MAD_F_MLA(hi, lo, X[8], -MAD_F(0x0bcbe352));
  1655. MAD_F_MLA(hi, lo, X[9], -MAD_F(0x0acf37ad));
  1656. MAD_F_MLA(hi, lo, X[11], -MAD_F(0x0898c779));
  1657. MAD_F_MLA(hi, lo, X[12], -MAD_F(0x07635284));
  1658. MAD_F_MLA(hi, lo, X[14], -MAD_F(0x04cfb0e2));
  1659. MAD_F_MLA(hi, lo, X[15], -MAD_F(0x03768962));
  1660. MAD_F_MLA(hi, lo, X[17], -MAD_F(0x00b2aa3e));
  1661. x[26] = x[27] = MAD_F_MLZ(hi, lo) + t5;
  1662. }
  1663. # endif
  1664. /*
  1665. * NAME: III_imdct_l()
  1666. * DESCRIPTION: perform IMDCT and windowing for long blocks
  1667. */
  1668. static
  1669. void III_imdct_l(mad_fixed_t const X[18], mad_fixed_t z[36],
  1670. unsigned int block_type)
  1671. {
  1672. unsigned int i;
  1673. /* IMDCT */
  1674. imdct36(X, z);
  1675. /* windowing */
  1676. switch (block_type) {
  1677. case 0: /* normal window */
  1678. # if defined(ASO_INTERLEAVE1)
  1679. {
  1680. register mad_fixed_t tmp1, tmp2;
  1681. tmp1 = window_l[0];
  1682. tmp2 = window_l[1];
  1683. for (i = 0; i < 34; i += 2) {
  1684. z[i + 0] = mad_f_mul(z[i + 0], tmp1);
  1685. tmp1 = window_l[i + 2];
  1686. z[i + 1] = mad_f_mul(z[i + 1], tmp2);
  1687. tmp2 = window_l[i + 3];
  1688. }
  1689. z[34] = mad_f_mul(z[34], tmp1);
  1690. z[35] = mad_f_mul(z[35], tmp2);
  1691. }
  1692. # elif defined(ASO_INTERLEAVE2)
  1693. {
  1694. register mad_fixed_t tmp1, tmp2;
  1695. tmp1 = z[0];
  1696. tmp2 = window_l[0];
  1697. for (i = 0; i < 35; ++i) {
  1698. z[i] = mad_f_mul(tmp1, tmp2);
  1699. tmp1 = z[i + 1];
  1700. tmp2 = window_l[i + 1];
  1701. }
  1702. z[35] = mad_f_mul(tmp1, tmp2);
  1703. }
  1704. # elif 1
  1705. for (i = 0; i < 36; i += 4) {
  1706. z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]);
  1707. z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]);
  1708. z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]);
  1709. z[i + 3] = mad_f_mul(z[i + 3], window_l[i + 3]);
  1710. }
  1711. # else
  1712. for (i = 0; i < 36; ++i) z[i] = mad_f_mul(z[i], window_l[i]);
  1713. # endif
  1714. break;
  1715. case 1: /* start block */
  1716. for (i = 0; i < 18; i += 3) {
  1717. z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]);
  1718. z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]);
  1719. z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]);
  1720. }
  1721. /* (i = 18; i < 24; ++i) z[i] unchanged */
  1722. for (i = 24; i < 30; ++i) z[i] = mad_f_mul(z[i], window_s[i - 18]);
  1723. for (i = 30; i < 36; ++i) z[i] = 0;
  1724. break;
  1725. case 3: /* stop block */
  1726. for (i = 0; i < 6; ++i) z[i] = 0;
  1727. for (i = 6; i < 12; ++i) z[i] = mad_f_mul(z[i], window_s[i - 6]);
  1728. /* (i = 12; i < 18; ++i) z[i] unchanged */
  1729. for (i = 18; i < 36; i += 3) {
  1730. z[i + 0] = mad_f_mul(z[i + 0], window_l[i + 0]);
  1731. z[i + 1] = mad_f_mul(z[i + 1], window_l[i + 1]);
  1732. z[i + 2] = mad_f_mul(z[i + 2], window_l[i + 2]);
  1733. }
  1734. break;
  1735. }
  1736. }
  1737. # endif /* ASO_IMDCT */
  1738. /*
  1739. * NAME: III_imdct_s()
  1740. * DESCRIPTION: perform IMDCT and windowing for short blocks
  1741. */
  1742. static
  1743. void III_imdct_s(mad_fixed_t const X[18], mad_fixed_t z[36])
  1744. {
  1745. mad_fixed_t y[36], *yptr;
  1746. mad_fixed_t const *wptr;
  1747. int w, i;
  1748. register mad_fixed64hi_t hi;
  1749. register mad_fixed64lo_t lo;
  1750. /* IMDCT */
  1751. yptr = &y[0];
  1752. for (w = 0; w < 3; ++w) {
  1753. register mad_fixed_t const (*s)[6];
  1754. s = imdct_s;
  1755. for (i = 0; i < 3; ++i) {
  1756. MAD_F_ML0(hi, lo, X[0], (*s)[0]);
  1757. MAD_F_MLA(hi, lo, X[1], (*s)[1]);
  1758. MAD_F_MLA(hi, lo, X[2], (*s)[2]);
  1759. MAD_F_MLA(hi, lo, X[3], (*s)[3]);
  1760. MAD_F_MLA(hi, lo, X[4], (*s)[4]);
  1761. MAD_F_MLA(hi, lo, X[5], (*s)[5]);
  1762. yptr[i + 0] = MAD_F_MLZ(hi, lo);
  1763. yptr[5 - i] = -yptr[i + 0];
  1764. ++s;
  1765. MAD_F_ML0(hi, lo, X[0], (*s)[0]);
  1766. MAD_F_MLA(hi, lo, X[1], (*s)[1]);
  1767. MAD_F_MLA(hi, lo, X[2], (*s)[2]);
  1768. MAD_F_MLA(hi, lo, X[3], (*s)[3]);
  1769. MAD_F_MLA(hi, lo, X[4], (*s)[4]);
  1770. MAD_F_MLA(hi, lo, X[5], (*s)[5]);
  1771. yptr[ i + 6] = MAD_F_MLZ(hi, lo);
  1772. yptr[11 - i] = yptr[i + 6];
  1773. ++s;
  1774. }
  1775. yptr += 12;
  1776. X += 6;
  1777. }
  1778. /* windowing, overlapping and concatenation */
  1779. yptr = &y[0];
  1780. wptr = &window_s[0];
  1781. for (i = 0; i < 6; ++i) {
  1782. z[i + 0] = 0;
  1783. z[i + 6] = mad_f_mul(yptr[ 0 + 0], wptr[0]);
  1784. MAD_F_ML0(hi, lo, yptr[ 0 + 6], wptr[6]);
  1785. MAD_F_MLA(hi, lo, yptr[12 + 0], wptr[0]);
  1786. z[i + 12] = MAD_F_MLZ(hi, lo);
  1787. MAD_F_ML0(hi, lo, yptr[12 + 6], wptr[6]);
  1788. MAD_F_MLA(hi, lo, yptr[24 + 0], wptr[0]);
  1789. z[i + 18] = MAD_F_MLZ(hi, lo);
  1790. z[i + 24] = mad_f_mul(yptr[24 + 6], wptr[6]);
  1791. z[i + 30] = 0;
  1792. ++yptr;
  1793. ++wptr;
  1794. }
  1795. }
  1796. /*
  1797. * NAME: III_overlap()
  1798. * DESCRIPTION: perform overlap-add of windowed IMDCT outputs
  1799. */
  1800. static
  1801. void III_overlap(mad_fixed_t const output[36], mad_fixed_t overlap[18],
  1802. mad_fixed_t sample[18][32], unsigned int sb)
  1803. {
  1804. unsigned int i;
  1805. # if defined(ASO_INTERLEAVE2)
  1806. {
  1807. register mad_fixed_t tmp1, tmp2;
  1808. tmp1 = overlap[0];
  1809. tmp2 = overlap[1];
  1810. for (i = 0; i < 16; i += 2) {
  1811. sample[i + 0][sb] = output[i + 0 + 0] + tmp1;
  1812. overlap[i + 0] = output[i + 0 + 18];
  1813. tmp1 = overlap[i + 2];
  1814. sample[i + 1][sb] = output[i + 1 + 0] + tmp2;
  1815. overlap[i + 1] = output[i + 1 + 18];
  1816. tmp2 = overlap[i + 3];
  1817. }
  1818. sample[16][sb] = output[16 + 0] + tmp1;
  1819. overlap[16] = output[16 + 18];
  1820. sample[17][sb] = output[17 + 0] + tmp2;
  1821. overlap[17] = output[17 + 18];
  1822. }
  1823. # elif 0
  1824. for (i = 0; i < 18; i += 2) {
  1825. sample[i + 0][sb] = output[i + 0 + 0] + overlap[i + 0];
  1826. overlap[i + 0] = output[i + 0 + 18];
  1827. sample[i + 1][sb] = output[i + 1 + 0] + overlap[i + 1];
  1828. overlap[i + 1] = output[i + 1 + 18];
  1829. }
  1830. # else
  1831. for (i = 0; i < 18; ++i) {
  1832. sample[i][sb] = output[i + 0] + overlap[i];
  1833. overlap[i] = output[i + 18];
  1834. }
  1835. # endif
  1836. }
  1837. /*
  1838. * NAME: III_overlap_z()
  1839. * DESCRIPTION: perform "overlap-add" of zero IMDCT outputs
  1840. */
  1841. static inline
  1842. void III_overlap_z(mad_fixed_t overlap[18],
  1843. mad_fixed_t sample[18][32], unsigned int sb)
  1844. {
  1845. unsigned int i;
  1846. # if defined(ASO_INTERLEAVE2)
  1847. {
  1848. register mad_fixed_t tmp1, tmp2;
  1849. tmp1 = overlap[0];
  1850. tmp2 = overlap[1];
  1851. for (i = 0; i < 16; i += 2) {
  1852. sample[i + 0][sb] = tmp1;
  1853. overlap[i + 0] = 0;
  1854. tmp1 = overlap[i + 2];
  1855. sample[i + 1][sb] = tmp2;
  1856. overlap[i + 1] = 0;
  1857. tmp2 = overlap[i + 3];
  1858. }
  1859. sample[16][sb] = tmp1;
  1860. overlap[16] = 0;
  1861. sample[17][sb] = tmp2;
  1862. overlap[17] = 0;
  1863. }
  1864. # else
  1865. for (i = 0; i < 18; ++i) {
  1866. sample[i][sb] = overlap[i];
  1867. overlap[i] = 0;
  1868. }
  1869. # endif
  1870. }
  1871. /*
  1872. * NAME: III_freqinver()
  1873. * DESCRIPTION: perform subband frequency inversion for odd sample lines
  1874. */
  1875. static
  1876. void III_freqinver(mad_fixed_t sample[18][32], unsigned int sb)
  1877. {
  1878. unsigned int i;
  1879. # if 1 || defined(ASO_INTERLEAVE1) || defined(ASO_INTERLEAVE2)
  1880. {
  1881. register mad_fixed_t tmp1, tmp2;
  1882. tmp1 = sample[1][sb];
  1883. tmp2 = sample[3][sb];
  1884. for (i = 1; i < 13; i += 4) {
  1885. sample[i + 0][sb] = -tmp1;
  1886. tmp1 = sample[i + 4][sb];
  1887. sample[i + 2][sb] = -tmp2;
  1888. tmp2 = sample[i + 6][sb];
  1889. }
  1890. sample[13][sb] = -tmp1;
  1891. tmp1 = sample[17][sb];
  1892. sample[15][sb] = -tmp2;
  1893. sample[17][sb] = -tmp1;
  1894. }
  1895. # else
  1896. for (i = 1; i < 18; i += 2)
  1897. sample[i][sb] = -sample[i][sb];
  1898. # endif
  1899. }
  1900. /*
  1901. * NAME: III_decode()
  1902. * DESCRIPTION: decode frame main_data
  1903. */
  1904. static
  1905. enum mad_error III_decode(struct mad_bitptr *ptr, struct mad_frame *frame,
  1906. struct sideinfo *si, unsigned int nch)
  1907. {
  1908. struct mad_header *header = &frame->header;
  1909. unsigned int sfreqi, ngr, gr;
  1910. {
  1911. unsigned int sfreq;
  1912. sfreq = header->samplerate;
  1913. if (header->flags & MAD_FLAG_MPEG_2_5_EXT)
  1914. sfreq *= 2;
  1915. /* 48000 => 0, 44100 => 1, 32000 => 2,
  1916. 24000 => 3, 22050 => 4, 16000 => 5 */
  1917. sfreqi = ((sfreq >> 7) & 0x000f) +
  1918. ((sfreq >> 15) & 0x0001) - 8;
  1919. if (header->flags & MAD_FLAG_MPEG_2_5_EXT)
  1920. sfreqi += 3;
  1921. }
  1922. /* scalefactors, Huffman decoding, requantization */
  1923. ngr = (header->flags & MAD_FLAG_LSF_EXT) ? 1 : 2;
  1924. for (gr = 0; gr < ngr; ++gr) {
  1925. struct granule *granule = &si->gr[gr];
  1926. unsigned char const *sfbwidth[2];
  1927. mad_fixed_t xr[2][576];
  1928. unsigned int ch;
  1929. enum mad_error error;
  1930. for (ch = 0; ch < nch; ++ch) {
  1931. struct channel *channel = &granule->ch[ch];
  1932. unsigned int part2_length;
  1933. sfbwidth[ch] = sfbwidth_table[sfreqi].l;
  1934. if (channel->block_type == 2) {
  1935. sfbwidth[ch] = (channel->flags & mixed_block_flag) ?
  1936. sfbwidth_table[sfreqi].m : sfbwidth_table[sfreqi].s;
  1937. }
  1938. if (header->flags & MAD_FLAG_LSF_EXT) {
  1939. part2_length = III_scalefactors_lsf(ptr, channel,
  1940. ch == 0 ? 0 : &si->gr[1].ch[1],
  1941. header->mode_extension);
  1942. }
  1943. else {
  1944. part2_length = III_scalefactors(ptr, channel, &si->gr[0].ch[ch],
  1945. gr == 0 ? 0 : si->scfsi[ch]);
  1946. }
  1947. error = III_huffdecode(ptr, xr[ch], channel, sfbwidth[ch], part2_length);
  1948. if (error)
  1949. return error;
  1950. }
  1951. /* joint stereo processing */
  1952. if (header->mode == MAD_MODE_JOINT_STEREO && header->mode_extension) {
  1953. error = III_stereo(xr, granule, header, sfbwidth[0]);
  1954. if (error)
  1955. return error;
  1956. }
  1957. /* reordering, alias reduction, IMDCT, overlap-add, frequency inversion */
  1958. for (ch = 0; ch < nch; ++ch) {
  1959. struct channel const *channel = &granule->ch[ch];
  1960. mad_fixed_t (*sample)[32] = &frame->sbsample[ch][18 * gr];
  1961. unsigned int sb, l, i, sblimit;
  1962. mad_fixed_t output[36];
  1963. if (channel->block_type == 2) {
  1964. III_reorder(xr[ch], channel, sfbwidth[ch]);
  1965. # if !defined(OPT_STRICT)
  1966. /*
  1967. * According to ISO/IEC 11172-3, "Alias reduction is not applied for
  1968. * granules with block_type == 2 (short block)." However, other
  1969. * sources suggest alias reduction should indeed be performed on the
  1970. * lower two subbands of mixed blocks. Most other implementations do
  1971. * this, so by default we will too.
  1972. */
  1973. if (channel->flags & mixed_block_flag)
  1974. III_aliasreduce(xr[ch], 36);
  1975. # endif
  1976. }
  1977. else
  1978. III_aliasreduce(xr[ch], 576);
  1979. l = 0;
  1980. /* subbands 0-1 */
  1981. if (channel->block_type != 2 || (channel->flags & mixed_block_flag)) {
  1982. unsigned int block_type;
  1983. block_type = channel->block_type;
  1984. if (channel->flags & mixed_block_flag)
  1985. block_type = 0;
  1986. /* long blocks */
  1987. for (sb = 0; sb < 2; ++sb, l += 18) {
  1988. III_imdct_l(&xr[ch][l], output, block_type);
  1989. III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
  1990. }
  1991. }
  1992. else {
  1993. /* short blocks */
  1994. for (sb = 0; sb < 2; ++sb, l += 18) {
  1995. III_imdct_s(&xr[ch][l], output);
  1996. III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
  1997. }
  1998. }
  1999. III_freqinver(sample, 1);
  2000. /* (nonzero) subbands 2-31 */
  2001. i = 576;
  2002. while (i > 36 && xr[ch][i - 1] == 0)
  2003. --i;
  2004. sblimit = 32 - (576 - i) / 18;
  2005. if (channel->block_type != 2) {
  2006. /* long blocks */
  2007. for (sb = 2; sb < sblimit; ++sb, l += 18) {
  2008. III_imdct_l(&xr[ch][l], output, channel->block_type);
  2009. III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
  2010. if (sb & 1)
  2011. III_freqinver(sample, sb);
  2012. }
  2013. }
  2014. else {
  2015. /* short blocks */
  2016. for (sb = 2; sb < sblimit; ++sb, l += 18) {
  2017. III_imdct_s(&xr[ch][l], output);
  2018. III_overlap(output, (*frame->overlap)[ch][sb], sample, sb);
  2019. if (sb & 1)
  2020. III_freqinver(sample, sb);
  2021. }
  2022. }
  2023. /* remaining (zero) subbands */
  2024. for (sb = sblimit; sb < 32; ++sb) {
  2025. III_overlap_z((*frame->overlap)[ch][sb], sample, sb);
  2026. if (sb & 1)
  2027. III_freqinver(sample, sb);
  2028. }
  2029. }
  2030. }
  2031. return MAD_ERROR_NONE;
  2032. }
  2033. /*
  2034. * NAME: layer->III()
  2035. * DESCRIPTION: decode a single Layer III frame
  2036. */
  2037. int mad_layer_III(struct mad_stream *stream, struct mad_frame *frame)
  2038. {
  2039. struct mad_header *header = &frame->header;
  2040. unsigned int nch, priv_bitlen, next_md_begin = 0;
  2041. unsigned int si_len, data_bitlen, md_len;
  2042. unsigned int frame_space, frame_used, frame_free;
  2043. struct mad_bitptr ptr;
  2044. struct sideinfo si;
  2045. enum mad_error error;
  2046. int result = 0;
  2047. /* allocate Layer III dynamic structures */
  2048. if (stream->main_data == 0) {
  2049. stream->main_data = malloc(MAD_BUFFER_MDLEN);
  2050. if (stream->main_data == 0) {
  2051. stream->error = MAD_ERROR_NOMEM;
  2052. return -1;
  2053. }
  2054. }
  2055. if (frame->overlap == 0) {
  2056. frame->overlap = calloc(2 * 32 * 18, sizeof(mad_fixed_t));
  2057. if (frame->overlap == 0) {
  2058. stream->error = MAD_ERROR_NOMEM;
  2059. return -1;
  2060. }
  2061. }
  2062. nch = MAD_NCHANNELS(header);
  2063. si_len = (header->flags & MAD_FLAG_LSF_EXT) ?
  2064. (nch == 1 ? 9 : 17) : (nch == 1 ? 17 : 32);
  2065. /* check frame sanity */
  2066. if (stream->next_frame - mad_bit_nextbyte(&stream->ptr) <
  2067. (signed int) si_len) {
  2068. stream->error = MAD_ERROR_BADFRAMELEN;
  2069. stream->md_len = 0;
  2070. return -1;
  2071. }
  2072. /* check CRC word */
  2073. if (header->flags & MAD_FLAG_PROTECTION) {
  2074. header->crc_check =
  2075. mad_bit_crc(stream->ptr, si_len * CHAR_BIT, header->crc_check);
  2076. if (header->crc_check != header->crc_target &&
  2077. !(frame->options & MAD_OPTION_IGNORECRC)) {
  2078. stream->error = MAD_ERROR_BADCRC;
  2079. result = -1;
  2080. }
  2081. }
  2082. /* decode frame side information */
  2083. error = III_sideinfo(&stream->ptr, nch, header->flags & MAD_FLAG_LSF_EXT,
  2084. &si, &data_bitlen, &priv_bitlen);
  2085. if (error && result == 0) {
  2086. stream->error = error;
  2087. result = -1;
  2088. }
  2089. header->flags |= priv_bitlen;
  2090. header->private_bits |= si.private_bits;
  2091. /* find main_data of next frame */
  2092. {
  2093. struct mad_bitptr peek;
  2094. unsigned long header;
  2095. mad_bit_init(&peek, stream->next_frame);
  2096. header = mad_bit_read(&peek, 32);
  2097. if ((header & 0xffe60000L) /* syncword | layer */ == 0xffe20000L) {
  2098. if (!(header & 0x00010000L)) /* protection_bit */
  2099. mad_bit_skip(&peek, 16); /* crc_check */
  2100. next_md_begin =
  2101. mad_bit_read(&peek, (header & 0x00080000L) /* ID */ ? 9 : 8);
  2102. }
  2103. mad_bit_finish(&peek);
  2104. }
  2105. /* find main_data of this frame */
  2106. frame_space = stream->next_frame - mad_bit_nextbyte(&stream->ptr);
  2107. if (next_md_begin > si.main_data_begin + frame_space)
  2108. next_md_begin = 0;
  2109. md_len = si.main_data_begin + frame_space - next_md_begin;
  2110. frame_used = 0;
  2111. if (si.main_data_begin == 0) {
  2112. ptr = stream->ptr;
  2113. stream->md_len = 0;
  2114. frame_used = md_len;
  2115. }
  2116. else {
  2117. if (si.main_data_begin > stream->md_len) {
  2118. if (result == 0) {
  2119. stream->error = MAD_ERROR_BADDATAPTR;
  2120. result = -1;
  2121. }
  2122. }
  2123. else {
  2124. mad_bit_init(&ptr,
  2125. *stream->main_data + stream->md_len - si.main_data_begin);
  2126. if (md_len > si.main_data_begin) {
  2127. assert(stream->md_len + md_len -
  2128. si.main_data_begin <= MAD_BUFFER_MDLEN);
  2129. memcpy(*stream->main_data + stream->md_len,
  2130. mad_bit_nextbyte(&stream->ptr),
  2131. frame_used = md_len - si.main_data_begin);
  2132. stream->md_len += frame_used;
  2133. }
  2134. }
  2135. }
  2136. frame_free = frame_space - frame_used;
  2137. /* decode main_data */
  2138. if (result == 0) {
  2139. error = III_decode(&ptr, frame, &si, nch);
  2140. if (error) {
  2141. stream->error = error;
  2142. result = -1;
  2143. }
  2144. /* designate ancillary bits */
  2145. stream->anc_ptr = ptr;
  2146. stream->anc_bitlen = md_len * CHAR_BIT - data_bitlen;
  2147. }
  2148. # if 0 && defined(DEBUG)
  2149. fprintf(stderr,
  2150. "main_data_begin:%u, md_len:%u, frame_free:%u, "
  2151. "data_bitlen:%u, anc_bitlen: %u\n",
  2152. si.main_data_begin, md_len, frame_free,
  2153. data_bitlen, stream->anc_bitlen);
  2154. # endif
  2155. /* preload main_data buffer with up to 511 bytes for next frame(s) */
  2156. if (frame_free >= next_md_begin) {
  2157. memcpy(*stream->main_data,
  2158. stream->next_frame - next_md_begin, next_md_begin);
  2159. stream->md_len = next_md_begin;
  2160. }
  2161. else {
  2162. if (md_len < si.main_data_begin) {
  2163. unsigned int extra;
  2164. extra = si.main_data_begin - md_len;
  2165. if (extra + frame_free > next_md_begin)
  2166. extra = next_md_begin - frame_free;
  2167. if (extra < stream->md_len) {
  2168. memmove(*stream->main_data,
  2169. *stream->main_data + stream->md_len - extra, extra);
  2170. stream->md_len = extra;
  2171. }
  2172. }
  2173. else
  2174. stream->md_len = 0;
  2175. memcpy(*stream->main_data + stream->md_len,
  2176. stream->next_frame - frame_free, frame_free);
  2177. stream->md_len += frame_free;
  2178. }
  2179. return result;
  2180. }